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ABSTRACT

Modelling humans’ trust in robots is critical during human-robot
interaction (HRI) to avoid under- or over-reliance on robots. Cur-
rently, it is challenging to calibrate trust in real-time. Consequently,
we see limited work on calibrating humans’ trust in robots in HRI.
In this paper we describe a mathematical model that attempts to
emulate the three-layered (initial, situational, learned) framework
of trust capable of potentially estimating humans’ trust in robots in
real-time. We evaluated the trust model in an experimental setup
that involved participants playing a trust game on four occasions.
We validate the model based on linear regression analysis that
showed that the trust perception score (TPS) and interaction session
predicted the trust modelled score (TMS) computed by applying
the trust model. We also show that TPS and TMS did not change
significantly from the second to the fourth session. However, TPS
and TMS captured in the last session increased significantly from
the first session. The described work is an initial effort to model
three layers of humans’ trust in robot in a repeated HRI setup and
requires further testing and extension to improve its robustness
across settings.
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1 INTRODUCTION

Trust is a significant factor to achieve smooth human-robot inter-
action (HRI) in both competitive and collaborative settings [25, 29].
Recently we have witnessed limited work on human trust during
human-robot competitive contexts [29, 50]. However, most of the
work has considered collaborative contexts [17]. Competition is an
integral aspect of daily life, as it can enhance performance, problem-
solving effectiveness, and enjoyment [38]. Robots have increasingly
become part of our life, from automated cleaning systems and
transportation to personal assistants [20]. As technology advances,
robots are being designed and deployed to compete with humans in
various domains, such as economics, sports, and games [27, 51]. In
competitive settings, the truthfulness of the robot is considered for
establishing trust [42]. The existing definition of trust concerning
truthfulness indicates that trust is “generalized expectancy held by
an individual that the word, promise, oral or written statement of
another individual or group can be relied on” (p.26) [43]. We under-
stand that robots’ truthfulness influence human trust in robots in
situations requiring individuals to rely on or trust an advice or
information given by the robot in different settings . In this work,
we focus on truth-telling and consider it as performance indicator
of the robot and humans relying on the information represent their
confidence in the robot. We used these factors to mathematically
modal human trust in the robot in a repeat HRL

Typically, researchers use two methods to measure trust dur-
ing HRI [23]. Subjective methods to measure trust are popular
choices due to their ease of use and involve the use of question-
naires [18, 31, 48]. The questionnaires are used to measure trust pre-
or post-interaction with the robot. However, subjective methods
are not commonly used in real-time, particularly in the context of
understanding the disuse of the robotic system, where it remains
necessary to determine the appropriate level of trust to adapt to pre-
vent mis- or dis-use. Objective methods of measuring trust analyse
user behaviours during an interaction with robots and consequently
can be used in real-time. For example, robot performance or error
rate can be objectively computed during an interaction [2]. Law and
Scheutz [29] has identified four categories of objective measures: 1)
task intervention refers to the frequency of humans’ intervention in
the robots’ task, 2) task delegation refers to humans’ preferences of
arobot in a team of robots, 3) behaviour change refers to analysing
human’s behaviour and 4) humans’ seeking robot advise [23].

Existing work has used these categories of objective measures
individually and not in combination. We understand that these
categories individually are meaningful as empirical evidence shows
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they affect human’s trust in robots [12]. However, representing
these categories of objective measures together will consider taking
different factors into account and will present a more robust rep-
resentation of trust experienced by a user during HRI. It is indeed
challenging to represent the concept of trust mathematically in HRI
[59]. Efforts have been made to represent it in the past [10, 21, 40].
We see little work in the existing literature on modelling human
trust in robots in the collaborative settings. Besides, most of these
trust models have been tested and validated in simulated environ-
ments, and some may not be relevant across different HRI settings
[24]. Lastly, to the best of knowledge, we did not see how truthful-
ness of the robot can be used to model human trust in robots in the
competitive settings.

Another aspect is the utilisation and testing of trust model during
repeated or long-term HRI. We witness limited work on studying
factors affecting trust during long-term interaction with robots. Few
examples include [35, 55]. Factors such as interactive experience
become extremely critical when modelling humans’ trust over time
in robots because humans use knowledge from past interactions
to assess the trustworthiness or trustfulness of a robotic system
[13, 34, 42]. In this regard, Hoff and Bashir [13] presented a trust
model and highlighted three layers of trust: dispositional, situa-
tional, and learned (initial & dynamically learned) trust. Research
shows changes in situational trust is varied by human’s context-
dependent traits (self-confidence & expertise), while dynamically
learned trust varies based on experiences gained through the eval-
uation of a system over time [6, 13]. Both situational and learned
trust are closely related to each other [32]. We understand that
context-dependent factors such as self-confidence and expertise are
impacted from the experience gained by interacting with the robot
over time and hence does impact the learned trust in the robot [12].

