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Abstract

In this paper, we study small-noise asymptotic behaviors for a class of distribution dependent
tochastic differential equations driven by fractional Brownian motions with Hurst parameter H ∈

1/2, 1) and magnitude ϵH . By building up a variational framework and two weak convergence criteria
n the factional Brownian motion setting, we establish the large and moderate deviation principles for
hese types of equations. Besides, we also obtain the central limit theorem, in which the limit process
olves a linear equation involving the Lions derivative of the drift coefficient.
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1. Introduction

In this article, we study the asymptotic behaviors (including the large and moderate deviation
rinciples and the central limit theorem) for distribution dependent stochastic differential
quations (DDSDEs) in Rd with small fractional noises as follows:

dX ϵ
t = b(t, X ϵ

t ,LXϵt )dt + ϵHσ (t,LXϵt )dB H
t , X ϵ

0 = x, (1.1)

here LXϵt denotes the law of X ϵ
t , ϵ > 0 is a small parameter, B H is a fractional Brownian

otion with Hurst parameter H ∈ (1/2, 1), the coefficients b and σ fulfill some appropriate
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conditions given in later sections. Moreover, the integral with respect to B H is interpreted in
he Wiener sense due to the fact that σ (·,LXϵ· ) is deterministic. Before stating more precisely
ur approach and our results, let us recall a few results concerning distribution dependent SDEs
nd large and moderate deviation principles.

DDSDEs, also called McKean–Vlasov or mean-field SDEs, were first studied by McK-
an [40] to model plasma dynamics. These DDSDEs describe limiting behaviors of individual
articles in a large system of particles which interact in a mean-field sense, as the number
f particles tends to infinity. Another important feature of DDSDEs is their intrinsic link
ith nonlinear Fokker–Planck–Kolmogorov equation which may characterize the evolution
f the marginal laws of DDSDEs. For these reasons, DDSDEs have found applications in
umerous fields such as statistical physics, mean-field games, mathematical finance and biology
see, e.g., [4,15,30,32,38] and references therein). Recently, there has been a flourishing
rowth in the literature on DDSDEs, one can refer to [7,16] for value functions and related
DEs, [28,46,49,53] for Harnack type inequalities, gradient estimates, Lions type derivative
ormulas, and many other aspects.

On the other hand, large and moderate deviation principles are to calculate the probability of
rare event and investigate the asymptotic property of remote tails of a family of probability

istribution. In the case of stochastic processes, the idea lies in identifying a deterministic
ath around which the diffusion is concentrated with high probability, which leads to an
nterpretation of the stochastic motion as a small perturbation of this deterministic path. Since
he original work of [23] adopting method of contraction principle and the technique of time
iscretization, large and moderate deviation principles for stochastic equations perturbed by
rownian motion or Poisson random measure have been extensively studied in the past several
ecades. Another general approach for studying large and moderate deviation problems is the
ell-known weak convergence method introduced in [8,11], which is based on a variational

epresentation for positive measurable functionals of Brownian motion or Poisson random
easure. After that, this approach has been widely applied in various stochastic dynamical

ystems, see, for example, [6,10,12,18,19,31,39,54,56,57] and the references therein. We
emark that in the study of moderate deviation principle (MDP), one is concerned with deviation
robability of a lower order than that in large deviation principle (LDP), which actually bridges
he gap between LDP and central limit theorem (CLT) (see more details in the paragraphs
elow).

Recently, the problem of LDPs and MDPs for DDSDEs has attracted much attention.
errmann et al. [25] proved the LDP for the self-stabilizing diffusion in path space with the
niform norm under the superlinear growth and coercivity condition of the drift coefficient
nd a constant diffusion coefficient. Dos Reis et al. [20] obtained the LDP in both uniform
nd Hölder topologies under the assumption that the drift and diffusion coefficients satisfy
ome extra Hölder continuity with respect to time. Adams et al. [1] established the LDP for
eflected DDSDE. Ren and Wang [47] investigated the Donsker–Varadhan type LDP for a
lass of path-distribution dependent SPDEs. The approaches used in [1,20,25,47] are based on
ime discretization, approximation and exponent equivalence techniques, which require more
tringent conditions on the coefficients and are rather complicated in showing the exponential
stimates and tightness for DDSDEs. In the recent work [51], Suo and the third author obtained
he MDP for DDSDEs (Brownian motion is driving noise) by assuming the Lipschitz conditions
n the coefficients, which mainly relies on the weak convergence method to first get the LDP
or distribution-free SDE and then prove the exponential equivalence between DDSDEs and the
ssociated distribution-free SDE. Afterwards, Liu et al. [37] fully used the weak convergence
384
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method to prove the LDP and MDP for DDSDEs with Lévy jumps, where they originally
established the weak convergence criteria with respect to distribution dependent case. Following
similar arguments, Hong et al. [26] and Gu et al. [24] obtained the LDPs for distribution
dependent SPDEs and path-distribution dependent SDEs, respectively.

Contrary to the previously mentioned works, the aim of this paper is to study the asymptotic
behaviors of Eq. (1.1) perturbed by a fractional motion B H with H ∈ (1/2, 1) as ϵ → 0. Our

rimary motivation for doing this comes from the fact that the vast and growing literature on
arge and moderate deviation results for stochastic equations focuses mostly on the noises of

arkov property or independently identically distribution, and results outside this class are
ew. Hu, Nualart and Zhang [27] established the LDP for one-dimensional distribution-free
tochastic heat equation with a Gaussian noise which is white in time and has the covariance
f a fractional Brownian motion with H ∈ (1/4, 1/2) in the space variable. Let us stress that
n [27], the authors used the weak convergence approach to get the small perturbation type LDP
ith magnitude

√
ϵ. Carrying out similar strategy, Liu [35] and Li et al. [33,34] investigated the

LDPs and MDPs for a class of SPDEs under the similar framework as in [27]. The only other
works for SDEs, to the best of our knowledge, are [5,13] which treated classical SDEs driven
by fractional Brownian motion (that is, distribution-free) with magnitude

√
ϵ, rather than ϵH ,

and investigated respectively LDP and MDP. One reason for this is that fractional Brownian
motion B H with parameter H ̸= 1/2 is neither a Markov process nor a semimartingale and
then techniques based on the Itô calculus are not applicable, substantial new difficulties will
appear in this setting. Recently, in [22] we proved the well-posedness of DDSDEs driven by
fractional Brownian motions and then established the Bismut formulas for both non-degenerate
and degenerate cases. With the solution of (1.1) in hand, a natural problem one can think of is
the following: can we obtain the small-noise asymptotic results for this type of equation? The
main purpose of this paper is to study the LDP, MDP and CLT of (1.1) when ϵ → 0. More
precisely, let X0 be the limit of X ϵ in some sense, we are going to investigate the asymptotic
behaviors for the path of the form

Y ϵ
t :=

X ϵ
t − X0

t

ϵHκ(ϵ)
, t ∈ [0, T ].

• In the case of the LDP, namely κ(ϵ) = 1/ϵH , we show that X ϵ satisfies the LDP with
peed ϵ2H (see Theorem 3.6).

• In the case of the CLT, namely κ(ϵ) = 1, we prove that as ϵ → 0, Xϵ−X0

ϵH converges
o a stochastic process which solves a linear equation involving the Lions derivative of the
oefficient b (see Theorem 3.9).

• In the case of the MDP, namely κ(ϵ) → ∞ and ϵHκ(ϵ) → 0 as ϵ → 0, we derive that
Y ϵ satisfies LDP with speed κ−2(ϵ) (see Theorem 3.7).

Here, let us point out that the MDP for X ϵ refers to the LDP for Y ϵ since the scaling by
Hκ(ϵ) means that the MDP is in the regime between the LDP and the CLT.

In order to obtain the large and moderate deviation principles, we shall adopt the weak
onvergence method. With the help of a variational representation for random functional
f fractional Brownian motion (see Lemma 5.1), we provide two sufficient conditions for
he Laplace principle (which is equivalent to the LDP) to hold for functionals of fractional
rownian motion (see Propositions 3.4, 3.5), which are extensions (or fractional versions)
f [12, Theorem 4.2], [37, Theorems 3.6, 3.8, 4.3, 4.4, 4.5 and 4.6] and [39, Theorem 3.2].
hen we are allowed to verify the weak convergence properties of the controlled equations for
DSDEs concerned. Let us stress that the identification of the correct controlled equations is

crucial step in the DDSDEs situation.
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An interesting problem coming from the work is whether our results can be further improved
n the sense of allowing the diffusion coefficient σ to be dependent on X t . Our recent
ork [22, Remark 3.2(ii)] suggests that there is an essential difficulty in establishing the well-
osedness of multidimensional DDSDEs driven by fractional Brownian motions. Recently, in
he Brownian motion setting, some scholars have investigated the well-posedness of DDSDEs
ia the Girsanov transforms and the coupling argument (see, e.g., [29,52]), which are available
or fractional Brownian motion as well. We hope that these tools are of help in future studies.
nother challenging question is whether there are similar results for DDSDEs driven by rough

ractional Brownian motion, which corresponds to H ∈ (0, 1/2). In the rough situation, the
keleton equation (3.11) below might be ill-posed, thus our techniques are currently not enough
o give an affirmative answer. We will leave this topic for future work.

The rest of the paper is organized as follows. Section 2 is devoted to recalling some useful
acts on fractional Brownian motion and the Lions derivative. In Section 3, we present the
ramework of DDSDE driven by fractional Brownian motion and state some basic theory of
he LDP. Then we formulate the main results concerning the LDP, the MDP and the CLT for
DSDE driven by fractional Brownian motion. In Section 4, we focus on proving our main

esults. Section 5 will be devoted to the proofs of some auxiliary results.

. Preliminaries

.1. Fractional Brownian motion

In this part, we shall recall some important definitions and results concerning the fractional
rownian motion. For a deeper discussion, we refer the reader to [2,3,17,42,45] and references

herein.
For some fixed H ∈ (1/2, 1). we consider (Ω ,F ,P) the canonical probability space

associated with fractional Brownian motion with Hurst parameter H . That is, Ω is the Banach
pace C0([0, T ],Rd ) of continuous functions vanishing at 0 equipped with the supremum norm,

is the Borel σ -algebra and P is the unique probability measure on Ω such that the canonical
rocess {B H

t ; t ∈ [0, T ]} is a d-dimensional fractional Brownian motion with Hurst parameter
H . Recall that B H

= (B H,1, . . . , B H,d ) is a centered Gaussian process, whose covariance
structure is defined by

E
(
B H,i

t B H, j
s

)
= RH (t, s)δi, j , s, t ∈ [0, T ], i, j = 1, . . . , d

ith RH (t, s) =
1
2 (t2H

+ s2H
− |t − s|2H ). Let {Ft }t∈[0,T ] be the filtration generated by B H .

We denote by E the set of step functions on [0, T ] with values in Rd . Let H be the Hilbert
space defined as the completion of E with respect to the scalar product⟨

(I[0,t1], · · · , I[0,td ]), (I[0,s1], · · · , I[0,sd ])
⟩
H =

d∑
i=1

RH (ti , si ).

Note that by [17,42], RH (t, s) has the following integral representation

RH (t, s) =

∫ t∧s

0
K H (t, r )K H (s, r )dr,

here K H (t, s) is the square integrable kernel given by

K H (t, s) = CH s
1
2 −H

∫ t

(r − s)H−
3
2 r H−

1
2 dr, t > s
s
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with CH =

√
H (2H−1)

B(2−2H,H−1/2) and B standing for the Beta function. If t ≤ s, we set K H (t, s) = 0.

he mapping (I[0,t1], · · · , I[0,td ]) ↦→
∑d

i=1 B H,i
ti can be extended to an isometry between H (also

alled the reproducing kernel Hilbert space) and the Gaussian space H1 associated to B H . We
enote this isometry by φ ↦→ B H (φ).

