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A B S T R A C T

Application of mechanical loading to soft biological tissues plays a central role in tissue engineering.
Mechanical stimuli convert into intracellular biochemical activity, referred to as mechanotransduction, and
lead to the growth of tissues. In most practical applications, the mechanotransduction phenomenon has been
examined on thin tissues in two- or three-dimensional space. Accordingly, a phenomenological finite growth
formulation for shell-like soft tissues under mechanical loading is presented in this work. The basic kinematic
and kinetic quantities besides the constitutive response are formulated. The unconditionally stable implicit
Euler-backward scheme is employed to solve the evolution equation of the growth parameter. Moreover, a
nonlinear finite element formulation is developed, which can provide numerical solutions under arbitrary
geometry, loading, and boundary conditions. Several examples are presented that demonstrate the applicability
and performance of the formulation. The results indicate that finite growth as well as finite deformation of
thin tissues under mechanical input can be successfully predicted by the present formulation.
. Introduction

Traditional engineering materials undergo infinitesimal or finite
eformations under mechanical loading. However, biomaterials can
xhibit some additional behaviors including growth, remodeling, mor-
hogenesis, change of mass, and adaptation, besides deformation, in
esponse to mechanical stimuli [1,2]. Moreover, applying mechanical
oading, e.g., stretching, is a technique for improving the strength,
unctionality, and growth of a wide variety of organs in tissue engi-
eering [3–6]. Accordingly, developing reliable theoretical and numer-
cal tools play a crucial role in predicting the morphological patterns
nd behavior of these materials in various applications such as tissue
ngineering and reconstructive surgeries [7–9].

A wide variety of formulations for the mathematical modeling of the
rowth and remodeling processes have been developed in the literature,
.g., Refs. [2,10–16]. A modern treatment of the growth phenomenon
ased on the notion of an evolving Riemannian material manifold,
onstructed via a time-dependent material metric, was formulated by
avari [17]. Moreover, formulations of growth and remodeling based
n the couple stress and micromorphic continuum theories have been
lso developed by Javadi et al. [18,19].

The continuum formulations of growth mechanics often start from
he multiplicative decomposition of the deformation gradient into the
rowth and elastic parts, e.g., [10,20–25]. The growth part of the
eformation gradient is often called the growth function or growth
ield. The problems dealing with the growth of soft tissues may be
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divided into three categories. In the first category, the growth function
is specified, or its corresponding function can be easily integrated,
and the final deformed shape of the body is to be determined, e.g.,
Refs. [26–31]. In the second category, which is used for shape-
programming purposes, the objective is to find an unknown growth
field such that a target stress-free current configuration can be achieved,
e.g., Refs. [32–37]. In the third category, which is the subject of the
present study, both the growth field and the deformed shape are un-
known (e.g., Refs. [38–47]). More precisely, a soft tissue is subjected to
specified mechanical loading and boundary conditions. Both mechanical
equilibrium equation and the evolution equation of growth must be solved
by analytical or numerical methods. After solving these equations, the
growth function and the final deformed shape of the growing body are
obtained. Clearly, this category of problems plays a central role in the
controllable growth of organs and the improvement of their mechanical
properties in tissue engineering (e.g., [4,6]).

On the other hand, thin growing organs such as skin, leaves, and
wings of insects are widely observed in nature. Accordingly, there
have been published several research papers that model these organs
as plates [33–35,48–51], and shells [27,36,52–54]. In particular, the
formulation proposed by Rausch and Kuhl [52] is based on adding the
growth effects to the Kirchhoff–Love shell model in the commercial
software ABAQUS. It is noted that for a standard FE formulation of
Kirchhoff–Love shell model, 𝐶1-continuous interpolation functions are
needed. However, ABAQUS employs 𝐶0 shape functions through a
mixed displacement-rotation discretization [55]. The model developed
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by Zheng et al. [54] for the growth analysis of thin soft tissues is based
on solid-shell element. It is noted that in this type of shell element, the
nodal degrees of freedom are defined on the top and bottom surfaces
of a hexagonal element. Accordingly, the main strategy is similar to
3D solid elements. Only the displacement field of shell-type structures
is enforced on the geometry of the hexagonal element. Moreover,
the number of unknown nodal variables is more than classical shell
elements that define the nodal unknowns on the midsurface of the shell.

It is noted that modern geometric and numerical techniques, e.g.,
isogeometric analysis [56], have been used to model the deformation
of biological tissues. In particular, Dortdivanlioglu et al. [24] simulated
the morphological instabilities of a thin growing film on a compli-
ant substrate using isogeometric analysis. In another study, Tepole
et al. [57] developed an isogeometric-based finite element formulation
for the numerical simulation of biological membranes based on the
Kirchhoff–Love shell model. It is noted that the growth effect has not
been included in their formulation. From a completely different point
of view, the formulation elaborated by Sadik et al. [53] is the extension
of the geometric theory of growth developed previously in [17] to thin
organs. To the authors’ knowledge, numerical computations based on
the mentioned geometric formulation have not been yet presented in
the literature.

From the review of the literature, it is found that a few research
works have been conducted on developing general and computationally
robust formulations for the growth analysis of shell-like soft tissues. Ac-
cordingly, the purpose of this work is to develop a novel formulation by
combining the original 7-parameter shell model proposed by Sansour
(e.g., [58,59]) with the strain-driven growth mechanics (e.g., [39–44]).
From the computational point of view, the corresponding finite element
formulation of the developed shell model is also presented. Compared
with the previously notable developed formulations (e.g., [52,54]), the
main features of the present contribution are as follows:

• Rather than using Kirchhoff–Love shell model [52], or solid-
shell element with nodal variables at the corners of a hexahe-
dral [54], a new formulation based on Sansour’s 7-parameter
shell model [58,59] is elaborated. The present formulation falls
in the category of geometrically exact Mindlin–Reissner shell models
in computational mechanics terminology. The nodal degrees of
freedom are defined on the midsurface of the shell and the
resulting formulation is 𝐶0-continuous. It is noted that in contrast
to higher-order elements, 𝐶0 elements lead to smaller bandwidth
of the global stiffness matrix.

• One of the main advantages of the present shell model is that
three-dimensional constitutive equations can be directly
employed in the calculation of stress and element stiffness matrix.
This circumvents modifying the constitutive equations to satisfy
the plane stress assumption in traditional shell formulations. It is
noted that satisfaction of the plane stress assumption is not easy
for arbitrary constitutive equations.

• The enhanced assumed strain (EAS) method [60–63] is employed
to alleviate the well-known locking phenomenon in numerical
computations.

In the rest of this research, the kinematics of the shell model is
resented in Section 2. The basics of the mechanical growth theory,
volution equation, and its solution procedure are provided in Sec-
ion 3. Section 4 deals with the variational formulation of the problem,
here an EAS formulation based on the Hu–Washizu principle and

ncluding the growth effects is constructed. A Total Lagrangian FE
ormulation is developed in Section 5. Section 6 demonstrates the
ffectiveness of the proposed formulation through several examples.
inally, a summary of the work is given in Section 7.

Notation: Throughout, Greek indices (subscripts or superscripts)
ange over {1, 2}, Latin indices have the range {1, 2, 3}, and the usual

summation convection is applied. Upper-case indices with calligraphic
font, e.g., , take the values specified in the corresponding equations.
2

For the two arbitrary 2nd-order tensors X and Y, three different 4th-
order tensors (X ⊗ Y)𝑖𝑗𝑘𝑙 = 𝑋𝑖𝑗𝑌𝑘𝑙, (X ⊠ Y)𝑖𝑗𝑘𝑙 = 𝑋𝑖𝑙𝑌𝑘𝑗 , (X⊠̄Y)𝑖𝑗𝑘𝑙 =
𝑖𝑙𝑌𝑗𝑘, and (X⊙ Y)𝑖𝑗𝑘𝑙 = 𝑋𝑖𝑘𝑌𝑗𝑙 are defined in this work.

. Kinematics of the shell model

The geometry of a deforming shell in the reference and current
onfigurations is illustrated in Fig. 1. The reference and current midsur-
aces are denoted by 0 and , respectively. To quantize the kinematic
ensors of the shell, a reference Cartesian coordinate with the basis
ectors {e1,e2,e3} at an arbitrary origin is constructed. Additionally,
he convective coordinate system {𝜁1, 𝜁2, 𝜁3} at each material point
f 0 is considered, so that 𝜁𝛼 and 𝜁3 are, respectively, tangent and
erpendicular to it. For simplicity, the notation 𝑍 is used instead of 𝜁3
n the rest of this paper.

