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A B S T R A C T   

Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is 
to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) 
discuss the design requirements for pressure measurement systems for different applications, (c) critique the 
suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future di
rections for the development of pressure measurements systems in this area. Commercial pressure measurement 
systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be 
more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that 
the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor 
and wireless technology and computational power have resulted in systems that have higher sensor density and 
sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and 
reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and 
control units. Future developments of pressure sensors should focus on the design of systems that can measure or 
accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both con
tributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in- 
shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to 
reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to 
monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible 
pressure sensors which can be incorporated into socks. Although some experimental systems are available further 
work is needed to improve their validity and reliability.   

1. Introduction 

Pressure measurement systems have numerous applications in 
healthcare. The most common use is in clinical gait analysis to assist in 
the prescription and assessment of interventions such as orthotics 
[1–11], surgery [12–17], medication [18] or rehabilitation programmes 
[19–23]. They can also be used to provide biofeedback if pressure 
mapping data is linked to a live display [24–27], and can therefore alert 
patients and clinicians if patients’ plantar pressures are too high, so the 

patient or clinician can offload the area of high pressure, reducing the 
risk of pressure ulcers forming [27]. Another application of pressure 
measurement systems is to aid the design and assessment of prosthetic 
limbs [28]. 

Pressure measurement systems also have several applications in 
sport. They can be used to assess the effect of footwear and terrain on 
plantar pressures, and the newer wireless systems can be used for athlete 
monitoring during running [29–37]. Also, pressure measurement sys
tems can be used to help assess the effectiveness of sporting equipment 

* Corresponding author at: Department of Sport, Exercise and Rehabilitation, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne NE1 
8ST, UK. 

E-mail address: louise.burnie@northumbria.ac.uk (L. Burnie).  

Contents lists available at ScienceDirect 

The Foot 

journal homepage: www.elsevier.com/locate/foot 

https://doi.org/10.1016/j.foot.2023.102046 
Received 14 July 2023; Accepted 10 August 2023   

mailto:louise.burnie@northumbria.ac.uk
www.sciencedirect.com/science/journal/09582592
https://www.elsevier.com/locate/foot
https://doi.org/10.1016/j.foot.2023.102046
https://doi.org/10.1016/j.foot.2023.102046
https://doi.org/10.1016/j.foot.2023.102046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foot.2023.102046&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The Foot 56 (2023) 102046

2

such as football shin guards [38] or ice-hockey helmet responses to puck 
impacts [39]. 

This review aimed to: (a) describe the brief history of the develop
ment of pressure sensors for clinical and sport applications, (b) discuss 
the design requirements for pressure measurement systems for different 
applications, (c) critique the suitability, reliability, and validity of 
commercial pressure measurement systems, and (d) suggest future di
rections for the development of pressure measurements systems in this 
area. 

2. Brief history and development of pressure sensors 

Nicol and Henning (1973) developed a capacitive pressure sensor 
array which resulted in one of the first commercial systems (Novel 
GmbH) for the measurement of pressure in sport and healthcare [40]. In 
the 1980s, printed resistive pressure sensors were developed and 
patented [41,42], with the commercial Tekscan in-shoe system released 
in the early 1990s [43]. The first commercial pressure sensor arrays had 
low sampling rates (< 50 Hz) and the platforms were small and could 
only record one footstep at a time [44,45]. Improvements in sensor and 
wireless technology and computational power have resulted in systems 
that have higher sensor density (up to 4 sensors/cm2) and sampling 
frequency (up to 400 Hz), with improved usability – thinner, lighter 
platforms, some of which are wireless [44] (Table A1). Also, recent 
technological advances have reduced the obtrusiveness of in-shoe sys
tems due to wireless data transmission and smaller data-logger and 
control units (Table A2). 

3. Sensor technology 

There are two main types of sensors used in commercial pressure 
measurement systems: capacitive and resistive. Capacitive sensors 
comprise two electrically conducting surfaces separated by a compres
sive dielectric layer [4,46–49]. When pressure is applied, the dielectric 
layer is compressed which changes the dielectric constant of the mate
rial and reduces the distance between the plates, the combination of 
which alters capacitance and results in a change in voltage [4,48–51]. 
The dielectric layer should have good elastic recoil properties to mini
mise hysteresis [4,48]. One manufacturer (AMCube) uses air as the 
dielectric material in their capacitive pressure sensor [52]. Capacitive 
sensors have typically been reported to be more accurate and reliable 
than resistive sensors [44,47,52–56], but they tend to be thicker than 
resistive sensors [49]. For example, the in-shoe pressure measurement 
systems that use capacitive sensors range from 1.8 to 2.8 mm in thick
ness, whereas those that use resistive sensors range from 0.15 to 2.0 mm 
(Table A2). Capacitive sensors can also be sensitive to temperature, 
humidity, and electromagnetic interference [57]. 

