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Abstract—NASA’s (National Aeronautics and Space Adminis-
tration) ICESat-2 with a Photon Counting LiDAR (Light Detection
And Ranging) Sensor sensitively detects signal photons at high
speed with an advanced detection system called the Advanced Topo-
graphic Laser Altimeter System (ATLAS). However, the sensor also
extracts a large amount of background photon noise coming from
the atmosphere, ground, sun, or other radiation. This condition
is particularly evident in forest areas. This study proposes an
automatic machine learning approach to utilize data for forestry
applications to improve data availability compared to NASA’s
official product.

Our method uses only a very limited number (10%) of sample
points for training, ensuring operational efficiency and training
accuracy. We conclude that the integrated learning performance
generally outperforms single models, and the mean F1 score of
all tests is approximately 0.9. The mean F1 score of the Stacked
Ensembles model is 0.957 ahead of the other models. The top three
variables used in training models are kNNdist5, kNNdist10, and
h. These three variables could explain 51.6% of the components of
the models. Over the regions tested, the proposed method could im-
prove the proportion of signals correctly identified by 6.4 %, 12.2%,
2.7%,9.3%, and 1.4% in five datasets. The model performs better
in low signal-to-noise (SNR) datasets less than 7.5. The method
would be largely unaffected by differences in topography, noise
distribution, and SNR. The classifiers could correct misclassified
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labels in ATLO8 products and show good stability in different
conditions.

Index Terms—Automated machine learning, ICESat-2/ATLAS,
photon point cloud filtering, space-borne light detection and
ranging (LiDAR).

I. INTRODUCTION

ASA launched the the Ice, Cloud, and Land Elevation

Satellite (ICESat) series satellites to track changes in the
terrain of glaciers, sea ice, forests, and other areas [1]. The first
generation of ICESat onboard the Geoscience Laser Altimeter
System (GLAS) LiDAR system provided a large amount of
global ground elevation and 3-D information from 2003 to 2009.
The GLAS products were relied upon to accurately estimate key
forest parameters such as forest max height, mean height [2],
[3], and biomass [4], [5], and showed the great potential for
vegetation and ecosystem science of a global space-borne light
detection and ranging (LiDAR) system for the first time [6].

As a successor to the ICESat satellite mission, NASA
launched the ICESat-2 satellite in September 2018 [7]. The
second-generation satellite is equipped with the advanced mi-
cropulse multibeam photon-counting laser altimeter (Advanced
Terrain Laser Altimeter System (ATLAS)) replacing the full-
waveform LiDAR system. The new detection system used a
more sensitive single-photon detector to extract higher-accuracy
3-D surface information at 10 kHz high-frequency pulse [8].
ICESat-2 uses three pairs of low-energy 532 nm laser beams
(3.2 km separating the pairs, 90 m within pairs). Each beam
produces an approximately 17 m diameter footprint at every
0.7 m along-track sampling interval [9], [10], [11].

NASA released the official datasets with photon labels and
further extracted forest canopy labels. The ICESat-2 Level-
2 A products (ATLO03) determine the geodetic location (i.e. the
latitude, longitude, and height) of the ground points with the
flight times, the observatory position, and attitude. The ATLO03
products are used by higher-level (Level-3 A) surface-specific
products to determine glacier and ice sheet height, sea ice
freeboard, vegetation canopy height, ocean surface topography,
and inland water bodies height [12]. The new photon counting
system provides individual photon measurements and achieves
higher laser repetition rates for improving spatial coverage.
However, this operating mode is sensitive to solar background
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noise, making noise removal a necessary preprocess before
application [13].

Several recent research projects have been conducted on noise
removal in photon counting LiDAR. The following algorithms
attempted photon classifications by simulated ICESat-2 type
data and explored solutions from statistical analysis methods.
The Canny edge detection process would provide 97.4% success
in identifying signal photons (37.2% false alarms) producing
a sufficient evaluation of the surface location in fairly quick
processing times [14]. Automatic statistical analysis results have
shown it to be highly effective against low signal-to-noise (SNR)
datasets such as those resulting from high repetition rate, low
pulse energy laser, and single-photon sensitive detectors [15]. A
mathematical algorithm is developed using spatial statistics and
discrete mathematics concepts. Validation for instrument design
shows that ground and canopy elevation and hence, canopy
height can be expected to be observable with high accuracy
(93.01%-99.57% correctly selected points for a beam with
the expected return of 0.93 mean signals per shot (msp), and
72.85%-98.68% for 0.48 msp) [16]. The classic geodesic active
contours method demonstrates that this technique can identify
the potential signal photons effectively with an error rate of less
than 4.2%. The proposed approach is appropriate for the present
airborne simulated data with high accuracy for a flat surface with
dense canopy [17].

