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Abstract

Deep neural networks (DNNs) can be easily deceived by imperceptible al-

terations known as adversarial examples. These examples can lead to mis-

classification, posing a significant threat to the reliability of deep learning

systems in real-world applications. Adversarial training (AT) is a popular

technique used to enhance robustness by training models on a combination of

corrupted and clean data. However, existing AT-based methods often strug-

gle to handle transferred adversarial examples that can fool multiple defense

models, thereby falling short of meeting the generalization requirements for

real-world scenarios. Furthermore, AT typically fails to provide interpretable

predictions, which are crucial for domain experts seeking to understand the

behavior of DNNs. To overcome these challenges, we present a novel ap-

proach called Jacobian norm and Selective Input Gradient Regularization

(J-SIGR). Our method leverages Jacobian normalization to improve robust-

ness and introduces regularization of perturbation-based saliency maps, en-
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ofabling interpretable predictions. By adopting J-SIGR, we achieve enhanced

defense capabilities and promote high interpretability of DNNs. We eval-

uate the effectiveness of J-SIGR across various architectures by subjecting

it to powerful adversarial attacks. Our experimental evaluations provide

compelling evidence of the efficacy of J-SIGR against transferred adversarial

attacks, while preserving interpretability. The project code can be found at

https://github.com/Lywu-github/jJ-SIGR.git.

Keywords: Selective Input Gradient Regularization, Jacobian

Normalisation, Adversarial Robustness

1. Introduction

In recent years, deep neural networks (DNNs) have demonstrated impres-

sive performance in various image recognition tasks with real-world bench-

marks. However, DNNs are vulnerable to imperceptible perturbations that

can easily deceive the network into making incorrect predictions. This suscep-

tibility poses significant obstacles in the deployment of deep learning systems

for real-world applications. Since this vulnerability was originally identified

by Szegedy et al. [1], there have been a pyramid of techniques for generating

malicious examples using either white-box attacks [2, 1, 3] or transferable

white-box attacks [4, 5, 6]. The transferable adversarial examples crafted

by black-box attacks, which can attack DNNs without any knowledge of the

model parameters, poses the grave threat to deep learning systems, imply-

ing that examples generated to fool one model can fool all models trained

on the same dataset. Realising that these vulnerabilities can have serious

security implications, researchers have focused on developing techniques to
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anisms. Adversarial training involves training the network on a mixture of

corrupted and clean data to improve robustness, while defense mechanisms

aim to detect and reject adversarial examples. However, these techniques

do not guarantee complete robustness, and the transferability of adversarial

examples has made this problem even more difficult to solve.

Currently, the most effective defense mechanisms are based on adversarial

training. By training models on a mixture of clean and adversarial examples,

it improves the ability to correctly classify potentially adversarial examples

during testing [7]. However, many of these defenses rely on computationally

expensive brute-force solutions to generate potent adversarial examples [8],

which limits their practicality. Moreover, recent studies have shown that ad-

versarial training based models are vulnerable to adversarial examples that

are generated by randomizing or transferring perturbations from other mod-

els [9]. This raises concerns about the generalization ability of adversarial

training based models to attacks from adversarial examples that are not

generated by gradient-based techniques. For instance, adversarially train a

neural network to be robust against gradient-based adversarial examples may

still be vulnerable to adversarial examples created by adding Gaussian noise

to the feature dimensions of the original examples [10]. Therefore, it is neces-

sary to develop defense mechanisms that are both effective and generalizable

against a wide range of adversarial attacks.

In addition to robustness, the interpretability of a network’s predictions

is also a concern for domain experts [11]. This is particularly important in

domains with safety requirements, where it is necessary to understand how
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how the model responds to training data from different hospitals. To enhance

interpretability, some methods have been proposed that regularize the input

gradients [12, 13], which can highlight the regions of confidence predicted

by the DNNs. However, these previous endeavors have simply smoothed

out all the gradients without capturing the most appropriate interpretabil-

ity, i.e., their response to small input variations. Other techniques, such as

integrated gradients [14] and SmoothGrad [15], generate smoother and more

interpretable prediction confidence, but do not provide insight into the re-

sponse of a deep neural network to input variations. In fact, local behavior

can simulate how the network responds to small perturbations in its inputs.

In this paper, we address the issue of improving both robustness and

prediction interpretability of DNNs when dealing with small input perturba-

tions. Our approach involves simultaneously minimizing the Jacobian norm

of the entire network and regularizing the input gradients. To this end, we

introduce the concept of linearized robustness, which provides a measure

of the network’s response to a perturbed input. We demonstrate that the

Jacobian norm can serve as a reliable approximation of the linearized robust-

ness, as it captures the gradients of the network prediction logits with respect

to the input. However, using raw input gradients can be noisy and difficult

to interpret. Inspired by the approach presented in [12], which uses gradient

suppression and selected features to explain model robustness, we propose to

regularize the input gradients to achieve a better input space. Our method

distinguishes itself from [12] by training the network using the Jacobian’s

Frobenius norm (while [12] uses the reproducing kernel Hilbert space norm).
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layers to input perturbations, contributing to improved performance.

To interpret the network’s response to input perturbations, we propose to

use this saliency map to visualize and highlight the important regions of an

input image that are responsible for a network prediction. The map is com-

puted by taking the absolute values of the gradients of the output logits with

respect to the input image, and then multiplying them element-wise with

the input image itself. This results in a saliency map that shows the most

important regions of the input image for making the given prediction. By an-

alyzing the saliency map for a given perturbation, we can understand which

regions of the input image are most sensitive to small perturbations and how

the network reacts to them. This helps to improve the interpretability of

the network’s predictions and provides insights into its internal workings.