Now, let (e1, . . . , ed ) designate the canonical basis of Rd , one can introduce the linear
perator K ∗

H : E → L2([0, T ],Rd ) defined by

K ∗

H (I[0,t]ei ) = K H (t, ·)ei .

y [2], it is known that the relation ⟨K ∗

Hψ, K ∗

Hφ⟩L2([0,T ],Rd ) = ⟨ψ, φ⟩H holds for all ψ, φ ∈ E ,
nd then by the bounded linear transform theorem, K ∗

H can be extended to an isometry between
and L2([0, T ],Rd ). Consequently, by [2] again, there exists a d-dimensional Wiener process

W defined on (Ω ,F ,P) such that B H has the following Volterra-type representation

B H
t =

∫ t

0
K H (t, s)dWs, t ∈ [0, T ], (2.1)

nd Ft = σ {Ws : 0 ≤ s ≤ t}. Moreover, let us point out that K ∗

H has the following
epresentations: for any ψ, φ ∈ H,

(K ∗

Hψ)(t) =

∫ T

t
ψ(s)

∂K H (s, t)
∂s

ds

nd

⟨K ∗

Hψ, K ∗

Hφ⟩L2([0,T ],Rd ) = ⟨ψ, φ⟩H = H (2H −1)
∫ T

0

∫ T

0
|t − s|2H−2

⟨ψ(s), φ(t)⟩Rd dsdt.

(2.2)

s a consequence, for any ψ ∈ L2([0, T ],Rd ), one has

∥ψ∥
2
H ≤ 2H T 2H−1

∥ψ∥
2
L2 . (2.3)

esides, one can show that L1/H ([0, T ],Rd ) ⊂ H.
Next, we define the operator K H : L2([0, T ],Rd ) → I H+1/2

0+
(L2([0, T ],Rd )) by

(K H f )(t) =

∫ t

0
K H (t, s) f (s)ds,

here I α0+
is the left-sided fractional Riemann–Liouville integral operator of order α(> 0) given

y

I α0+
f (x) =

1
Γ (α)

∫ x

0

f (y)
(x − y)1−α

dy, f ∈ L1([0, T ],Rd ), x ∈ (0, T ). (2.4)

et us mention that the space I H+1/2
0+

(L2([0, T ],Rd )) is the fractional version of the Cameron–
artin space.
We remark that in the case of H = 1/2 (usual Brownian motion), K ∗

H is the identity map
n L2([0, T ],Rd ), K H (t, s) = I[0,t](s) and I H+1/2

0+
(L2([0, T ],Rd )) is the space of absolutely

ontinuous functions, vanishing at zero, with a square integrable derivative.
Finally, we denote by RH = K H ◦ K ∗

H : H → I H+1/2
0+

(L2([0, T ],Rd )) the operator

(RHψ)(t) =

∫ t

K H (t, s)(K ∗

Hψ)(s)ds. (2.5)

0
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Since I H+1/2
0+

(L2([0, T ],Rd )) ⊂ C H ([0, T ],Rd ) due to [48, Theorem 3.6], we know that for
ny ψ ∈ H, RHψ is Hölder continuous of order H , i.e.

RHψ ∈ C H ([0, T ],Rd ), ψ ∈ H. (2.6)

On the other hand, using the Fubini theorem and the fact that ∂K H (s,r )
∂s = CH ( s

r )H−
1
2 (s −r )H−

3
2 ,

it is easy to see that for every ψ ∈ H, RHψ is absolutely continuous and

(RHψ)(t) =

∫ t

0

(∫ s

0

∂K H

∂s
(s, r )(K ∗

Hψ)(r )dr
)

ds. (2.7)

e remark that the injection RH = K H ◦ K ∗

H : H → Ω embeds H densely into Ω and for
ach ψ ∈ Ω∗

⊂ H there holds

Eei⟨B H ,ψ⟩
= exp

(
−

1
2
∥ψ∥

2
H

)
.

onsequently, (Ω ,H,P) is an abstract Wiener space in the sense of Gross. It is worth stressing
hat compared with the work [17] in which the authors have made another (but equivalent)
hoice for the underlying Hilbert space, the choices of the Hilbert space and its embedding
nto Ω are not unique.

.2. The Lions derivative

For later use, we introduce some basic facts about the Lions derivative.
For any θ ∈ [1,∞), Pθ (Rd ) stands for the set of θ -integrable probability measures on Rd ,

nd define the Lθ -Wasserstein distance on Pθ (Rd ) as follows

Wθ (µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x − y|
θπ (dx, dy)

) 1
θ

, µ, ν ∈ Pθ (Rd ).

ere C (µ, ν) denotes the set of all probability measures on Rd
×Rd with marginals µ and ν.

It is well known that (Pθ (Rd ),Wθ ) is a Polish space, usually referred to as the θ -Wasserstein
pace on Rd . Throughout this paper, let | · | and ⟨·, · ⟩ be the Euclidean norm and inner
roduct, respectively, and for a matrix, ∥ · ∥ denotes the operator norm. The Lebesgue spaces

L2([0, T ],Rd ) and L2(Rd
→ Rd , µ) have the norms ∥·∥L2 and ∥·∥L2

µ
, respectively. Let further

X be the distribution of a random variable X .

Definition 2.1. Let f : P2(Rd ) → R and g : Rd
× P2(Rd ) → R.

(1) f is called L-differentiable at µ ∈ P2(Rd ), if the functional

L2(Rd
→ Rd , µ) ∋ φ ↦→ f (µ ◦ (Id + φ)−1)

is Fréchet differentiable at 0 ∈ L2(Rd
→ Rd , µ). That is, there exists a unique

γ ∈ L2(Rd
→ Rd , µ) such that

lim
∥φ∥

L2
µ

→0

f (µ ◦ (Id + φ)−1) − f (µ) − ⟨γ, φ⟩µ

∥φ∥L2
µ

= 0,

where ⟨γ, φ⟩µ =
∫
Rd ⟨γ (x), φ(x)⟩µ(dx). In this case, γ is called the L-derivative of f

at µ and denoted by DL f (µ).
388
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(2) f is called L-differentiable on P2(Rd ), if the L-derivative DL f (µ) exists for all
µ ∈ P2(Rd ). Furthermore, if for every µ ∈ P2(Rd ) there exists a µ-version DL f (µ)(·)
such that DL f (µ)(x) is jointly continuous in (µ, x) ∈ P2(Rd ) × Rd , we denote
f ∈ C (1,0)(P2(Rd )).

(3) g is called differentiable on Rd
× P2(Rd ), if for any (x, µ) ∈ Rd

× P2(Rd ),
g(·, µ) is differentiable and g(x, ·) is L-differentiable. Furthermore, if ∇g(·, µ)(x) and
DL g(x, ·)(µ)(y) are jointly continuous in (x, y, µ) ∈ Rd

× Rd
× P2(Rd ), we denote

g ∈ C1,(1,0)(Rd
× P2(Rd )).

For a vector-valued function f = ( fi ) or a matrix-valued function f = ( fi j ) with
L-differentiable components, we simply write

DL f (µ) = (DL fi (µ)) or DL f (µ) = (DL fi j (µ)).

Besides, by [14, Theorem 6.5] and [46, Proposition 3.1], we have the following useful
ormula for the L-derivative.

emma 2.1. Let (Ω ,F ,P) be an atomless probability space and X, Y ∈ L2(Ω → Rd ,P). If
f ∈ C (1,0)(P2(Rd )), then

lim
ε↓0

f (LX+εY ) − f (LX )
ε

= E⟨DL f (LX )(X ), Y ⟩.

.3. Notations

Cb(E ) denotes the set of all bounded continuous functions f : E → R with the norm
f ∥∞ := supx∈E | f (x)|, where E is a Polish space with the Borel σ -field B(E ). Let

A =
{
φ : φ is Rd

−valued Ft−predictable process and ∥φ∥
2
H < ∞ P−a.s.

}
,

nd for each M > 0, let

SM =

{
h ∈ H :

1
2
∥h∥

2
H ≤ M

}
.

t is obvious that SM endowed with the weak topology is a Polish space. Besides, define

AM := {φ ∈ A : φ(ω) ∈ SM , P−a.s.}.

3. Framework and main results

The main objective of this section concerns the problem of asymptotic behaviors for
DDSDEs driven by fractional Brownian motions. We first introduce the framework of DDSDEs
driven by fractional Brownian motions. Then we recall the definitions of large deviation
principle and Laplace principle and present their relations. Moreover, we provide the weak
convergence criteria for DDSDEs driven by fractional Brownian motions and formulate the
main results including large deviation principle, moderate deviation principle and central limit
theorem for these types of equations.
389
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3.1. Framework

We now consider the following distribution dependent SDE:

dX t = b(t, X t ,LX t )dt + σ (t,LX t )dB H
t , X0 = x ∈ Rd , t ∈ [0, T ]. (3.1)

ere b : [0, T ]×Rd
×Pθ (Rd ) → Rd and σ : [0, T ]×Pθ (Rd ) → Rd

⊗Rd with θ ∈ [1, 2] are
measurable mappings, B H is a d-dimensional fractional Brownian motion with H ∈ (1/2, 1).
We assume that b and σ satisfy the following conditions:

(H1) There is a non-decreasing function K (t) such that for any t ∈ [0, T ], x, y ∈ Rd , µ, ν ∈

Pθ (Rd ),

|b(t, x, µ) − b(t, y, ν)| ≤ K (t)(|x − y| + Wθ (µ, ν)), ∥σ (t, µ) − σ (t, ν)∥ ≤ K (t)Wθ (µ, ν),

and

|b(t, 0, δ0) + ∥σ (t, δ0)∥ ≤ K (t).

For each p ≥ 1, S p([0, T ]) denotes the space of Rd -valued, continuous (Ft )t∈[0,T ]-adapted
processes φ on [0, T ] satisfying

∥φ∥S p :=

(
E sup

t∈[0,T ]
|φt |

p
)1/p

< ∞,

and C p1,p2,... denotes generic constants, whose values may change from line to line and depend
only on p1, p2, . . ..

Definition 3.1. A stochastic process X = (X t )0≤t≤T on Rd is called a solution of (3.1), if
X ∈ S p([0, T ]) for a fixed p ≥ 1 and P-a.s.,

X t = x +

∫ t

0
b(s, Xs,LXs )ds +

∫ t

0
σ (s,LXs )dB H

s , t ∈ [0, T ].

We remark here that
∫ t

0 σ (s,LXs )dB H
s can be interpreted as Wiener integral with respect

to fractional Brownian motion since σ (·,LX ·
) is a deterministic function. According to

[22, Theorem 3.1], (H1) implies that Eq. (3.1) admits a unique solution X ∈ S p([0, T ]) with
any p ≥ θ and p > 1/H .

In order to investigate the asymptotic behaviors for Eq. (3.1), for any fixed µ. ∈

([0, T ]; P2(Rd )), we introduce the following reference equation:

dX̃ t = b(t, X̃ t , µt )dt + σ (t, µt )dB H
t , 0 ≤ t ≤ T (3.2)

with initial value X̃0 = y ∈ Rd . With the help of the Girsanov theorem for the fractional
Brownian motion, we can obtain the following perturbation result, whose proof is postponed
to Appendix.

Lemma 3.1. Suppose that (H1) holds. Then for any µ· ∈ C([0, T ]; P2(Rd )), there is a
measurable map Gµ : C([0, T ];Rd ) → C([0, T ];Rd ) such that

X̃ · = Gµ(B H
·

).

Moreover, for each h ∈ AM , define

X̃ h
:= G

(
B H

+ (R h)(·)
)
,

· µ · H

390



X. Fan, T. Yu and C. Yuan Stochastic Processes and their Applications 164 (2023) 383–415

b
d
w

T
a
l

t

B

P
t

t

then X̃ h satisfies the following equation

X̃ h
t =y +

∫ t

0
b(s, X̃ h

s , µs)ds +

∫ t

0
σ (s, µs)d(RH h)(s)

+

∫ t

0
σ (s, µs)dB H

s , t ∈ [0, T ], P−a.s. (3.3)

From the above lemma, it easily follows the following result.