With the development of denoising methods, researchers have
tried computer graphics-based methods. An adaptive density
model is shown to detect the ground surface and vegetation
canopy with better performance for smoother surfaces and lower
noise rate conditions in laser altimeter photon-counting data,
although the performance evaluation metric F-measure does not
vary significantly over a range of noise rates (0.5-5 MHz) [18].
The PSODBSCAN algorithm performs better than the localized
statistics algorithm (the mean F value of 0.9759 for the PSODB-
SCAN, and the mean F value of 0.6978 for the localized statis-
tical algorithm) in the forest region, and does not need manual
adjustment of parameters for different test data [19]. Results of
noise filtering show that the multilevel filtering process design
effectively identifies the background noise and preserves signal
photons in the raw data, although validation results obtained over
densely vegetated conditions are not impressive [20]. Filtering
out the noise photons based on localized statistical analysis by
an effective noise removal algorithm was shown to effectively
reduce the edge effect and the influence of inconsistent noise
photon density [21], [22]. A noise filtering method based on local
outlier factor (LOF) extracting the ground and canopy surface
shows that methods can detect the potential signal photons
effectively from a quite high noise rate environment in relatively
rough terrain [23]. LOF modified with ellipse searching area for
noise and signal photons shows that the approach has a good
performance not only in lower noise rate with relatively flat
terrain surface, but also works even for a quite high noise rate
environment in relatively rough terrain, and the horizontal ellipse
searching area gives the best result compared with the circle or
vertical ellipse searching area [24].

Most of the above methods were studies of photon noise
removal approaches and attempted to extract canopy and ground

signals in forest areas. These existing methods are mostly based
on unsupervised methods, whereas supervised approaches have
been barely investigated; only one study explored the use of
random forest to detect forest signal photons [25]. The simulated
data used in this study is relativity ideal compared to ATLAS
and need to be tested based on the actual data. The study did
not take into account multiple influence factors in different de-
tection environments. The supervised method has the following
characteristics.

1) Convenient calculation with a limited number of labels

and automatic hyperparameters.

2) The transferability of the model in similar conditions [25].

3) The applicability for different scale datasets [26].

4) The interpretability of results with different category la-

bels or dataset information.

NASA has released some ICESat-2 photon products includ-
ing forest signal labels, the algorithm employed a DRAGANN
method filtering noise, and an iterative filtering method to iden-
tify both the ground and top of canopy surfaces [27]. However,
due to the complexity of the terrain and atmospheric conditions,
some mislabeled photons are prevalent in forest areas on a large
scale [28]. We proposed here a supervised classification method
for correcting official product labels.

Conventional machine learning techniques require experts to
explore the large design space, perform artificial model com-
pression, and make tradeoffs between model size, speed, and
accuracy, which are usually suboptimal and laborious. On the
other hand, every machine learning system has hyperparameters,
which also require extensive testing by experts.

Recently, automatic machine learning (AutoML) techniques
have been developed. Automatic hyperparameters are the most
fundamental task. The AutoML technique aims to adjust various
models at once and allow the models to achieve state-of-the-
art performance without any manual intervention ensuring the
fairness of model comparisons [29]. Meanwhile, AutoML with
the complete evaluation system could sample the model space
efficiently improving the quality of model compression. The au-
tomatic hyperparameter selection and model compression also
improve the efficiency and reproducibility of the research [30].
Therefore, in this article, we choose to conduct experiments
in a continuous forest area, extract forest photon features, and
denoise photon-counting LiDAR data based on the AutoML
method. Compared to the official NASA products, we would
like to improve the misclassification of forest photons in forest
areas, and further improve the availability of data.

II. STUDY AREA

The study was conducted at Saihanba National Forest Farm in
Hebei Province, China (42°19' -42°33'N, 117°07' - 117°28'E).
Fig. 1 shows a terrain schematic with an elevation range between
about 1400-1900 m. The source of the background map is from
the Google Earth platform. This figure is also overlaid with the
forest farm boundary and the ground trajectory of the six sets of
ICESat-2 laser detectors. The Saihanba National Forest Farm is
the largest plantation forest in China, located in a mountainous
area on the southeastern edge of the Inner Mongolia Plateau.
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Fig. 2. Flowchart of our methods.

The study area belongs to the typical temperate forest-steppe
ecotone with a semiarid and semihumid climate [31]. The study
site is characterized by long, cold winters and short springs and
autumns with about —1.4 °C annual average temperature. The
temperature extremes are between —43.2 °C and 33.4 °C. The
annual average rainfall and evaporation are 453.6 and 1388 mm
[32]. The dominant tree species include Pinus sylvestris var.
mongolica, Larix gmelinii, and Picea meyeri, as well as scat-
tered natural secondary deciduous broad-leaved forests of Betula
platyphylla, and Ulmus pumila woodland [33]. The topographic
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condition and forest environment of Saihanba are representative,
while its abundant forest structure and phenological character-
istics provide an ideal test site for the observation and model
coupling of complex topographic parameters [32].