Furthermore, we show that the saliency map can also be used to assess the

robustness of a model by analyzing its response to different types of pertur-

bations. In this way, we can obtain a more complete understanding of the

network’s behavior and improve its performance in real-world scenarios.

The contributions of this paper can be summarized as follows: 1) We

propose a novel approach to achieve both improved robustness and high in-

terpretability of DNNs under adversarial attacks. The proposed approach

effectively leverages the Jacobian norm and selective input gradient regu-

larization, which explicitly describes the network responses to input pertur-

bations. 2) We investigate the relationship between a Jacobian norm and
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saliency maps, our results give insights into the prediction confidence, which

relates to the adversarial effects. 3) Our method improves the robustness of

DNNs towards transferred adversarial examples across multiple architectures

and different attacks. The rest of this paper is organized as follows. Section 2

reviews the recent related works. Section 3 and Section 4 detail the proposed

method. Section 5 presents extensive experiments to evaluate our method.

Finally, we conclude the paper in Section 6.

2. Related work

2.1. Adversarial training based methods

There is a sizable body of work proposing various attack and defense

mechanisms for the adversarial setting. Among them, the current unbro-

ken defenses [2, 16] are based on adversarial training, which uses adversarial

examples as training data to protect DNNs against a range of adversarial at-

tacks. For example, projected gradient descent (PGD) [2] is one such strong

defense that is able to generate universal adversarial examples using a first-

order approach. And [16] encourages the decision boundary to be smooth

by adding a regularization term to reduce the difference between the pre-

dictions from natural and adversarial examples. Qin et al. [17] smoothened

the loss landscape through local linearization by minimizing the prediction

difference between the clean and adversarial examples. While the various

aforementioned approaches can improve the adversarial training, they require

the generation of sufficient adversarial examples for training. This results in

a prohibitive computational cost, which is proportional to the number of

1(The distance from the input image to the decision boundary)
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a back-propagation for each iteration. To strengthen DNNs under adver-

sarial attacks, a biologically-inspired approach [18] was introduced to learn

flat, compressed representations that are sensitive to a minimal number of

input dimensions. Unlike [18], this paper introduces a simpler yet effective

approach for model regularization that is based on input gradient regulariza-

tion. A concurrent method is [19], which can improve robustness by imposing

the input gradient regularization. However, performing such gradient with

respect to a high dimensional input from back-propagation is quite time-

consuming. In contrast, the proposed method approximates the linearized

robustness of neural networks via the penalization of a classifier’s Jacobian

norm. Such a Jacobian norm derives salient gradient maps to selectively

activate the most discriminative gradients.

2.2. Regularization for robustness

To defend against adversarial examples, provable defenses promote the

concept of improving model robustness through regularization. A well-known

strategy includes noise injection, which is a variant of dropout weights [20]

or activations [21]. Several works have investigated the benefits of using a

regularization term on top of the standard training objective to reduce the

Jacobian’s Frobenius norm. Such a term aims to reduce the adversarial effect

on the model predictions caused by input perturbation. For instance, Hoff-

man et al. [22] proposed an efficient method to approximate the input-class

probability through the output Jacobians of a classifier so as to minimize the

computational cost associated to these Jacobian norms. Tsipras et al. [23]

observed that adversarially trained models produce salient Jacobian matrices
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Jacobians. Etmann et al. [24] interpreted linearized robustness as the align-

ment between the Jacobian and the input image, and trained a robust model

by using double back-propagation. In comparison to these methods [23, 24],

our work offers the following merits: 1) it focuses on the local linearized

robustness of neural networks to provide an interpretation of the network’s

response to the inputs via Jacobian norm; 2) the proposed selective input

gradient regularization explicitly measures the degree of robustness, which

improves the interpretability of the network prediction; and 3) our method

is computationally more efficient in calculating the input gradients and also

highly interpretable to understand the network’s prediction.

3. Preliminary

3.1. Definition

Let a classification model Fθ(X) : X 7→ Ŷ ∈ RN×K map the inputs

X ∈ RN×D to the output probabilities for K classes, where θ represents the

classifier’s parameters and Ŷ ∈ RN×K returns the predictions of Fθ. To

train the model Fθ, we aim to find a set of parameter θ∗ that minimizes the

total distance between the predictions Ŷ and the one-hot encoded true labels

Y ∈ RN×K on a training set: θ∗ = argminθ

∑N
n=1

∑K
k=1−Yn,k logFθ(Xn,k),

which can also be written as argminθ H(Y, Ŷ), where H is the sum of the

cross entropies between the predictions and the true labels.

Given an input x ∈ Rh×w×c to a DNN, one can define the Jacobian matrix

J with respect to x as

J(x) := ∇xFθ(x) =

[
∂Fθ(x)

∂x1
, . . . ,

∂Fθ(x)

∂xD

]
, (1)

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofwhere D = h × w × c is the dimensionality of x. While a DNN can be

trained empirically to perform well on the training data, the accuracy de-

grades sharply in the presence of adversarial examples. When a small per-

turbation z is applied to the input x, a model is still deemed robust against

this attack if it satisfies

argmax
k∈K

F k
θ (x) = argmax

k∈K
F k
θ (x+ ϵz), ∀ϵ ∈ Bp(ε) = ϵ : ||ϵ||p ≤ ε, (2)

where ε is the scaling factor, and p = ∞. To improve the model’s robustness,

adversarial training [1] tries to find a distribution match between the training

data and the adversarial test data. Specifically, adversarial training attempts

to minimize the loss function as:

min
θ

ρ(θ),where ρ(θ) = E(x,y)

[
max
ϵ∈B(ε)

H(Fθ(x+ ϵz),y)

]
, (3)

where the inner maximization terms are usually obtained by performing an

iterative gradient-based optimization, such as PGD [2].