Resistive pressure sensors change electrical resistance in response to 
applied pressure. Force-sensing resistors are an example of a resistive 
sensor; when pressure is applied to the sensor the resistance of the 
conductive foam, or a semi-conductive polymer sheet between two 
electrodes, decreases [44,50,51]. Piezoresistive sensors are a specific 
type of resistive sensor. They typically consist of two thin polymer sheets 
printed with conductive circuits, with a pressure-sensitive semi-
conductive ink applied between the sheets [4,41,46,47,49,50]; 
commercially available examples include the Tekscan pressure mea
surement systems. An increase in pressure results in a decrease in the 
electrical resistance of the sensor. Piezoresistive sensors can achieve 
higher sampling rates than capacitive sensors, and their electronics and 
data output are relatively simple [47]. However, they have several 
specific disadvantages as they can exhibit non-linearity, poor durability, 
be affected by temperature and humidity, have a response dependent on 
loading history and their sensitivity can be altered after repeated use [4, 
46,47,52,53,56,58–68]. While degradation of the sensor over time will 
occur, re-equilibration and calibration can help overcome this degra
dation to a certain point and mean the sensor can continue to provide 

reliable data. 

4. Design requirements for pressure sensors 

When designing pressure measurement systems there are several 
considerations to ensure they provide sufficiently valid and reliable 
data, and this must be considered in the context of the desired appli
cation. Furthermore, many of these specifications are interlinked and 
they often need to be critically considered in combination as a desired 
change in one could lead to unwanted compromise in another. 

Pressure measurement range: The system must have the capacity to 
record peak pressures created by the activity of interest without being 
overloaded which therefore defines the maximum pressure required [4, 
69]. Reports indicate that peak plantar pressures exceed 1000 kPa in 
some clinical pathologies such as diabetes and rheumatoid arthritis 
[70–72]. Also, studies have shown higher plantar pressure recordings 
during barefoot walking compared to the shod condition [73]. 

Sampling frequency: Based on previous work, a sampling frequency 
of 50–100 Hz is recommended for measuring plantar pressures during 
walking [49,69,74], with a minimum of 100 Hz for barefoot walking 
[71], and for higher speed activities such as running, a minimum sam
pling frequency of 200 Hz is recommended [49,57,69,75–78]. The 
maximum sampling frequency that can be achieved depends on the 
number of sensors in an array as this influences the electronics sampling 
rate, along with the quality and specification of the electronics. 

Spatial resolution: The individual sensors need to be small enough to 
measure pressures over the area of interest, for example, the small 
anatomical structures of the foot, such as the metatarsal heads [4,44,49, 
51,69,79]. Urry (1999) recommended a minimum of 5 mm × 5 mm 
spatial resolution for measuring plantar pressures, as larger sensors may 
underestimate peak pressures [51]. Lord (1997) found that the average 
pressure measured by a 100 mm2 sensor may be only 60–70% of the true 
peak value during barefoot standing [79]. This is particularly important 
when studying plantar pressure under small feet such as those of chil
dren [4,44,49,69]. For curved surfaces, the size of the individual sensors 
should be small relative to the interface curvature to ensure good con
tact with the skin, so the pressure applied to any individual sensor is 
homogenous [80]. 

Pressure resolution: Several studies use 10 kPa as a minimum pres
sure resolution for walking assessment in clinical and medical settings 
[57,71]. The resolution for commercially available systems for 
measuring plantar pressures ranges from 0.07 to 68 kPa (Table A1 and 
Table A2). Newly developed pressure sensors have increased sensitivity, 
particularly at lower pressure ranges [81]. 

Pressure sensor properties: Ideally, the relationship between the 
pressure applied to the sensor and the output signal should be linear, as 
this simplifies the calibration procedures and data processing within the 
software to convert the electrical output signal to pressure [4,47,69,75, 
80]. The sensors should exhibit low hysteresis [4,69] – ideally less than 
5% full scale [57], low cross-talk between sensors (undesired activation 
of unloaded sensors when pressure is applied to neighbouring sensors) 
[4,69] and low drift of the sensor readings over time [75,82] – error less 
than 5% full scale after more than ten thousand loading-unloading cy
cles [57]. However, data processing algorithms can be used to 
compensate for the effects of hysteresis and drift in the pressure readings 
as long as these effects are known and consistent [83,84]. For long-term 
monitoring during daily living, low drift is particularly important. 
Ideally, the sensors should exhibit low temperature sensitivity in the 
range of 20–37 ◦C [85]. If the sensors are sensitive to change in tem
perature, the calibration protocol or data processing needs to account 
for this [82]. The frequency of the activity being measured should not 
exceed 60% of the natural frequency of the sensor [51], for example the 
frequency content of the normal force in walking is below 15 Hz [86], so 
the natural frequency of a pressure sensor to measure plantar pressures 
during walking ideally needs to be greater than 25 Hz. 