Lemma 3.2. Suppose that y = x and µt = LX t , t ∈ [0, T ] for Eq. (3.2) and (H1) holds.
Then the solution X of Eq. (3.1) satisfies X · = GLX (B H

·
), where GLX is given in Lemma 3.1

with µ = LX . Moreover, for any h ∈ AM , let

X h
·

= GLX

(
B H

·
+ (RH h)(·)

)
,

then X h satisfies the following equation

X h
t =x +

∫ t

0
b(s, X h

s ,LXs )ds +

∫ t

0
σ (s,LXs )d(RH h)(s)

+

∫ t

0
σ (s,LXs )dB H

s , t ∈ [0, T ], P−a.s.

In this article, our main objective is to study asymptotic behaviors for DDSDEs driven
y fractional Brownian motions. More precisely, we will investigate the large and moderate
eviation principles and the central limit theorem of the solution to the following DDSDE
ith small fractional noise: for any ϵ > 0,

dX ϵ
t = b(t, X ϵ

t ,LXϵt )dt + ϵHσ (t,LXϵt )dB H
t , X ϵ

0 = x . (3.4)

o this end, we first present preliminary fact and result. According to Lemma 3.2, there exists
measurable map Gϵ := GLXϵ such that X ϵ

·
= Gϵ(ϵH B H

·
). Furthermore, for every hϵ ∈ AM ,

et

X ϵ,hϵ
·

:= Gϵ
(
ϵH B H

·
+ (RH hϵ)(·)

)
, (3.5)

hen X ϵ,hϵ satisfies the following equation

X ϵ,hϵ
t =x +

∫ t

0
b(s, X ϵ,hϵ

s ,LXϵs )ds +

∫ t

0
σ (s,LXϵs )d(RH hϵ)(s)

+ ϵH
∫ t

0
σ (s,LXϵs )dB H

s , t ∈ [0, T ], P−a.s. (3.6)

esides, again due to [22, Theorem 3.1], we have the following result.

roposition 3.3. Suppose that (H1) holds. Then there exists a unique function {X0
t }t∈[0,T ] such

hat

(i) X0
∈ C([0, T ];Rd ),

(ii) X0 satisfies the following deterministic equation

X0
t = x +

∫ t

0
b(s, X0

s ,LX0
s
)ds, t ∈ [0, T ]. (3.7)

It is easy to see that X0 is deterministic and LX0
s

= δX0
s
. In the sequel, we always use X0

o denote the unique solution of Eq. (3.7).
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3.2. Large deviation principle (LDP)

In this part, we aim to establish the LDP for Eq. (3.4) as ϵ → 0. We first recall some
efinitions of the theory of LDP. Let E be a Polish space with the Borel σ -field B(E ).

efinition 3.2 (Rate Function). A function I : E → [0,∞) is called a rate function if it is
ower semicontinuous. Moreover, I is a good rate function if for each constant M < ∞, the
evel set {x ∈ E : I (x) ≤ M} is a compact subset of E .

efinition 3.3 (Large Deviation Principle). Let I be a rate function on E . Given a collection
ℓ(ϵ)}ϵ>0 of positive reals, a family {Xϵ}ϵ>0 of E -valued random variables is said to be satisfied

a LDP on E with speed ℓ(ϵ) and rate function I if the following two conditions hold:

(i) (Upper bound) For each closed subset F ⊂ E ,

lim sup
ϵ→0

ℓ(ϵ) logP(Xϵ ∈ F) ≤ − inf
x∈F

I (x).

(ii) (Lower bound) For each open subset G ⊂ E ,

lim inf
ϵ→0

ℓ(ϵ) logP(Xϵ ∈ G) ≥ − inf
x∈G

I (x).

By [9, Theorems 1.5 and 1.8] (see also [21, Theorems 1.2.1 and 1.2.3]), the large deviation
rinciple is equivalent to the following so-called Laplace principle.

efinition 3.4 (Laplace Principle). Let I be a rate function on E . Given a collection {ℓ(ϵ)}ϵ>0
f positive reals, a family {Xϵ}ϵ>0 of E -valued random variables is said to be satisfied the
aplace principle upper bound (respectively, lower bound) on E with speed ℓ(ϵ) and rate

unction I if for all ϱ ∈ Cb(E ),

lim sup
ϵ→0

−ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)
ℓ(ϵ)

)]
≤ inf

x∈E
{ϱ(x) + I (x)}, (3.8)

respectively,

lim inf
ϵ→0

−ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)
ℓ(ϵ)

)]
≥ inf

x∈E
{ϱ(x) + I (x)}. (3.9)

he Laplace principle is said to be held for {Xϵ} with speed ℓ(ϵ) and rate function I if both
he Laplace upper and lower bounds hold.

For any ϵ > 0, let Gϵ : C([0, T ];Rd ) → E be a measurable map (with a slight abuse
f notation Gϵ). Next, we give the following sufficient condition for the Laplace principle
equivalently, the LDP) of Xϵ = Gϵ(ϵH B H

·
) as ϵ → 0, which is a fractional version of

12, Theorem 4.2] or [37, Theorem 4.3].

(A0) There exists a measurable map G0
: I H+1/2

0+
(L2([0, T ],Rd )) → E such that the following

two conditions hold.
(i) Let {hϵ : ϵ > 0} ⊂ AM for any M ∈ (0,∞). If hϵ converges to h in distribution as

SM -valued random elements, then

Gϵ
(
ϵH B H

·
+ ϵH/ℓ

1
2 (ϵ)(RH hϵ)(·)

)
→ G0(RH h)

in law as ϵ → 0, where {ℓϵ}ϵ>0 are positive reals.
(ii) For each M ∈ (0,∞), the set {G0(R h) : h ∈ S } is a compact subset of E .
H M
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Proposition 3.4. If Xϵ
·

= Gϵ(ϵH B H
·

) and (A0) holds, then the family {Xϵ : ϵ > 0} satisfies
he Laplace principle (hence the LDP) on E with speed ℓ(ϵ) and the rate function I given by

I ( f ) = inf
{h∈H: f =G0(RH h)}

{
1
2
∥h∥

2
H

}
, f ∈ E . (3.10)

ere we follow the convention that the infimum over an empty set is +∞.

For the sake of conciseness, we defer the proof to Appendix. Below is a convenient and
ufficient condition for verifying (A0) in Proposition 3.4. The proof is pretty similar to that
f [39, Theorem 3.2] and we omit it here.

(A1) There exists a measurable map G0
: I H+1/2

0+
(L2([0, T ],Rd )) → E for which the

following two conditions hold.
(i) Let {hϵ : ϵ > 0} ⊂ AM for any M ∈ (0,∞). For each δ > 0,

lim
ϵ→0

P
(

d
(
Gϵ(ϵH B H

·
+ ϵH/ℓ

1
2 (ϵ)(RH hϵ)(·)),G0((RH hϵ)(·))

)
> δ

)
= 0,

where d(·, ·) stands for the metric on E , {ℓϵ}ϵ>0 are positive reals.
(ii) Let {hn

: n ∈ N} ⊂ SM for any M ∈ (0,∞). If hn converges to some element h in SM

as n → ∞, then G0(RH hn) converges to G0(RH h) in E .

roposition 3.5. If Xϵ
·

= Gϵ(ϵH B H
·

) and (A1) holds, then the family {Xϵ : ϵ > 0} satisfies
he Laplace principle (hence the LDP) on E with speed ℓ(ϵ) and the rate function I given by
3.10).

Before moving to the LDP for Eq. (3.4), we consider the following skeleton equation

Υ h
t = x +

∫ t

0
b(s,Υ h

s ,LX0
s
)ds +

∫ t

0
σ (s,LX0

s
)d(RH h)(s), t ∈ [0, T ], (3.11)

here h ∈ H and X0 is given in (3.7). Here and in the next part, we further assume that
is Hölder continuous of order belonging to (1 − H, 1] with respect to the time variable.

hen,
∫ t

0 σ (s,LX0
s
)d(RH h)(s) in (3.11) (or (3.17) below) is well-defined as a Riemann–Stieltjes

ntegral because of (2.6) and Proposition 3.3. For any t ∈ [0, T ] and x ∈ Rd , set

b̄(t, x) := b(t, x,LX0
t
), σ̄ (t) := σ (t,LX0

t
).

t is easy to see that b̄(t, x) and σ̄ (t) are independent of the measure and satisfy (H1), which
nsure that Eq. (3.11) has a unique solution due to [44, Theorem 5.1]. As a consequence, we
an define a map as follows

G0
: I H+1/2

0+
(L2([0, T ],Rd )) ∋ RH h ↦→ Υ h

∈ C([0, T ];Rd ), (3.12)

here h ∈ H and Υ h is the unique solution of Eq. (3.11). Besides, one can see that as ϵ → 0,
q. (3.4) reduces to (3.7) and then LXϵ· goes to LX0

·
. So, in this sense LX0

·
, rather than LΥh

·
,

ppearing in Eq. (3.11) to define the rate function of Theorem 3.6 below, seems to reasonable.
Our main result in this part reads as follows.

heorem 3.6. Assume that (H1) holds. For each ϵ > 0, let X ϵ
= {X ϵ

t }t∈[0,T ] be the solution
o Eq. (3.4). Then the family {X ϵ

: ϵ > 0} satisfies a LDP on C([0, T ];Rd ) with speed ϵ2H

0
nd the rate function I given by (3.10), where G is defined in (3.12).
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3.3. Moderate deviation principle (MDP)

In this part, we shall investigate the MDP for Eq. (3.4) as ϵ → 0. The moderate deviations
roblem for {X ϵ

: ϵ > 0} is to study the asymptotics of
1

κ2(ϵ)
logP(Y ϵ

∈ ·),

here κ(ϵ) → ∞, ϵHκ(ϵ) → 0 as ϵ → 0 and

Y ϵ
:=

X ϵ
− X0

ϵHκ(ϵ)
. (3.13)

ecall the Eqs. (3.4) and (3.7), from which we easily deduce that Y ϵ satisfies

Y ϵ
t =

1
ϵHκ(ϵ)

∫ t

0
(b(t, X0

s + ϵHκ(ϵ)Y ϵ
s ,LXϵs ) − b(s, X0

s ,LX0
s
))ds

+
1
κ(ϵ)

∫ t

0
σ (s,LXϵs )dB H

s , t ∈ [0, T ]. (3.14)

Next, we put

G̃ϵ(·) :=
Gϵ(·) − X0

ϵHκ(ϵ)
,

hich is a map from C([0, T ];Rd ) to C([0, T ];Rd ) such that Y ϵ
= G̃ϵ(ϵH B H

·
) due to the

efinition of Gϵ and the relation X ϵ
·

= Gϵ(ϵH B H
·

). Moreover, for any hϵ ∈ AM , let

Y ϵ,hϵ
·

= G̃ϵ
(
ϵH B H

·
+ ϵHκ(ϵ)(RH hϵ)(·)

)
, (3.15)

hen Y ϵ,hϵ solves the following equation

Y ϵ,hϵ
t =

1
ϵHκ(ϵ)

∫ t

0

(
b(s, X0

s + ϵHκ(ϵ)Y ϵ,hϵ
s ,LXϵs ) − b(s, X0

s ,LX0
s
)
)

ds

+

∫ t

0
σ (s,LXϵs )d(RH hϵ)(s) +

1
κ(ϵ)

∫ t

0
σ (s,LXϵs )dB H

s , t ∈ [0, T ], P−a.s.

(3.16)

To obtain the MDP, in additional to (H1), we also need the following assumption.

(H2) The derivative ∇b(t, ·, µ)(x) exists and there is a non-decreasing function K̃ (t) such that
for any t ∈ [0, T ], x, y ∈ Rd , µ ∈ Pθ (Rd ),

∥∇b(t, ·, µ)(x) − ∇b(t, ·, µ)(y)∥ ≤ K̃ (t)(|x − y|).