3.2. Attacks

Fast Gradient Sign Method (FGSM) [1]. FGSM generates adversarial exam-

ples by perturbing the inputs that increase the local linear approximation of

the loss function: xFGSM = x + ϵ · sign∇xH(y, ŷ). To perform this attack,

one can iteratively use a small ϵ (e.g., ϵ = 0.01) to induce misclassifications

by following the non-linear loss function in a series of small linear steps.

Projected Gradient Descent (PGD) [2]. PGD generates the adversarial ex-

amples by first uniforming the random perturbation as the initialization, and

then iteratively performs the form xt+1
PGD=

∏
x+S[x

t
PGD + ϵ · sign∇xH(y, ŷ)],

where
∏

is the projection operator that clips the input at positions around
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and ϵ is the gradient step.

Jacobian-based Saliency Map Attack (JSMA) [25]. JSMA iteratively searches

for input pixels to be changed such that the probability of the target label is

increased and the probability of all other labels are decreased. It can produce

examples that have only been modified in a fraction of feature dimensions,

which are hard for humans to detect.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [4]. MI-FGSM

integrates the momentum term into iterative attack to stabilize the update

directions. Thus, it can improve the transferability of adversarial examples.

AdaBelief Iterative Fast Gradient Method (ABI-FGM) [5]. This method im-

proves the transferability of adversarial examples by applying the Adabelief

optimizer to generate adversarial examples yet similar to training examples.

Nesterov Iterative Fast Gradient Sign Method (NI-FGSM) [6]. This method

adapts Nesterov accelerated gradient into the iterative attacks so as to effec-

tively look ahead and improve the transferability of adversarial examples.

3.3. Defenses

Adversarial Training [7]. It can enhance robustness by injecting adversarial

examples into training process. Following the implementation in [26], we

augment the network to run FGSM [1] on the training batches, and compute

the average loss on both the normal and adversarial examples as the loss

function of the model. To inhibit the FGSM attack [1], gradients are not

10
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to the predicted labels (instead of the true labels) to prevent label leaking.

Defensive distillation [7]. Distillation can be used as a defense technique by

first using the one-hot ground truth labels to train an initial model and sub-

sequently utilizing the initial model’s softmax probability outputs. Since dis-

tillation extracts class knowledge from these probability vectors, this knowl-

edge can be transferred into a different DNN architecture by annotating the

inputs in the training dataset of the second DNN using classification predic-

tions from the first DNN. This idea is formulated to improve the resilience

of DNNs in the presence of perturbations [27]. Within a softmax layer, we

divide all of the logit network output (which we call ẑk) by a temperature

T : FT,θ(Xn,k) =
e
ẑk(Xn,k)/T

∑K
i=1 e

ẑi(Xn,k)/T , where FT,θ denotes a network output in the

form of a softmax vector with temperature T . The predictions will converge

to 1/K as T → ∞. The distillation based defense can be formulated as

θ0 = argmin
θ

N∑

n=1

K∑

k=1

−Yn,k logFT,θ(Xn,k), θ
∗ = argmin

θ

N∑

n=1

K∑

k=1

−FT,θ0 (Xn,k) logFT,θ(Xn,k). (4)

4. Proposed approach

4.1. Jacobian norm

In the following, we study the relationship between the Jacobian norm

based regularization term and the notion of linearized robustness. Since ad-

versarial perturbations are small variations that change the predicted result

of a neural network classifier, it is sensible to define the robustness towards

adversarial perturbations via the distance of the clean image to the nearest

perturbed image which may cause the incorrect classification. When such

11
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x
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�(x) = ∆F(x)/�x

⇒ E[�(x)] =  J(x) F2

F
(x

)

∆F(x)

saliency map input gradients

Jacobian norm

selective input gradients

Figure 1: The proposed scheme for adversarial robustness based on Jacobian normalization

and selective input gradient regularization (J-SIGR). The Jacobian normalization sets the

linear robustness bounds for perturbations. The selective input gradient regularization is

based on perturbation-based saliency map to not only encourage the insensitivity of the

input space but also improves the interpretability.

distance gets smaller, the perturbed and its clean counterpart are more in-

distinguishable for a neural network, and thus the prediction of the neural

network will be correct.

Linearized adversarial robustness bound: Let i∗ = argmaxi F
i
θ(x)

and j∗ = argmaxj ̸=i∗ F
j
θ (x+ ϵz) be the top prediction of x and its corrupted

sample x̂ = x+ ϵz, respectively. Here, x̂ is formed by small additive pertur-

bations with Gaussian distribution z ∼ N(0, σ2). The linearized adversarial

robustness is upper-bounded by the Jacobian norm ||J(x)||2F w.r.t x.

Proof. Denoting F i
θ(x) as the logits value of class i in a classifier F 2 for

2For notation simplicity, we omit θ in the following.
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ρ(x) := min
j∗ ̸=i∗

F i∗(x)− F j∗(x)

||∇xF i∗(x)−∇xF j∗(x)|| . (5)

Denoting g := ∇x(F
i∗ − F j∗)(x) as the Jacobian w.r.t the difference of two

logits and α(x, g) =< x, g > as the alignment between the Jacobian and the

input, then we have the decision boundary ρ(x) ≤ α(x,g)+C
||g|| , where C is a

positive constant. Therefore, ρ(x) ≤ J(x)+g+C
||g|| , where J(x) is the Jacobian

of the network output w.r.t the input x. We can now treat the term ρ̂ =

zTJ(x)TJ(x)z as one sample stochastic trace estimator for Tr(J(x)TJ(x))

with a Gaussian variable z:

Ez[ρ] =
Tr(J(x)TJ(x)E[zzT ])

||g|| =
||J(x)||2F

||g|| . (6)