III. MATERIALS AND METHODS

The approach for photon classification based on automated
machine learning is shown in Fig. 2. First, we clipped the
data to roughly match the forest region and paired ATLO8 with
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TABLE I
ICESAT-2 PRODUCTS USED IN THIS ARTICLE

Datasets Season  Day/Night Channel SNR
20190108154038_01710206_005_01.h5 Winter  Night g:ﬂ (G}gi ggi ‘9‘:‘1‘(7): ;;éz 2:32
20201005091904_01710906_005_01.h5 Autumn  Day g:ﬂ ggi ggi (2)32 ?:(6)41‘: i’:ég
20191206113615_01711406_005 01.h5  Winter  Night gﬁi ggi ggi }8:22: lg:gg: 1;:‘9‘3
20220102113835_01711406_005_01.h5  Winter  Night gﬂi ggl ggl g:gg: g?? ;‘fg
20220302203452_10781402_005_01.h5  Spring  Night gﬂi ggi gg ;Zi S:;Z: g:;;‘

Note: Only month and day will be presented for subsequent references, such as 0108.

ATLO3 photon labels. Then we segmented the dataset by every
10000 m range and randomly selected 10% signal and noise
photons in the range. Next, 18 features were constructed that
could describe the statistical properties of the photons. We then
considered feature relevance for feature reductions and ranked
them according to explanatory. The top ten features were used
to constructing models. Next, the models were ranked according
to performance, and the best-performing model was used to
distinguish signal and noise photons. Finally, we evaluated the
performance of our method based on AutoML to the official
products for different datasets.

A. ICESat-2 Data and Preprocessing

We combined the ICESat-2 ATLO3 and ATLOS8 products to
conduct photon classification experiments in the Saihanba Forest
Farm. To demonstrate the stability of the method for different
terrains, we selected five typical datasets. Table I shows the
Season, Day, or Night, and SNR of the datasets which were
downloaded from the American National Snow and Ice Data
Center. The parameter of “confidence” is provided to classify
each photon as being either a likely signal or noise [34]. With
high confidence, the photon is more likely a signal. In the
experiment, we considered photons with high confidence as
signals and the rest as noise. SNR is defined as the ratio of signal
photons to the noise photons in every channel. The ICESat-2
Level-2 ATLO3 product provides the time, latitude, longitude,
and ellipsoid height for each photon [35]. The ICESat-2 Level-
3 A ATLO8 product estimates terrain height, canopy height,
and canopy cover at 100 meters of fixed-length steps along the
ground track.

First, due to positioning bias when downloading products
from the official web, data cropping was necessary according
to the Saihanba Forest Farm shapefile. Then, we converted the
ATLO8 labels of high and median confidence levels to signal
and other photons to noise. Next, the ATLO8 photon tags were
traced back to add the latitude, longitude, and ellipsoid height
information from ATLO03. Afterward, the latitude and longitude
were downscaled into ICESat-2 satellite ground track distance
for facilitating data processing and visualization. Finally, we
randomly selected the signal and noise photons from the dataset

to construct the training set. Fig. 3 shows an example of the
randomly extracted 10% photons in proportion to signal and
noise from every 10000 m along-track distance.

B. AutoML Platform and Models Selection

We used the H20 platform in this experiment. H20 is an
open-source, in-memory, distributed, fast, and scalable machine
learning and predictive analytics platform [36]. It allows users
to build machine learning models on big data [37], [38]. The
platform was selected for the following features.

1) Includes the most widely utilized algorithms for statistics

and machine learning.

2) Models interpretation capabilities to support regression
and classification tasks.

3) Automatic feature engineering, model validation, tuning,
selection, and deployment.

4) Automatic visualization.

5) Allowing user interaction directly for machine learning
operations.

To test the performance of AutoML, six typical machine
learning models were selected for experimentation; the selected
models are shown in Fig. 4. They are as follows.

1) Distributed Random Forest (DRF) generates a forest of
classification or regression trees. Each of these trees is a
weak learner built on a subset of rows and columns. Both
classification and regression take the average prediction
over all of their trees to make a final prediction.

2) Gradient boosting machine (GBM) is a forward learning
ensemble method. The guiding heuristic is that good
predictive results can be obtained through increasingly
refined approximations.

3) Generalized linear models (GLM) estimate regression
models for outcomes following exponential distributions.
In addition to the Gaussian (i.e., normal) distribution, these
include Poisson, binomial, and gamma distributions.