Now, for each h ∈ H, we introduce the following equation

Ξ h
t =

∫ t

0
∇Ξ h

s
b(s, ·,LX0

s
)(X0

s )ds +

∫ t

0
σ (s,LX0

s
)d(RH h)(s), t ∈ [0, T ], (3.17)

hich is used to give the rate function of Theorem 3.7 below. Similar to the above part, under
he time Hölder continuity of σ with order belonging to (1− H, 1], Eq. (3.17) admits a unique
olution, in which the last integral is also regarded as a Riemann–Stieltjes integral. Therefore,
his allows us to define a map as follows

G̃0
: I H+1/2

0+
(L2([0, T ],Rd )) ∋ RH h ↦→ Ξ h

∈ C([0, T ];Rd ), (3.18)
h
here h ∈ H and Ξ is the unique solution of Eq. (3.17).
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We state our main result of this part as follows.

heorem 3.7. Assume that (H1) and (H2) hold. For each ϵ > 0, let Y ϵ
= {Y ϵ

t }t∈[0,T ] be
efined in (3.13). Then the family {Y ϵ

: ϵ > 0} satisfies a LDP on C([0, T ];Rd ) with speed
−2(ϵ) and the rate function I given by

I ( f ) = inf
{h∈H: f =G̃0(RH h)}

{
1
2
∥h∥

2
H

}
, f ∈ C([0, T ];Rd ), (3.19)

here G̃0 is defined in (3.18). Here we use the convention that the infimum over an empty set
s +∞.

.4. Central limit theorem (CLT)

This part is devoted to studying the CLT for Eq. (3.4). More precisely, we shall show that
Xϵ−X0

ϵH converges to a stochastic process in the p-moment sense as ϵ → 0. We would like to
mention that the limit process is a solution to some linear equation which involves the Lions
derivative of the coefficient b. To this end, we will impose the following conditions on b and
σ .

(H3) For every t ∈ [0, T ], b(t, ·, ·) ∈ C1,(1,0)(Rd
×P2(Rd )), and there exists a non-decreasing

function K̄ (t) such that
(i) for any t ∈ [0, T ], x, y ∈ Rd , µ, ν ∈ P2(Rd ),

∥∇b(t, ·, µ)(x)∥+|DLb(t, x, ·)(µ)(y)| ≤ K̄ (t), ∥σ (t, µ)−σ (t, ν)∥ ≤ K̄ (t)Wθ (µ, ν),

and |b(t, 0, δ0)| + ∥σ (t, δ0)∥ ≤ K̄ (t).
(ii) for any t ∈ [0, T ], x, y, z1, z2 ∈ Rd , µ, ν ∈ P2(Rd ),

∥∇b(t, ·, µ)(x) − ∇b(t, ·, ν)(y)∥ + |DLb(t, x, ·)(µ)(z1) − DLb(t, y, ·)(ν)(z2)|

≤ K̄ (t)(|x − y| + |z1 − z2| + Wθ (µ, ν)).

ccording to the fundamental theorem for Bochner integral (see, for instance, [36, Proposition
.2.3]) and the definitions of L-derivative and the Wasserstein distance, (H3)(i) implies

|b(t, x, µ) − b(t, y, ν)| ≤ K̄ (t)(|x − y| + Wθ (µ, ν)), t ∈ [0, T ], x, y ∈ Rd , µ, ν ∈ P2(Rd ).

hen, it follows from [22, Theorem 3.1] that (3.4) has a unique solution.
Next, we give an example of the function b such that (H3) is satisfied.

xample 3.8. Assume f : [0, T ] × Rd
→ Rd and ϕ : Rd

→ Rd are all twice continuously
ifferentiable mappings with bounded derivatives. Suppose that

b(t, x, µ) = f
(

t, x +

∫
Rd
ϕ(u)µ(du)

)
.

hen, it is easy to see that

∇b(t, ·, µ)(x) = ∇ f
(

t, x +

∫
Rd
ϕ(u)µ(du)

)
,

DLb(t, x, ·)(µ)(y) = ∇ f
(

t, x +

∫
Rd
ϕ(u)µ(du)

)
∇ϕ(y).
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In particular, when ϕ = 0, b reduces to a function with no dependence on the measure. By a
direct calculation, it is readily checked that the function b above satisfies (H3). More examples
can be found in our recent work [22, Example 4.6].

Our main result in this part is stated in the following theorem.

Theorem 3.9. Assume that (H3) holds, then for any p ≥ θ and p > 1/H,

E

(
sup

0≤t≤T

⏐⏐⏐⏐ X ϵ
t − X0

t

ϵH
− Z t

⏐⏐⏐⏐p
)

≤ CT,p,Hϵ
pH
(

1 + sup
t∈[0,T ]

|X0
t |

2p
)
, ϵ ∈ (0, ϵ0],

here Z t satisfies

Z t =

∫ t

0
∇Zs b(s, ·,LX0

s
)(X0

s )ds +

∫ t

0

(
E⟨DLb(s, u, ·)(LX0

s
)(X0

s ), Zs⟩

)
|u=X0

s
ds

+

∫ t

0
σ (s,LX0

s
)dB H

s , t ∈ [0, T ], (3.20)

nd ϵ0 > 0 is a constant appeared in Lemma 4.2 below.

. Proofs of the main results

To prove the main results, we need the following useful lemma, which presents a max-
mal inequality for

∫ t
0 σ (s, µs)dB H

s . Though its proof is identical to step 1 in the proof of
22, Theorem 3.1], yet we give its proof in the Appendix for the convenience of the
eader.

emma 4.1. Suppose that σ satisfies (H1) and µ ∈ C([0, T ]; Pp(Rd )) with p ≥ θ and
p > 1/H. Then there is a constant CT,p,H > 0 such that

E

(
sup

t∈[0,T ]

⏐⏐⏐⏐∫ t

0
σ (s, µs)dB H

s

⏐⏐⏐⏐p
)

≤ CT,p,H

∫ T

0
∥σ (s, µs)∥pds. (4.1)

.1. Proof of Theorem 3.6

According to Proposition 3.5, to prove Theorem 3.6, it is enough to check that (A1) holds
ith Gϵ,G0 and ℓ(ϵ) given by (3.5), (3.12) and ϵ2H , respectively. The verification of (A1)(i)

nd (A1)(ii) will be shown respectively in Propositions 4.3 and 4.5 below.
Before we give Proposition 4.3, we first present the following lemma which characterizes

he difference between X ϵ and X0.

emma 4.2. Suppose that (H1) holds. Then for any p ≥ θ and p > 1/H, there exists a
onstant ϵ0 > 0 such that for every ϵ ∈ (0, ϵ0],

E
(

sup
t∈[0,T ]

⏐⏐X ϵ
t − X0

t

⏐⏐p
)

≤ CT,p,Hϵ
pH
(

1 + sup
t∈[0,T ]

|X0
t |

p
)
.
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Proof. By (3.4), (3.7) and (H1), we have for any t ∈ [0, T ],

sup
s∈[0,t]

⏐⏐X ϵ
s − X0

s

⏐⏐p

≤2p−1 sup
s∈[0,t]

⏐⏐⏐⏐∫ s

0

(
b(r, X ϵ

r ,LXϵr ) − b(r, X0
r ,LX0

r
)
)

dr
⏐⏐⏐⏐p

+ 2p−1ϵ pH sup
s∈[0,t]

⏐⏐⏐⏐∫ s

0
σ (r,LXϵr )dB H

r

⏐⏐⏐⏐p

≤(4T )p−1 K p(T )
∫ t

0

(⏐⏐X ϵ
r − X0

r

⏐⏐p
+ Wp

θ (LXϵr ,LX0
r
)
)

dr

+ 2p−1ϵ pH sup
s∈[0,t]

⏐⏐⏐⏐∫ s

0
σ (r,LXϵr )dB H

r

⏐⏐⏐⏐p

. (4.2)

ote that by Lemma 4.1 and (H1), we get for any p > 1/H ,

E

(
sup

s∈[0,t]

⏐⏐⏐⏐∫ s

0
σ (r,LXϵr )dB H

r

⏐⏐⏐⏐p
)

≤CT,p,H

∫ t

0
∥σ (r,LXϵr )∥pdr

≤3p−1CT,p,H

∫ t

0
∥σ (r,LXϵr ) − σ (r,LX0

r
)∥pdr

+ 3p−1CT,p,H

∫ t

0
∥σ (r,LX0

r
) − σ (r, δ0)∥pdr

+ 3p−1CT,p,H

∫ t

0
∥σ (r, δ0)∥pdr

≤3p−1CT,p,H K p(T )
∫ t

0
E

(
sup

u∈[0,r ]
|X ϵ

u − X0
u |

p

)
dr

+ 3p−1CT,p,H T K p(T )
(

1 + sup
t∈[0,T ]

|X0
t |

p
)
.

hen, taking the expectation on both sides of (4.2) and using the Gronwall inequality, we derive
hat for any p ≥ θ and p > 1/H ,

E
(

sup
t∈[0,T ]

⏐⏐X ϵ
t − X0

t

⏐⏐p
)

≤ CT,p,H eCT,p,H (1+ϵ pH )ϵ pH
(

1 + sup
t∈[0,T ]

|X0
t |

p
)
.

ence, there exists a constant ϵ0 > 0 such that for every ϵ ∈ (0, ϵ0],

E
(

sup
t∈[0,T ]

⏐⏐X ϵ
t − X0

t

⏐⏐p
)

≤ CT,p,Hϵ
pH
(

1 + sup
t∈[0,T ]

|X0
t |

p
)
,

hich completes the proof. □

roposition 4.3. Suppose that (H1) holds and let {hϵ : ϵ > 0} ⊂ AM for any M ∈ (0,∞).
hen, for any δ > 0,

lim
ϵ→0

P
(
∥X ϵ,hϵ

·
− G0((RH hϵ)(·))∥∞ > δ

)
= 0,

d
here ∥ · ∥∞ is the uniform norm on C([0, T ];R ).
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Proof. For each fixed ϵ > 0, by (3.11)–(3.12) with h replaced by hϵ and (3.6) we get

X ϵ,hϵ
t − G0((RH hϵ)(·))(t) = X ϵ,hϵ

t − Υ hϵ
t

=

∫ t

0

(
b(s, X ϵ,hϵ

s ,LXϵs ) − b(s,Υ hϵ
s ,LX0

s
)
)

ds

+

∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
)

d(RH hϵ)(s) + ϵH
∫ t

0
σ (s,LXϵs )dB H

s , t ∈ [0, T ].

hen, it follows that

|X ϵ,hϵ
t − Υ hϵ

t |
2

≤3
⏐⏐⏐⏐∫ t

0

(
b(s, X ϵ,hϵ

s ,LXϵs ) − b(s,Υ hϵ
s ,LX0

s
)
)

ds
⏐⏐⏐⏐2

+ 3
⏐⏐⏐⏐∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
)

d(RH hϵ)(s)
⏐⏐⏐⏐2

+ 3ϵ2H
⏐⏐⏐⏐∫ t

0
σ (s,LXϵs )dB H

s

⏐⏐⏐⏐2
=:J1(t) + J2(t) + J3(t). (4.3)

sing the Hölder inequality and (H1), we arrive at

J1(t) ≤3
⏐⏐⏐⏐∫ t

0
K (s)

(
|X ϵ,hϵ

s − Υ hϵ
s | + Wθ (LXϵs ,LX0

s
)
)

ds
⏐⏐⏐⏐2

≤6T K 2(T )

(∫ t

0
|X ϵ,hϵ

s − Υ hϵ
s |

2
ds + TE

(
sup

t∈[0,T ]
|X ϵ

t − X0
t |

2
))

. (4.4)

ith the help of (2.7), (H1) and the Fubini theorem, we deduce

J2(t) =3
⏐⏐⏐⏐∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
) ∫ s

0

∂K H

∂s
(s, r )(K ∗

H hϵ)(r )drds
⏐⏐⏐⏐2

≤3C2
H

(∫ t

0
K (s)Wθ (LXϵs ,LX0

s
)
∫ s

0

( s
r

)H−
1
2

(s − r )H−
3
2 |(K ∗

H hϵ)(r )|drds
)2

≤3C2
H K 2(T )E

(
sup

t∈[0,T ]
|X ϵ

t − X0
t |

2
)