Taking expectation over m samples of a mini-batch X, we have E[ρ] =

Ex[||JX ||]2F , where || · ||2F represents the Frobenius norm. We remark that

the above assumption holds true given that the neural network can be lo-

cally approximated by a linear model [24]. Since adversarial perturbations

refer to small perturbations that can cause a neural network to predict a

different class, it is sensible to define the robustness towards adversarial per-

turbations via the distance of the unperturbed image to its nearest perturbed

image, such that the classification is changed. In other words, the robustness

of a classifier at a given point can be defined as the distance to its nearest

decision boundary. In general, it is intractable to compute the distance to

the decision boundary ρ(x). Nonetheless, for classifiers built on locally affine

score functions, as in the case of most neural networks using ReLU or leaky

ReLU activations, the decision boundary can be computed, provided that

the locally affine region around the point x is sufficiently large. As proved in

13
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1: Initialize θ by using a pre-trained network architecture;

2: Set λj = λm = 0.5; ϵ = 0.3.

3: while each iteration or a condition is met do

4: Sample (x,y) ∼ Dtrain; /*Input to the DNN*/

5: Generate the noise perturbation z ∼ N(0, σ2);

6: x̂ = x+ ϵz; /*Generate a perturbed sample*/

7: ∇xFθ(x̂); /*Compute the perturbation-based saliency map*/

8: Compute the Jacobian norm ||J(x)||2F ;

9: Train the network using Eq. (10) and update θ.

10: end while

11: return θ.

[24], for a classifier defined with a locally affine score function, the decision

boundary between the clean and the perturbed data is close in the Euclidean

space when their respective input signals are also close enough in the Eu-

clidean space. Thus, the linearized robustness holds approximately as long

as the linear approximation to the network’s score function is sufficiently

plausible in the relevant neighborhood of x.

Improved robustness using the Jacobian norm: In the presence

of perturbed examples, the expected response of a DNN should stay similar

to the correct prediction, which can be mathematically described as Ω =

Fθ(x)− Fθ(x̂). Suppose xi is the i-th component of noise-free signal x, and

x̂i = xi + ϵzi is the noise-crafted tensor variation of x. Note that the term

Ω measures the difference of the predictions in the case of clean data and its

perturbed counterpart. z is the noise term, which is sampled from a Gaussian

distribution with zero mean and variance σ2 for each inference. Note that the

noise term has an identical variance to x so that the additive noise only relies

on the distribution of x to dynamically perturb the input. According to the

14
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the Jacobian of the classifier’s prediction w.r.t the input x. Thus, with the

gradient back-propagation, we can determine the gradient calculation w.r.t

the difference of the two predictions Ω via:

∇xΩ = ∇x(Fθ(x)− Fθ(x̂)) = ∇xFθ(x)−∇xFθ(x̂) ⇒ ||∇xFθ(x)−∇xFθ(x̂)||2F ≤ ||J(x)||2F . (7)

The above Jacobian norm can approximate the linear robustness towards

the input, which simulates how the network will respond to those small vari-

ations of the input. To compute the Jacobian norm, one needs to take the

model’s gradient with respect to its inputs, which provides a local linear ap-

proximation of the model’s behavior. However, directly using the raw input

gradients is known to be ineffective since these gradients are quite noisy and

hard to interpret. To combat this challenge, in the following we propose

to train the classification model under an input gradient regularization with

fewer extreme values and a minimized Jacobian norm.

4.2. Selective input gradient regularization

Input gradient regularization. The idea of input gradient regularization was

first introduced by Drucker et al [28] to train neural networks by minimizing

not just the “energy” of the network but also the rate of the change of the

energy with respect to the input features. The energy can be formulated

using the cross-entropy as follows:

θ∗ = argmin
θ

N∑

n=1

K∑

k=1

−Yn,k logFθ(Xn,k) + λm

N∑

n=1

D∑

d=1

(
∂

∂xd

K∑

k=1

−Yn,k logFθ(Xn,k)

)2

, (8)

where λm is a hyperparameter modulating the penalty strength. Such input

gradient regularization ensures that even if the input change slightly, the KL

divergence between the predictions and the true labels will not be changed
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sensitivity caused by perturbations. Intuitively, the gradient penalty term

encourages the predictions not be sensitive to small perturbations in the

input space because it regularizes the input gradients to be smoother with

fewer extreme values. We combine the Jacobian norm and the input gradient

regularization, which can be formulated as follows:

θ∗ = argmin
θ

N∑

n=1

K∑

k=1

−Yn,k logFθ(Xn,k) + λm

N∑

n=1

D∑

d=1

(
∂

∂xd

K∑

k=1

−Yn,k logFθ(Xn,k)

)2

+ λj ||J(x)||2F ,

(9)

where λm and λj denote the weights for the selective gradient regularization

and the Jacobian normalization, respectively. As formulated in Eq. (9), the

joint optimisation over gradient regularisation and Jacobian normalisation

plays a crucial role in maintaining the local prediction capabilities of the

deep classifier. When confronted with transferable adversarial examples that

are specifically crafted to evade local maxima by accumulating stable gradi-

ent directions, our proposed method effectively can regularise the smoother

gradients, thereby stabilizing the network’s predictions. However, in Eq. (9),

the combination of Jacobian norm and input gradient regularization only pro-

vides constraints for very near training examples. Thus, it does not solve the

adversarial perturbation problem. It is also expensive to make derivatives

smaller to limit the sensitivity to infinitesimal perturbations. With this re-

gard, in the following, we propose a perturbation based saliency map to select

the most discriminative features, which are not only robust to perturbations

but more interpretable to the network behaviour.