4) Stacked ensembles (SE) methods use multiple learning
algorithms to obtain better predictive performance than
could be obtained from any of the constituent learning
algorithms.
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5) eXtreme Gradient Boosting (XGB) refers to the ensemble
learning technique of building many models sequentially,
with each new model attempting to correct for the defi-
ciencies in the previous model. In tree boosting, each new
model that is added to the ensemble is a decision tree.

6) In XRT, randomness goes one step further in the way that
splits are computed.

Thresholds are drawn at random for each candidate fea-
ture, and the best of these randomly generated thresholds is
picked as the splitting rule. We limited the maximum num-
ber of models to prevent over-saturation of model training
(max_models = 20) and increased performance with the AUC
(area under the ROC curve) score by restricting the number of
models (stopping_metric = auc).

C. Feature Extraction and Selection

Table II shows the 18 photon features covered in this article,
including the height, along-track distance, and kNNdist-N, the

difference between the height of a photon and mean, median,
percentiles, kurtosis, skewness, standard deviation, variance,
minimum height, maximum height, height range, mean absolute
deviation, coefficient variation, interquartile range, and canopy
relief ratio of all the photons at every 10 m window. N in
kNNdist-N means extracting the nearest N points around the
sample point. The photon features are defined as (1)

Fm,i =UYm,i — Zm(xnu ym) (1

where F,, ; represents the feature calculated for the ith photon
in the mth 10 m window, = and y represent the along-track
distance and photon height within the window, respectively.
The function Z,, (2, ym) is used to calculate the statistical
metrics (mean, median, percentiles, kurtosis, skewness, standard
deviation, variance, minimum height, maximum height, height
range, mean absolute deviation, coefficient variation, interquar-
tile range, and canopy relief ratio) of all photons within the 10 m
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TABLE II
DESCRIPTION OF FEATURES FOR TRAINING THE PHOTON-COUNTING LIDAR DATA CLASSIFIER

The difference between the height of a photon and the mean in the surrounding 10 m window
The difference between the height of a photon and the median in the surrounding 10 m window
The difference between the height of a photon and the (5~95) the percentile in the surrounding 10

The difference between the height of a photon and the standard deviation in the surrounding 10 m

The difference between the height of a photon and the variance in the surrounding 10 m window
The difference between the height of a photon and the minimum height in the surrounding 10 m

The difference between the height of a photon and the maximum height in the surrounding 10 m

The difference between kurtosis of a photon and the mean value in the surrounding 10 m window
The difference between skewness of a photon and the mean value in the surrounding 10 m window
The difference between the height of a photon and the height range in the surrounding 10 m window
The difference between the height of a photon and the mean absolute deviation in the surrounding

Num Feature Description
1 h The height of a photon
2 dist The along-track distance of a photon
3 dist.mean
4 dist.median
5 dist.p(5~95)
m window
6 kNNdist5 The k-nearest neighbour’s distance for photons (N = 5)
7 kNNdist10 The k-nearest neighbour’s distance for photons (N = 10)
8 dist.sd
window
9 dist.var
10 min
window
11 max
window
12 h.kurtosis
13 h.skewness
14 range
15 mad
10 m window
16 cv
window
17 iqr
window
18 crr

window

The difference between the height of a photon and the coefficient variation in the surrounding 10 m
The difference between the height of a photon and the interquartile range in the surrounding 10 m

The difference between the height of a photon and the canopy relief ratio in the surrounding 10 m

window, defined as the following equation:
Uy, = Sy — Y,y - 2)

Equation (2) describes the calculation of the coefficient variation
of photons in the mth 10 m window

1qrm = Om,75 — Om 25. 3

Equation (3) describes the calculation of the interquartile range
of photons in the mth 10 m window, where 0,, , is the pth
percentile of the aggregate in the mth 10 m window

crrm = (Y, — min (ym))/range,,. “)

Equation (4) describes the calculation of the canopy relief ratio
of photons in the mth 10 m window, where range,, is the height
range of photons in the mth 10 m window.

IV. RESULTS

A. Model Establishment

Here, we developed the AutoML classification model using
the training samples. The selected photon samples were sourced
from the photon tags in the ATLO8 products, and the reference
datasets were also validated by visual interpretation. During the
selection of photon samples, since the ATLO8 datasets included
some inaccurate labels, we corrected the labels by careful visual
inspection, where necessary. Fig. 4(a) shows the F1 score dis-
tribution of the overall classifiers. The F1 score is the harmonic

TABLE III
MAINLY VALUE OF F1 SCORE BOXES FOR FIG. 4(A)