As usual in the shell formulations, the position vector of the material
oints in the reference configuration is given by

(𝜁1, 𝜁2, 𝑧) = R(𝜁1, 𝜁2) +𝑍D(𝜁1, 𝜁2), (1)

here D and R are the outward unit normal and the position vector
n the reference midsurface, respectively. In this work, the 7-parameter
hell model proposed by Sansour (e.g., [58,59]) is extended to include
he growth effects. The midsurface displacement u takes R to the new
osition r on the deformed midsurface, namely r = R + u. Moreover,
he director displacement w takes D to the current director v via the
elation a3 = D + w. Additionally, the scalar field 𝜓 is introduced
s a measure of the through the thickness stretching. Accordingly, the
osition of the material particles in the current configuration obeys the
ollowing relation [58,59]:

= 𝝓(X, 𝑡) = r(𝜁1, 𝜁2, 𝑡) + [𝑍 +𝑍2𝜓(𝜁1, 𝜁2, 𝑡)]a3(𝜁1, 𝜁2, 𝑡), (2)

here 𝝓 is the deformation mapping and 𝑡 ≥ 0 is the time. From Eqs. (1)
nd (2), the reference covariant basis vectors G𝑖 =

𝜕X
𝜕𝜁 𝑖 , and the current

ones g𝑖 =
𝜕x
𝜕𝜁 𝑖 , are calculated to be

G𝛼 = A𝛼 +𝑍D,𝛼 , G3 = A3 = D

g𝛼 = a𝛼 +𝑍a3,𝛼 +𝑍2(𝜓a3),𝛼 , g3 = (1 + 2𝑍𝜓)a3

}

, (3)

here {∙},𝛼 denotes 𝜕
𝜕𝜁𝛼 {∙}. Additionally, A𝛼 = R,𝛼 and a𝛼 = r,𝛼 = A𝛼+

u,𝛼 are the covariant basis vectors tangent to 0 and , respectively.
Furthermore, the relation a3 = g3|𝑍=0

holds. The covariant components
of the reference metric tensor at 𝑍 ∈ [−ℎ∕2, ℎ∕2] are calculated via the
relation 𝐺𝑖𝑗 = G𝑖 ⋅G𝑗 , and the contravariant components of the refer-
ence metric follow the property 𝐺𝑖𝑘𝐺𝑘𝑗 = 𝛿𝑖𝑗 . Additionally, the reference
contravariant basis vectors are given by G𝑖 = 𝐺𝑖𝑗G𝑗 . At the reference
midsurface, with 𝑍 = 0, the quantities in the set {𝐺𝑖𝑗 , 𝐺𝑖𝑗 ,G𝑖,G𝑖}
are, respectively, replaced by {𝐴𝑖𝑗 , 𝐴𝑖𝑗 ,A𝑖,A𝑖}. Furthermore, similar
relations hold in the current configuration. It is noted that the relation
D,𝛼 = −KA,𝛼 holds (e.g., Ref. [64]), where K is the curvature tensor
on 0. With the aid of Eqs. (2) and (3) the deformation gradient is
approximated as follows:

F = g𝑖 ⊗G𝑖 ≈ F[0] +𝑍F[1] with F[0] = a𝑖 ⊗G𝑖,

F[1] = a3,𝛼 ⊗G𝛼 + 2𝜓a3 ⊗D.
(4)

Moreover, the term involving 𝑍2 in g𝛼 has been neglected. From
Eq. (4) the compatible right Cauchy–Green deformation tensor C may
be written as

C = F⊤F ≈ C[0] +𝑍C[1], (5)

where C[0] = F[0]⊤F[0] = 𝐶 [0]
𝑖𝑗 G

𝑖 ⊗ G𝑗 and C[1] = F[0]⊤F[1] + F[1]⊤F[0] =
[1]
𝑖𝑗 G

𝑖⊗G𝑗 are two symmetric second-order tensors. Based on Eqs. (4)
nd (5), the components of C[] ( = 0, 1) may be written as

𝐶 [0]
𝑖𝑗 = a𝑖 ⋅ a𝑗 , 𝐶 [1]

𝛼𝛽 = a𝛼 ⋅ a3,𝛽 + a𝛽 ⋅ a3,𝛼
[1] [1]

}

. (6)

𝐶𝛼3 = a3 ⋅ (a3,𝛼 + 2𝜓a𝛼), 𝐶33 = 4𝜓a3 ⋅ a3
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Fig. 1. Geometry of a growing shell in the reference (a) and current (b) configurations (the vectors in the set {R,A1 ,A2 , r,a1 ,a2} belong the undeformed and deformed midsurfaces
with 𝑍 = 0. The other quantities, namely {X,G1 ,G2 ,G3 ,x,g1 ,g2 ,g3} are defined at the elevation 𝑍 ≠ 0 with respect to the midsurfaces).
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3. Mechanical growth and evolution equation

In this section, the kinematics and evolution equation of finite
growth are presented. For more details, Refs. [1,10–12] are suggested.
To describe the kinematics of growth, the deformation gradient F is
decomposed multiplicatively as (e.g., [10,12,21])

F = FeFg, 𝐽e = det Fe, 𝐽g = det Fg, 𝐽 = det F = 𝐽e𝐽g, (7)

where Fg and Fe are, respectively, the growth and elastic parts of
the deformation gradient tensor. Clearly, the local growth deformation
gradient Fg maps the infinitesimal material line elements from the
reference configuration 0 to the intermediate configuration ̄. The
growth and elastic form of the right Cauchy–Green deformation tensor
is defined by

Ce = F⊤eFe = F−⊤
g CF−1

g , Cg = F⊤gFg. (8)

Obviously, Ce is the push-forward of C to the intermediate config-
uration by Fg. It is easy to prove that for any general invertible
second-order tensor T the following relations hold:

𝜕T−1

𝜕T = −T−1 ⊙ T−1, 𝜕T−⊤

𝜕T = −T−⊤⊠ T−⊤. (9)

rom Eqs. (8) and (9) it follows that the partial derivatives of Ce with
espect to C and Fg are given by

𝜕Ce

𝜕C
|

|

|

|Fg
= 1

2
(F−⊤

g ⊙ F−1
g + F−⊤

g ⊠ F−1
g )

𝜕Ce

𝜕Fg

|

|

|

|F
= −(F−⊤

g ⊠ Ce + Ce ⊙ F−1
g )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (10)

which will be used in the next developments.
Depending on the nature of growth in a living body, it is possible

to consider different forms for the growth deformation gradient Fg. For
example, for the case of isotropic growth in all directions, the relation
Fg = 𝜃1∕3g I is considered, where the parameter 𝜃g is referred to as
the growth multiplier. For the present shell model, it is assumed that
growth does not occur in the thickness direction. In other words, it is
assumed that the growth phenomenon takes place isotropically in the
plane perpendicular to the normal vector D, and is referred to as the
transversely isotropic growth. The basic idea is that the change in the
growth of an organ remains almost constant under the action of the
growth part of the deformation gradient Fg. However, it is important
to notice that the organ thickness changes under the action of the
elastic part of the deformation gradient Fe. This assumption has been
frequently used in the literature in the growth modeling of thin tissues
3

such as skin (e.g., [39–44,52]). Accordingly, the expression for Fg may
be written as (e.g., Refs. [39,52])

Fg =
√

𝜃g(I −D⊗D) +D⊗D. (11)

The geometry of deformation under the multiplicative decomposition
F = FeFg is illustrated in Fig. 2. An infinitesimal volume element of
dimensions 𝑑𝐿1 × 𝑑𝐿2 × 𝑑𝑍 at the point 𝑃 and the elevation 𝑍 with
respect to the referential midsurface 0 is depicted in Fig. 2(a). In
the growth stage, under the action of Fg as expressed in Eq. (11), the
dimensions of the element in the intermediate configuration will be
(𝑘𝑑𝐿1) × (𝑘𝑑𝐿2) × 𝑑𝑍, with 𝑘 =

√

𝜃g. In other words, as can be seen
in Fig. 2(b), the thickness of the element remains unchanged under the
action of Fg. This indicates that the effect of Fg manifests itself as the
rea change from d0 = 𝑑𝐿1𝑑𝐿2 to d̃ = (𝑘𝑑𝐿1)(𝑘𝑑𝐿2) = 𝑘2𝑑𝐴0 =
g𝑑𝐴0. In particular, one may write Fg = g̃𝑖 ⊗ G𝑖, where g̃𝑖 are the
ovariant basis vectors at intermediate configuration. From this point
nd Eq. (11) it follows that

̃ 𝛼 =
√

𝜃gG𝛼 , g̃3 =G3 = D̃ = FgD = D, 𝐽g = 𝜃g, F−⊤
g D = D.