×

(∫ t

0
r

1
2 −H

|(K ∗

H hϵ)(r )|
(∫ t

r
s H−

1
2 (s − r )H−

3
2 ds

)
dr
)2

≤C(T, H )E
(

sup
t∈[0,T ]

|X ϵ
t − X0

t |
2
)∫ T

0
|(K ∗

H hϵ)(r )|2dr

=C(T, H )E
(

sup
t∈[0,T ]

|X ϵ
t − X0

t |
2
)

∥hϵ∥2
H, (4.5)

here C(T, H ) :=
3C2

H T 2H K 2(T )

2(1−H )(H−
1
2 )2 and the last equality is due to the fact that K ∗

H is an isometry

etween H and L2([0, T ],Rd ).
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For the term J3(t), from Lemma 4.1 and (H1) we have

E
(

sup
t∈[0,T ]

J3(t)
)

≤3CT,Hϵ
2H
∫ T

0
∥σ (s,LXϵs )∥2ds

≤9CT,Hϵ
2H
(∫ T

0
∥σ (s,LXϵs ) − σ (s,LX0

s
)∥2ds +

∫ T

0
∥σ (s,LX0

s
) − σ (s, δ0)∥2ds

+

∫ T

0
∥σ (s, δ0)∥2ds

)
≤9CT,H T K 2(T )ϵ2H

(
E
(

sup
t∈[0,T ]

|X ϵ
t − X0

t |
2
)

+ 1 + sup
t∈[0,T ]

|X0
t |

2

)
. (4.6)

hen, substituting (4.4)–(4.6) into (4.3) yields

E
(

sup
t∈[0,T ]

|X ϵ,hϵ
t − Υ hϵ

t |
2
)

≤6T K 2(T )
∫ T

0
sup

r∈[0,s]
|X ϵ,hϵ

r − Υ hϵ
r |

2
ds

+
[
6(T K (T ))2

+ C(T, H )∥hϵ∥2
H + 9CT,H T K 2(T )ϵ2H ]E( sup

t∈[0,T ]
|X ϵ

t − X0
t |

2
)

+ 9CT,H T K 2(T )ϵ2H
(

1 + sup
t∈[0,T ]

|X0
t |

2
)
.

pplying the Gronwall inequality and Lemma 4.2 and using hϵ ∈ AM , we conclude that there
s a constant CT,H,M such that

E
(

sup
t∈[0,T ]

|X ϵ,hϵ
t − Υ hϵ

t |
2
)

≤ CT,H,Mϵ
2H (1 + ϵ2H )

(
1 + sup

t∈[0,T ]
|X0

t |
2
)
.

hen we get

lim
ϵ→0

E
(

sup
t∈[0,T ]

|X ϵ,hϵ
t − Υ hϵ

t |
2
)

= 0,

hich implies the desired assertion. □

To verify (A1)(ii), we need the following priori estimate for the solution Υ h to the skeleton
q. (3.11).

emma 4.4. Suppose that (H1) holds. Then for any M > 0,

sup
h∈SM

sup
t∈[0,T ]

|Υ h
t |

2
≤ CT,H,M ,

here C is a positive constant only depending on T, H,M.
T,H,M
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F

F
(

H

S

Proof. According to the change-of-variables formula [55, Theorem 4.3.1] and (H1), we have

|Υ h
t |

2
= |x |

2
+ 2

∫ t

0
⟨Υ h

s , b(s,Υ h
s ,LX0

s
)⟩ds + 2

∫ t

0
⟨Υ h

s , σ (s,LX0
s
)d(RH h)(s)⟩

=: |x |
2
+ I1(t) + I2(t). (4.7)

rom (H1), it follows that

I1(t) ≤2
∫ t

0
|Υ h

s | · |b(s,Υ h
s ,LX0

s
) − b(s, 0, δ0)|ds + 2

∫ t

0
|Υ h

s | · |b(s, 0, δ0)|ds

≤2
∫ t

0
K (s)

(
|Υ h

s |
2
+ |Υ h

s | · |X0
s |

)
ds + 2

∫ t

0
K (s)|Υ h

s |ds

≤4K (t)
∫ t

0
|Υ h

s |
2
ds + K (t)

(
t +

∫ t

0
|X0

s |
2
ds
)
. (4.8)

or the term I2(t), using (2.7) and the fact that K ∗

H is an isometry between H and L2

[0, T ],Rd ), we have

I2(t) =2
d∑

i, j=1

∫ T

0
Υ h

i,sσi j (s,LX0
s
)I[0,t](s)

∫ s

0

∂K H

∂s
(s, r )(K ∗

H h) j (r )drds

=2
d∑

i, j=1

∫ T

0

∫ T

r
Υ h

i,sσi j (s,LX0
s
)I[0,t](s)

∂K H

∂s
(s, r )ds(K ∗

H h) j (r )dr

=2
d∑

i, j=1

∫ T

0
(K ∗

H (Υ h
i,·σi j (·,LX0

·
))I[0,t])(r )(K ∗

H h) j (r )dr

=2
∫ T

0
⟨K ∗

H (σ T (·,LX0
·
)Υ hI[0,t])(r ), (K ∗

H h)(r )⟩dr

=2⟨σ T (·,LX0
·
)Υ hI[0,t], h⟩H. (4.9)

ere and in the sequel, σ T denotes the transpose matrix of σ . Then, by (2.3) and (H1) we get

I2(t) ≤2∥σ T (·,LX0
·
)Υ hI[0,t]∥H · ∥h∥H

≤2(2H )1/2T H−1/2
∥σ T (·,LX0

·
)Υ hI[0,t]∥L2 · ∥h∥H

≤2(2H )1/2T H−1/2 K (t)

(
1 + sup

t∈[0,T ]
|X0

t |

)(∫ t

0
|Υ h

s |
2
ds
) 1

2

∥h∥H

≤2H T 2H−1 K (t)

(
1 + sup

t∈[0,T ]
|X0

t |

)
∥h∥

2
H + K (t)

(
1 + sup

t∈[0,T ]
|X0

t |

)∫ t

0
|Υ h

s |
2
ds.

(4.10)

ubstituting (4.8) and (4.10) into (4.7) yields

sup
t∈[0,T ]

|Υh
t |

2
≤ |x |

2
+ K (T )

(
T +

∫ T

0
|X0

s |
2
ds
)

+ 2H T 2H−1 K (T )

(
1 + sup

t∈[0,T ]
|X0

t |

)
∥h∥

2
H

+ K (T )

(
5 + sup

t∈[0,T ]
|X0

t |

)∫ t

0
|Υh

s |
2
ds.
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Consequently, for any h ∈ SM , the Gronwall inequality implies

sup
t∈[0,T ]

|Υ h
t |

2
≤

[
|x |

2
+ K (T )

(
T +

∫ T

0
|X0

s |
2
ds
)

+ 2H T 2H−1 K (T )

(
1 + sup

t∈[0,T ]
|X0

t |

)
∥h∥

2
H

]

× exp

{
T K (T )

(
5 + sup

t∈[0,T ]
|X0

t |

)}
≤ CT,H,M ,

here the constant CT,H,M only depends on T, H,M . The proof is now complete. □

roposition 4.5. Suppose that (H1) holds and let {hn
: n ∈ N} ⊂ SM for any M ∈ (0,∞)

uch that hn converges to element h in SM as n → ∞. Then

lim
n→∞

sup
t∈[0,T ]

|G0(RH hn)(t) − G0(RH h)(t)| = 0.

roof. For each n ≥ 1, let Υ hn
be the solution of Eq. (3.11) with h replaced by hn . By (3.12),

here hold G0(RH hn) = Υ hn
and G0(RH h) = Υ h .

We first prove that {Υ hn
}n≥1 is relatively compact in C([0, T ];Rd ). With the help of the

Arzelà–Ascoli theorem, it is enough to show that {Υ hn
}n≥1 is uniformly bounded and equi-

continuous in C([0, T ];Rd ). By Lemma 4.4, there exists a constant CT,H,M > 0 such that

sup
n≥1

sup
t∈[0,T ]

|Υ hn

t | ≤ CT,H,M , (4.11)

which means that {Υ hn
}n≥1 is uniformly bounded in C([0, T ];Rd ).

Now, we focus on dealing with equi-continuous of {Υ hn
}n≥1 in C([0, T ];Rd ). By (3.11),

we deduce that for 0 ≤ s < t ≤ T ,

Υ hn

t − Υ hn

s =

∫ t

s
b(r,Υ hn

r ,LX0
r
)dr +

∫ t

s
σ (r,LX0

r
)d(RH hn)(r ). (4.12)

In view of (H1) and (4.11), we get⏐⏐⏐⏐∫ t

s
b(r,Υ hn

r ,LX0
r
)dr
⏐⏐⏐⏐ ≤

∫ t

s

⏐⏐⏐b(r,Υ hn

r ,LX0
r
) − b(r, 0, δ0)

⏐⏐⏐ dr +

∫ t

s
|b(r, 0, δ0)|dr

≤

∫ t

s
K (r )

(
|Υ hn

r | + |X0
r |

)
dr +

∫ t

s
K (r )dr

≤K (T )
(

1 + CT,H,M + sup
r∈[0,T ]

|X0
r |

)
(t − s). (4.13)

y (2.7), (H1) and the Fubini theorem, we have⏐⏐⏐⏐∫ t

s
σ (r,LX0

r
)d(RH hn)(r )

⏐⏐⏐⏐
=

⏐⏐⏐⏐∫ t

σ (r,LX0 )
∫ r ∂K H (r, u)(K ∗

H hn)(u)dudr
⏐⏐⏐⏐
s
r

0 ∂r
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U

a

T

≤CH K (T )
(

1 + sup
r∈[0,T ]

|X0
r |

)∫ t

s

∫ r

0

( r
u

)H−
1
2

(r − u)H−
3
2 |(K ∗

H hn)(u)|dudr

=CH K (T )
(

1 + sup
r∈[0,T ]

|X0
r |

)[∫ s

0
u

1
2 −H

|(K ∗

H hn)(u)|
(∫ t

s
r H−

1
2 (r − u)H−

3
2 dr

)
du

+

∫ t

s
u

1
2 −H

|(K ∗

H hn)(u)|
(∫ t

u
r H−

1
2 (r − u)H−

3
2 dr

)
du
]
.

(4.14)

sing the Hölder inequality and the relation ∥K ∗

H hn
∥L2 = ∥hn

∥H, we arrive at∫ s

0
u

1
2 −H

|(K ∗

H hn)(u)|
(∫ t

s
r H−

1
2 (r − u)H−

3
2 dr

)
du

≤T H−
1
2

∫ t

s
(r − s)H−

3
2 dr

∫ s

0
u

1
2 −H

|(K ∗

H hn)(u)|du

≤
T

1
2

(H −
1
2 )

√
2(1 − H )

(∫ T

0
|(K ∗

H hn)(u)|2du
) 1

2

(t − s)H−
1
2

=
T

1
2

(H −
1
2 )

√
2(1 − H )

∥hn
∥H(t − s)H−

1
2 (4.15)

nd ∫ t

s
u

1
2 −H

|(K ∗

H hn)(u)|
(∫ t

u
r H−

1
2 (r − u)H−

3
2 dr

)
du

≤
T H−

1
2

H −
1
2

∫ t

s
u

1
2 −H (t − u)H−

1
2 |(K ∗

H hn)(u)|du

≤

√
B(2 − 2H, 2H )T H−

1
2

H −
1
2

∥hn
∥H

√
t − s. (4.16)

hen, combining (4.12)–(4.16) together and using the fact that ∥hn
∥H ≤

√
2M due to hn

∈ SM ,
one can see that {Υ hn

}n≥1 is equi-continuous in C([0, T ];Rd ). Hence, we have shown that
{Υ hn

}n≥1 is relatively compact in C([0, T ];Rd ), which implies that for any subsequence of
{Υ hn

}n≥1, we can extract a further subsequence (not relabeled) such that Υ hn
converges to

some Ῡ in C([0, T ];Rd ).
We claim that Ῡ = Υ h . Once this is shown, by a standard subsequential argument we can

conclude that the full sequence Υ hn
converges to Υ h in C([0, T ];Rd ), which is the desired

assertion.
It remains to show the claim. By (H1), we first have for every t ∈ [0, T ],⏐⏐⏐⏐∫ t

