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Abstract
A general method of producing correspondences and
spectral categories out of symmetric ring objects in gen-
eral categories is given. As an application, stable homo-
topy theory of spectra 𝑆𝐻 is recovered from modules
over a commutative symmetric ring spectrum defined in
terms of framed correspondences over an algebraically
closed field. Another application recovers stable motivic
homotopy theory 𝑆𝐻(𝑘) from spectral modules over
associated spectral categories.
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1 INTRODUCTION

Algebraic Kasparov 𝐾-theory is stable homotopy theory of nonunital 𝑘-algebras Alg𝑘 [9, 10].
In detail, we start with the category 𝑈∙(Alg𝑘) of pointed simplicial functors from Alg𝑘 to
pointed simplicial sets, where each algebra 𝐴 ∈ Alg𝑘 is regarded as the representable object
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 125

𝑟𝐴 = HomAlg𝑘
(𝐴,−). The category 𝑈∙(Alg𝑘) comes equipped with a motivic model structure.

Let 𝑆1 be the standard simplicial circle. Stabilization of 𝑈∙(Alg𝑘) in the 𝑆1-direction leads to
a stable motivic model category 𝑆𝑝𝑆1(Alg𝑘) of 𝑆1-spectra in 𝑈∙(Alg𝑘). The 𝑆1-suspension spec-
trum Σ∞

𝑆1
𝑟𝐴 of an algebra 𝐴 is computed as the fibrant spectrum 𝕂(𝐴,−) [10], where 𝕂(𝐴, 𝐵)

is the algebraic Kasparov 𝐾𝐾-theory spectrum of 𝐴, 𝐵 ∈ Alg𝑘 defined in [9]. A key nonunital
homomorphism involved in the computation is 𝜎𝐴 ∶ 𝐽𝐴 → Ω𝐴, where 𝐽𝐴 = Ker(𝑇𝐴 → 𝐴) with
𝑇𝐴 = 𝐴⊕𝐴⊗2 ⊕⋯ the algebraic tensor algebra and Ω𝐴 = (𝑥2 − 𝑥)𝐴[𝑥]. The morphism 𝑟(𝜎𝐴)

is a motivic equivalence in 𝑈∙(Alg𝑘).
In stable motivic homotopy theory the suspension ℙ1-spectrum Σ∞

ℙ1
𝑋+ of a smooth algebraic

variety 𝑋 ∈ Sm∕𝑘 is computed in [19, Theorem 4.1] as a (positively) fibrant spectrum𝑀ℙ∧1(𝑋)𝑓 .
Locally in the Nisnevich topology it is equal to the ℙ1-spectrum (Fr(Δ∙

𝑘
× −,𝑋), Fr(Δ∙

𝑘
× −,𝑋 ×

𝑇), …), where 𝑇 = 𝔸1∕(𝔸1 − {0}) and Fr(−, 𝑋) is the sheaf of stable framed correspondences intro-
duced by Voevodsky [35] in 2001. A key morphism involved in the computation is the canonical
motivic equivalence 𝜎𝑋 ∶ 𝑋+ ∧ ℙ∧1 → 𝑋+ ∧ 𝑇 in the category of pointed motivic spaces. Here
ℙ∧1 is the pointed projective line (ℙ1,∞).
The computations of Σ∞

𝑆1
𝑟𝐴 and Σ∞

ℙ1
𝑋+ share lots of common properties [11]. Inspired by these

computations, two categorical constructions are introduced in this paper. The first one produces
correspondences associated with two objects 𝑃, 𝑇 ∈  and ring objects of the category of symmet-
ric sequences Σ, where  is a symmetric monoidal category with finite colimits and zero object
0. The correspondences are constructed between objects of an arbitrary full subcategory  of 
closed under monoidal product. See Theorem 2.4 for details. After Voevodsky, correspondences
play a prominent role in motivic homotopy theory. In particular, they are necessary for com-
puting motivic homotopy types as well as for producing triangulated categories of motives. For
example, Voevodsky’s fundamental graded category of framed correspondences Fr∗(𝑘) is recov-
ered from Theorem 2.4 if we take  =, = {𝑋+ ∣ 𝑋 ∈ Sm∕𝑘}, 𝑃 = (ℙ1,∞), 𝑇 = 𝔸1∕(𝔸1 − {0}),
and the commutative ring object (𝑆0, 𝑇, 𝑇2, …) in Σ. Next, if 𝜎 ∶ 𝑃 → 𝑇 is a morphism in 
then the second categorical construction produces spectral categories, that is, categories enriched
over symmetric 𝑆1-spectra 𝑆𝑝Σ