Model Minimal Lower Mean Upper Maximal
DRF 0.731 0.819 0.870 0.953 0.992
GBM 0.724 0.844 0902 0.959 0.996
GLM 0.578 0.807 0.878 0.936 0.976
SE 0.801 0916 0957 0.974 0.998
XGB 0.789 0.891 0.950 0.966 0.995
XRT 0.725 0.817 0.869  0.952 0.993

mean of precision and sensitivity, in which the precision is
the fraction of true signal photons from all points identified as
photons and sensitivity is the fraction of photons considered as
signal photons that are correctly identified. F1 score box could
be compared in detail mainly by minimal, lower quartile, mean,
upper quartile, and maximal values (Table III). The optimal
classifiers in the GBM, SE, and XGB methods were largely
superior among the overall machine learning models. Although
the DRF, GLM, and XRT models were slightly inferior, the
models exhibited better stability in classification performance.
The SE models combined the advantages of other models into
better-performing classifiers. The best-performing classifiers are
SE models used for photon predictions in each experiment all
along.
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Statistical indicators of model performance evaluation. (a) The classification performance of the training sets. (b) The classification performance of the

test sets. The red, orange, green, blue, and purple frames stand for the indicators of five datasets in Table 1.

Fig. 4(b) shows the preferences of the best-performing SE
models when integrating submodels in all five datasets. The
frequency percentage of DRF, GBM, GLM, XGB, and XRT
models integrated into the SE model was 13%, 48%, 13%,
15%, and 11%, respectively. The SE models involved overall
other models in the integration of submodels, but the models
preferred to aggregate the GBM and XGB models with better
performance. The integration strategy of AutoML ensures that
the performance of SE models is optimal among the overall
models available. Subsequently, the classification experiments
were tested by the best-performing SE model.

B. Accuracy Assessments

We performed accuracy assessments of the classifiers and
examined the results quantitatively. Photon samples were split
according to 70% as the training set and another 30% as the test
set. Fig. 5 shows the statistical indicator of performance eval-
uation: Accuracy, kappa coefficient, specificity, recall, and F1.
Only month and day will be presented for subsequent references,
such as 0108. The indicators were calculated from the confusion
matrix for 0108, 1005, 1206, 0102, and 0302 products. They
are defined as follows: Accuracy is the proportion of photons
correctly identified as signal and noise in the total photons;
kappa coefficient measures the prediction performance of the
SE classifier; specificity is the proportion of photons identified
as noise photons correctly; recall measures the proportion of
signal photons that are classified correctly; and the F1 score.
The values of indicators are shown in Table IV. The training
results of the five datasets have good performance, while the
test results have different degrees of degradation.

C. Variable Importance

Variable importance is calculated by the relative influence of
each feature: whether that feature was selected to classify during

TABLE IV
INDICATOR VALUES OF MODEL PERFORMANCE FOR FIG. 5

Type  Dataset Accuracy Kappa  Specificity — Recall F1
0108 0.979 0.918 0.916 0.989  0.988
1005 0.992 0.979 0.972 0.999  0.995

Train 1206 0.989 0.951 0.934 0.998  0.994
0102 0.930 0.784 0.755 0981  0.946
0302 0.969 0.865 0.820 0.995  0.982
0108 0.911 0.622 0.615 0961  0.948
1005 0.929 0.829 0.841 0964  0.943

Test 1206 0.929 0.672 0.642 0977  0.960
0102 0.854 0.490 0.488 0.948  0.893
0302 0.897 0.509 0.461 0974  0.942

the model-building process, and how much the squared error
improved (decreased). Then, the squared error was normalized
to be between 0 to 1. In the experiment, we considered the
commonly used statistical features of photon point clouds. Fig. 6
presents the average variable importance of the top ten features
used in training models for five datasets. The top three variables
are kNNdist5, kNNdist10, and h. These three variables could
explain 51.6% of the components of the models. The top ten
variables provided 74.3% the explanation of the model compo-
nents, namely kKNNdist5, kNNdist10, h, dist, iqr, h.kurtosis, mad,
crr, h.skewness, and dist.sd (Fig. 6). As the number of variables
increases, the explanatory ability of the variables decreases
gradually. While the number of variables is up to 20 (the top
ten variables, range, min, max, cv, dist.p95, dist.mean, dist.p90,
dist.p5, dist.median, and dist.p10), the explanatory model ability
reaches about 90%. It could be considered that the whole model
could be roughly explained. The remaining variables have only
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Fig. 6. Variable importance of classification models was calculated by the

average of five datasets. Variables have been sorted according to their importance
and each variable was defined in Table II. Only the top ten features were shown
here.

less than 10% of the explanatory ability, of which most are the
percentile variables such as dist.p35. We then selected only the
top ten features for the experiment.