0
b(s,Υ hn

s ,LX0
s
)ds −

∫ t

0
b(s, Ῡs,LX0

s
)ds
⏐⏐⏐⏐

≤

∫ t

0
K (s)

⏐⏐⏐Υ hn

s − Ῡs

⏐⏐⏐ ds

≤T K (T ) sup
t∈[0,T ]

⏐⏐⏐Υ hn

t − Ῡt

⏐⏐⏐ → 0, n → ∞.
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Then, for each t ∈ [0, T ], we get

lim
n→∞

∫ t

0
b(s,Υ hn

s ,LX0
s
)ds =

∫ t

0
b(s, Ῡs,LX0

s
)ds. (4.17)

n the other hand, by (2.7) and the Fubini theorem we derive∫ t

0
σ (s,LX0

s
)d(RH hn)(s) −

∫ t

0
σ (s,LX0

s
)d(RH h)(s)

=

∫ t

0
σ (s,LX0

s
)
(∫ s

0

∂K H

∂s
(s, r )((K ∗

H hn)(r ) − (K ∗

H h)(r ))dr
)

ds

=CH

∫ T

0

[
I[0,t](r )r

1
2 −H

(∫ t

r
σ (s,LX0

s
)s H−

1
2 (s − r )H−

3
2 ds

)]
× [(K ∗

H hn)(r ) − (K ∗

H h)(r )]dr. (4.18)

e set, for any unit vector e ∈ Rd and t ∈ [0, T ],

gt (r ) := I[0,t](r )r
1
2 −H

(∫ t

r
σ T (s,LX0

s
)s H−

1
2 (s − r )H−

3
2 ds

)
e, r ∈ [0, T ].

y (H1) we have

|gt (r )| ≤
T 2H K (T )

H +
1
2

(
1 + sup

s∈[0,T ]

⏐⏐X0
s

⏐⏐)r
1
2 −H ,

which implies that gt (·) ∈ L2([0, T ],Rd ). Then, taking into account of (4.18) and the condition
that hn converges to element h in SM as n → ∞, we deduce

lim
n→∞

∫ t

0
σ (s,LX0

s
)d(RH hn)(s) =

∫ t

0
σ (s,LX0

s
)d(RH h)(s). (4.19)

bserve that Υ hn
satisfies the following equation:

Υ hn

t = x +

∫ t

0
b(s,Υ hn

s ,LX0
s
)ds +

∫ t

0
σ (s,LX0

s
)d(RH hn)(s), t ∈ [0, T ],

etting n goes to infinity and using (4.17) and (4.19), one can see that Ῡ solves (3.11), which
ields Ῡ = Υ h due to the uniqueness of solutions to (3.11). This completes the proof. □

.2. Proof of Theorem 3.7

In view of Proposition 3.5, to complete the proof of Theorem 3.7, it is sufficient to verify that
(A1) holds with G0,Gϵ and ℓ(ϵ) replaced by G̃0, G̃ϵ and κ−2(ϵ), respectively. The verification
f (A1)(i) will be shown in Proposition 4.7 and (A1)(ii) will be presented in Proposition 4.8.
e first give the moment estimate of Y ϵ,hϵ .

emma 4.6. Suppose that (H1) holds and let {hϵ : ϵ > 0} ⊂ AM for any M ∈ (0,∞). Then
or any p ≥ θ , there exist two positive constants CT,p,H,M and ϵ1 such that

sup E
(

sup |Y ϵ,hϵ
t |

p
)

≤ CT,p,H,M

(
1 + sup |X0

t |
p
)
.

ϵ∈(0,ϵ1] t∈[0,T ] t∈[0,T ]
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Proof. By (3.16), we get

|Y ϵ,hϵ
t |

p
≤

3p−1

ϵ pHκ p(ϵ)

⏐⏐⏐⏐∫ t

0

(
b(s, X0

s + ϵHκ(ϵ)Y ϵ,hϵ
s ,LXϵs ) − b(s, X0

s ,LX0
s
)
)

ds
⏐⏐⏐⏐p

+ 3p−1
⏐⏐⏐⏐∫ t

0
σ (s,LXϵs )d(RH hϵ)(s)

⏐⏐⏐⏐p

+
3p−1

κ p(ϵ)

⏐⏐⏐⏐∫ t

0
σ (s,LXϵs )dB H

s

⏐⏐⏐⏐p

=:I1(t) + I2(t) + I3(t). (4.20)

sing the Hölder inequality, (H1) and Lemma 4.2 yields

I1(t) ≤(6T )p−1 K p(T )
∫ t

0
|Y ϵ,hϵ

s |
p
ds +

(6T )p−1 K p(T )
ϵ pHκ p(ϵ)

∫ t

0
Wp

θ (LXϵs ,LX0
s
)ds

≤(6T )p−1 K p(T )
∫ t

0
|Y ϵ,hϵ

s |
p
ds +

(6T )p−1 K p(T )
ϵ pHκ p(ϵ)

∫ t

0
E|X ϵ

s − X0
s |

p
ds

≤(6T )p−1 K p(T )
∫ t

0
|Y ϵ,hϵ

s |
p
ds +

6p−1T p K p(T )CT,p,H

κ p(ϵ)

(
1 + sup

t∈[0,T ]
|X0

t |
p
)
. (4.21)

or the term I2(t), by (2.7), (H1), Lemma 4.2 and the Fubini theorem we obtain for any p ≥ θ ,

I2(t) ≤6p−1
⏐⏐⏐⏐∫ t

0
(σ (s,LXϵs ) − σ (s,LX0

s
))
∫ s

0

( s
r

)H−
1
2

(s − r )H−
3
2 (K ∗

H hϵ)(r )drds
⏐⏐⏐⏐p

+ 6p−1
⏐⏐⏐⏐∫ t

0
σ (s,LX0

s
)
∫ s

0

( s
r

)H−
1
2

(s − r )H−
3
2 (K ∗

H hϵ)(r )drds
⏐⏐⏐⏐p

≤CT,p,H (1 + ϵ pH )
(

1 + sup
t∈[0,T ]

|X0
t |

p
)

×

(∫ t

0
r

1
2 −H

|(K ∗

H hϵ)(r )|
(∫ t

r
s H−

1
2 (s − r )H−

3
2 ds

)
dr
)p

≤CT,p,H (1 + ϵ pH )
(

1 + sup
t∈[0,T ]

|X0
t |

p
)

∥hϵ∥p
H

≤CT,p,H,M (1 + ϵ pH )
(

1 + sup
t∈[0,T ]

|X0
t |

p
)
. (4.22)

or the term I3(t), similar to (4.6), applying Lemma 4.2 one sees that

E
(

sup
t∈[0,T ]

I3(t)
)

≤
CT,p,H (1 + ϵ pH )

κ p(ϵ)

(
1 + sup

t∈[0,T ]
|X0

t |
p
)
.

inally, plugging our previous inequalities (4.20)–(4.22) and resorting to the Gronwall inequal-
ty, we obtain that there exist two positive constants CT,p,H,M and ϵ1 such that

sup
ϵ∈(0,ϵ1]

E
(

sup
t∈[0,T ]

|Y ϵ,hϵ
t |

p
)

≤ CT,p,H,M

(
1 + sup

t∈[0,T ]
|X0

t |
p
)
,

which completes the proof. □

Proposition 4.7. Suppose that (H1) and (H2) hold and let {hϵ : ϵ > 0} ⊂ AM for any
M ∈ (0,∞). Then for any δ > 0, one has

lim P
(
∥Y ϵ,hϵ

·
− G̃0((RH hϵ)(·))∥∞ > δ

)
= 0.
ϵ→0
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B

a

A

Proof. For each fixed ϵ > 0, using (3.17)–(3.18) with hϵ replacing h and (3.16) yields

Y ϵ,hϵ
t − G̃0((RH hϵ )(t)) = Y ϵ,hϵ

t − Ξ hϵ
t

=

∫ t

0

[
1

ϵHκ(ϵ)

(
b(s, X0

s + ϵHκ(ϵ)Y ϵ,hϵ
s ,LXϵs ) − b(s, X0

s ,LX0
s
)
)

− ∇Ξ hϵ
s

b(s, ·,LX0
s
)(X0

s )
]

ds

+

∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
)

d(RH hϵ )(s) +
1
κ(ϵ)

∫ t

0
σ (s,LXϵs )dB H

s , t ∈ [0, T ].

Then it follows that

|Y ϵ,hϵ
t − Ξ hϵ

t |
2

≤3
⏐⏐⏐⏐ ∫ t

0

[
1

ϵHκ(ϵ)

(
b(s, X0

s + ϵHκ(ϵ)Y ϵ,hϵ
s ,LXϵs ) − b(s, X0

s ,LX0
s
)
)

− ∇Ξ hϵ
s

b(s, ·,LX0
s
)(X0

s )
]

ds
⏐⏐⏐⏐2

+ 3
⏐⏐⏐⏐∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
)

d(RH hϵ)(s)
⏐⏐⏐⏐2 +

3
κ2(ϵ)

⏐⏐⏐⏐∫ t

0
σ (s,LXϵs )dB H

s

⏐⏐⏐⏐2
=:

3∑
i=1

J̃i (t). (4.23)

y (4.5), (4.6) and Lemma 4.2, we get

J̃2(t) ≤ CT,H,Mϵ
2H
(

1 + sup
t∈[0,T ]

|X0
t |

2
)

(4.24)

nd

E
(

sup
t∈[0,T ]

J̃3(t)
)

≤
CT,H (1 + ϵ2H )

κ2(ϵ)

(
1 + sup

t∈[0,T ]
|X0

t |
2
)
. (4.25)

s for the term J̃1(t), applying the Hölder inequality, (H1) and (H2) implies

J̃1(t)

≤
9T

ϵ2Hκ2(ϵ)

∫ t

0

⏐⏐⏐(b(s, X0
s + ϵHκ(ϵ)Y ϵ,hϵ

s ,LXϵs ) − b(s, X0
s + ϵHκ(ϵ)Y ϵ,hϵ

s ,LX0
s
)
)⏐⏐⏐2 ds

+ 9T
∫ t

0

⏐⏐⏐⏐ 1
ϵHκ(ϵ)

(
b(s, X0

s + ϵHκ(ϵ)Y ϵ,hϵ
s ,LX0

s
) − b(s, X0

s ,LX0
s
)
)

− ∇Y ϵ,h
ϵ

s
b(s, ·,LX0

s
)(X0

s )
⏐⏐⏐⏐2ds

+ 9T
∫ t

0

⏐⏐⏐∇Y ϵ,h
ϵ

s
b(s, ·,LX0

s
)(X0

s ) − ∇Ξ hϵ
s

b(s, ·,LX0
s
)(X0

s )
⏐⏐⏐2 ds

≤
9T K 2(T )
ϵ2Hκ2(ϵ)

∫ t

0
E
⏐⏐X ϵ

s − X0
s

⏐⏐2 ds + 9T K̃ 2(T )
∫ t

0
|Y ϵ,hϵ

s − Ξ hϵ
s |

2
ds

+ 9T
∫ t ⏐⏐⏐⏐∫ 1 (

∇Y ϵ,h
ϵ b(s, ·,LX0 )(Qϵ

s (v)) − ∇Y ϵ,h
ϵ b(s, ·,LX0 )(X0

s )
)

dv
⏐⏐⏐⏐2 ds
0 0 s s s s
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w

G
w

C

w

P

P
e
(

b

w
(

≤
9T K 2(T )
ϵ2Hκ2(ϵ)

∫ t

0
E
⏐⏐X ϵ

s − X0
s

⏐⏐2 ds + 9T K̃ 2(T )ϵ2Hκ2(ϵ)
∫ t

0
|Y ϵ,hϵ

s |
4
ds

+ 9T K̃ 2(T )
∫ t

0
|Y ϵ,hϵ

s − Ξ hϵ
s |

2
ds,

here for any v ∈ [0, 1], Qϵ
s (v) = X0

s + vϵHκ(ϵ)Y ϵ,hϵ
s .