Considering these aspects, we aim to delve into the following
research questions: RQ1: How can we individually and as a com-
bination mathematically model the concept of situational and dy-
namically learned trust during HRI?

RQ2: How does dynamically learned trust evolves with time during
repeated HRI?

RQ3: What is the relationship between different layers of dynami-
cally trust during HRI?

Addressing these questions, the novel contributions of this paper
are as follows:

(1) We propose a mathematical model for measuring trust, and
validate its efficacy through a long-term HRI task.

(2) Using a questionnaire [48], we show that the model predic-
tions of trust scores strongly agree with trust perception of
participants in an experiment, where they interacted with a
NAO robot in a novel trust based game.

(3) We show that the dynamically learned trust varies signifi-
cantly over time. However, the significant differences gener-
ally occur at the last interaction with the robot.

(4) We show that there exist a strong positive correlation be-
tween different layers of dynamically learned trust.

The rest of the paper is structured as follows. We provide back-
ground material in Section 2. The proposed trust model is presented
in Section 3. In section 4, we provide a thorough description of the
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study. The results are discussed in Section 5, and relevant discus-
sions are provided in Section 6. Finally, we draw our conclusions
in Section 7.

2 BACKGROUND

2.1 Trust - Conceptualisation

Trust is a multidimensional concept and currently there remains a
gap in the literature to establish its definition [1, 12]. We consider
the definition suggesting that “trust is generalised expectancy held
by an individual that the word, promise, oral or written statement of
another individual or group can be relied on” (p.26) [43]. More clearly,
we understand that generalised expectancy is formed based on the
set of individual experiences one has with another individual or
technology.

In the light of this definition, we consider the work of Hoff and
Bashir [14] and attempts to mathematically model the layers of
trust. Hoff and Bashir [14] presented a framework for conceptu-
alising trust that has been widely reported in the HRI literature
[35, 46, 49]. They categorised trust into three layers: dispositional
trust, situational trust, and learned trust. Dispositional trust refers
to a human propensity to trust robots based on biological and en-
vironmental factors. Dispositional trust, unlike a situational and
learned trust, is characterised as a relatively stable trait over time.
The factors influencing dispositional trust include culture, age, gen-
der, and personality. Situational trust measures the construct
related to trust dynamics during HRI in a certain environment.
Environment-related and user-related factors can influence situa-
tional trust. Environment-related factors include task type, com-
plexity, difficulty, perceived risks, and workload. Users’ differences
can affect trust in robots during HRI. For instance, users with low
self-confidence in their ability to perform a task are more likely
to trust the robot. Similarly, a user’s expertise or familiarity with
a subject matter can impact trust [9, 45]. The mental well-being
of a human is also essential. Humans in a pleasant mood are like-
lier to have an initial trust in robots [53]. Learned trust is based
on evaluations of the robotic system prior to interaction with the
robot (initial trust) or insight gained from the current interaction
(dynamically learned trust). The robot’s performance in the current
interaction is the most significant factor affecting learned trust.
Experience is a significant factor influencing human trust in robots
in HRI [12]. Experience in robots can be built based on robot perfor-
mance in previous interactions with robots in a particular context
[47].

In this paper, we model situational and dynamically learned
trust by considering context-dependent and performance-related
factors affecting trust in HRI. When modeling dynamically learned
trust, we consider the inter-relation of factors affecting situational
and dynamically learned trust in HRI. We achieve it by integrating
context-dependent factors that can affect dynamically learned trust
over time.