In the experiment process, we found that choosing the N
value of the kINNdist algorithm would have a great impact on
the results (Fig. 6). The kNN method is used to measure the
aggregation of photons. Generally, the density of signal photons
is much larger than the noise density. While the distance between
adjacent signal photons is closer than the distance between
adjacent noise photons, which makes the signal photon kNNdist
much smaller than the noise kNNdist. Signal photons could be
roughly distinguished from noise photons with this feature. We
obtained some rules according to the selection of the N value.
Fig. 6 also indicates that most of the model components could
be explained by the kNNdist feature. This feature is adept at
finding the aggregated photons and roughly filtering out the noise
from the signal. In general, the aggregation of signal photons is
much greater than that of noise photons. However, the condition
of noise aggregation is inevitable in the measurement. Thus,
when the N value of kINNdist is smaller, the classifier is more
sensitive and would get a clearer profile of signal photons. And
it would also be more likely to extract the local aggregated noise
points. On the contrary, increasing the N value of KNNdist would
achieve blurred signal photon contours and have a suppression
effect on the aggregated noise in the meantime. Therefore, we
make the combination of kNNdist5 and kNNdist10 for improv-
ing the comprehensive interpretation of the classifiers.

D. Analysis of Potential Factors on Classification

For analyzing the influence of different factors on the clas-
sification results, we considered the following factors in the
experiment.

1) The SNR.

2) Seasons.

3) Time.

4) Channels.

5) Terrain.

We statistically estimated the difference between before and
after classification regarding the 30 channels of the five datasets.
Fig. 7(a) presents the relationship between discrepancies and
SNR with different datasets and seasons. Only month and day
will be presented for subsequent references, such as 0108. The
lower quartile values of 0108, 1005, 1206, 0102, and 0302 are
6.52%, 6.30%, 4.25%, 9.47%, and 6.45%. The upper quartile
values are 9.76%, 7.76%, 6.31%, 13.90%, and 8.56%.

Fig. 7(b) presents the relationship between discrepancies and
SNR with different channels. The lower quartile values of gt3r,
gt2r, gtlr, gtll, gt2l, and gt31 are 6.30%, 7.51%, 7.24%, 5.99%,
6.52%, and 5.69%, respectively. The upper quartile values are
9.21%, 10.60%, 10.35%, 9.54%, 8.07%, and 6.45%.

To evaluate the stability of the classifier, we consider that
the difference between the upper quartile value and the lower
quartile value of the box represents the strength of the stability.
The lower difference should be, the more stable the classifier.
The impact of different potential factors will be developed in the
subsequent discussion.

V. DISCUSSION
A. Accuracy Assessment of Different Classifiers

From the result of the proposed methods, it is clear that the
training and prediction accuracy could achieved a relatively
satisfactory results in generally (Fig. 5). Although the signal
and noise photons are not quantitatively balanced, the indicators
were still substantial at least. Also, these models are well trained
for both signal and noise features. It is not difficult to see from
the labelled photons that many signal photons are mistaken as
noise in the original dataset, so the ability to distinguish signal
photons from noise is important, and the ability of the classifier
to learn to distinguish signal photon features needs to be evalu-
ated. Among the commonly used models, the XGB model is a
relatively superior model in terms of stability and identification
of signal photons. While the SE models are combined based
on the commonly used models, the ability to distinguish signal
photons is further improved. The classification experiments
were tested by the best-performing SE model. The integration
strategy of automatic machine learning could extract photonic
features more efficiently and ensure the ability of the models to
distinguish noise better from different aspects.

Also, we can see that the distribution of photons for the five
datasets is shown in Fig. 8. Notably, the good representative
indicators of 1005, 1206, and 0108 showed training was satis-
factory apart from 0302 and 0102 generally. The difference may
be caused by the noise near the ground that is evident in both
0302 and 0102. In addition, less outlier noise and the uneven
elevation distribution of noise could also have some negative
impact on the classification performance, just like the case in
0108 and 1206. On the other hand, the ability to predict noise
photons deteriorated to different degrees in the overall test set.
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Influence of different conditions on the classifications. (a) The influence of SNR with different seasons and datasets. The orange, purple, and blue frames

stand for the Autumn, Spring, and Winter seasons, and the boxes filled with green, orange, purple, blue, and red colors represent the datasets of 0102, 0108, 0302,
1005, and 1206, respectively. (b) The influence of SNR with different channels. The boxes filled with orange, pink, purple, green, yellow, and blue colors indicate

the channels of gtll, gtlr, gt2l, gt2r, gt3l, and gt3r, respectively.

The signal photons identified as noise in the ATLOS dataset
would affect this condition possibly. The condition might also be
influenced by the diversity of noise patterns, which were much
more difficult to identify than the signal photons, especially
when the noise photons were adjacent to the signal photons.
The performance of identifying noise photons in the other four
datasets was more degraded compared to 1005. Furthermore,
from visual interpretation, the lower SNR would have a more
positive effect on identifying noise photons. Perhaps the perfor-
mance of classification would be better for the day datasets.