(12)

The elastic deformation stage is displayed in Fig. 2(c), where thickness
change, further in-plane stretch, and bending type motion are applied
to the element under the action of Fe.

Now let the pairs (d0,D), (d̃, D̃), and (d,n) be the infinitesimal
area elements and the corresponding outward unit normal vectors in
the reference, intermediate, and current configurations, respectively.
The well-known Nanson’s formula between the pairs (0,D) and (,n)
is given by dn = 𝐽F−⊤d0D (e.g., Ref. [65]). Similar relations hold
etween the different introduced pairs. In particular, employing Nan-
on’s formula for the pairs (d0,D) and (d̃, D̃), and using Eqs. (11)

and (12), it follows that
d̃
d0

= 𝐽g|F−⊤
g D| = 𝜃g, (13)

ndicating that the function 𝜃g measures the area stretch of an infinites-
mal area element perpendicular to the normal vector D due to the
rowth of the body. Moreover, using Eq. (13) and employing Nanson’s
ormula, the elastic and total area stretches, denoted respectively by 𝜃
nd 𝜃e, may be written as

𝜃e =
d
d̃

= 𝐽e|F−⊤
e D̃| = 𝐽e

√

C−1
e

: (D̃⊗ D̃)

𝜃 = d
d0

=
(d

d̃
)( d̃

d0

)

= 𝜃e𝜃g = 𝐽 |F−⊤D| = 𝐽
√

C−1 : (D⊗D)

⎫

⎪

⎬

⎪

⎭

.

(14)
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Fig. 2. Deformation of an infinitesimal growing shell element under the action of the multiplicative decomposition F = FeFg (with Fg = 𝑘(I −D⊗D) +D⊗D and 𝑘 =
√
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The relation 𝜃 = 𝜃e𝜃g indicates that the area stretch 𝜃 is multiplicatively
decomposed into the elastic and growth parts.

The growth multiplier 𝜃g is the internal variable of the present
formulation and can be determined by solving an evolution equation.
It is noted that two types of formulations, namely strain-driven and
stress-driven have been developed in the literature. The term strain-
driven indicates that the evolution equation for 𝜃 depends upon the
deformation gradient tensor (e.g., Ref. [39]). In contrast, in stress-driven
growth formulations, the evolution equation depends on the stress
tensor (e.g., Ref. [13]). In this work, the basic strain-driven growth for-
mulation proposed in Ref. [39] is reformulated for the case of shell-like
soft tissues. Accordingly, the evolution equation for 𝜃 is written as

̇
g = 𝛽(Fg,F) = 𝛽(𝜃g, 𝜃) = 𝛷1(𝜃g)𝛷2(𝜃e) = 𝛷1(𝜃g)𝛷2

(

𝜃
𝜃g

)

, (15)

here the scalar functions 𝛷1 and 𝛷2 are considered to be

1 =
1
𝑇

( 𝜃max
g − 𝜃g
𝜃max
g − 1

)𝛾
, 𝛷2 = max{0, 𝜃e − 𝜃crit

e } = max{0, 𝜃
𝜃g

− 𝜃crit
e }.

(16)

Here, 𝑇 is referred to as the adaptation speed, 𝛾 is the growth exponent
that affects the shape of the adaptation curve, and 𝜃max

g is the maximum
achievable value of the growth multiplier 𝜃g. Moreover, 𝜃crit

e is the min-
imum required value of 𝜃e to activate the growth process in the tissue.

4. Variational formulation

In this section, the variational formulation of the problem by em-
ploying the enhanced assumed strain (EAS) method is developed. Fol-
lowing Refs. [13,39,43,44], it is assumed that the elastic strain energy
density is a function of the elastic right Cauchy–Green deformation
tensor Ce. More precisely, the function 𝛹 = 𝛹 (Ce) is considered to
be the elastic strain energy density per unit reference volume of the
growing continuum body. In the next step, from Eq. (5) and motivated
by the formulation of Sansour [58], the compatible Cauchy–Green
deformation tensor C is enhanced in the following form:

C⋆ = C + C̃, (17)

where C̃ is referred to as the enhancement tensor. From Eqs. (8) and (17),
the enhanced elastic Cauchy–Green deformation tensor, denoted by C⋆e ,
is defined as

C⋆e = F−⊤
g C⋆F−1

g = Ce + C̃e with C̃e = F−⊤
g C̃F−1

g . (18)

he tensor C̃e may be regarded as the elastic enhancement tensor. The
AS method employs the three-field Hu–Washizu principle to obtain
he weak form of the problem. In this work, independent variables
4

re chosen to be the deformation field 𝝓, the enhancement tensor C̃,
nd the second Piola–Kirchhoff stress tensor S. It is noted that the
ompatible right Cauchy–Green tensor C depends on 𝝓 and is not an
ndependent quantity. Accordingly, for a growing body, the following
unctional is introduced:

(𝝓, C̃, S) = ∫0

(

𝛹 (C⋆e ) −
1
2

S : C̃
)

d0 −ext. (19)

t is worthwhile to note that the enhanced elastic Cauchy–Green tensor
⋆
e is employed in the free energy density 𝛹 . Moreover, ext as the
ork of external loads, given by

ext = ∫0
b0 ⋅ ûd0 + ∫𝜕0

t0 ⋅ ûd(𝜕0), (20)

here b0 and t0 are the referential body force density and surface
raction, respectively. Additionally, û = x−X is the displacement field
hat can be calculated from Eqs. (1) and (2) in the present formulation.
urthermore, 𝜕0 is the boundary surface of the undeformed shell. The
unctional 𝛱 is stationary if its first variation is zero, namely

𝛱 = 1
2 ∫0

[

2
( 𝜕𝛹 (C⋆e )

𝜕C⋆e
:
𝜕C⋆e
𝜕C⋆

)

:𝛿(C+ C̃)− C̃ :𝛿S−S :𝛿C̃
]

d0−𝛿ext = 0,

(21)

from which the following set of equations is obtained:

∫0

( 𝜕𝛹 (C⋆e )
𝜕C⋆e

:
𝜕C⋆e
𝜕C⋆

)

:𝛿Cd0 − 𝛿ext = 0

1
2 ∫0

(

S − 2
𝜕𝛹 (C⋆e )
𝜕C⋆e

:
𝜕C⋆e
𝜕C⋆

)

:𝛿C̃d0 = 0, 1
2 ∫0

C̃ :𝛿Sd0 = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (22)

The strong form of Eq. (22)3 leads to the relation C̃ = 𝟎, which yields
C⋆ = C and C⋆e = Ce. From this result and the strong form of Eq. (22)2,
the constitutive equation for the second Piola–Kirchhoff stress S is
obtained as follows:

S = 2
𝜕𝛹 (Ce)
𝜕Ce

: 𝜕Ce

𝜕C = F−1
g SeF−⊤

g with Se = 2
𝜕𝛹 (Ce)
𝜕Ce

, (23)

and use has been made of Eq. (10)1. Obviously, Se is the push-forward
of the material tensor S to the intermediate configuration.

As usual in the EAS-based finite element formulations, the stress S is
assumed to be orthogonal to C̃ over an element, giving ∫0 C̃ :Sd0 = 0.
Accordingly, the first part of Eq. (22)2 vanishes and Eq. (22)3 will
be identically satisfied. Thus, the following system of equations is
obtained:

𝛿 int − 𝛿𝑊 ext = 0, 𝛿𝐻 = 0, (24)
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where the expressions for 𝛿 int and 𝛿𝐻 are given by

𝛿𝐻 = 1
2 ∫0

S :𝛿C̃d0, 𝛿 int = 1
2 ∫0

S :𝛿Cd0. (25)

The volume element d0, located at the elevation 𝑍 with respect to the
reference midsurface is given by d0 = 𝑌 d0d𝑍, where 𝑌 = det(I−𝑍K)
and d0 =

√

𝐴d𝜁1d𝜁2 [58]. Here, d0 is an area element on 0,
and 𝐴 = 𝐴11𝐴22 − 𝐴2

12 is the determinant of the covariant surface
metric tensor on 0. By substituting Eq. (5) into (25)3 one obtains the
following expression for the virtual internal energy 𝛿 int:

𝛿 int = 1
2 ∫0

(

N :𝛿C[0] + M :𝛿C[1])d0 with

N,M} = ∫

ℎ∕2

−ℎ∕2
{1, 𝑍}𝑌 Sd𝑍.