2.2 Measuring Humans’ Trust in Robots

Besides, the subjective [18, 31, 48] and objective methods [23, 29]
of measuring trust during HRI, efforts have been made to math-
ematically model humans’ trust in robots during HRI [10, 11, 15,
22, 28, 44, 56] in collaborative contexts. Freedy et al. [10] described
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a model for human trust in a human-robot collaborative setting.
The model categorised trust into three categories (under-, proper-
or over-trust) based on the self-confidence demonstrated by the
human in the robot. Hoogendoorn et al. [15] attempted to model
interaction bias experienced during the interaction and mitigated
the effect of bias in the measurement of trust. Kaniarasu et al. [22]
calibrated the operator’s trust in the robot by computing trust mis-
match. They defined it as “the degree of alignment of user’s trust
with the robot’s current reliability”. In summary, trust mismatch
was based on the sum of control taken during an interaction. Xu
and Dudek [56] presented an OPTimo model to measure a human
supervisor’s degree of trust in a robot. OPTIMo formulates Bayesian
belief over human trust based on the robot’s performance on the
task over time to generate a real-time estimate of the human’s trust.
Saeidi and Wang [44] presented a trust and self-confidence model
and quantified trust as a function of human performance and robot
performance to describe the difference between human-to-robot
trust and human self-confidence.

Kumar and Dubey [28] developed an objective measure for trust
as a product of the capability index and intention index. They quan-
tified the capability index as a product of the expertise (number
of tasks performed) and capacity (performance) of the robot. The
intention index was quantified as the product of desire (perfor-
mance of the robot for its desired tasks) and commitment (robots
only attempt the possible actions). Hale et al. [11] attempted to
model trust based on the robot’s level of cooperation over time. The
uniqueness of the model was introducing a discounted function
to bound by taking robot performance and introducing the level
of cooperation needed to attain a desired level of trust over time.
In summary, the performance of the robot is the standout feature
of most of these models with a combination of human confidence
demonstrated in the robot. Besides, these models are designed for
collaborative settings. In addition, most of these models considered
simulated environments for evaluation and were neither tested
nor validated in real HRI settings. Further, our literature review
did not find any prior model that considered truthfulness of the
robot as a function to model trust in a competitive setting. Nev-
ertheless, we did see a few studies used a competitive task when
studying human-robot trust [25, 36, 41, 50]. This demonstrates the
novelty of the presented work. Other methods of modelling trust
have been through machine learning approaches [16, 39, 59]. Lastly,
we also see efforts to model robot trust in humans based on human
performance and faults made by humans [30, 40]. Our approach,
based on mathematical principles and tested in real-time, competi-
tive interactions, uniquely contributes to current trust research in
human-robot interactions.

2.3 Trust in Long-term interactions

To our knowledge, there is limited work on analysing trust during
long-term interaction with robots [12, 23]. Besides, we see rare
studies on factors affecting trust during a long-term or longitudinal
interaction [5, 35, 55]. Miller et al. [35] investigated the interrela-
tionship between three layers of trust (disposition, initial, learned)
during HRI setup. The robot was controlled through a Wizard of
Oz paradigm and was enabled to drive toward the participant twice.
The findings suggested that the initial and dynamically learned trust
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were not related to each other in a task that involved analysing
trust in relation to robot distance from the human. In summary,
these studies present valuable findings but are very task-specific
and suggest the need for more empirical research on trust during
long-term HRL

In parallel, we see limited work on studying and validating trust
models during repeated interactions [7, 8, 56]. Desai [8] pioneered
the work on modelling trust during repeated HRI and showed that
trust ratings did not vary across the session. Besides, trust was
impacted by familiarity with the robot, as participants familiar with
the robot trust it less as compared to others. While these findings
were intriguing, the sample size was small. More recently, De Visser
et al. [7] contributed a method for calibrating trust in a longitudinal
HRI. The model considered team settings and integrated human
trust and their expectations from the robot into its planning process
to build and maintain trust over the interaction horizon. They
validated the model in a study that consisted ten interaction rounds.
However, the maze-based game task only had an image-based robot
representation. More specifically, we did not see interaction with a
real robot. In summary, the work from Desai [8] to Xu and Dudek
[56] to De Visser et al. [7] is specific to different domains and
remarks on the challenge of creating a general model for trust in
HRI. However, robot performance and confidence in robot functions
are among the top factors to dictate trust in robots.

The work described here considers experience with the robot
as a contributing factor to informing human trust. We computed
experience (generalised expectancy) by taking past performance
(truthfulness demonstrated by the robot) and user confidence (re-
lying on the information given by the robot) in real time. Besides,
the novelty of the work lies in modeling different layers of trust
[13] and validating the model during a repeated interaction that
involves interacting with a real robot.