In summary, the SE model could achieve better results than
the traditional single model like XGB, with an improvement of
about 0.7%~9.1%. Also, we found that even with one single
model, it could achieve an overall accuracy of 90%~95% and
much improve the correctly labelled photons, both visually and
quantitatively. It is worth to mention that our classifiers could
distinguish signal photons from noise photons with a very lim-
ited number (e.g., 10%) of samples from the AutoML method,
which could be beneficial to implement similar transfer learning
for a large study area in future works.

B. Discussion of Improvement From Official Products

In order to better evaluate the improvement from our proposed
methods, we further investigated the performance under the
following different observation conditions.

1) Different SNR from low to high.

2) Flat versus rugged terrains.

3) Signal mistakenly for noise photons.

4) Significant canopy structures.

5) Noise photons with symmetrical versus asymmetrical dis-

tribution around signal photons.

To better quantitively assess the impact of these factors,
each individual granule fragment is trained separately and the
classification results are derived. The datasets chosen for this
experiment were with the typical distribution patterns. Fig. 8
shows the distribution of signal and noise photons. The left-
hand and right-hand columns represent the ATLOS tags and the
classification results predicted by the classifiers, respectively.

Generally, the prediction results not only largely contain the
original signal labels, but it was also clear that the classifiers
correctly identified signal photons that were misclassified as
noise photons in ATLO8 datasets. The classifiers played a role
both in the presence of signal misidentification at the along-track
and elevation orientation. The extensibility of the classifiers
achieved a significant improvement in the utilization rate of data.
It is worth noting that classifiers were more effective in low SNR
than in high SNR datasets, this could be more advantageous in
the daytime with a substantial amount of noise.

For the asymmetrical distribution of the dataset, there were no
significant under- or misclassifications in the classification re-
sults. Furthermore, a large amount of dense noise near the ground
had virtually no effect on the accuracy. The classifier showed
good performance for signal photons in different terrains. No-
tably, noise photons bordering the ground were occasionally
perceived as signal photons, and we believe that these noise
photons were misclassified as the signal would not unduly affect
large numbers of photon signals. The automatic identification or
even visual interpretation of near-ground noise is difficult and
remains a pressing and intractable problem to solve. In addition,
the noise near the canopy has a similar distribution to the upper
surface of the canopy. Which makes the identification of the
upper canopy difficult. In addition, the top of the canopy position
is normally not as readily identified as the ground, which still
requires verification data for comparison.
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Fig. 8. Classification results and the ATLOS product labels. Each row stands for different datasets in the order of 0108, 1005, 1206, 0102, and 0302, respectively.
The left-hand column represents the photon labels of the ATLOS products, and the right-hand column represents the classification results predicted by the classifiers.
The green and black labels stand for signal photons and noise photons, respectively. (a) ATLO8 labels of 0108. (b) Classification labels of 0108. (c) ATLOS labels
of 1005. (d) Classification labels of 1005. (e) ATLO8 labels of 1206. (f) Classification labels of 1206. (g) ATLOS8 labels of 0102. (h) Classification labels of 0102.
(i) ATLOS labels of 0302. (j) Classification labels of 0302.

To quantify the ability to identify signal photons, we classified  interpretation, and improved the fraction after the proposed
the datasets in Fig. 8 by visual interpretation. And we com- algorithm (Table V). Our method improved the proportion of
puted the proportion of signals correctly identified by ATLO8 signals correctly identified by 6.4%, 12.2%, 2.7%, 9.3%, and
and proposed an approach based on the results of our visual 1.4%, respectively. In particular, the classifiers demonstrated
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TABLE V
PROPORTION OF PHOTON SIGNALS IDENTIFIED CORRECTLY

Datasets ATLO8 Proposed Improved
0108 92.8%  99.2% 6.4%
1005 65.6%  77.8% 12.2%
1206 86.4%  89.1% 2.7%
0102 82.3%  91.6% 9.3%
0302 87.5%  88.9% 1.4%

satisfactory performance in low SNR datasets. In other rough ter-
rain or asymmetrical noise distribution, our method still showed
varying degrees of improvement.

In general, the classifiers not only corrected erroneous labels
in the ATLOS, but also showed good stability for different terrain
and SNR. The classification results in forested areas are largely
superior to the existing ATLOS products.