Sensor thickness and flexibility: For applications where the pressure 
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sensor needs to conform to a curved or soft surface, such as within shoes, 
it needs to be sufficiently flexible and thin to ensure pressure is accu
rately measured [47,75,82,87]. Ferguson-Pell (1980) recommended a 
maximum thickness of 0.5 mm for measuring body-support interface 
pressures, with a small sensor aspect ratio (ratio of sensor thickness to 
diameter) [80]. Also, when measuring pressure on or within a soft ob
ject, the pressure sensor needs to be stretchable (however whether the 
substrate and/or sensor itself need to be stretchable has not been spec
ified) [47]. 

Usability: The pressure measuring devices need to be unobtrusive to 
participants, easy to use, and durable [47,57,80,82,87–89]. For 
example, it has been suggested that any shoe-mounted device accom
panying a pressure insole must be light (less than 300 g) and small 
(however size was not quantified) [51,57,75,90,91]. The pressure sen
sors often need to be secured to prevent slippage [60,75], and need to be 
durable enough to withstand environmental effects, for example hu
midity, temperature and bending for sensors within shoes [51,57,60]. 

Software: For systems used in clinical settings, where limited time is 
typically available during appointments, the software ideally needs to 
provide real-time data display and visualisation for easy and quick 
interpretation. Real-time display is also very useful to provide biofeed
back to patients or athletes for training or rehabilitation purposes. 
However, for other applications particularly when pressure measure
ment systems are used in research studies where the data will be post- 
processed, real-time data display is not an essential requirement. 

Connectivity: Ideally, the data transmission needs to be wireless, to 
minimise interference to the user, and in the case of gait analysis to 
ensure comfortable, safe and natural gait [75,91,92]. However, wired 
systems have the advantages of higher sampling frequencies and sensor 
spatial resolution which may be necessary for certain applications. 

Power supply/consumption: Wearable pressure sensors require low 
power consumption to minimise battery size and maximise operating 
time, which is a particularly important consideration for continuous 
monitoring during daily living [75,93,94]. 

The above is not an exhaustive list, and other design considerations 
such as the ability to synchronise with other measurement systems (e.g., 
video cameras, motion capture systems, EMG) and cost may need to be 
considered depending on the application. 

5. Parameters provided by pressure measurement systems 

Pressure measurement systems provide a variety of parameters and 
metrics which are specific to the application. However, typically these 
include average and peak pressure (in the case of plantar pressures for 
the whole foot and in anatomical specific regions), pressure-time inte
gral, force, impulse, contact area, contact time, centre of pressure (CoP), 
and length of CoP path [4,49,69,95]. Plantar pressure measurement 
systems can also provide spatiotemporal variables such as stride length, 
stride frequency, and contact times during walking and running. It is 
also important that researchers consider using the full time series pres
sure data to get a more complete understanding of a patient’s or ath
lete’s gait or movement pattern [96], rather than just reducing pressure 
data to discrete values (e.g. peak and average). Also, researchers need to 
consider using the full spatial distribution of plantar pressures; this can 
be done by dividing the plantar surface of the foot into anatomical re
gions. Burnfield et al. (2004) investigated the effect of walking speed on 
plantar pressures on eight anatomical regions of the foot [73]. They 
found faster walking speeds resulted in higher plantar pressures in all 
regions of the foot except for the arch and lateral metatarsals, demon
strating we cannot assume all regions of the foot respond in the same 
way to an intervention [73]. Pataky et al. (2008) further investigated the 
effects of walking speed on the spatial distribution of plantar pressures, 
and compared subsampling the peak pressure data into ten anatomical 
regions of the foot to using individual pixel data [96]. This resulted in 
different findings for the mid-foot, highlighting the need to use the full 
pressure sensor data as subsampling may obscure or reverse statistical 

trends [96]. Several clinically useful metrics can be derived from the 
plantar pressure data: peak pressure gradient [97] and peak-average 
pressure ratio for different plantar regions of the foot [98], which may 
be indicative of areas at risk of tissue breakdown. 