Perturbation based saliency for selective input gradient regularization. Saliency

map in deep learning is a technique used to interpret input features that are
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main experts are more concerned with the interpretability of a DNN, some

methods have been proposed to generate saliency maps to explain the deci-

sion making of DNN. One may directly use gradients to estimate the influence

of input features on the output. However, the quality of the gradient-based

saliency maps is generally poor as gradient-based saliency map methods tend

to overly smooth the gradients [19].

In the spirit of saliency map in highlighting the importance of input fea-

tures, we propose to use the perturbation based saliency map, denoted as

Md = f(∇xFθ(x̂)), which is derived from the gradient of a perturbed input.

The f(·) is a mapping function to be detailed later. Such a perturbation-

based saliency map can be computed by perturbing the input and observing

the change in output, and thus shows high interpretability in a DNN’s be-

haviour. Specifically, we compute this saliency map by resembling the input

images and highlighting the most salient parts. Following [30], we use a Gen-

erative Adversarial Network (GAN) to generate a saliency map to be visually

similar to the real image. Given J(x̂) = ∇xFθ(x̂), we use an aligning network

(f) to map the Jacobian into the domain of the input image: J ′ = f(J(x̂)).

In our implementation, f (parameterized by Φ) is implemented by a single

1 × 1 convolutional layer with a tanh activation function. Hence, the gen-

erator G(x,y) can be framed by using both the classifier and the aligning

network: Gθ,Φ(x,y) = f(∇xFθ(x̂)). As a result, the generator can learn to

model the distribution of pJ ′ to resemble that of px.

Once Md is obtained, we incorporate the salient map into input gradient

computation such that the most robust gradients can be selected during
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selective input gradient regularization is defined as

θ∗ = argmin
θ

N∑

n=1

K∑

k=1

−Yn,k logFθ(Xn,k)

+ λm

N∑

n=1

D∑

d=1

(
∂

∂xd
1(β −Md)

K∑

k=1

−Yn,k logFθ(Xn,k)

)2

+ λj ||J(x)||2F .

(10)

We suggest two terms have equal importance to the overall optimization,

and thus set λm = λj = 0.5 as default configuration except for otherwise

specified. The term ||J(x)||2F , i.e., the Jacobian Frobenius norm acts as a

regularizer clipping the values of inputs such that the gradients of classifi-

cation logits with respect to the inputs can ensure the linearized robustness

in the presence of perturbed data, and thus we can minimize the number

of mispredictions of the learned classifier. However, this is ineffective by di-

rectly evaluating each raw input features, which could be very noisy. Then,

the input gradient regularization, as being modulated by λm, can smooth

the gradients to be less noisy with fewer extreme values. Finally, in Eq.(10)

we embed the perturbation-based saliency map (Md) to improve the inter-

pretability of a neural network’s prediction. The indicator function 1 is to

determine whether the saliency for an input feature is below a threshold β,

and thus it returns 1 if β − Md ≥ 0 and 0 otherwise. The whole training

procedure of the proposed method is illustrated in Algorithm 1.

5. Experiments

To evaluate the robustness of the proposed J-SIGR, we conducted exper-

iments on three image datasets: MNIST [31], CIFAR-10 [32] and ImageNet

[33]. Below, we first describe the experimental settings and then report the
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studies to provide a more insightful analysis of the proposed method.

5.1. Experimental settings

5.1.1. Datasets

MNIST dataset [31] consists of handwritten digit 28×28 gray-scale images

divided into 60K training and 10K test images. We trained a CNN, composed

of 3 convolutional layers and one final soft-max layer, to suit the small-sized

MNIST. All convolutional blocks have a stride of 5 while each layer has an

increasing number of output channels (i.e., c= 64-128-256). CIFAR-10 [32]

dataset contains a collection of 32×32×3 colored images that are categorized

into 10 classes with 50K training and 10K test images. We use the ResNet-

20 architecture [34] with 20 convolutional layers to train the images from

CIFAR-10. Throughout the network, the kernel size is set to 9 × 9 in all

convolutional layers and the number of channels is increased from 9, 18 to

36 for the three building blocks, respectively. For ImageNet, we randomly

choose 1000 images belonging to the 1000 categories from ILSVRC 2012

validation set, which are almost correctly classified by all the testing models.

5.1.2. Implementations and evaluation metrics

We used ResNet-20 architecture [34] as the backbone for most of the

comparative experiments and ablation studies. Thus, the parameter θ is

instantiated by ResNet-20 configuration. We adopted the data augmentation

[34, 10] but without the input normalization. Alternatively, we placed a

non-trainable data normalization layer preceding the network to perform the

identical function so that the attack tactics can directly add perturbations
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Eq. (10). To generate the saliency map as required, we use a discriminator

network of 5 CNN layers (32-64-128-256-512 output channels) and update

it for every 20 logFθ training iterations. Then, we computed the class-

entropy loss and use the gradients to compute the Jacobian matrix. Since

our method involves randomness, we reported the accuracy in the format

of mean± std with 10 trails to compute the statistical values. To measure

the robustness of multiple attacks, we tested all models against adversarial

examples generated for each model and reported the accuracy. In contrast

to the JSMA setting [25], where the generated adversarial examples would

resemble the targets rather than their original labels, we opted to a human

subject experiment presented in [19]. This experiment aims to evaluate the

legitimacy of misclassifications caused by adversarial examples.