𝑆1
, which are used for applications mentioned below. See The-

orem 5.2 for details. Spectral categories are of great utility in classical and equivariant stable
homotopy theory (see, e.g., [21, 33]) as well as in constructing triangulated categories of𝐾-motives
[16, 17].
The spectral categories and symmetric spectra constructed in this paper lead to the following

applications. We first introduce the stable homotopy category 𝑆𝐻𝑘 over an arbitrary field 𝑘 in
Section 4. It is defined as the homotopy category of 𝖲𝑘-modules, where 𝖲𝑘 is a commutative sym-
metric ring spectrum defined over 𝑘. Then one reconstructs in Theorem 4.15 the stable homotopy
theory of 𝑆1-spectra 𝑆𝐻 as 𝑆𝐻𝑘 if 𝑘 is algebraically closed (we need to invert the exponential char-
acteristic). Moreover, this reconstruction is given by a functor taking a symmetric 𝑆1-spectrum
𝑁 to its symmetric framed motive𝑀Σ

𝑓𝑟
(𝑁) introduced in this paper (see Definition 4.9). Another

application gives yet another genuinely local model of stable motivic homotopy theory 𝑆𝐻(𝑘)
(in addition to [20]) and, more generally, a local model for the category of 𝐸-modules in 𝑆𝐻(𝑘),
where 𝐸 is a symmetric Thom ring spectrum. See Theorem 6.7 and Corollary 6.9 for details. For
the latter result, we apply Theorem 5.2 to produce a spectral category 𝐸

Δ
using data as above:

 =, = {𝑋+ ∣ 𝑋 ∈ Sm∕𝑘}, 𝑃 = (ℙ1,∞), 𝑇 = 𝔸1∕(𝔸1 − {0}). We also use the enrichedmotivic
homotopy theory of motivic spectral categories developed in [16, 17]. The reader will also find
reconstruction theorems for𝐸-modules of 𝑆𝐻(𝑘) in terms of∞-categories of “tangentially framed
correspondences” in [7, 8]. The approach presented in Section 6 is combinatorial in the sense

 20524986, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12056 by T

est, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



126 GARKUSHA

that it is based on explicit spectral categories produced by Theorem 5.2 and modules over them
defined in terms of original Voevodsky’s framed correspondences [35]. This approach also pro-
duces triangulated categories of 𝐸-framedmotives out of spectral categories of Theorem 5.2. They
are constructed in a similar fashion as the classical Voevodsky category of motives or the category
of 𝐾-motives in the sense of [16, 17].
The author also expects further applications of (spectral) categories of correspondences, con-

structed in this paper for quite general categories, in classical and algebraic Kasparov𝐾-theory as
well as in noncommutative algebraic geometry. This will be the material of subsequent papers.
In this paper he has concentrated on applications in classical and motivic stable homotopy
theory.
The author thanks the anonymous referee for helpful comments.

Notation. Throughout the paper, we employ the following notation.

k and 𝗉𝗍 A field of exponential characteristic 𝑒 and Spec(𝑘)
Sm∕𝑘 The category of smooth separated schemes of finite type
Fr0(𝑘) or Sm∕𝑘+ The category of framed correspondences of level zero
Shv∙(Sm∕𝑘) The closed symmetric monoidal category of pointed Nisnevich sheaves
 = ΔopShv∙(Sm∕𝑘) The category of pointed motivic spaces, also known as the category of pointed

simplicial Nisnevich sheaves
𝐒∙ The category of pointed simplicial sets

2 GRADED SYMMETRIC SEQUENCES

Let (, ∧, ∨, 𝑆) be a symmetric monoidal category with finite coproducts, unit object 𝑆 and zero
object 0. We assume that a canonical morphism

𝑣 ∶
⋁
𝑖∈𝐼

(𝐴𝑖 ∧ 𝐵) → (
⋁
𝑖∈𝐼

𝐴𝑖) ∧ 𝐵

is an isomorphism for any finite set 𝐼 and𝐴𝑖, 𝐶 ∈ †. In particular, if 𝐼 = ∅ then 0 ∧ 𝐵 ≅ 𝐵 ∧ 0 ≅ 0.
In what follows, we shall also assume that  has finite colimits. By [22, section 7], the category

of symmetric sequences Σ is symmetric monoidal with
(𝑋 ∧ 𝑌)𝑛 =

⋁
𝑝+𝑞=𝑛

Σ𝑛 ×Σ𝑝×Σ𝑞 𝑋𝑝 ∧ 𝑌𝑞.

The symmetric sequence (𝑆, 0, 0, …) is a monoidal unit of Σ. This notation needs some explana-
tion (we follow [22, section 7]). Given a finite set Γ and an object 𝐴 ∈ , Γ × 𝐴 is the coproduct of
|Γ| copies of 𝐴. If Γ is a group, then Γ × 𝐴 has an obvious left Γ-action; Γ × 𝐴 is the free Γ-object
on 𝐴. Note that a Γ-action on 𝐴 is then equivalent to a map Γ × 𝐴 → 𝐴 satisfying the usual unit
and associativity conditions. Also, if Γ admits a right action by a group Γ′, and𝐴 is a left Γ′-object,
then we can form Γ ×Γ′ 𝐴 as the colimit of the Γ′-action on Γ × 𝐴, where 𝛼 ∈ Γ′ takes the copy of
𝐴 corresponding to 𝛽 ∈ Γ to the copy of 𝐴 corresponding to 𝛽𝛼−1 by the action of 𝛼.