2.4 Trust in Human-robot Competition

Human-robot competition is an interaction in which both robot and
human compete against each other in a given task for a given reward
[57]. Few studies have considered competition in physical exercise
[58], trusting a more competitive robot as their teammate [36, 41]
and playing a game together [50]. Sebo et al. [50] investigated how
trust is impacted in a competitive task when the robot breaks a
promise and later how it heals based on an apology from the robot.
Most recently, Kirtay et al. [25] looked at how emotions change
to trust in human-robot interactions during a competitive task
where the robot’s performance varied. The study used a Pepper
robot and recorded the physiological signals of the participants. The
results demonstrated that participants’ trust in the robot increased
as the robot’s performance enhanced, and participants showed
positive emotions such as happiness and contentment. The study
also discovered that negative emotions such as frustration and
disappointment reduced trust in robots. In summary, trust is rarely
investigated in the human-robot competitive settings compared
to human-robot collaboration when humans and robots share the
same goal [33]. In a competitive setting, trust is impacted by the
truthfulness of the robot and in this paper, we have explored this
dimension to model trust.
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3 TRUST MODEL

In this paper, we consider three layers of trust: initial, situational
and dynamically learned [13]. The initial trust is based on
the prior attitude of the humans involved and the reputation of
the system. As such this can be set before any interactions have
taken place. Without any available bias, it would be reasonable
to set a neutral initial trust level. On the other hand, situational
trust is based on self-confidence and the perceived performance
of the robot. We treat this as the instantaneous experience from an
interaction. The dynamically learned trust may be interpreted
as a function of time that utilises experience, i.e. situational trust,
through iterative interactions, and thus develops estimations of
trust over time.

With these interpretations, inspired by the experiential model
proposed in [19], we relate different layers of trust as follows:

T(t+At) =T(t) + y(E(t) — T(t))At, (1)

where t > 0 C Z represents the count of interaction events, E(t)
is the experience and T(¢) is the dynamically learned trust at ¢tth
interaction, and T(0) is the initial trust at ¢ = 0, i.e. when no
interactions have occurred. Here, At represents the unit difference
between events. Thus, At = 1.

Given the definition above, we observe the following cases:

T(t+At) > T(t); if E(t) - T(t) >0
T(t+At)=T(t); ifE(t) - T(t) =0
T(t+At) <T(t); if E(t) —=T(t) <0

(1) Case 1: Trust in the next interaction T (¢ + At) increases if the
difference between the user experience with the robot E(t) and
their current trust level T(t) is positive.

(2) Case 2: Trust remains unchanged T (¢ + At) = T(¢) if the differ-
ence between the user experience with the robot E(¢) and their
current trust level T(t) is zero.

(3) Case 3: Trust decreases in the subsequent interaction T(t + At)
if the difference between the user experience with the robot
E(t) and their current trust level T(¢) is negative.

The key component in this model is the experience. We compute
it based on human decision behaviour, risk and robot performance
in a competitive game task as follows:

t PG
‘= ifK>o0.
E(t) = i=1 K 1 2
® {1 if K =0. @

Here, E(t) is the experience after a number of interactions t, P; €
{0, 1} is the perceived performance indicator of the robot at the ith
interaction with C; € {0, 1} is the associated human contradiction
indicator, y € [0, 1] is the learning rate, and K is the number of
times the user contradicts. It should be noted that P; and C; are
game specific, and therefore, the approach towards setting them is
context-dependent. We provide details of how we set P; and C; for
the experiments in this paper in Section 4.2.1.

Here, we can deduce that E(¢) € [0,1] C R because given K
contradictions the sum of product of P;C; will never be greater
than K. With this, and an initial T(0) € [0,1] C R, it is clear that
T(t) € [0, 1] with 1 representing a complete trust, and 0 illustrating
a complete distrust; see Figure 1. It is, therefore, reasonable to
consider an initial trust of T(0) = 0.5 which means that the human
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Figure 1: An illustration of how the values of T(t) and E(¢)
impact T(t + At) given A = 0.25. Unsurprisingly, when trust is
low, an immediate highly positive experience does not alter
learned trust substantially.

has neutral trust at time point 0 [15], in the absence of some high-
level ancillary information. We use this value of T(0) throughout
this paper.

4 STUDY DESIGN

The study was designed to validate the mathematical trust model
and involved participants to interact with the NAO robot on four
different occasions. All sessions occurred on the same day, with a
5-minute interval between sessions. We tested the following hy-
potheses:

H1: The Trust Perception Score (TPS) and session (time) will
predict the Trust Modelled Score (TMS).

H2: We will observe significant interaction effect on session
(sessionl, session2, session3, and session4) for TMS and TPS scores.

H3: Human dynamically learned trust in robots will change
during the repeated interaction.

4.1 Ethics

Since the study involved human participants, an application was
submitted to the university ethics board to ensure ethical integrity.