Attack implementations. We considered multiple powerful attacks: while-box

attacks, JSMA [25] and white-box attacks transferred attacks. The white-

box attacks include FGSM [1] and PGD [2]. FGSM [1] is an efficient single-

step adversarial attack scheme and PGD attack [2] is a multi-step variant

of FGSM [1]. The iterative update of crafted data x̂ in the t + 1-th step

can be expressed as x̂t+1 =
∏

x+S(x̂
t + ϵ · sgn(∇x(Fθ(x̂

t),y))), where
∏

is

the projection space bounded by x± S, and ϵ is the step size. For the PGD

attack [2] on three datasets, S is set to 0.3/1, 8/255, 16/255, and the number

of iterations Nstep is set to 40, 7 and 10, respectively. FGSM [1] adopts the

same ϵ setup as PGD [2]. To generate adversarial examples for JSMA [25],

we used the Cleverhans adversarial example library [26]. For the black-box

transferred attacks, i.e., MI-FGSM [4], ABI-FGM [5], NI-FGSM [6], we follow
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Figure 2: Defensive model accuracy against

PGD attack when applying gradient regular-

ization as the fool target.

Defense implementations. To evalu-

ate the improved robustness of our

method, we compared it with state-

of-the-art defense models: adversar-

ial training [7], distillation [27] and a

gradient regularization based model

[19]. More specifically, for adversar-

ial training, we trained FGSM [1] with perturbations at ϵ = 0.3. For distil-

lation based defense, we used a soft-max of temperature T = 50. For the

gradient regularization based model as shown in Eq. (8), we used the double

back-propagation to train the classification model.

5.2. Robustness under white-box attacks

In Fig. 3, we show the robustness results of our method as well as the

performance of other defensive models under the FGSM attack [1] on two

datasets. It can be observed that the gradient-regularized model [19] exhibits

strong robustness to transferred FGSM [1] attack (examples produced by at-

tacking other models). For example, on the MNIST dataset when FGSM

attacking [1] is to fool the defensive distillation, i.e., first row and second

column, the adversarial examples produced by attacking the defensive dis-

tillation can successfully fool the model based on adversarial training. In

contrast, the gradient regularization based methods (including J-SIGR) can

still maintain the accuracy. We evaluate the robustness of the gradient regu-

larization models under a different attack, i.e., PGD [2], and report the results
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Figure 3: Comparison of different methods’ accuracy on two datasets. For each column,

we used FGSM attacking to generate adversarial examples to fool different defenses: ad-

versarial training, defensive distillation, and gradient regularization.

in Fig. 2 on two datasets. Under this attack, the adversarial examples are

generated to fool a gradient regularized model, while the results of the two

models show that gradient regularization is still effectively robust against a

white-box attack [2]. Interestingly, gradient-regularized models seem to be

vulnerable to white-box attacks, but can still fool all other models. In this

respect, in the presence of adversarially transferred examples, we hypothesize

that gradient regularization is particular not only for defense but also attack.

Since our model consists of two robustness mechanisms, we investigated

the impact of Jacobian norm (JN) by disabling double back-propagation and

examining the output response of each layer with respect to two different

attacks. More specifically, a Jacobian-norm based variant of our method was

implemented by adding layer-wise Jacobian norm into the DNN, together
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the CIFAR-10 dataset with ResNet-20 as backbone. The Jacobian norm is given for lower

convolutional layers (Conv1 to Conv35). Test accuracy for perturbed data is computed

for the PGD and FGSM attacks.

Layer Vanilla Train JN+AT Grad.Reg.+LW-JN

Conv1 0.004 0.157 0.155

Conv20 0.003 0.089 0.091

Conv21 0.001 0.067 0.061

Conv22 0.002 0.055 0.057

Conv23 0.002 0.099 0.098

Conv24 0.004 0.782 0.580

Conv25 0.004 0.422 0.333

Conv30 0.002 0.087 0.079

Conv31 0.000 0.064 0.064

Conv32 0.003 0.072 0.069

Conv33 0.001 0.062 0.060

Conv34 0.001 0.046 0.046

Conv35 0.000 0.022 0.021

FC 0.001 0.013 0.012

PGD 0.00 0.54 ± 0.11 0.57±0.10

FGSM 0.14 0.62 ± 0.10 0.66±0.09

with the input gradient regularization. This variant is called Grad.Reg.+LW-

JN. As shown in Table 1, only performing vanilla training using momentum

SGD optimizer can lead to the failure of adversarial defense with the values

of Jacobian norm converging towards negligible values. After applying the

JN as a regularization of the network (i.e., JN+AT), the lower convolutional

layers attain a relatively large JN. The variant of our method with layer-wise

Jacobian norm (i.e., Grad.Reg.+LW-JN ) achieves the highest performance

with respect to the two attacks. This demonstrates robustness improvement

by leveraging the proposed network architecture, which is parameterized to

resist perturbations via gradient back-propagation. Since JN can reflect the
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for the lower convolutional layers to illustrate the robustness of the network

connections (Fig. 4).

5.3. Robustness under black-box transferable attacks
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Figure 4: Evolution curves of the Jacobian

norm computed at each convolutional layer.

In this experiment, we evalu-

ate our scheme against the following

black-box transferable attacks: MI-

FGSM [4], ABI-FGM [5], NI-FGM

[6]. More specifically, two neural

networks were trained with their in-

dividual architectures with one net-

work chosen as the source model and

the other chosen as the target model. An adversarial example x̂ gen-

erated from the source model was then used to attack the target model

without access to the parameters of the target model. This is denoted as

Source→Target. We trained two ResNet-18 models (i.e., M1 and M2) on

ImageNet dataset to attack each other with M1 optimized through PGD ad-

versarial training [2] and M2 optimized through our proposed method. Ex-

perimental results are given in Table 2. Our proposed method achieves higher

accuracy under two transferable attacks and is seen similar perturbed-data

accuracy for both transferable scenarios. This indicates that our method pro-

vides robustness against transferable black-box attack. This also shows that

the presence of J-SIGR has negligible effect on inference under a strong PGD

attack [2]. For the powerful black-box transferable attacks, we evaluated our

defense ability on 200 randomly selected test examples for an untargeted at-
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M1 and M2 are trained by PGD adversarial training and J-SIGR based on ResNet-18.