(26)

imilarly, from Eqs. (17)2 and (26)2, the orthogonality condition may
e rewritten as

𝐻 = 1
2 ∫0

N :𝛿C̃d0 = 0. (27)

y back substituting Eq. (26) into (25)1, the enhanced form of virtual
ork principle is obtained. The second equation is also given in (27).
hese two equations will be solved by the nonlinear finite element
ethod in the next section. For linearization purpose, the increment

f the virtual internal energy and that of the orthogonality condition
re calculated as follows:

𝛥𝛿 int = 1
2 ∫0

(

𝛥N :𝛿C[0] + N :𝛥𝛿C[0] + 𝛥M :𝛿C[1] + M :𝛥𝛿C[1])d0

𝛥𝛿𝐻 = 1
2 ∫0

(𝛥N :𝛿C̃ + N :𝛥𝛿C̃)d0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(28)

here 𝛥N and 𝛥M are given by

𝛥N, 𝛥M} = 1
2
{

[0] : (𝛥C[0] + 𝛥C̃) + [1] :𝛥C[1],

[1] : (𝛥C[0] + 𝛥C̃) + [2] :𝛥C[1]}. (29)

Here, the fourth-order tensors [] ( = 0, 1, 2) are defined as follows:

[] = ∫

ℎ∕2

−ℎ∕2
𝑌 𝑍d𝑍, (30)

where the expression for the fourth-order tensor  is provided in Ap-
pendix.

5. Finite element formulation

In this section, finite element formulation of the present shell model
with growing mass is developed. The shell geometry in the reference
configuration is discretized into 𝑁𝐸𝐿 elements, namely 0 = ∪𝑁𝐸𝐿=1 


0 .

et the shell element 
0 be the midsurface of 

0 . The geometry and
ield quantities over 

0 are interpolated via

R,u,w, 𝜓} =
𝑁𝑁𝐷
∑

=1
𝑃 (𝜁1, 𝜁2){R ,u ,w , 𝜓}, (31)

where 𝑃 is th interpolation function and 𝑁𝑁𝐷 is the number of
nodes in 

0 . The symbol R denotes the position vector of the th
node. Similar definitions hold for u , w , and 𝜓 . Moreover, 𝛿U =
{𝛿u⊤ , 𝛿w

⊤
 , 𝛿𝜓}⊤ and 𝛥U = {𝛥u⊤ , 𝛥w

⊤
 , 𝛥𝜓}⊤ are, respectively, the

virtual and incremental generalized displacement vectors at the th
node of the element.

In the next step, the deformation measures C[ ] ( = 0, 1) defined
in Eqs. (5) and (6) are written in vectorial form, namely C[ ] =
{𝐶 [ ]

11 , 𝐶
[ ]
22 , 𝐶

[ ]
33 , 2𝐶

[ ]
23 , 2𝐶

[ ]
13 , 2𝐶

[ ]
12 }⊤. The variation and increment of

C[ ] may be written as

{𝛿C[ ], 𝛥C[ ]} = 2
𝑁𝑁𝐷
∑

B[ ]
 {𝛿U , 𝛥U}, (32)
=1
a

5

where the matrices B[ ]
 ( = 0, 1) are as follows:

B[0]
 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃,1a⊤1 𝟎1×3 0

𝑃,2a⊤2 𝟎1×3 0

𝟎1×3 𝑃a⊤3 0

𝑃,2a⊤3 𝑃a⊤2 0

𝑃,1a⊤3 𝑃a⊤1 0

p⊤ 𝟎1×3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

B[1]
 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃,1a⊤3,1 𝑃,1a⊤1 0

𝑃,2a⊤3,2 𝑃,2a⊤2 0

𝟎1×3 4𝜓𝑃a⊤3 2𝑃a⊤3a3
2𝜓𝑃,2a⊤3 q⊤2 2𝑃a⊤3a2
2𝜓𝑃,1a⊤3 q⊤1 2𝑃a⊤3a1

𝑃,2a⊤3,1 + 𝑃,1a
⊤
3,2 p⊤ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

Here, the vectors p and q𝛼 (𝛼 = 1, 2) are given by

p = 𝑃,2a1 + 𝑃,1a2, q𝛼 = 2𝜓𝑃a𝛼 + (𝑃a3),𝛼 . (34)

Motivated by Eqs. (5) and (6), the enhancement tensor is written as
C̃ = �̃�𝑖𝑗G𝑖 ⊗ G𝑗 . The vectorial form of C̃ is denoted here by C̃ and
its structure is similar to C[ ] ( = 0, 1) as introduced above. In the
present formulation, it is assumed that C̃, 𝛿C̃, and 𝛥C̃ are given by

{C̃, 𝛿C̃, 𝛥C̃} = 2B̃{c , 𝛿c , 𝛥c} with B̃ =
𝐽0
𝐽
B̄(𝜉1, 𝜉2), (35)

where 𝐽 is the Jacobian of the mapping from the parent element in the
nondimensional 𝜉1𝜉2 space (with 𝜉1, 𝜉2 ∈ [−1, 1]) to the shell element

0 in the physical space. Additionally, 𝐽0 is the value of 𝐽 evaluated at

the element center with 𝜉1 = 𝜉2 = 0. Furthermore, B̄ is an interpolation
matrix, and c is the vector of enhanced parameters. In this work, the
basic shell element employed in the simulations has four nodes. For this
element, following Sansour [58], a 14-parameter enhanced formulation
is considered. Accordingly, the 6 × 14 matrix B̃ is given by

B̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1 𝜉1𝜉2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 𝜉2 𝜉1𝜉2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 𝜉1 𝜉2 𝜉1𝜉2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 𝜉2 𝜉1𝜉2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 𝜉1 𝜉1𝜉2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 𝜉1 𝜉2 𝜉1𝜉2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(36)

The enhanced form of virtual work principle expressed in Eq. (25)1 and
the orthogonality condition (27) over the element 

0 are now written
in the following discretized forms:

𝛿ext − 𝛿 int =
𝑁𝑁𝐷
∑

=1
𝛿U⊤

 (f
ext
 − f int

 ) = 0, 𝛿𝐻 = 𝛿c⊤h = 0, (37)

where fext
 is the nodal generalized external force vector, which can be

asily determined based upon the type of loading applied to the shell.
oreover, the nodal internal force vector f int

 , and the orthogonality
ector h of the element are as follows:
int
 = ∫

0

(

B[0]⊤
 N +B[1]⊤

 M
)

d0, h = ∫
0

B̃⊤N d0 = 𝟎, (38)

here N and M are the vectorial representations of N and M, respec-
ively. Since the virtual generalized displacement vector 𝛿U and the
ector of virtual enhanced parameters 𝛿c are arbitrary, from Eqs. (37)
he system of nonlinear algebraic equations fext

 − f int
 = 𝟎 ( =

, 2,… , 𝑁𝑁𝐷) and h = 𝟎 over the shell element 
0 ( = 1, 2,… , 𝑁𝐸𝐿)
re obtained. To solve the equations via Newton–Raphson method,
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from Eqs. (28), (29), (34) and (35), the following linearized form of
equations are obtained:
𝑁𝑁𝐷
∑

=1
𝛿U⊤



(𝑁𝑁𝐷
∑

=1
Kuu

 𝛥U𝐽 +Kuc
 𝛥c

)

=
𝑁𝑁𝐷
∑

=1
𝛿U⊤

 (f
ext
 − f int

 )

𝛿c⊤
(𝑁𝑁𝐷
∑

=1
Kcu

 𝛥U +Kcc𝛥c
)