6. Overview of commercially available pressure measurement 
systems 

As highlighted when considering design requirements, the choice of 
system should be based on matching its performance profile against the 
requirements of the particular measurement task [51]. This section will 
discuss the uses and applications of different systems, the relative merits 
of these systems, general points to consider when using the systems, and 
their reported validity and reliability (refer to Table A5 for a summary of 
studies assessing the validity and reliability of commercially available 
pressure measurement systems). 

6.1. Pressure platforms for measuring plantar pressures 

Rigid pressure platforms (and mats) are typically used in a clinical 
setting to measure plantar pressures to assess gait and balance [4,48,75, 
94,95,99,100] and can also be used to assess plantar pressures during 
standing sporting movements [101–103]. Commercially available 
pressure platforms for measuring plantar pressures are detailed in 
Table A1. The advantages of these platforms are they are easy to use, 
measure ‘true’ vertical ground reaction force and can be portable [49]. 
However, when using pressure platforms to obtain plantar pressures 
during gait, the participant is required to place their foot in the centre of 
the measurement area to obtain accurate readings, particularly when a 
small pressure platform is used [4,49,75,104]. This can result in par
ticipants targeting the platform, causing them to alter their gait char
acteristics [104]. 

Sampling frequencies in the commercially available platforms range 
from 5 Hz to 500 Hz, sensor densities from 0.16 to 4 sensors per cm2, 
and pressure measurement ranges from 0–200 kPa to 6.25–1562.5 kPa. 
Only approximately 40% of the platforms assessed measure plantar 
pressures over 1000 kPa (Table A1) and therefore, the choice of system 
needs to be carefully considered in the context of the patient group or 
application. Typically, the pressure platforms are calibrated by the 
manufacturer in the factory, and most systems (60%) have cabled data 
transmission, but some have wireless capability. 

Pressure sensors for plantar pressure measurement need to be valid 
and reliable since they are used in biomechanics research and gait clinics 
to assist in patient diagnosis [105]. The i-FAB-PG consensus statement 
stated that there were no ‘gold-standard’ medical plantar pressure 
measurement devices available in 2012 [71]. Whilst this is an area of 
constant debate, the EMED pressure platform (Novel GmbH), which 
consists of capacitive sensors, has been shown to be the most valid and 
reliable pressure platform for measuring plantar pressures [52,54,55, 
106–109] (Table A5). However, several studies have demonstrated good 
reliability of the Tekscan platforms which consist of piezoresistive sen
sors [54,110–114] (Table A5). 

Typically, the reliability of plantar pressure measurements is better 
for the areas of the foot (metatarsal heads and the heel) that are sub
jected to higher plantar pressures during walking and running [106,113, 
115–118]. These are the areas of the foot that researchers or clinicians 
are typically interested in, as high pressures can cause pain, formation of 
pressure ulcers, or be indicative of a disease or abnormality [4]. 
Therefore, many plantar pressure platforms and insole systems use 
automated masking algorithms within their software to divide the foot 
into distinct anatomical regions for plantar pressure analysis [44]. Ellis 
et al. (2011) investigated the accuracy of a ten-region standard masking 
algorithm which is based on geometric features of the footprint during 
static and dynamic measurements under normal feet using an EMED-X 
pressure platform (Novel GmbH) [119]. They found that the 
auto-masking algorithm accurately identified most foot regions, 
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particularly during gait [119]. More recently, a method has been 
developed based on anatomical landmarks of the foot and involves 
integration of 3D motion capture, a plantar pressure measurement de
vice, and a multi-segment foot model [120]. This method was as reliable 
and repeatable as the geometric mask and is particularly useful when 
there is a severe alteration in foot-ground contact pattern, such as for 
patients with clubfoot [120]. The software for many systems can also 
detect initial contact and toe-off during walking. Some of these pro
grammes have been found to have errors of ~40 ms, but researchers 
have proposed new algorithms which can reduce this to as low as 10 ms 
[121]. 

6.2. In-shoe systems 

The commercially available in-shoe pressure measurement systems 
(Table A2) include insoles, discrete sensors, and socks. One of the main 
advantages of in-shoe systems is that it is easy to record multiple steps 
without the likelihood of platform targeting, and therefore participants 
are more likely to adopt natural gait [46,49,51,95]. In-shoe systems are 
thus often used to assess dynamic sporting movements, and are partic
ularly suited to measuring plantar pressures during running [29,31, 
122–125]. As these systems fit within the shoe, they are very suitable for 
applications such as assessing the effect of different types of footwear on 
plantar pressure [4,46,49,51,75,95,103,126–132], measuring plantar 
pressures inside sport-specific footwear [34,35,62,133,134] and helping 
to prescribe and assess the effect of orthotics in redistributing or 
reducing plantar pressures [9–11,135–138]. 