C. Assessment of Different Signal-to-Noise Ratio Levels

Based on Table I, the 1005 dataset collected contained more
noise. The seasonal characteristics of SNR may not be apparent.
The 1005 dataset was recorded by the ATLAS during the day-
time, while the other four datasets were acquired after sunset.
The different radiant energy from the sun would greatly affect
the noise profile, and as expected the noise ratio of 0102, 0108,
0302, and 1206 are shown to be much lower than that of 1005.
Compared to the other four datasets, the classifier has a more
stable performance in 1005, which might be due to the lower
SNR. The model performs better in low SNR datasets less than
7.5. We would expect the model to show better performance
than ATLOS8 products for datasets collected during the day. The
solar noise would provide a more balanced noise distribution.
In the 1005 dataset, the difference tends to be uniform for the
six channels generally. In contrast, in others, the noise in the
high SNR datasets is irregularly distributed with a very limited
number, which would make the classification more difficult. This
may explain the large fluctuation in the classification.

D. Assessment of Different Terrain Conditions

The granules were selected to contain a variety of topogra-
phies. For flat terrain, the photon heights are all at the same level
and the photon characteristics are similar across bins. For rugged
terrain, the height of photons are more scattered, and the number
of photons under each ground height is relatively reduced. There
are many uncertainties in feature extraction.

Besides the 1005 granule, it can be assumed that all other
granules are with similar high SNR. These granules can be
compared at the same level. The 0108 and 0102 granules are
more rugged compared to 1206 and 0302 granules, and the
rugged terrain causes more misclassification labels. Our method
corrected more mislabeling in rugged terrain, 6.4% and 9.3%,
respectively. For granules in flat terrain, our method corrected
only 2.7% and 1.4%. In addition, the rugged terrain reduced the

stability of noise removal. The uncertainty was 3.5% and 2% for
rugged and flat terrain, respectively.

The differences in the 1206 and 0302 datasets are significantly
less than those in the 0108 and 0102 datasets. According to
the visual interpretation of Fig. 8, the topographic undulation
variation of 0108 and 0102 in the distribution of photon point
clouds is complex against 1206 and 0302. The terrain complexity
would harm the classification results. At the same time, the
point density of the 0108 dataset is less than that of 1206. This
makes extracting noise features more difficult and increases the
instability of the classification.

E. Assessment of Different Channels

The left channels and right channels of ATLAS acquire sig-
nals in different modes. The ATLAS sensor is designed with
higher energy in the left channel than that in the right channel.
Therefore, the left channels have much higher SNR than the right
channels. Fig. 7(b) showed the right channels would usually pick
up more noise than the left channels in the same environment.

As it can be seen in Fig. 7(b), data collected from the left
channels showed different performance than those from right
channels, the difference varies less than that in the right chan-
nels. Also, the difference varies less in the left channels. The
difference between the left channel and the right channel is
approximately 2% and 3.5%, respectively. This seems to con-
tradict the previous statement that a smaller signal-to-noise ratio
would provide higher stability of variance changes. This could
be caused by the statistical bias that the right channels would
extract more photon point clouds than the left channels. As a
result, the characteristics of the left channels would be lost in a
large number of photon point clouds of the right channels. The
previously mentioned points would be satisfied when looking at
the characteristics of the right channel only, which supports the
analysis in Fig. 7(a). More importantly, the dataset with a low
to medium SNR is consistent with the above conclusion. When
the SNR increases to a high level, it means that the dataset does
not need to be classified again, which is also consistent with our
perception. Overall, the right channel has more erroneous labels
that need to be corrected.

In short, the terrain complexity could harm classification
variation. Second, the signal-to-noise also interferes with the
classification difference variation. The model performs better
in low SNR datasets less than 7.5. We would expect the model
to show better performance than ATLO8 products for datasets
collected during the day. The higher the SNR, the more complex
the terrain will be, which would bring more difficulties to the
classification, which is in line with our usual perception. Finally,
the right channel will be corrected for more mislabels than the
left channel generally.

VI. CONCLUSION

In this study, we proposed a supervised classification method
to further improve data availability compared to NASA’s official
product. We used the AutoML method to develop superior
performance models and conducted the ATLOS labels of reclas-
sification experiments in forest regions. Finally, we assessed the
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performance of models and analyzed the influence factors of
detection results.

The results indicated that the classification results are largely
superior to the ATLO8 products. The kNNdist feature incorpo-
rated in this method can effectively improve the interpretability
of the model for the photon denoising process. Over the regions
tested, the proposed method could improve the proportion of
signals correctly identified by 6.4%, 12.2%, 2.7%, 9.3%, and
1.4% in five datasets. The model performs better in low SNR
datasets less than 7.5. The classifiers are not sensitive to the
symmetry of photon distribution. Furthermore, the more com-
plex the terrain, the higher the SNR, and the classifications will
be more difficult. In general, the classifiers had good stability in
aspects of nonuniform distribution, different terrain, and SNR.

Our approach could train models with a few sample points
reducing calculation expenses. The method achieved superior
detection results than ATLOS8 products and largely improved data
availability.
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