= −𝛿c⊤h

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (39)

here the matrices Kuc
 , Kcu

 and Kcc are given by

uc
 = (Kcu

 )⊤ = ∫
0

(

B[0]⊤
 L[0] +B[1]⊤

 L[1])B̃d0,

cc = ∫
0

B̃⊤L[0]B̃d0.
(40)

oreover, the matrix Kuu
 can be decomposed into the material and

eometric parts, namely Kuu
 =Kuu(mat)

 +Kuu(geo)
 . The expression for

uu(mat)
 may be written as

uu(mat)
 = ∫

0

(

B[0]⊤
 L[0]B[0]

𝐽 +B[0]⊤
 L[1]B[1]

𝐽

+B[1]⊤
 L[1]B[0]

𝐽 +B[1]⊤
 L[2]B[1]

𝐽
)

d0. (41)

t is noted that in Eqs. (40) and (41), the quantities denoted by L[] ( =
, 1, 2) are the 6 × 6 matrix forms of []. The geometric contribution
ay be also decomposed as Kuu(geo)

 =Kuu(gN)
 +Kuu(gM)

 , with

uu(gN)
 = ∫

0

⎡

⎢

⎢

⎢

⎣

𝑏1i 𝑏2i 𝟎3×1
𝑏3i 𝑏4i 𝟎3×1
𝟎1×3 𝟎1×3 0

⎤

⎥

⎥

⎥

⎦

d0, (42)

uu(gM)
 = ∫

0

⎡

⎢

⎢

⎢

⎣

𝟎3×3 (𝑘1 + 2𝜓𝑘2)i 2𝑘2a3
(𝑘1 + 2𝜓𝑘3)i 𝑘4i 2𝑃𝑃 z

2𝑘3a⊤3 2𝑃𝑃 z⊤ 0

⎤

⎥

⎥

⎥

⎦

d0, (43)

here i is the 3 × 3 identity matrix. Moreover, the quantities denoted
y 𝑏 and 𝑘 ( = 1, 2,… , 4), and the vector z are as follows:

{𝑏1, 𝑘1} =Q⊤
{N

[p],M[p]}Q , {𝑏2, 𝑘2} =Q⊤
{N

[s],M[s]}𝑃
{𝑏3, 𝑘3} =Q⊤

 {N
[s],M[s]}𝑃 , 𝑏4 = 𝑃𝑃DND

𝑘4 = 𝑘2 + 𝑘3 + 4𝜓𝑃𝑃DMD, z = a𝛼(M[s])𝛼 + 2a3DMD

⎫

⎪

⎬

⎪

⎭

. (44)

ere, Q = {𝑃,1, 𝑃,2}⊤ is a 2 × 1 vector that involves the partial
erivatives of the interpolation function 𝑃 . Additionally,N[p] andM[p]

re the 2 × 2 matrices that contain the planar components of N and M,
espectively. Furthermore, N[s] and M[s] are, respectively, the 2 × 1
ectors that contain the out-of plane shear components of N and M. It

is also noted that (M[s])𝛼 is the 𝛼’th component of M[s]. From Eq. (39),
the following system of linear equations is obtained:
[

Kuu Kuc

Kuc⊤ Kcc

]{

𝛥U

𝛥c

}

=

{

fext − f int

−h

}

, (45)

where Kuu is a matrix whose  th block is Kuu
 . Similarly, the th

block of Kuc, f int and fext are Kuc
 , f int

 and fext
 , respectively. Next,

the incremental vector of enhanced parameters, 𝛥c, is eliminated at
the element level, from which the linear matrix equation K𝛥U = −F,
with K = Kuu − KucKcc−1Kuc⊤ and F = f int − fext − KucKcc−1h is
obtained. Finally, the assembled system of equations may be written as
A𝑁𝐸𝐿

=1 K𝛥U = −A𝑁𝐸𝐿
=1 F, where A𝑁𝐸𝐿

=1 is the assembly operator.
Next, from Eq. (23), it observed that the growth part of deformation

gradient Fg, and hence the growth parameter 𝜃g is needed to calculate
the stress tensor S. The stress tensor is used to calculate the force
resultant N, the moment resultant N, and even the fourth-order tensor
. In particular, the internal force f int and the element stiffness matrix
K will be dependent upon the growth parameter 𝜃g. Accordingly, it is
important to calculate 𝜃g at all Gauss points of all elements by solving

the evolution equation (15). A wide variety of methods including the s

6

unconditionally stable Euler backward differentiation scheme may be
employed for this purpose. Accordingly, at each Gauss point, let 𝜃𝑛+1g

and 𝜃𝑛g be the values of 𝜃g at the times 𝑡𝑛+1 and 𝑡𝑛, respectively.
resuming 𝜃e > 𝜃crit

e , or equivalently 𝛷2 > 0, the expression for �̇�g in
q. (15) at the time 𝑡𝑛+1 is approximated as follows:

̇ 𝑛+1
g =

𝜃𝑛+1g − 𝜃𝑛g
𝛥𝑡

= 𝛽(𝜃𝑛+1g , 𝜃𝑛+1), (46)

here 𝛥𝑡 = 𝑡𝑛+1− 𝑡𝑛 is the time increment. To solve Eq. (46) for 𝜃𝑛+1g by
ewton method, it is rewritten as
𝑛+1 = 𝜃𝑛+1g − 𝜃𝑛g − 𝛥𝑡𝛽(𝜃𝑛+1g , 𝜃𝑛+1) = 0, (47)

from which the new value of 𝜃𝑛+1g is obtained via the following relation:

𝜃𝑛+1
g(new) = 𝜃𝑛+1

g(old) −
𝑅𝑛+1(old)
𝐾

with 𝐾 =
(

𝜕𝑅
𝜕𝜃g

)𝑛+1

(old)
= 1 − 𝛥𝑡

(

𝜕𝛽
𝜕𝜃g

)𝑛+1

(old)
.

(48)

Here, the indices ‘‘old’’ and ‘‘new’’ refer to Newton iterations at the
time 𝑡𝑛+1. Moreover, from Eqs. (15) and (16), the expression for 𝜕𝛽

𝜕𝜃g
is

given by

𝜕𝛽
𝜕𝜃g

=
𝜕𝛷1
𝜕𝜃g

𝛷2 +𝛷1
𝜕𝛷2
𝜕𝜃g

= −
(

𝛾𝛷2
𝜃max
g − 𝜃g

+ 𝜃
𝜃2g

)

𝛷1. (49)

The iteration procedure terminates if |𝜃𝑛+1
g(new) − 𝜃

𝑛+1
g(old)| < 𝜖, where 𝜖 is

sufficiently small number.

. Numerical examples

To investigate the applicability of the proposed formulation, several
umerical examples are presented in this section. An in-house FE code
ased on the developed formulation has been prepared. The integrals
ver the element surface are evaluated by the 2 × 2 Gauss–Legendre

integration rule. Additionally, to integrate along the shell thickness,
namely, in the 𝑍-direction, three Gauss points are considered.

6.1. Growth of a pinched thin-walled cylinder

In this example, the growth of a hollow cylinder made of soft mate-
rials under mechanical loading is investigated. The referential average
radius, thickness, and length of the cylinder are {𝑅, ℎ, 𝐿} = {9, 0.2, 30}
m, respectively. Following Ref. [66], the strain energy density of the
orm 𝛹 (Ce) = 1

2 [𝜇(trCe − 3 − 2 ln 𝐽e) + 𝜆 ln2 𝐽e] is considered. Here, 𝜆
nd 𝜇 are Lamé constants, and the relation 𝜆 = 2𝜈𝜇∕(1 − 2𝜈), with 𝜈 as
oisson’s ratio, holds. In Ref. [66], the values of 𝜇 = 6 × 104 MPa and
𝜈 = 0.4 have been employed. However, to model soft tissues, the shear
modulus has been reduced to 𝜇 = 2 MPa in Rausch and Kuhl [52].