Transferable attack MI-FGSM [4] ABI-FGM [5] NI-FGSM [6]

M1 → M2 M2 → M1 Success rate =90% Success rate=77% Success rate= 80%

78.14± 0.26 76.82± 0.19 49.00 48.80 41.20

y = 0 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6 y = 7 y = 8 y = 9

Figure 5: Perturbations by applying JSMA to digits 0 and 1 with maximum distortion

parameter γ = 0.25 for a gradient regularization model. The highlighted images in each

row are modified until the model predicts the digit corresponding to their column or the

maximum distortion is reached.

tack. The success rate refers here to the percentage of test samples which are

wrongly classified under the attack. For example, the MI-FGSM [4] attack

success rate for vanilla ResNet-18 with adversarial training is close to 90%.

The results in Table 2 suggest that our method is robust as it resists the

three attacks by noticeably dropping the success rate from 90% to 49%, 77%

to 48.8% and 80% to 41% under MI-FGSM [4], ABI-FGM [5] and NI-FGSM

[6], respectively (Lower success rates means higher robustness).

5.4. Evaluation on human subject study under JSMA

Unlike other attacks that stop generating adversarial examples when the

maximum distortion is met, JSMA [25] constantly generates adversarial ex-

amples until the model predicts the target. Thus, evaluating the robust-

ness under JSMA [25] using accuracy numbers is inappropriate. This is

also because the perturbations created by JSMA [25] alter the adversar-
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bels. As shown in Fig. 5, for a gradient regularized model, we applied

JSMA [25] on each image 0 or 1 to generate perturbations until the model

predicts the digit corresponding to their column target label or the max-

imum distortion is reached (We set the maximum distortion r = 0.25).

Then, we tested these different robustness scenarios using 11 human sub-

jects who were invited to evaluate whether examples generated by differ-

ent methods are more or less plausible instances of their targets. Specifi-

cally, the subjects were shown 30 images of JSMA-crafted examples, with

each of these 30 images corresponding to one original digit (from 0 to 9)

and one model (defensive distillation, gradient regularization and J-SIGR).
frog ship

PG
D
-A
T

J-
SI
G
R

dog bird

Figure 6: Visualization of Jacobian matrice

of PGD-AT and J-SIGR on CIFAR-10.

Images were randomly and uni-

formly sampled from a larger set of

45 examples corresponding to the

first 5 images of the original digit

in the test set. Images in the test

set were transformed by using JSMA

[25] to resemble each of the other 9

digits. Subjects were not provided

the original labels and were asked to identify the most two plausible predic-

tions for the image they believed a classifier would produce (they entered

N/A if they found no label was a good choice).

Table 4 shows the quantitative results from the human subject experi-

ment. The measure“human fooled” records the percentage of examples which

are classified by human subjects as the most plausibly adversarial targets (the
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ples which are classified as either the target plausible or unrecognizable as any

label (the higher, the better). Overall, human subjects found that gradient-

regularized models can generate the most convincing examples to fool hu-

mans. More specifically, humans mostly believe gradient-regularized adver-

sarial examples (both the input gradient regularization [19] and our method)

are favourably classified as their target labels instead of the original digits.

Table 3: Comparison with SOTA

defense methods using clean and

perturbed data on CIFAR-10 under

PGD attack.
Defense method Clean PGD

PGD-AT [2] 87.0 ± 0.1 46.1 ± 0.1

DP [35] 87.0 25.1

Adv-BNN [36] 79.7 45.4

JARN [30] 84.8 51.8

J-SIGR (Ours) 90.1 ± 0.2 57.6 ± 0.4

For example, the values of “human fooled”

column in Table 4 show that the mispre-

dictions of gradient regularized models are

very “reasonable” in comparison to adver-

sarial training and defensive distillation.

5.5. Comparison with other defensive mod-

els for both clean and crafted data

In this experiment, we compared our

method with state-of-the-art methods in dealing with both clean and crafted

data. Apart from PGD [2] and randomness-based methods [35, 36], we

also compared against JARN [30], which utilizes the Jacobians to gener-

ate images resembling to the original images. The compared performance

results are shown in Table 3. Note that some of previous defense methods

often achieve improved accuracy on contaminated data at the expense of

lowering clean data accuracy. In contrast, we introduced a notion of lin-

earized robustness which performs well in both clean and perturbed data.

As shown in Table 3, our method outperforms all methods for both clean and

perturbed data accuracy under the white-box attack. For example, differ-
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network so as to guarantee a certified defense, does not perform well against

L∞-norm based attacks, e.g., PGD [2] and FGSM [1]. Moreover, to pursue a

higher level of certified defense, DP [35] dramatically reduces the clean data

accuracy down to 25.1%. As a noise injection method, Adv-BNN [36] com-

bines the adversarial training and noise injection into the inputs/weights of

the network. However, this method manually sets the noise configurations,

making it very ad-hoc, and thus not generalizable to different datasets. In

contrast, our method regularizes the Jacobian norm and the input gradients,

such that the network parameters can be dynamically trained to perform

better adversarial defense.

5.6. Connection to network interpretability

Figure 7: Visualization of input gradients.

Understanding Jacobian matrices.