The application was approved following a review process. [160322/5031].

4.2 System description

The system shown in Figure 2 consisted of the following modules:
1) a card game inducing situations that enabled participants to
either trust or distrust the robot, and 2) a semi-autonomous robot
capable of playing the card game with participants. The goal of
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Figure 2: System description

the system was to analyse how participants react in situations
involving trusting the robot and how the robot’s behaviour over
time implicate their trusting decisions in the robot.

4.2.1 The Game. We developed an interactive two-player card
game, Bluff Game, using python, that participants can play against
the robot. The card game consisted of 52 cards with four sets each
of ace, 1,2,3,4,5,6,7,8,9,10, jacks, queen and king, a play button, and
decision buttons (trust and distrust). Each player gets 15 cards
at the start of the game. The goal for each player is to dispose
of all the cards before their opponent (another player). Whoever
disposes of all their cards first wins the game. It is a turn-taking
game. At each turn, a player selects a set consisting of 2-4 cards
they intend to dispose of. At this stage, their opponent can either
trust or distrust the player on whether they are stating their set of
cards correctly that they intend to dispose of or not. For example,
if a player states that they have a pair of queens, their opponent
will either trust them or distrust them. If the opponent trusts the
player, the opponent will take the next turn. The opponent will
not be able to view the player’s cards, and consequently, cards
will be removed from the player’s list of cards and opponent will
take their turn. Otherwise, when the opponent distrusts the player
and asks them to show their cards. In this case, if the player has
correctly stated their set of cards, the opponent will receive the
players’ cards, and consequently, cards will be added to the list of
opponent cards. If the player incorrectly states their set of cards,
the cards will be returned to the player and the opponent will get
their turn. The game continues in the same fashion until one of the
players has disposed of all the cards. The game dynamically updates
the list of each player’s cards at each turn. We conceived the game
by considering the factor that it presents situations inducing risk
and uncertainty that are in line with the definition of trust. The
game puts the player at the risk of losing, where player cards get
significantly lesser than the opponent cards.

In this context, considering B; € {0, 1} as the indicator of whether
truly a bluff has occurred or not and C; € {0, 1} indicating whether
the human counterpart has contradicted the robot’s claim of the
card, we can derive a truth table for the perceived performance of
the robot P; (see Table 1). Using the truth table, we observe that
P; = 1if the user does not contradict the robot’s claims irrespective
of whether the robot has bluffed or not. On the other hand, when
the user contradicts the robot, the value of P; « —=B;,ie. P; = 0
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B; Ci P;
0 0 1
1 0 1
0 1 1
1 1 0

Table 1: Truth table of B;, C; and P; at the ith interaction.

if the robot was truly bluffing and vice-versa. We use this in (1) to
update trust in the experiments in this paper.

4.2.2 Interaction Scenarios. We programmed the NAO robot to
interact verbally with participants during various game events. To
prevent bias, we used the Wizard of Oz (WOz) method to control
the game without informing the participants. The game comprised
two platforms running on separate laptops, with the NAO robot
connected via the TCP/IP protocol over a LAN. An experimenter
played the game on behalf of the robot and determined whether
to bluff based on a predetermined and consistent strategy for all
participants. In a separate room, participants played against the
robot and made decisions as desired. The interaction involved three
phases: a welcome and introduction to the game, playing the game,
and ending the game.

The robot welcomed the participant and introduced itself by
saying - “Hello. I am a NAO robot. I am going to play a card game
against you today. Are you ready?” Participants played the game on
four different occasions. On the second, third and fourth occasion,
the robot thanked the participant and introduced them to the games
by saying - “Hello again. Thank you for playing. We are going to
play another game. Are you ready?” and “Let us start” respectively.

Once the game started, the NAO robot informs the participant
that “the game starts now”. Robot takes the first turn. Following
the game rule, the robot interacted with the participant on different
game events as follows:

(1) When the robot selected their set of cards, the robot declared
them, for example as, “I selected three kings”.

(2) When the participant trusted the robot, the robot said: “It is
your turn”.

(3) When the participant did not trust the robot, and the robot
was stating their set of cards correctly, the robot said: “I was
telling the truth”.

(4) When the participant did not trust the robot, and the robot
was not stating their cards correctly, the robot said: “You got
me, and it is your turn”.

(5) When the robot trusted the participant, “I trust you, and it is
my turn.”

(6) When the robot did not trust the participant, the robot said:
“I think you are bluffing”. If the participant was telling the
truth, the robot said: “Oh, I was wrong, and it is your turn
now”.