Due to symmetry, the part shown by the points {𝐴,𝐵, 𝐶,𝐷} in
ig. 3(a) as one-eights of the cylinder is discretized by the shell ele-
ents. In the loading stage, the line 𝐴𝐷 is moved gradually 87 mm in
𝑋3 direction during 𝑡l = 1 s. The line 𝐴𝐷 is held fixed for 𝑡l = 30
to observe the growth phenomenon in the cylinder. After that, the

xternal load is completely removed in 𝑡u = 1 s.
Numerical simulations show that a mesh of 12 × 12 elements leads

o convergent results. However, a mesh of 16 × 16 elements is used to
btain smoother deformed shapes. The nondimensional displacement
omponents at the material points 𝐴 and 𝐻 versus the nondimensional
ime 𝑡∕𝑡max are displayed in Fig. 3(a). It is noted that the material point

lies exactly between 𝐴 and 𝐵. The vertical displacement of the point
at the end of the unloading stage is 33.1 mm. Next, the deformed

hapes of the cylinder at four stages, namely at 𝑡 ∈ {1, 16, 31, 32} (s) are
emonstrated in Fig. 3(b–e). The contour plots of the growth parameter
g are also displayed on the deformed shapes. Comparison of Fig. 3(b)
nd (d) shows that the contour plot of 𝜃g at the end of the growth
tage obtained by the present formulation is in good agreement with
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Fig. 3. Growth of the pinched cylinder: history of displacement at the points 𝐴 and 𝐻 (a), deformed shape and the contour plot of 𝜃g at the end of growth stage taken from
Rausch and Kuhl [52] (b), end of loading stage (c), grown stage (d), unloaded stage (e).
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that reported by Rausch and Kuhl [52]. The minor difference between
the present work and that of Ref. [52] comes from the fact that the
assumption of 𝐹13 = 𝐹31 = 𝐹23 = 𝐹32 = 0, for the components of the
deformation gradient tensor, has been made in that reference (please
see Remark 1 in [52]). However, from Eq. (4) it is obvious that all
components of the deformation gradient are nonzero in the present
formulation.

6.2. Growth of a square sheet with a circular hole

In this example, uniaxial stretching and the growth of a square
sheet containing a circular hole are investigated. Following Ref. [67],
the length and thickness of the square and the radius of the hole are
𝐿 = 20′′, ℎ = 0.1′′, and 𝑅 = 3′′, respectively. Moreover, it is assumed
that the strain energy density obeys the compressible Mooney–Rivlin
material model of the form

𝛹 (Ce) = 𝑐1(𝐼e1 − 3) + 𝑐2(𝐼e2 − 3) − (𝜇 + 2𝑐2) ln 𝐽e +
1
2 (𝜆 − 4𝑐2) ln

2 𝐽e.

Here, 𝐼e1 and 𝐼e2 are the first two invariants of Ce. The material constants
f the model are 𝑐1 = 25 (psi), 𝑐2 = 7 (psi), and 𝜈 = 0.48. It is noted

that the shear modulus is given by the relation 𝜇 = 2(𝑐1 + 𝑐2) = 64
psi = 0.44 MPa. As usual, the relation 𝜆 = 2𝜈𝜇∕(1 − 2𝜈) can be used to
calculate the second Lamé constant. To model the growth effects in the
sheet, following Ref. [39], the growth parameters are considered to be
𝜃max
g = 2.4, 𝛾 = 2, 𝑇 = 1, and 𝜃crit

e = 1.01.
As shown in Fig. 4(a), the pure elastic axial stretch 𝜆 = 2 is applied

in the 𝑋2-direction for 𝑡l = 1 s. The top edge is then held fixed for
𝑡g = 20 s to observe the growth in the sheet. Finally, the unloading is
performed during 𝑡 = 1 s. Accordingly, the entire time of simulation
u

7

is 𝑡max = 22 s. Due to symmetry, only one-quarter of the sheet is
discretized by the shell elements. It is noted that to achieve the initial
elastic stretch 𝜆 = 2, the vertical deflection 𝑉max = 10′′ has to be applied
on the top edge of the model. Convergence analysis reveals that a mesh
of 8 × 8 elements, as the number of elements, respectively, in the radial
and circumferential directions of the circular hole, is sufficient to obtain
mesh-independent results. However, a mesh of 20 × 20 elements is used
to obtain smoother deformed shapes.

The deformed shapes of the sheet for 𝑡 ∈ {1, 6, 11, 16, 21, 22} s are
isplayed in Fig. 4. The deformed shape at the end of elastic loading is
emonstrated in Fig. 4(a), where the growth multiplier is still 𝜃g = 1 on
he entire geometry. For 1 < 𝑡 ≤ 21 s, the growth multiplier 𝜃g increases
n the sheet. For 21 ≤ 𝑡 ≤ 22 s, the load on the top edge is gradually
ecreased to zero. The final grown geometry, corresponding to 𝑡 = 22
, is displayed in Fig. 4(f).

The time evolution of the growth parameter 𝜃g, for the material
oints {𝐴,𝐵, 𝐶,𝐷,𝑀,𝑁}, and the area ratio 𝐴∕𝐴0 are displayed in
ig. 5(a). Moreover, the time history of the non-dimensional von Mises
tress �̄�∕𝜇, for the material points {𝐴,𝐵, 𝐶,𝐷,𝑀,𝑁}, and the resul-
ant vertical force 𝐹 on the top edge of the one-quarter model are
emonstrated in Fig. 5(b). The mentioned material points are shown
n Fig. 4(a). It is noted that the curve corresponding to the applied
orce 𝐹 is coincident with that obtained by Ref. [67] for 𝑡 ∈ [0, 1].
dditionally, the applied force 𝐹 reduces during the growth processes.
he same holds about the von Mises stress �̄�, which indicates the stress
elaxation behavior of the sheet in the growth stage. The point 𝐶, with
he initial coordinates (0, 𝑅), does not experience any growth during the
ntire process. Furthermore, the von Mises stress attains its minimum
alues at this point. On the other hand, the maximum growth parameter
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Fig. 4. Deformed shapes of the sheet with the contour plots of the growth multiplier 𝜃g at different times.
Fig. 5. (a) Time evolution of 𝐴∕𝐴0 and 𝜃g (at some material points), (b): time history of the applied force 𝐹 and the non-dimensional von Mises stress �̄�∕𝜇 (at some material
points).
𝜃g and the maximum von Mises stress are both observed at the material
point 𝐷 with the initial coordinates (𝑅, 0). The maximum value of the
area stretch is 𝐴max∕𝐴0 = 2.1809, which occurs at 𝑡 = 21 s. After the
unloading process, the final value of the area stretch is obtained to be
𝐴f∕𝐴0 = 1.9155.

6.3. Growth of a soft tissue as an annular plate

In this example, the growth of a soft tissue whose geometry is an
annular plate is simulated. Following Ref. [67], the inner and outer
8

radii of the undeformed plate are 𝑎 = 0.5′′ and 𝑏 = 5′′, respectively. The
initial thickness is also considered to be ℎ = 0.0625′′. Moreover, similar
to example 6.2, it is assumed that the material obeys the compressible
Mooney–Rivlin model. However, the constants of the model are 𝜈 =
0.48, 𝑐1 = 18.35 (psi), and 𝑐2 = 1.468 (psi). Accordingly, the shear
modulus is calculated to be 𝜇 = 0.27 MPa. Following Ref. [43], the
growth parameters are considered to be 𝜃max

g = 4, 𝛾 = 2, 𝑇 = 1
12 s,

and 𝜃crit
e = 1.21. The radial displacement is applied from 𝑢out

𝑟 = 0 to the
maximum value (𝑢out

𝑟 )max = 6′′ is applied gradually on the outer radius
of the sheet in 𝑡l = 1 s. The maximum radial displacement is then held
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Fig. 6. Deformed shapes of the annular plate with the contour plots of the growth multiplier 𝜃g at different times.
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onstant for 𝑡g = 16 s to observe the growth in the sheet. In the last
tage, the unloading procedure is performed during 𝑡u = 1 s. It then
ollows that the maximum time of simulation is 𝑡max = 18 s.

Due to symmetry, only one-quarter of the annular plate is dis-
retized by the shell elements. Numerical experiments reveal that a
esh of 6 × 6 elements, in radial and circumferential directions, is suf-

icient to achieve converged results. However, a mesh of 10 × 10 shell
lements is used to obtain smoother deformed shapes. The deformed
hapes of the full model for 𝑡 ∈ {1, 5, 9, 13, 17, 18}(𝑠) are demonstrated in
ig. 6. The deformed shape at the end of elastic loading, corresponding
 t

9

o the time 𝑡 = 1 s is displayed in Fig. 6(a), where the growth multiplier
s still 𝜃g = 1 on the entire geometry. As can be observed from Fig. 6(b–
), by increasing the time in the interval 1 < 𝑡 ≤ 17, the inner radius
ecreases, while the growth multiplier 𝜃g follows an increasing trend.
he final grown geometry is illustrated in Fig. 6(f). After unloading,
oth inner and outer radii decrease.