Some in-shoe pressure measurement systems have a data-logger and 
transmitter attached to a belt around the waist with wires running the 
length of the leg to connect the pressure insoles to the data recording 
unit, whilst others have the data recorder attached to the lower leg or 
shoe (Table A2). The wires, data-logger and transmitter have the po
tential to interfere with the participant when they are performing a 
movement. Kong and De Heer (2009) found that an in-shoe system, 
which had a data-logger on the waist and associated cables from the 
insoles strapped to the legs, increased participants’ stride frequency and 
decreased their stride length during running [139]. Manufacturers have 
therefore focused on wireless data transmission and reducing the size 
and mass of the data-logger/control unit [92], leading to fully wireless 
systems with a small data-logger attached to the shoe or even incorpo
rated within the insoles themselves (Table A2). However, as highlighted 
earlier, these can lead to compromises in other specifications such as 
lower sampling rates and a smaller number of sensors [92]. Some of the 
completely wireless systems can often be thicker than the wired systems, 
as the power supply (battery) and data transmitter are incorporated 
within the insoles (Table A2). This has the potential to influence plantar 
pressures and may cause discomfort to the participant due to the addi
tion of a thicker, stiffer insole [78]. The in-shoe pressure measurement 
systems typically have a battery life in the range from 1.5 to 8 h which is 
primarily influenced by battery size and sampling frequency (Table A2). 
The in-shoe systems typically have lower spatial resolution compared to 
platform systems due to fewer sensors [75,78] (Table A1, Table A2), and 
these sensors are more susceptible to degradation as they are subjected 
to bending within the shoe, as well as heat and humidity generated 
within footwear [44,46,49]. Another consideration is that data quality is 
affected by the slippage of the sole of the foot relative to the insoles [57]. 
Most of the insole systems are provided in set shoe sizes, however, the 
F-Scan insoles (Tekscan) can be cut to size, so researchers and clinicians 
do not need a full set of different sized insoles - although they are 
typically single use (Table A2). 

The systems which have data-logger or wireless capability have the 
advantage of allowing data to be collected outside the laboratory when 
participants are performing their daily tasks or sporting movement. 
Diverse examples range from monitoring the effect of disease progres
sion on gait [57] to measuring plantar pressures during trail running 
[29], skateboarding [30], and sports (e.g. running, tennis, soccer) on 

different court surfaces [31–33]. Several of the newer wireless in-shoe 
systems link to a smartphone app (Table A2), which means the users, 
clinicians or coaches can obtain real-time monitoring with visual or 
auditory feedback which can be used in attempts to alter behaviour 
and/or alert them to a potential issue [25,27,94,140–146]. 

In-shoe systems measure force normal to the plane of the insole, so 
this is not a ‘true’ vertical ground reaction force, as it is not a totally flat 
surface and the foot and shoe bend during ground contact [49]. How
ever, researchers have often assessed the validity of various in-shoe 
pressure measurement systems by comparing the normal force 
measured by the insoles when a participant walks or runs to the vertical 
ground reaction force simultaneously measured by a force plate and 
therefore caution must therefore be applied when interpreting these 
comparisons [60–62,64,67,77,83,117,121,140,141,147–160]. 

The Pedar insole system (Novel GmbH), which consists of capacitive 
sensors, has been shown to be the most valid and reliable in-shoe system 
for measuring plantar pressures in published research studies [53,56,78, 
83,84,95,151,161–165] (Table A5). A recent study has also demon
strated good reliability and validity of the X4 insoles (XSENSOR Tech
nologies) [166]. Price et al. (2016) found the Pedar system was more 
valid and reliable than two other commercially available systems which 
comprised resistive sensors [53], but it must be remembered that other 
systems may be more suited for certain applications due to the wired 
nature and relative cost of the Pedar system. Furthermore, for some 
systems (e.g. F-Scan in-shoe system, Tekscan) several researchers have 
demonstrated that the validity and reliability can be further improved 
by using alternative calibration procedures [56,58,95,163]. A recent 
DELPHI-derived consensus provides guidance on use of the F-Scan sys
tem and appropriate measurement protocols to reduce potential sys
tematic error and highlight system limitations [167]. In a recent study, 
the reliability of F-Scan insoles in predicting 3D ground reaction forces 
(GRFs) during walking was evaluated using recurrent neural networks 
[168]. Additionally, the accuracy of predicted GRFs was compared be
tween walking and jogging, considering the increased shear and bending 
loads on the sensors during jogging [168]. The study utilised long 
short-term memory (LSTM) networks, which effectively capture the 
time-dependent patterns of pressure and force data [168]. The results 
demonstrated a high level of accuracy in predicting 3D GRFs [168]. 
These findings suggest that the integration of more advanced models 
and neural networks into plantar pressure systems can enable the 
real-time monitoring and analysis of forces, and wearable plantar 
pressure insoles could therefore become cost effective alternative to 
force plates for real-time reflection of GRFs. 