An adversarially trained model can

gain robustness and also produce

salient Jacobian matrices as byprod-

uct. It has been shown that the

saliency in Jacobians is a result of

robustness [22]. Thus, it is interest-

ing to use the Jacobian saliency to

evaluate how robust a model is. In this study, we visualize the Jacobian

matrices of the proposed model and an adversarial-trained PGD [2] to show

how salient the Jacobian map is. As shown in Fig. 6, the proposed method

can better visually resemble the corresponding images than PGD-AT. This

demonstrates the improved robustness of the proposed method.
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No defense Vanilla Adv. Train J-SIGR

Model Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM

Net20 92.1 0.0±0.0 14.1 83.8 39.1±0.1 46.4 90.1±0.2 53.7±0.3 57.6±0.1

Net32 92.8 0.0±0.0 17.8 85.6 42.1±0.0 50.3 91.1±0.2 52.8±0.1 54.2±0.1

Net44 93.1 0.0±0.0 23.9 85.9 40.8±0.1 48.2 90.0±0.1 55.4±0.1 58.6±0.2

Net56 93.3 0.0±0.0 24.2 86.5 40.1±0.1 48.8 92.1±0.2 54.9±0.2 55.8±0.1

Net20 (1.5×) 93.5 0.0±0.0 15.9 85.8 42.1±0.0 49.6 91.4±0.1 55.2±0.3 55.8±0.1

Net20 (2×) 94.0 0.0±0.0 13.0 86.3 43.1±0.1 52.6 91.5±0.1 55.1±0.2 55.0 ±0.1

Table 4: Quantitative results form

human subject experiment on

MNIST. Best results are in bold.
MNIST (JSMA)

Model human fooled mistake reasonable

Def. Distill 0.0% 23.5%

Grad. Reg. 16.4% 41.8%

SIGR 20.2% 45.1%

Understanding input gradients. Fig. 7 visu-

alizes the input gradients across different de-

fensive models on the MNIST dataset. This

qualitative visualization shows the different

interpretability of the input gradients de-

rived from models based on defensive dis-

tillation, adversarial training, gradient regularization and the proposed se-

lective gradient regularization. The adversarially trained model can provide

more interpretable gradients than defensive distillation, but not as highly

interpretable as gradient regularized models. The proposed method presents

the most interpretable gradients, and thus can provide an explanation for

adversarial attacks.

5.7. Ablation studies
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Figure 8: Hyperparameter study on MNIST.

Our proposed technique intro-

duces tight bounds to the response

of the output layer to adversarial

perturbation added to the input.

Herein, we raise two concerns in re-

gards to our proposed regulariza-
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ness improvement introduced by our

method is not relying on the stochastic gradient; 2) how the scale of the net-

work architecture (i.e., width and depth) affects the network robustness. Our

first evaluation aims to show that our method is free of gradient obfuscation

by increasing the PGD [2] attack steps and the attack bound ε.
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Figure 9: Accuracy of CIFAR-10 test set

under PGD attack v.s. number of attack

steps (N-step) and attack bound (ε).

Influence of the network capacity. In

order to investigate the links between

the network capacity (i.e., width, depth

and number of trainable parameters)

and the robustness improvement of J-

SIGR, we analyzed various network

architectures in terms of depth and

width. For varied depth, we considered

ResNet20/32/44/56 and conducted ex-

periments under vanilla training [2] and our technique. For varied width,

we employed the original ResNet-20 as the baseline and expanded the in-

put/output channel of each layer by 1.5× and 2× scale, respectively. We re-

port both clean and perturbed data accuracy using the network trained with

Jacobian term. The results in Table 5 suggest that increasing the model’s

capacity positively improves the network robustness against white-box at-

tacks, and our proposed method outperforms vanilla training in both clean

and perturbed data accuracy for powerful PGD and FGSM attacks. The

other observation is that the noticeable robustness improvement provided by

our method is indeed provided by the effective training with the proposed
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randomness in the test phase.

Effect of hyperparameters. In this experiment, we study the effect of two

hyperparameters, i.e., λm and λj on the MNIST accuracy under FGSM. To

de-correlate the impact of two parameters, we fix λm = 0.5 and examine the

model accuracy with varied value of λj. The results are reported in Fig. 8,

and it shows that the highest accuracy of DNN under an attack is achieved

when we set λj = 0.5. Thus, we empirically λm = λj = 0.5 in all experiments.

Non-dependence on stochastic gradients. To prove the robustness improve-

ment of our method is not due to stochastic gradients, we examine the per-

turbed data accuracy by evaluating the PGD attack steps [2], i.e., N-step,

and the attack bound ε. As shown in Fig. 9, increasing the attack steps

or attack bound can boost the attack strength, which inevitably leads to

accuracy degradation. However, the accuracy does not degrade further when

N-step=40 or ε ≥ 0.5. If the stochastic gradient was improving robustness,

then increasing the attack strength would have broken the defense of our

method. This is not observed in reported experiments.

6. Conclusion

In this paper, we propose an approach called J-SIGR (Jacobian normaliza-

tion and selective input gradient regularization) to improve both the robust-

ness and interpretability of deep neural networks (DNNs). The proposed ap-

proach leverages Jacobian matrices to generate gradient-based salient maps,

which select informative input gradients to improve DNN robustness against
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tions. We believe that our approach can contribute to the development of

trustworthy real-world systems and facilitate the practical deployment of

deep learning. Although the proposed method is effective in countering ad-

versarial attacks, the generation of saliency map relies on a plug-in network

(e.g., GAN), which can lead to inefficiencies when dealing with large datasets.

Future work will explore the use of dense semantic networks for extracting

saliency maps, which can enhance distillation and further improve the gen-

eralisation of DNNs [37, 38].
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Research highlights

1. An innovatve approach based on Jacobian norm and selectve input gradient

regularizaton is presented to improve both robustness and interpretability  of 

DNNs under powerful adversarial ataccs.

2. Insightul investgaton into the predicton confdence of DNNs are delivered 

to reveal the relatonship between Jacobian norm and linear robustness.

3. Extensive experiments are conducted on a variety  of ataccs to prove the 

effectveness of the proposed method.
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