Time evolution of the radial displacements 𝑢in
𝑟 and 𝑢out

𝑟 , area stretch
∕𝐴0, and the resultant force 𝐹 are displayed in Fig. 7(a). Moreover,

he time history of the non-dimensional von Mises stress �̄�∕(3𝜇) and
he growth multiplier 𝜃 at the inner and outer radii of the annular
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Fig. 7. (a): Time history of radial displacements 𝑢in
𝑟 and 𝑢out

𝑟 , area stretch 𝐴∕𝐴0, and the resultant force 𝐹 , (b): time history of the non-dimensional von Mises stress �̄�∕(3𝜇) and
the growth multiplier 𝜃 at the inner and outer radii of the annular plate.
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plate are illustrated in Fig. 7(b). As can be seen from Fig. 7(a), the
aximum value of the area stretch occurs at the end of the growth

tage with 𝑡 = 17 s, and is calculated to be 𝐴max∕𝐴0 = 4.8004. After
the unloading process, the final value of the area stretch is obtained to
be 𝐴f∕𝐴0 = 3.7209. The maximum value of the growth parameter 𝜃g is
3.80, which is observed at the internal surface of the sheet.

6.4. Growth of a tissue as a curved strip

In this example, the growth of soft tissue with an initial geometry
as a curved strip is investigated. The strip can be a simple prototype
of an S-shaped human spine. The geometry and loading are shown
in Fig. 8(a). The referential average radius of curvature, width, and
thickness of the strip are 𝑅 =

√

2, 𝑊 = 0.04, and ℎ = 0.04 (m),
respectively. Moreover, the projected length of the strip along the 𝑥1-
axis is 2𝐿 = 0.4 (m). The left end of the centerline is immovable, while
its right end can freely move in the 𝑥1 direction. It is assumed that
the strain energy density is the same as that given in the example 6.1.
Following Ref. [39], the shear modulus and the growth parameters are
considered to be 𝜇 = 0.0385 MPa, 𝜃max

g = 2.4, 𝛾 = 2, 𝑇 = 1 s, and
crit
e = 1.01. Moreover, Poisson’s ratio is considered to be 𝜈 = 0.48. The

force per unit length 𝑝 is applied gradually from 𝑝 = 0 to 𝑝max = 30
N/m in 𝑡l = 0.5 s. The maximum load is then held constant for 𝑡g = 22
s to observe the growth in the sheet. Finally, the unloading procedure
from 𝑝max to 0 is performed during 𝑡u = 1 s. Accordingly, the maximum
time of simulation is 𝑡max = 23.5 s.

Numerical simulations reveal that a mesh of 6 × 48 elements leads
to convergent results. The deformed shapes of the strip for 𝑡 = 0.5,
.5, 10.5, 15.5, 22.5, and 23.5 (s) are displayed in Fig. 8(a–f). In
articular, the deformed geometry at the end of pure elastic loading,
orresponding to the time 𝑡 = 0.5 s, is demonstrated in Fig. 8(a),
here the growth multiplier is still 𝜃g = 1 on the entire geometry. As

an be seen from Fig. 8(b–e), by increasing the time in the interval
.5 < 𝑡 ≤ 22.5, the strip curvature increases gradually in the opposite
irection of its initial one. Moreover, the growth multiplier 𝜃g follows
n increasing trend. The final grown geometry is depicted in Fig. 8(f),
here it is observed that the deformed strip is almost a straight line.

The curves corresponding to the strip centerline are illustrated in
ig. 9(a). It is noted that only the even load steps are plotted in
he figure. Next, the material points {𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 } as shown in
ig. 8(a) are considered. Due to the skew-symmetry of the geometry,
he material points {𝐷,𝐸, 𝐹 } have the same properties of {𝐴,𝐵, 𝐶},
10
espectively. Time history of the growth parameter 𝜃 and the non-
imensional von Mises stress �̄�∕(4𝜇), for the material points {𝐴,𝐵, 𝐶}
re displayed in Fig. 9(b). Variation of the area stretch 𝐴∕𝐴0 is also

shown in the figure. From Fig. 9(b) it is observed that the maximum
values of the von Mises stress �̄� occur at the material point 𝐶. However,
the maximum value of the growth multiplier 𝜃g is observed at the
material point 𝐴 and attains its maximum value 𝜃𝐴max = 1.75. The
maximum value of the area stretch takes place at the end of the growth
stage with 𝑡 = 22.5 s and is obtained to be 𝐴max∕𝐴0 = 1.16. After the
nloading stage, the final value of the area stretch is calculated to be
f∕𝐴0 = 1.15.

.5. Growth of a thin-walled helix under self-weight

In this example, the growth mechanics of a helix under its weight
s investigated. The cross-section of the helix is a circle of radius 𝑎 =
mm and the thickness ℎ = 1 mm. The average radius of the helix

s 𝑏 = 25 mm. The angle 𝜁1 ∈ [0, 2𝜋] describes the circumference of
he cross-section. Moreover, the angle 𝜁2 ∈ [0, 𝜁2max] is used to describe
he centerline of the helix. In this work, 𝜁2max = 6𝜋 is employed,
hich creates a helix with three complete loops. The equation of the

eferential centerline is given by
c
1 = 𝑏 cos 𝜁2, 𝑋c

2 = 𝑏 sin 𝜁2, 𝑋c
3 =

𝑝
2𝜋
𝜁2,

where 𝑝 is the pitch of the helix, and is considered to be 12.5 mm. The
undeformed geometry of the helix and its cross-section are displayed in
Fig. 10(a). It is assumed that the strain energy density is the same as
that given in the example 6.1. The material parameters are considered
to be 𝜇 = 0.0385 MPa, 𝜈 = 0.48, 𝜃max

g = 2.4, 𝛾 = 2, 𝑇 = 0.1 s, and
𝜃crit
e = 1. Moreover, the referential density is 𝜌0 = 20 kg∕m3. The top

cross-section of the helix, at 𝜁2 = 𝜁2max, is assumed to be fixed. In the
first step, the weight of the helix is applied gradually in 𝑡l = 1 s. The
growth process under the maximum weight is then simulated in 𝑡g =
30 s.

Numerical experiments show that a mesh of 10 × 90 elements is
required to achieve convergent results. Now, the material points 𝐶𝑡
and 𝐶𝑚, respectively, at (𝜁1 = 𝜋, 𝜁2 = 0) and (𝜁1 = 𝜋, 𝜁2 = 1

2 𝜁
2
max)

are considered. The nondimensional displacement components 𝑢𝑖∕𝑏 at
the material points 𝐶𝑡 and 𝐶𝑚 against the nondimensional time 𝑡∕𝑡max
are plotted in Fig. 10(a). Moreover, the deformed shapes of the helix at
four stages, namely at 𝑡 ∈ {1, 11, 21, 31} (s) are illustrated in Fig. 10(b–
e). The contour plots of the growth parameter 𝜃 are also displayed
g
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Fig. 8. Deformed shapes of the curved strip with the contour plots of the growth multiplier 𝜃g at different times.

Fig. 9. (a) Deformed shapes of the centerline at various time steps (even load steps are demonstrated, dashed lines correspond to the unloading stage), (b) time history of the
area stretch 𝐴∕𝐴0, and those of 𝜃g and 4�̄�∕𝜇 at some material points.

11
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Fig. 10. Growth of a helix under self-weight, (a): history of displacement at the points 𝐶𝑚 and 𝐶𝑡, (b): deformed shape and contour plot of 𝜃g at the end of loading (𝑡 = 1 s), (c):

grown stage at 𝑡 = 11 s, (d): grown stage at 𝑡 = 21 s, (e): grown stage at 𝑡 = 31 s.
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on the deformed shapes. The maximum value of 𝜃g is obtained to be
1.45.