There are some wireless insoles that contain discrete sensors (range 
8–37) which can provide real-time feedback (Table A2). As these insoles 
contain discrete sensors, and not a full pressure sensor array covering 
the whole insole, they do not provide comparable data to pressure 
platforms. Nagahara and Morin (2018) found poor agreement in vertical 
ground reaction forces, support time and flight time during sprint 
running between a force plate system and wireless insoles sampling at 
50 Hz [77]. As the support time during maximal sprint running is 
approximately 0.1 s [77], wireless in-shoe pressure systems require 
higher sampling frequencies to be suitable for such applications with 
short contact times and rapid rate of force development [77,78]. An 
example of the new wireless insoles is the SurroSense Rx intelligent 
insole system (previous model of the Orpyx SI insole; Orpyx Medical 
Technologies) which was designed for monitoring and providing feed
back to patients with diabetes. The insole contains eight sensors linked 
to a smartwatch which can give the wearer a warning of high plantar 
pressure in a specified location and will continue to give alerts until the 
area is offloaded. This system was used by Abbott et al. (2019) in pa
tients with diabetes, peripheral neuropathy and a recent history of 
plantar foot ulceration, with the intelligent insoles resulting in a 71% 
reduction in ulcer incidence compared to a control group [27]. 

A further, recent development is smart socks which incorporate 
textile pressure sensors into socks to measure plantar pressures. These 
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can be used to calculate temporal gait parameters such as stance and 
stride duration, step frequency, and to classify foot strike (i.e., heel, mid 
or forefoot) [78,169,170]. There is one commercially available smart 
sock, the Sensoria Sock 2.0 (Sensoria Inc.) (Table A2). The sock contains 
three textile pressure sensors integrated into the plantar surface and has 
a removable inertial measurement unit (IMU) attached at ankle level, so 
the socks can be washed. The Sensoria Sock has been found to measure 
similar static CoP path length to a pressure platform [171]. The price of 
in-shoe systems vary depending on the product specifications and 
intended use. For systems to be adopted for everyday large scale use, 
such as patient monitoring of in-shoe pressures, affordability is a key 
consideration [78], and this likely means a considered compromise in 
other specifications. 

6.3. Pressure treadmills 

Typically, pressure treadmills are used for gait retraining by 
providing visual cues or perturbations, and then monitoring the effect of 
these on gait and plantar pressures [172–175]. The commercially 
available pressure treadmill systems are detailed in Table A3. Of the four 
pressure treadmills manufactured, only the FDM-T treadmill (Zebris 
GmbH) has been assessed for reliability [116,165,176,177] (Table A5). 
The FDM-T treadmill, which consists of capacitive sensors, has demon
strated moderate to excellent within- and between-session reliability for 
peak forces and pressures and spatiotemporal gait parameters during 
walking and running [116,176]. However, it is important to be cautious 
when comparing pressure data obtained from overground walking to 
that of treadmill walking, as previous research has consistently shown 
variations in gait patterns between the two modes of locomotion [178, 
179]. 

6.4. General flexible pressure sensors 

The commercially available flexible pressure measurement systems 
that have been used for sport and health applications include general 
flexible pressure sensor arrays for measuring pressures between two 
objects in direct contact, such as measuring prosthesis-limb interface 
pressures and measuring bone joint contact pressures (Table A4). There 
are a couple of systems specifically designed for measuring prosthesis- 
limb interface pressures (Table A4), although none of the current ver
sions of these systems have been assessed for validity. 

Orthopaedic surgeons, biomedical engineers and researchers often 
want to measure bone joint contact pressures and size of contact area to 
assess the effect of different surgical techniques [180–183], inform 
surgical decisions and assess joint replacement devices [184]. Several of 
the flexible sensors detailed in Table A4 can be used for measuring joint 
pressures and contact areas and have been found to be more accurate 
than the film pressure measuring systems which were used previously 
for measuring contact forces, pressures and areas between articulating 
bones [184–188], and they have the further advantage of providing 
real-time measurements [184,185] (Table A5). However, some of the 
systems have been found to suffer drift, so the time point at which the 
measurements are taken should be standardised, and the calibration 
procedure should use the same time interval from load applied to the 
sensor as the testing protocol [185]. Another consideration when 
measuring bone contact pressures is the location of the sensors, as 
pressure readings are affected by the mounting surface (on top of the 
cartilage or directly on the bone), and also whether they are cemented in 
place [186–188]. 