Then, owing to Lemmas 4.2 and 4.6, we obtain

E
(

sup
s∈[0,t]

J̃1(s)
)

≤
CT,H

κ2(ϵ)

(
1 + sup

t∈[0,T ]
|X0

t |
2
)

+ CT,H,Mϵ
2Hκ2(ϵ)

(
1 + sup

t∈[0,T ]
|X0

t |
4
)

+ 9T K̃ 2(T )
∫ t

0
sup

r∈[0,s]
|Y ϵ,hϵ

r − Ξ hϵ
r |

2
ds

≤CT,H,M

(
1

κ2(ϵ)
+ ϵ2Hκ2(ϵ)

)(
1 + sup

t∈[0,T ]
|X0

t |
4
)

+ CT

∫ t

0
sup

r∈[0,s]
|Y ϵ,hϵ

r − Ξ hϵ
r |

2
ds.

(4.26)

athering all the above estimates (4.24)–(4.26) into (4.23) and using the Gronwall inequality,
e have thus obtained

E
(

sup
t∈[0,T ]

|Y ϵ,h
ϵ

t − Ξ hϵ
t |

2
)

≤ CT,H,M

(
ϵ2H

+
1 + ϵ2H

κ2(ϵ)
+

1
κ2(ϵ)

+ ϵ2Hκ2(ϵ)
)(

1 + sup
t∈[0,T ]

|X0
t |

4
)
.

onsequently, we arrive at

lim
ϵ→0

E
(

sup
t∈[0,T ]

|Y ϵ,hϵ
t − Ξ hϵ

t |
2
)

= 0,

hich yields the desired assertion. □

roposition 4.8. Suppose that (H1) and (H2) hold and let {hn
: n ∈ N} ⊂ SM for any

M ∈ (0,∞) such that hn converges to element h in SM as n → ∞. Then

lim
n→∞

sup
t∈[0,T ]

|G̃0(RH hn)(t) − G̃0(RH h)(t)| = 0.

roof. We pursue the same general strategy as in the same proof of Proposition 4.5. For
very n ≥ 1, it follows from (3.18) that G̃0(RH h) = Ξ h and G̃0(RH hn) = Ξ hn

, where Ξ h

respectively Ξ hn
) is the solution to (3.17) (respectively with hn replacing h).

We first show that {Ξ hn
}n≥1 is relatively compact in C([0, T ];Rd ). Similar to Lemma 4.4,

y (H2) it is easy to see that

sup
n≥1

sup
t∈[0,T ]

|Ξ hn

t | ≤ CT,H,M ,

hich implies that {Ξ hn
}n≥1 is uniformly bounded in C([0, T ];Rd ). On the other hand, by

3.17) and (H2), we have that for 0 ≤ s < t ≤ T ,

|Ξ hn

t − Ξ hn

s | ≤

⏐⏐⏐⏐∫ t

s
∇Ξ hn

r
b(r, ·,LX0

r
)(X0

r )dr
⏐⏐⏐⏐+ ⏐⏐⏐⏐∫ t

s
σ (r,LX0

r
)d(RH hn)(r )

⏐⏐⏐⏐
≤CT,H,M (t − s) +

⏐⏐⏐⏐∫ t

σ (r,LX0 )d(RH hn)(r )
⏐⏐⏐⏐ .
s
r
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C

T

A

This, together with (4.14)–(4.16) and the fact that ∥hn
∥H ≤

√
2M , leads to that {Ξ hn

}n≥1
is equi-continuous in C([0, T ];Rd ). Therefore, we obtain relative compactness of {Ξ hn

}n≥1 in
([0, T ];Rd ) by applying the Arzelà–Ascoli theorem. As a consequence, we can extract a (not

relabeled) subsequence such that Ξ hn
converges to some Ξ̄ in C([0, T ];Rd ). Along the same

lines as in the proof of Proposition 4.5, we can obtain that Ξ̄ = Ξ h , from which the result
follows. □

4.3. Proof of Theorem 3.9

Proof. For any t ∈ [0, T ], let Z ϵt =
Xϵt −X0

t
ϵH . By (3.4) and (3.7), it is easy to see that Z ϵt satisfies

Z ϵt =

∫ t

0

1
ϵH

(
b(s, X ϵ

s ,LXϵs ) − b(s, X0
s ,LX0

s
)
)

ds +

∫ t

0
σ (s,LXϵs )dB H

s .

his, together with (3.20), yields

Z ϵt − Z t

=

∫ t

0

(
1
ϵH

(
b(s, X ϵ

s ,LXϵs ) − b(s, X0
s ,LX0

s
)
)

− ∇Zs b(s, ·,LX0
s
)(X0

s )
)

ds

−

∫ t

0

(
E⟨DLb(s, u, ·)(LX0

s
)(X0

s ), Zs⟩

)
|u=X0

s
ds

+

∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
)

dB H
s

=

∫ t

0

[
1
ϵH

(
b(s, X ϵ

s ,LXϵs ) − b(s, X0
s ,LX0

s
)
)

− ∇Zϵs b(s, ·,LXϵs )(X0
s ) −

(
E⟨DLb(s, u, ·)(LX0

s
)(X0

s ), Z ϵs ⟩
)

|u=X0
s

]
ds

+

∫ t

0

(
∇Zϵs b(s, ·,LXϵs )(X0

s ) − ∇Zs b(s, ·,LX0
s
)(X0

s )
)

ds

+

∫ t

0

(
E⟨DLb(s, u, ·)(LX0

s
)(X0

s ), Z ϵs − Zs⟩

)
|u=X0

s
ds

+

∫ t

0

(
σ (s,LXϵs ) − σ (s,LX0

s
)
)

dB H
s

=:

4∑
i=1

Ĩi (t). (4.27)

pplying Lemma 2.1 and (H3)(ii), we get

| Ĩ1(t)|

=

⏐⏐⏐⏐ ∫ t

0

[∫ 1

0

(
1
ϵH

d

dθ̃
b(s, X ϵ,0s (θ̃ ),LXϵs ) − ∇Z ϵs b(s, ·,LXϵs )(X0

s )
)

dθ̃

+

∫ 1

0

(
1
ϵH

d

dθ̃
b(s, X0

s ,LXϵ,0s (θ̃ )) −

(
E⟨DL b(s, u, ·)(LX0

s
)(X0

s ), Z ϵs ⟩

)
|u=X0

s

)
dθ̃
]

ds
⏐⏐⏐⏐

=

⏐⏐⏐⏐ ∫ t

0

[∫ 1

0

(
∇Z ϵs b(s, ·,LXϵs )(X ϵ,0s (θ̃ )) − ∇Z ϵs b(s, ·,LXϵs )(X0

s )
)

dθ̃

+

∫ 1 (
E⟨DL b(s, v, ·)(L ϵ,0 ˜ )(X ϵ,0s (θ̃ )) − DL b(s, u, ·)(LX0 )(X0

s ), Z ϵs ⟩

)
|v=X0,u=X0 dθ̃

]
ds
⏐⏐⏐⏐
0
Xs (θ ) s s s
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w

a

T

A

w

T

≤

∫ t

0
|Z ϵs |

∫ 1

0
K̄ (s)

(
|X ϵ,0s (θ̃ ) − X0

s | + E|X ϵ,0s (θ̃ ) − X0
s | + Wθ (LXϵ,0s (θ̃ ),LX0

s
)
)

dθ̃ds

≤K̄ (t)
∫ t

0
|Z ϵs |

(
|X ϵs − X0

s | + E|X ϵs − X0
s | +

(
E|X ϵs − X0

s |
θ
) 1
θ

)
ds,

here for any θ̃ ∈ [0, 1], X ϵ,0
s (θ̃ ) = X0

s + θ̃ (X ϵ
s − X0

s ).
Consequently, by Lemma 4.2 we have for any p ≥ θ ,

E
(

sup
0≤t≤T

| Ĩ1(t)|
p
)

≤ CT,p,Hϵ
pH

(
1 + sup

t∈[0,T ]
|X0

t |
2p

)
. (4.28)

For the terms Ĩi (t), i = 2, 3, from (H3) again we have

| Ĩ2(t)| ≤

∫ t

0

(⏐⏐⏐∇Zϵs b(s, ·,LXϵs )(X0
s ) − ∇Zϵs b(s, ·,LX0

s
)(X0

s )
⏐⏐⏐

+

⏐⏐⏐∇Zϵs b(s, ·,LX0
s
)(X0

s ) − ∇Zs b(s, ·,LX0
s
)(X0

s )
⏐⏐⏐)ds

≤K̄ (t)
∫ t

0

(
|Z ϵs |Wθ (LXϵs ,LX0

s
) + |Z ϵs − Zs |

)
ds

nd

| Ĩ3(t)| ≤ K̄ (t)
∫ t

0
E|Z ϵs − Zs |ds.

hen, Lemma 4.2 implies

E
(

sup
0≤t≤T

| Ĩ2(t) + Ĩ3(t)|
p
)

≤CT,p,H

[
ϵ pH

(
1 + sup

t∈[0,T ]
|X0

t |
2p
)

+

∫ T

0
E
(

sup
r∈[0,s]

|Z ϵr − Zr |
p
)

ds

]
. (4.29)

s for the term Ĩ4(t), by Lemma 4.1 and (H3)(i), we obtain for any p > 1/H and p ≥ θ ,

E
(

sup
0≤t≤T

| Ĩ4(t)|
p
)

≤CT,p,H

∫ T

0

σ (s,LXϵs ) − σ (s,LX0
s
)
p

ds

≤CT,p,H

∫ T

0
K̄ p(s)Wp

θ (LXϵs ,LX0
s
)ds

≤CT,p,H

∫ T

0
E|X ϵ

s − X0
s |

p
ds

≤CT,p,Hϵ
pH

(
1 + sup

t∈[0,T ]
|X0

t |
p

)
, (4.30)

here the last inequality is due to Lemma 4.2.
Plugging (4.28)–(4.30) into (4.27), we end up with

E
(

sup
0≤t≤T

|Z ϵt − Z t |
p
)

≤ CT,p,H

[
ϵ pH

(
1 + sup

t∈[0,T ]
|X0

t |
2p
)

+

∫ T

0
E
(

sup
r∈[0,s]

|Z ϵr − Zr |
p
)

ds

]
.

herefore, a simple application of the Gronwall inequality yields the desired result. □
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ppendix. Proofs of the auxiliary results

.1. Proof of Lemma 3.1

For any µ ∈ C([0, T ]; P2(Rd )), we let

bµ(t, x) = b(t, x, µt ), σµ(t) = σ (t, µt ), t ∈ [0, T ], x ∈ Rd .

t is readily checked that the functions bµ(t, x) and σµ(t) also satisfy (H1). Then, by
22, Theorem 3.1], it is known that Eq. (3.2) has a unique solution X̃ ∈ S p([0, T ]) with
p > 1/H . As a consequence, there is a measurable map Gµ : C([0, T ];Rd ) → C([0, T ];Rd )
uch that

X̃ · = Gµ(B H
·

).