(7) When the robot did not trust the participant, and the partici-
pant was wrong, the robot said “Yes, I got you, and it is my
turn now”.

At the end of each game, the robot congratulated or wished the

participant good luck for the subsequent game. In the winning case,
the robot said “Congratulations! You win, thank you and see you
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in the next round”, and in the loose case, it said “You just lost the
game, good luck in the following rounds”. In the last session, the
robot added goodbye to its message, declaring the experiment’s
end.

4.3 Participants

We recruited 45 participants ranging in age from 18 to 60 (Mean
age: 29.77 years, SD = 6.82) 16 identified as female, 28 as male and 1
did not say. Participants were recruited through university mailing
lists and flyers around the university campus. The registration for
the study was managed using an online application for registration
(Calendlyt).

Participants were classified as experienced with robots into high,
medium, low and no experience. Participants were categorized as
high experienced if they reported having controlled and/or built a
robot, medium experienced if they reported using robots several
times, and low experienced if they reported interacting with robots
on a few occasions. 2 participants had high experience interacting
with robots. 2 participants had medium experience interacting with
robots. 26 participants had low experience interacting with robots.
15 participants had no experience interacting with robots.

4.4 Setup and Materials

We conducted this study in 2 separate rooms, as shown in Figure 3.
In room 1, the laptop was placed on the table for the participant to
play the game. The robot was placed across the table in front of the
participant. The participant was seated in front of the robot, wear-
ing glasses and a wristband to capture the psychological signals.
The participant used a tablet to fill out the demographic and ques-
tionnaires after each game round. In room 2, the experimenter was
sitting in front of a laptop to control the robot and the interaction.

We used the humanoid NAO robot developed by Aldebaran
Robotics. NAO is 58cm in height, equipped with an inertial sensor,
two cameras, eyes, eight full-colour RGB LEDs, and many other
Sensors.

We used E4 Wristband and Pupil Eye Tracking Glasses to capture
the physiological data. We recorded blood volume pulse (BVP), heart
rate (HR), inter-beat intervals (IBIs) and heart rate variability (HRV)
using the wristband. Similarly, we recorded blinking, fixation, and
pupil diameter data using the eye tracking glasses. Our objective
was to estimate human trust in robots by analyzing the differences
in these physiological data during repeated HRI, between trust and
distrust states. However, it is not used in the analysis of this paper
as it goes beyond the scope of the contributions described in this
work.However, we do not report the analysis of the physiological
data as this goes beyond the scope of the contributions described
in this paper.

4.5 Procedure
The study was conducted in the following steps:

(1) Participants received the experiment information sheet, and
game instruction sheet, and signed the consent form.

(2) Participants completed the demographics questionnaire in-
cluding information about their experience with the robot.

!https://calendly.com
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ROOM 2 ROOM 1

NAO ROBOT

LAPTOP

LAPTOP

=

EXPERIMENTER PARTICIPANT

Figure 3: Experiment Setup - it depicts an experimenter con-
trolling the robot in a one room (left), while participant play-
ing the game against the robot in another room (right).

(3) Participants wore glasses and a wristband. The experimenter
began the recording of the data to be collected from these
devices and left the room.

(4) Experimenter controlled the robot from the other room. Par-
ticipants played the game against the NAO robot.

(5) After each game, the experimenter walked into the room,
stopped collecting the physiological data and asked the par-
ticipant to complete the questionnaire to rate the robot dur-
ing the game.

(6) The rest of the study repeated steps 3, 4, and 5 on three
different occasions.

(7) At the end, participants were thanked for their participation
and were told that they will receive a £10 amazon voucher
for their participation in the study.

4.6 Measurements

To measure trust over time during HRI, we collected observed
data, including user control and robot performance. We applied the
observed data to our model to calculate TMS.

To validate the model, we used TPS subjective measures of trust
developed by Schaefer [48]. Participants were asked to rate the
robot in the game using a TPS scale, administered using Google
Forms on a tablet. The scale has 40 items and a subscale of 14
items, including (function successfully, act consistently, reliable,
predictable, dependable, follow directions, meet the needs of the
mission, perform exactly as instructed, have errors, provide appro-
priate information, malfunction, communicate with people, provide
feedback, and unresponsive) to rate the robot in percentage. This
study used the 14 items subscale because it helps measure changes
in trust over time and during multiple trials. Following [48], we
calculated the trust score by first reverse coding the ’have errors,
‘unresponsive, and ‘malfunction’ items, then computed the average
of all 14 items.