7. Limitations of current pressure measurement systems 

When choosing a pressure measurement system, the user clearly 
needs to decide on their priorities. Currently there is no small, in-shoe 
wireless system with a large number of sensors, high sampling rate 
and long battery life and therefore appropriate compromises must be 

made based on what is important for the particular application. One 
main current limitation of commercial pressure measurement systems is 
they cannot measure shear stress in conjunction with pressure, but the 
recent advances in the application of neural networks to predict 3D 
ground reaction forces from pressure data demonstrate great potential in 
this application [168]. Also, the effect of concurrent shear stress on the 
accuracy of pressure sensor measurements has not been reported in the 
literature or by the manufacturers, and it is likely that various devices 
will respond differently [46]. Accordingly, validation studies should 
assess the effects of concurrent shear stress and pressure on the accuracy 
of the perpendicular pressure sensor readings. 

Thin, flexible pressure sensors exhibit greater hysteresis (typically 
greater than 5%) and drift compared to rigid pressure sensors [47]. 
These are inherent properties of the polymer materials required to 
achieve a flexible sensor and result in higher inaccuracy compared to 
conventional inflexible sensors [47]. Therefore, the challenge for man
ufacturers and designers of thin flexible sensors is to minimise these 
effects on the pressure readings. Another issue with pressure measure
ment systems is they can experience drift in pressure sensor readings 
when used continuously [52,53,58,61,63–66,83,84,162,185,189–191], 
with even some of the more valid and reliable sensors suffering drift of 
up to 17% after 3 h, and 34% after 7 h [83,189]. It is suggested that 
correction factors can be applied to the measured pressure sensor values 
to account for the effects of drift [84,185,189,190], and this can reduce 
the errors in the force and CoP measurements by 50% [190]. 

8. Future directions and challenges for the development of new 
pressure measurement systems 

The focus for future development of in-shoe pressure measurement 
systems is to continue to reduce sensor thickness to minimise any po
tential interference to the patient or athlete, and to reduce power con
sumption of the wireless systems to improve the battery life, so these 
systems can be used to monitor daily activity [57,75,92,94,192]. De
velopers are trying to increase the sensor density and sampling fre
quency of these wireless systems, so they can provide research quality 
data outside of the laboratory. Several of the new in-shoe systems 
include other sensors such as IMUs which provide additional informa
tion which can be useful for characterising gait, and temperature sensors 
which can be used to assess the risk of a diabetic patient developing 
plantar ulcers [57,193–196]. The continued developments in flexible 
electronics, miniaturisation of electronics, battery free power, and data 
processing and classification algorithms will support the continued 
advancement of in-field measurement of plantar pressures [57,78]. 

New improved tools for giving feedback are continually being 
developed, an example being the tool developed by Turner et al. (2021) 
to visualise the real-time pressures at prosthetic socket–residuum 
interface to give clinicians and prosthetists feedback to help with pros
thetic socket fitting [197]. This system is wireless and the software 
provides a colour map across the surface of a 3D prosthetic socket 
model, so clinicians can identify the locations of high pressure which 
may result in skin breakdown [197–199]. The smartphone apps that link 
to pressure sensors will continue to be developed further, incorporating 
more advanced data processing algorithms to provide more detailed 
feedback to the users, clinicians, and coaches. 

Several researchers have demonstrated the potential of using the 
data obtained from pressure measurement devices to predict ground 
reaction forces, joint kinetics or classify patients’ posture or gait [70, 
168,200–206]. For example, the information from pressure insoles can 
be used to predict ground reaction forces in walking and running [168, 
200–202], whilst data from landing from horizontal jumps suggests that 
pressure insoles can be used to predict kinetic knee asymmetry and 
therefore potentially screen athletes following anterior cruciate liga
ment reconstruction surgery [203]. In addition to the promising work of 
neural networks to predict 3D GRFs, other applications of neural net
works and machine learning include classification of the existence of a 
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variety of different conditions/pathologies based on pressure sensor 
readings which has potential for healthcare monitoring and diagnosis 
[57,94,207,208]. 

There is a need to develop pressure measurement systems that can 
measure shear stresses in conjunction with pressure, as it is thought the 
combination of both contributes to the development of pressure ulcers 
and diabetic plantar ulcers [46,49,193,209–211]. However, a recent 
demonstration that these can be predicted from pressure sensor data 
using neural networks is promising [168]. The simultaneous measure
ment of pressure and shear stresses has been demonstrated in some 
research papers [210,212–220]. However, these systems are difficult to 
use and not suitable for clinical use, as they often use pressure sensitive 
film that requires post analysis to obtain pressure and shear stresses, or 
the systems involve pressure and shear stress being measured in separate 
trials. 