Next, we focus on proving the other assertion.
For any h ∈ AM , by (2.1) and (2.5) we have

B̃ H
·

:= B H
·

+ (RH h)(·) =

∫
·

0
K H (·, s)(dWs + (K ∗

H h)(s)ds).

et

ϑT := exp
[
−

∫ T

0
⟨(K ∗

H h)(s), dWs⟩ −
1
2

∫ T

0
|(K ∗

H h)(s)|2ds
]
.

aking into account of the isometry of K ∗

H between H and L2([0, T ],Rd ), we obtain

E exp
[

1
2

∫ T

0
|(K ∗

H h)(s)|2ds
]

= E exp
[

1
2
∥h∥

2
H

]
≤ eM .

hen, according to the Girsanov theorem for the fractional Brownian motion (see, e.g.,
17, Theorem 4.9] or [43, Theorem 2]), {B̃ H

t }t∈[0,T ] is a d-dimensional fractional Brownian
otion under the probability ϑTP. So, we deduce that

X̃ h
:= G

(
B H

+ (R h)(·)
)

= G (B̃ H )

· µ · H µ ·
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e
(
t

A

t
w

L

P
(
a
a
a

T

∞

B

T

is the unique solution of Eq. (3.2) on (Ω ,F , {Ft }t∈[0,T ], ϑTP). Since P and ϑTP are two
quivalent probability measures, on can see that X̃ h

·
is a strong solution of Eq. (3.3) on

Ω ,F , {Ft }t∈[0,T ],P). Along the same lines as above, we can also derive the uniqueness of
he solution X̃ h

·
. The proof is completed. □

.2. Proof of Proposition 3.4

The proof of Proposition 3.4 follows the method in [8, Theorem 4.4] in general. It relies on
he following preliminary result concerning a variational representation for random functional,
hich is a slight change of [58, Theorem 3.2].

emma 5.1. Let f be a bounded Borel measurable function on Ω . Then there holds

− logE(e− f ) = inf
h∈A

E
(

f (· + RH h) +
1
2
∥h∥

2
H

)
.

roof of Proposition 3.4. In order to prove the proposition, we need to show that (3.8) and
3.9) holds for all real-valued, bounded and continuous function ϱ on E , and I given in (3.10) is
rate function. Notice first that the fact that I is a rate function is readily checked via (A0)(ii),

nd it is thus omitted here for the sake of conciseness. Below we shall focus on handling (3.8)
nd (3.9).

By Lemma 5.1 with f (·) replaced by ϱ◦Gϵ (ϵH
·)

ℓ(ϵ) , we have

− ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)
ℓ(ϵ)

)]
= − ℓ(ϵ) logE

[
exp

(
−
ϱ ◦ Gϵ(ϵH B H

·
)

ℓ(ϵ)

)]
= inf

h∈A
E
(
ϱ ◦ Gϵ(ϵH (B H

+ RH h)) +
1
2
ℓ(ϵ)∥h∥

2
H

)
= inf

h∈A
E
(
ϱ ◦ Gϵ(ϵH (B H

+ RH h/ℓ
1
2 (ϵ))) +

1
2
∥h∥

2
H

)
.

(A.1)

he rest of the proof will be divided into two steps.
Step 1. The upper bound. Without loss of generality, we assume that infx∈E {ϱ(x) + I (x)} <
. Let δ > 0 be fixed. Then there exists x0 ∈ E such that

ϱ(x0) + I (x0) ≤ inf
x∈E

{ϱ(x) + I (x)} +
δ

2
. (A.2)

y (3.10), we choose h̄ ∈ H such that G0(RH h̄) = x0 and

1
2
∥h̄∥

2
H ≤ I (x0) +

δ

2
.

hen, combining this with (A.1) yields

−ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)
ℓ(ϵ)

)]
≤ E

(
ϱ ◦ Gϵ(ϵH (B H

+ RH h̄/ℓ
1
2 (ϵ)))

)
+ I (x0) +

δ

2
.

Since ϱ is bounded and continuous, taking limit as ϵ → 0 and using (A0)(i) imply

lim sup −ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)

)]

ϵ→0 ℓ(ϵ)
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w
o

s

w

a

a

P

S

≤ϱ ◦ G0(RH h̄) + I (x0) +
δ

2

=ϱ(x0) + I (x0) +
δ

2
≤ inf

x∈E
{ϱ(x) + I (x)} + δ,

here the last inequality follows from (A.2). Since δ > 0 is arbitrary, we complete the proof
f the upper bound.

Step 2. The lower bound. Fix δ > 0. According to (A.1), for every ϵ > 0 there exists hϵ ∈ A
uch that

− ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)
ℓ(ϵ)

)]
≥ E

(
ϱ ◦ Gϵ(ϵH (B H

+ RH hϵ/ℓ
1
2 (ϵ))) +

1
2
∥hϵ∥2

H

)
− δ,

(A.3)

hich also implies

sup
ϵ>0

E
(

1
2
∥hϵ∥2

H

)
≤ 2∥ϱ∥∞ + δ. (A.4)

Now, for each finite number N , we define stopping times

τ ϵN := inf
{

t ∈ [0, T ] :
1
2
∥hϵI[0,t]∥

2
H ≥ N

}
∧ T,

nd the processes hϵ,N (t) := hϵ(t)I[0,τ ϵN ](t). One can see that hϵ,N ∈ A and

P
(
hϵ ̸= hϵ,N

)
≤ P

(
1
2
∥hϵ∥2

H ≥ N
)

≤
2∥ϱ∥∞ + δ

N
, (A.5)

where the last inequality is due to the Markov inequality and (A.4).
Moreover, observe that we have

ϱ ◦ Gϵ(ϵH (B H
+ RH hϵ/ℓ

1
2 (ϵ)))

=ϱ ◦ Gϵ(ϵH (B H
+ RH hϵ,N/ℓ

1
2 (ϵ)))

+

[
ϱ ◦ Gϵ(ϵH (B H

+ RH hϵ/ℓ
1
2 (ϵ))) − ϱ ◦ Gϵ(ϵH (B H

+ RH hϵ,N/ℓ
1
2 (ϵ)))

]
I{hϵ ̸=hϵ,N }

≥ϱ ◦ Gϵ(ϵH (B H
+ RH hϵ,N/ℓ

1
2 (ϵ))) − 2∥ϱ∥∞I{hϵ ̸=hϵ,N }, (A.6)

nd by (2.2) we get

∥hϵ∥2
H = ∥K ∗

H hϵ∥L2 ≥ ∥K ∗

H hϵ,N ∥L2 = ∥hϵ,N ∥
2
H. (A.7)

lugging (A.5)–(A.7) into (A.3) yields

− ℓ(ϵ) logE
[

exp
(

−
ϱ(Xϵ)
ℓ(ϵ)

)]
≥E

(
ϱ ◦ Gϵ(ϵH (B H

+ RH hϵ,N/ℓ
1
2 (ϵ))) +

1
2
∥hϵ,N ∥

2
H

)
−

2∥ϱ∥∞(2∥ϱ∥∞ + δ)
N

− δ.

(A.8)

ince N and δ are arbitrary in (A.8), in proving the lower bound it suffices to show that

lim infE
(
ϱ ◦ Gϵ(ϵH (B H

+ RH hϵ,N/ℓ
1
2 (ϵ))) +

1
∥hϵ,N ∥

2
H

)
≥ inf {ϱ(x) + I (x)}. (A.9)
ϵ→0 2 x∈E
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∫

By the definition of hϵ,N , one has

sup
ϵ>0

1
2
∥hϵ,N ∥

2
H ≤ N , a.s.,

which allows us to extract a (not relabeled) subsequence such that hϵ,N converges to h in
distribution as SN -valued random elements. Then, by (A0)(i) and the Fubini theorem we obtain

lim inf
ϵ→0

E
(
ϱ ◦ Gϵ(ϵH (B H

+ RH hϵ,N/ℓ
1
2 (ϵ))) +

1
2
∥hϵ,N ∥

2
H

)
≥E

(
ϱ(G0(RH h)) +

1
2
∥h∥

2
H

)
≥ inf

{(x,h)∈E ×H:x=G0(RH h)}

{
ϱ(x) +

1
2
∥h∥

2
H

}
≥ inf

x∈E
{ϱ(x) + I (x)},

hich completes the proof of the lower bound. The proof is therefore finished. □

.3. Proof of Lemma 4.1

Before proving Lemma 4.1, we first introduce the Hardy–Littlewood inequality (see,
.g., [50, Theorem 1, Page 119]).

emma 5.2. Let 1 < p̃ < q̃ < ∞ and 1
q̃ =

1
p̃ − α. Suppose that f : R+ → R is in L p̃(0,∞),

hen I α0+
f (x) converges absolutely for almost every x. Furthermore, there exists some positive

onstant C p̃,q̃ such that

∥I α0+
f ∥L q̃ (0,∞) ≤ C p̃,q̃∥ f ∥L p̃(0,∞),

here I α0+
f is shown by (2.4).

Proof of Lemma 4.1. Owing to (H1) and µ ∈ C([0, T ]; Pp(Rd )) with p ≥ θ , one can
verify that σ (·, µ·) ∈ L p([0, T ],Rd

⊗Rd ). Then by the Hölder inequality and p > 1/H , there
holds σ (·, µ·) ∈ L

1
H ([0, T ],Rd

⊗Rd ), which means that for any t ∈ [0, T ],
∫ t

0 σ (s, µs)dB H
s is

ell-defined because of L
1
H ([0, T ],Rd

⊗ Rd ) ⊂ H.
Next, we intend to show (4.1).
Since pH > 1, we choose λ such that 1 − H < λ < 1 − 1/p and put Cλ :=

t
s (t − r )−λ(r − s)λ−1dr . Applying the stochastic Fubini theorem and the Hölder inequality,

we have

E

(
sup

t∈[0,T ]

⏐⏐⏐⏐∫ t

0
σ (s, µs)dB H

s

⏐⏐⏐⏐p
)

= C−p
λ E

(
sup

t∈[0,T ]

⏐⏐⏐⏐∫ t

0

(∫ t

s
(t − r )−λ(r − s)λ−1dr

)
σ (s, µs)dB H

s

⏐⏐⏐⏐p
)

= C−p
λ E

(
sup

⏐⏐⏐⏐∫ t

(t − r )−λ
(∫ r

(r − s)λ−1σ (s, µs)dB H
s

)
dr
⏐⏐⏐⏐p
)

t∈[0,T ] 0 0
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H

v
i

H

L

w

w

R

≤
C−p
λ (p − 1)p−1

(p − 1 − λp)p−1 E

(
sup

t∈[0,T ]
t p−1−λp

∫ t

0

⏐⏐⏐⏐∫ r

0
(r − s)λ−1σ (s, µs)dB H

s

⏐⏐⏐⏐p

dr

)

≤
C−p
λ (p − 1)p−1

(p − 1 − λp)p−1 T p−1−λp
∫ T

0
E
⏐⏐⏐⏐∫ r

0
(r − s)λ−1σ (s, µs)dB H

s

⏐⏐⏐⏐p

dr. (A.10)

ere we have used the condition λ < 1 − 1/p in the first inequality.
Observe that for each r ∈ [0, T ],

∫ r
0 (r − s)λ−1σ (s,LXn

s )dB H
s is a centered Gaussian random

ariable. Consequently, with the help of the Kahane–Khintchine formula, we derive that there
s a constant C p > 0 such that

E
⏐⏐⏐⏐∫ r

0
(r − s)λ−1σ (s, µs)dB H

s

⏐⏐⏐⏐p

≤ C p

(
E
⏐⏐⏐⏐∫ r

0
(r − s)λ−1σ (s, µs)dB H

s

⏐⏐⏐⏐2
) p

2

≤ C p,H

(∫ r

0

∫ r

0
(r − u)λ−1

∥σ (u, µu)∥(r − v)λ−1
∥σ (v, µv)∥ · |u − v|2H−2dudv

) p
2

≤ C p,H

(∫ r

0
(r − s)

λ−1
H ∥σ (s, µs)∥

1
H ds

)pH

.

ere, we have adopted the argument in [41, Theorem 1.1, Page 201] in the last inequality.
Then, plugging this into (A.10) and taking into account of the condition 1 − H < λ and

emma 5.2 with q̃ = pH and α = 1 −
1−λ

H (implying p̃ =
pH

p(λ+H−1)+1 ), we conclude that

E

(
sup

t∈[0,T ]

⏐⏐⏐⏐∫ t

0
σ (s, µs)dB H

s

⏐⏐⏐⏐p
)

≤ Cλ,p,H T p−1−λp
∫ T

0

(∫ r

0
(r − s)

λ−1
H ∥σ (s, µs)∥

1
H ds

)pH

dr

≤ Cλ,p,H T p−1−λp
(∫ T

0
∥σ (r, µs)∥

p
p(λ+H−1)+1 dr

)p(λ+H−1)+1

≤ Cλ,p,H T pH−1
∫ T

0
∥σ (s, µs)∥pds,

here the last inequality is due to the Hölder inequality.
Note that by taking proper λ, the constant Cλ,p,H above may depend only on p and H ,

hich completes the proof. □
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