We computed the risk during each game turn by dividing the
robot’s number of cards left by the participant’s number of cards
left and subtracting them from 1. We assumed that the negative
number equals 0, which meant no risk. To compute the risk during
the whole game, we calculated the average of each turn during
the game. We computed the percentage of the participant’s control
during the game, which equals the number of times the participant
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Figure 4: Scatter plot and linear regression line showing a
relationship between the computed trust modelled score and
the predicted trust modelled score based on the trust percep-
tion score and time.

took control divided by the number of turns. We computed the
failure rate during the game, which equals the number of robot-
perceived failures divided by the number of turns.

SPSS was used for subsequent statistical analyses, providing a
comprehensive view of the results and their implications.

5 RESULTS

To test H1, a multiple linear regression was calculated to predict
TMS based on TPS and session. A significant regression equation
was found (F (2,177) = 7.36, p < .001), with an R? of .077 (see figure
4). Both TPS and TMS increased over time and the session variable
was a significant predictor, whereas the TPS variable was not found
to be a significant predictor of TMS. Further, we did not witness a
correlation between the TPS computed at the end of each session
and the TMS computed per game sessions.

To test H2 and H3, a repeated-measures ANOVA was conducted
to determine whether there is an effect of interactive session (ses-
sion 1, session 2, session 3, and seession 4) on TMS and TPS, re-
spectively. We found that both TPS (F(3, 42) =4.08, p < .01) and
TMS (F(3, 42) = 11.13, p < .001) differed significantly across the
four interactive session.

A post hoc pairwise comparison using the Bonferroni correction
showed a significant increase in both TPS (p < .02) and TMS (p <
.001) between session 1, and session 4 respectively. The increase
was not statistically significant for both TPS and TMS in session
2 and session 3 and when comparing session 3 and 4 respectively.
The mean and Standard deviation for both TPS and TMS can be
seen in Table 2.
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Figure 5: Scatter plot depicting the changes in the trust per-
ception score (in Green) and trust modelled score (in Orange)
over time.

TMS TPS
Mean | SD | Mean | SD
1 45 | 0.55 | 0.07 | 0.78 | 0.13
2 45 0.60 0.11 0.81 0.14
3 45 0.63 0.14 0.82 0.15
4 45 | 0.64 | 0.13 | 0.83 | 0.14
Table 2: Mean (M) and Standard Deviations (SD) of TMS and
TPS scores in the 4 sessions

Session | N

We conducted a Pearson correlation coefficient test to assess the
linear relationship between different layers of dynamically learned
trust. Both TMS and TPS measurements in each of the four sessions
represented layers of learned trust (Ty, Ty, T3, T4 respectively). We
found that there was a positive correlation between TPS and TMS
measured across session (p < .05). This means that both TPS and
TMS in each session were positively related to each other which
suggests a positive increase in dynamically learned trust across the
four different sessions.

6 DISCUSSION

H1 indicated that both TPS and time will predict TMS, trust score
computed by applying the trust model. The finding showed that the
TPS and interaction session significantly predicted TMS. Besides,
in Figure 5, we can see how both TPS and TMS show an increase in
each interactive session. In particular, the correlation analysis also
showed that TPS and TMS in the second, third and fourth sessions
were positively related to one other. Hence, H1 was accepted. We
see that TPS alone was not the predictor of TMS in each session
and the interaction session was the sole significant predictor of
TMS. We see that this is in line with our predictions because TMS
was changing based on the experience gained by the participants in
each interactive session. In parallel, we understand that the reason
that TPS did not independently predict TPS may have been due
to many factors involved in the questionnaire as compared to the
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model [48]. We consider that the model was validated in the holistic
view as both measures represented participants’ trust in the robot.