There has been development in textile pressure sensors which can be 
used for measuring plantar pressures and seat pressures, for breath and 
activity monitoring and as tactile sensors [75,78,133,169,221–226]. 
Some of these textile pressure sensors have incorporated nanomaterials 
such as graphene [224]. However, textile pressure sensors are often 
characterised by high hysteresis and non-linearity [78,223]. A recent 
development is smart socks (such as the aforementioned Sensoria smart 
sock) which incorporate textile pressure sensors into socks to measure 
plantar pressures which can be used to calculate temporal gait param
eters [78,169–171,227,228]. The Sensoria socks have been demon
strated to accurately measure step number and velocity, but further 
developments are required to enable them to determine other metrics 
such as cadence before they can be used for daily monitoring for health 
and sport applications [227]. A further potential application of smart 
socks could be to measure the pressures between the upper of the shoe 
and the foot, which could be important for diabetic patients, as currently 
there is only the Pedar pad (Novel GmbH) that can measure pressure at 
this interface. 

Flexible pressure sensors for wearable applications and devices are 
currently receiving considerable research and engineering interest due 
to potential applications for medical diagnostics and health and fitness 
wearables, such as for the monitoring of pulse, blood-pressure and heart 
rate [93,229,230]. These include flexible pressure sensors for electronic 
skin (e-skin) applications, such as in intelligent robotics, 
human-machine interactions and biomimetic prostheses [93,230–232]. 
Recently, near transparent skin-like pressure sensors have been devel
oped which present new opportunities for wearable sensors [93,231]. 
There has been a significant improvement in properties of these sensors, 
so they are lightweight, highly flexible, foldable, low cost, have a quick 
response time (< 100 ms) and have portable data processing and 
reduced power consumption which are required for wearable health 
monitoring devices [93,229]. The development in flexible pressure 
sensors has corresponded with the advances in flexible stretchable 
electronics which are required to fabricate large-area, low-cost pressure 
sensors [93,94]. These new pressure sensor devices are often multi
functional, for example, they can measure temperature as well as pres
sure which is useful for healthcare monitoring [93]. Researchers are 
currently investigating if it is possible to develop self-powered pressure 
sensors for wearables which would be ideal for long-term monitoring as 
the batteries would not need to be replaced or recharged [93]. 

9. Conclusions 

To summarise this comparative review of pressure sensors for sport 
and health applications:  

• Commercial pressure measurement systems generally use capacitive 
or resistive sensors, and typically capacitive sensors have been re
ported to be more valid and reliable than resistive sensors.  

• Improvements in sensor and wireless technology and computational 
power have resulted in systems that have higher sensor density and 

sampling frequency with improved usability – thinner, lighter plat
forms, some of which are wireless, and reduced the obtrusiveness of 
in-shoe systems due to wireless data transmission and smaller data- 
logger and control units.  

• When designing or selecting pressure measurement systems for a 
specific application, considerations include pressure measurement 
range, sampling frequency, spatial resolution, pressure resolution, 
pressure sensor properties, sensor thickness and flexibility, usability, 
software, connectivity, and power supply/consumption. Many of 
these specifications are interlinked, so must be appraised in the 
context of the desired application. 

• There is a need to develop commercial pressure measurement sys
tems that can measure shear stresses in conjunction with pressure, as 
it is thought the combination of both contributes to the development 
of pressure ulcers and diabetic plantar ulcers.  

• Future developments of thin flexible pressure sensors including 
textile sensors need to focus on reducing the effects of hysteresis and 
drift on the pressure sensor readings to improve their validity and 
reliability. 

In addition to sensor selection, ensuring the use of proper protocols 
for data collection and sensor calibration is extremely crucial. Most 
systems provide the option to calibrate sensors, but it is essential to 
consider the material properties of the surface being measured or used 
for calibration, as they can impact the sensor results significantly. In our 
follow-up article we will discuss the importance of appropriate cali
bration procedures and data collection protocols to ensure reliable and 
valid pressure data is collected with pressure measurement systems. It is 
important to exercise caution when interpreting previous papers and 
results as inadequate calibration practices may have influenced their 
findings. We will also discuss the analysis and interpretation of pressure 
data in clinical gait analysis as this is a key stage to ensure appropriate 
treatment options are selected by the clinician. Artificial intelligence 
offers the potential to assist clinicians in the analysis and interpretation 
of pressure data. 
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