6.6. Growth of a flower-like geometry

In this example, the growth of a geometry that is similar to a flower
is investigated. If the flower is composed of 𝑁 petals, by considering
the 𝑋1𝑋3-plane as the plane of symmetry, the geometry of a single
petal can be described by the meridian angle 𝜁1 ∈ [𝜁1min, 𝜁

1
max] and the

polar angle 𝜁2 ∈ [− 𝜋
𝑁 ,

𝜋
𝑁 ]. It is noted that the meridian angle 𝜁1 is

measured with respect to the south pole. In this work, the values of
𝑁 = 8, 𝜁1min = 𝜋

36 , and 𝜁1max = 𝜋
3 are used in the simulations. Moreover,

we noted that the material points of a single petal may be described
via the following equations:

𝑋1 = 𝑘1𝑅 sin 𝜁1 cos(𝑓𝜁2), 𝑋2 = 𝑘1𝑅 sin 𝜁1 sin(𝑓𝜁2), 𝑋3 = −𝑅 cos 𝜁1,

where 𝑓 (𝜁1) = 𝜁1max−𝑘2𝜁
1

𝜁1max−𝑘2𝜁
1
min

is a scalar function. Moreover, 𝑘1 = 25 and

2 = 0.98 are two constants. From another point of view, the petal is
art of the boundary surface of an ellipsoid whose equation is given by
𝑋1
𝑘1𝑅

)2 + ( 𝑋3
𝑘1𝑅

)2 + (𝑋3
𝑅 )2 = 1. The length of the semi-axis of the ellipsoid

along 𝑋3 and the initial thickness are, respectively, considered to be
𝑅 = 10 and ℎ = 2 (mm). The strain energy density is the same as that
described in the example 6.1. Moreover, the material parameters are
considered to be 𝜇 = 2 MPa, 𝜈 = 0.48, 𝜃max

g = 2.4, 𝛾 = 2, 𝑇 = 0.1
s, and 𝜃crit

e = 1. The petal is fixed at 𝜁1 = 𝜁1min, and its tip curve at
𝜁1 = 𝜁1max is subjected to the force per unit length 𝑞1max = −2.5 and
3
max = 5 (N/m) in the 𝑋1 and 𝑋3 directions, respectively. In the first
tep, the loads 𝑞1 and 𝑞3 are applied gradually to the petal from zero
o their maximum values in 𝑡l = 1 s. In the growth stage, the petal is
ubjected to the maximum values of 𝑞1 and 𝑞3 for 𝑡g = 30 s. Finally,
he loads are gradually decreased from their maximum values to zero
12
n 𝑡u = 1 s. Accordingly, the maximum time of simulation is 𝑡max = 32
.

Due to symmetry, only one-half of a petal is discretized by the
hell elements. A mesh of 4 × 24 elements leads to convergent results.
ext, the material points 𝐴 and 𝐵 along the centerline of the petal
re considered. The point 𝐴 is located at the tip of the centerline,
ut the meridian angle of the point 𝐵 is given by 𝜁1𝐵 = 1

2 (𝜁
1
min +

𝜁1max). The nondimensional displacement components 𝑢1∕𝑅 and 𝑢3∕𝑅
at the material points 𝐴 and 𝐵 versus the nondimensional time 𝑡∕𝑡max
are depicted in Fig. 11(a). It is noted that the maximum values of
lateral deflection at the point 𝐴 at the end of the growth stage and
after unloading are 149.46 and 84.06 (mm), respectively. Finally, the
deformed shapes of the helix at four stages, namely at 𝑡 ∈ {1, 16, 31, 32}
(s) are demonstrated in Fig. 11(b–e). The contour plots of the growth
parameter 𝜃g are also displayed on the deformed shapes. Moreover, the
maximum calculated value of 𝜃g is 1.16.

7. Summary

The finite growth of shell-like soft tissues subject to mechani-
cal loading was investigated in this work. The essential kinematic
quantities and the constitutive equations describing the combined
deformation and growth of thin living bodies were presented. In
particular, the expression for the tangent modulus contains additional
terms, besides the traditional one, due to the growth effects. Moreover,
a finite element formulation, in material framework, for the numerical
solution of the nonlinear governing equations was developed. Several
benchmark examples were provided that reveal the applicability of
the proposed formulation. It was shown that the present formulation
is successful in predicting the simultaneous deformation and growth
of thin shell-like tissues subject to mechanical loads under a wide
variety of boundary conditions. Therefore, it can be used for design
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Fig. 11. Growth of a flower-type geometry, (a): displacement components vs time at the points 𝐴 and 𝐵, (c): deformed shape and contour plot of 𝜃g at the end of loading stage
(𝑡 = 1 s), (d): growth stage at 𝑡 = 16 s, (d): end of growth stage (𝑡 = 31 s), (e): end of unloading stage (𝑡 = 32 s).
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and analysis purposes in bionic and tissue engineering. An extension of
the present work to account for temperature effects will be provided in
the next contributions.
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Appendix

The fourth-order tensor  is given by (see also, Refs. [39,43,44])

 = 2 dS
dC = 2

[

𝜕S
𝜕C

|

|

|

|Fg
+
(

𝜕S
𝜕Fg

:
𝜕Fg

𝜕C

)

|

|

|

|F

]

= 2
[

𝜕S |

|

|

+
(

𝜕S :
𝜕Fg ⊗

𝜕𝜃g
)

|

|

|

]

.
(A.1)
𝜕C
|Fg 𝜕Fg 𝜕𝜃g 𝜕C

|F

13
In the sequel, the derivative terms that appeared in Eq. (A.1) are
calculated. To do so, from Eqs. (10)1 and (23)1, the first term in the
brackets may be written as

𝜕S
𝜕C

|

|

|

|Fg
= 𝜕
𝜕C (F−1

g SeF−⊤
g )||

|Fg
= F−1

g

(

𝜕Se
𝜕Ce

: 𝜕Ce

𝜕C

)

F−⊤
g = 1

2
 1 :e : 2. (A.2)

here the fourth-order tensors e and   ( = 1, 2) are defined as
ollows:

e = 2
𝜕Se
𝜕Ce

,  1 = F−1
g ⊠ F−⊤

g ,  2 = F−⊤
g ⊙ F−1

g . (A.3)

imilarly, Eqs. (10)2 and (23)1 leads to the following expression for the
term 𝜕S

𝜕Fg
|

|

|F
:

𝜕S
𝜕Fg

|

|

|

|F
= 𝜕
𝜕Fg

(F−1
g SeF−⊤

g )
|

|

|

|F

=
[ 𝜕F−1

g

𝜕Fg

SeF−⊤
g + F−1

g Se
𝜕F−⊤

g

𝜕Fg

+ F−1
g

(

𝜕Se
𝜕Ce

: 𝜕Ce

𝜕Fg

)

F−⊤
g

]

F

= −1
2
(

2 3 +  1 :e : 4
)

,

(A.4)

here the fourth-order tensors  3 and  4 are given by

 3 = F−1
g ⊙ S + S⊠ F−⊤

g ,  4 = F−⊤
g ⊠ Ce + Ce⊠̄F−1

g . (A.5)

o calculate 𝜕𝜃g
𝜕C , in the first step, straightforward calculations lead to

he following expression for 𝜕𝜃
𝜕C :

𝜕𝜃 = 1 [

𝜃2I − 𝐽 2C−1(D⊗D)
]

C−1, (A.6)

𝜕C 2𝜃
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𝛽

R

where use has been made of 𝜕C−1

𝜕C = − 1
2 (C

−1 ⊠ C−1 + C−1 ⊙ C−1) and
𝜕𝐽2

𝜕C = 𝐽 2C−1 (e.g., Ref. [65]). Next, differentiating the scalar function
, defined in Eqs. (15) and (16), with respect to 𝜃 and C furnishes

𝜕𝛽
𝜕𝜃

=
𝛷1
𝜃g
,

𝜕𝛽
𝜕C =

𝜕𝛽
𝜕𝜃g

𝜕𝜃g
𝜕C +

𝜕𝛽
𝜕𝜃

𝜕𝜃
𝜕C . (A.7)

By discarding the superscript ‘‘𝑛 + 1’’ in Eq. (47), differentiating with
respect to C, using Eqs. (48)2 and (A.7), and solving for 𝜕𝜃g

𝜕C one obtains

𝜕𝜃g
𝜕C =

𝛷1𝛥𝑡
𝐾𝜃g

𝜕𝜃
𝜕C =

𝛷1𝛥𝑡
2𝐾𝜃𝜃g

[

𝜃2I − 𝐽 2C−1(D⊗D)
]

C−1, (A.8)

where use has been made of Eq. (A.6) in the last expression. Now,
by back substituting Eqs. (12)4, (A.2), (A.4), and (A.8) into (A.1), the
fourth-order elasticity tensor  is obtained.
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