We understand that trust in a robotic system changes based on
the perceived performance (truthfulness, or error rate) [12, 13, 50].
It is important to note that in the given experimental setup, the per-
ceived performance of the robot remained consistent (around 90%
on average) in each of the four sessions. In addition, perceived risk
in a given situation impacts trust [26, 37]. Perceived risk refers to an
individual’s feeling that a specific task or context has potential nega-
tive outcomes [54]. In this case, when participants’ number of cards
left were significantly higher than the robots’ number of cards left,
it presented a high risk of losing the game. Hence, suggested that
participants will take more control. To further understand and ex-
plore the effect of these variables on the findings, we computed risk,
control/contradiction and failure rate/truthfulness (as described
in the section 4.6) experienced during the game on four different
occasions. We tested any relationship of risk, contradiction and
failure rate/truthfulness with TPS and TMS and between each other
across the four sessions. The trends were unique and intriguing as
it was only in the third session that perceived risk was positively
related to the control. Besides, we did not witness this effect after
the third session. It suggests that when perceived risk was high
participants significantly contradicted the robot only in the third
session. It may be related to the outcome of the previous two games
and for most participants, it might have ended in a losing cause.
Past studies have shown that a successful or an unsuccessful task
outcome impacts user trust [10, 12, 23, 52]. The performance of the
robot and participants’ contradiction were also positively correlated
to each other in the first, second and fourth sessions suggesting the
more the robot bluffed, the more participants contradicted the robot.
TMS was positively related to risk in the first three sessions, but it
was not the case in the last session. These trends across sessions
shows that factors affecting trust may impact differently across
different situations as shown in the findings of [4]. Lastly, we did
not find a relationship between TPS, risk, performance or control
in all four sessions.

H2 indicated that there will be an interaction effect on TPS and
TMS. The findings confirmed the hypothesis and showed that both
TPS and TMS increased significantly over time. We expected this
finding because dynamically learned trust changes with experience
over time [3, 13, 23]. It was also the case here where trust was
changing based on the experience gained during the interactive
sessions and experience was computed by analysing participants’
confidence in the robot and perceived performance of the robot.

H3 indicated that dynamically learned trust in robots will change
with repeated interactions. We found that after the first interac-
tion with the robot both TPS and TMS did not significantly differ
between the second, third and fourth sessions. These findings are
intriguing and may suggest that once learned, dynamically learned
trust does not vary too much. To explore this further, we analysed
how risk, performance, and self-confidence (control/contradiction)
differed across the four sessions. We found that risk did not differ
significantly from the second, third and fourth sessions. Besides,
we did not observe significant differences in performance and self-
confidence across the four sessions. As it turned out, risk varied
between first and all other sessions. Consequently, it was the signifi-
cant factor impacting trust in all the sessions. In parallel, interesting
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past literature has shown that with familiarity with the robot in re-
peat HRI [9], participant seems to trust the robot less. However, our
findings were in contradiction. Similar to the familiarity findings,
these findings may also be task-centric and be seen respectively.

The work on modelling the three layers of trust by Hoff and
Bashir especial in a competitive setting where we used truthfulness
as an indicator of trust is novel. But, we note that the presented
work is the first effort and understand the complexity. We mainly
considered self-confidence and performance to inform situational
trust (trust depicted in a given situation). We computed experience
based on the game situation. Further, experience in a given interac-
tion session informed the dynamically learned trust over time. We
understand from the findings that we can include perceived risk as
part of the experience. We will consider the future changes to the
model based on this work.

7 CONCLUSION, LIMITATION & FUTURE
WORK

In this paper, we presented a mathematical model that emulates the
three-layered (initial, situational, learned) framework of trust and
can potentially estimate human trust in robots in real-time. The
model was evaluated in an experimental setup that involved partic-
ipants playing a trust game on four different occasions. The model
was validated as trust computed based on the model was predicted
by the interactive session and the trust perception score measured
from the questionnaire. The work draws thought-provoking con-
clusions. Risk was the sole factor that varied between interactive
sessions in line with the trust computed using the model and the
trust perception scale questionnaire. This was a fascinating result,
and will enable us to integrate it as part of the experience in the
future extensions of the model of trust. Further, we found that dy-
namically learned trust did not change after the first interaction.
This finding may be task-centric, and therefore raises the question:
how long can it take in a repeated interaction to learn a value of
humans’ trust in robots that will not vary significantly? Is it a good
idea to have learned value of dynamically learned trust, or can this
lead to over-trust in robots in a repeated interaction? Lastly, we
see confidence (control/contradiction) as a consistent factor in our
experiment but understand this also can be task-specific.

Although our contribution has noteworthy novelty and practical
implications, some limitations should be considered. Firstly, our
model currently operates with a fixed initial trust value set at the
natural trust value of 0.5. This may not account for the diverse range
of initial trust that individuals may have towards robots. Secondly,
our study focused on general trends in trust dynamics but did not
consider individual variances in trust trajectories.

In the future, we will also undertake more rigorous testing of the
model and will add more factors that may affect trust in robots. This
experiment involved a game that presented a competitive setting;
so, we aim to test the model in other (cooperative) settings. Lastly,
we will reflect on the factor of the number of sessions it can take
to learn a value of dynamically learned trust.
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