† Such a category  is also known as a distributive symmetric monoidal category.
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 127

Given two maps 𝑓 ∶ 𝑋 → 𝑋′ and g ∶ 𝑌 → 𝑌′ in Σ, the Σ𝑝 × Σ𝑞-equivariant maps 𝑓𝑝 ∧ g𝑞 ∶

𝑋𝑝 ∧ 𝑌𝑞 → 𝑋′𝑝 ∧ 𝑌
′
𝑞 yield the tensor product morphism 𝑓 ∧ g ∶ 𝑋 ∧ 𝑌 → 𝑋′ ∧ 𝑌′ in Σ.

The twist isomorphism 𝑡𝑤𝑖𝑠𝑡 ∶ 𝑋 ∧ 𝑌 → 𝑌 ∧ 𝑋 for 𝑋,𝑌 ∈ Σ is the natural map taking the
summand (𝛼, 𝑋𝑝 ∧ 𝑌𝑞) to the summand (𝛼𝜒𝑞,𝑝, 𝑌𝑞 ∧ 𝑋𝑝) for 𝛼 ∈ Σ𝑝+𝑞, where 𝜒𝑞,𝑝 ∈ Σ𝑝+𝑞 is the
(𝑞, 𝑝)-shuffle given by𝜒𝑞,𝑝(𝑖) = 𝑖 + 𝑝 for 1 ⩽ 𝑖 ⩽ 𝑞 and𝜒𝑞,𝑝(𝑖) = 𝑖 − 𝑞 for 𝑞 < 𝑖 ⩽ 𝑝 + 𝑞. It isworth
noting that themap definedwithout the shuffle permutation is not amap of symmetric sequences.

Definition 2.1 (Ring objects). Inwhat followswe shall refer tomonoid objects inΣ as ring objects.
There is a standard description of a ring object 𝐸 in Σ that we need later:
⋄ a sequence of objects 𝐸𝑛 ∈  for 𝑛 ⩾ 0;
⋄ a left action of the symmetric group Σ𝑛 on 𝐸𝑛 for each 𝑛 ⩾ 0;
⋄ Σ𝑛 × Σ𝑚-equivariantmultiplication maps

𝜇𝑛,𝑚 ∶ 𝐸𝑛 ∧ 𝐸𝑚 → 𝐸𝑛+𝑚

for 𝑛,𝑚 ⩾ 0, and
⋄ a unit map 𝜄0 ∶ 𝑆 → 𝐸0.

These data are subject to the following conditions:
(Associativity) The square

commutes for all 𝑛,𝑚, 𝑝 ⩾ 0.
(Unit) The two composites

𝐸𝑛 ≅ 𝐸𝑛 ∧ 𝑆
𝐸𝑛∧𝜄0
QQQQQ→ 𝐸𝑛 ∧ 𝐸0

𝜇𝑛,0
QQQ→ 𝐸𝑛

𝐸𝑛 ≅ 𝑆 ∧ 𝐸𝑛
𝜄0∧𝐸𝑛
QQQQQ→ 𝐸0 ∧ 𝐸𝑛

𝜇0,𝑛
QQQ→ 𝐸𝑛

are the identity for all 𝑛 ⩾ 0.
A morphism 𝑓 ∶ 𝐸 → 𝐸′ of ring objects consists of Σ𝑛-equivariant maps 𝑓𝑛 ∶ 𝐸𝑛 → 𝐸′𝑛 for 𝑛 ⩾

0, which are compatible with the multiplication and unit maps in the sense that 𝑓𝑛+𝑚 ◦𝜇𝑛,𝑚 =

𝜇𝑛,𝑚 ◦ (𝑓𝑛 ∧ 𝑓𝑚) for all 𝑛,𝑚 ⩾ 0, and 𝑓0 ◦ 𝜄0 = 𝜄0.
A ring object 𝐸 is commutative if the square

commutes for all 𝑛,𝑚 ⩾ 0.
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128 GARKUSHA

Definition 2.2 (Modules). A right module 𝑀 over a ring object 𝐸 ∈ Σ is defined in a standard
way. There is an equivalent definition that we need later:

⋄ a sequence of objects𝑀𝑛 ∈  for 𝑛 ⩾ 0,
⋄ a left action of the symmetric group Σ𝑛 on𝑀𝑛 for each 𝑛 ⩾ 0, and
⋄ Σ𝑛 × Σ𝑚-equivariant action maps 𝛼𝑛,𝑚 ∶ 𝑀𝑛 ∧ 𝐸𝑚 → 𝑀𝑛+𝑚 for 𝑛,𝑚 ⩾ 0.

The action maps have to be associative and unital in the sense that the following diagrams
commute

for all 𝑛,𝑚, 𝑝 ⩾ 0. A morphism 𝑓 ∶ 𝑀 → 𝑁 of right 𝐸-modules consists of Σ𝑛-equivariant
maps 𝑓𝑛 ∶ 𝑀𝑛 → 𝑁𝑛 for 𝑛 ⩾ 0, which are compatible with the action maps in the sense that
𝑓𝑛+𝑚 ◦𝛼𝑛,𝑚 = 𝛼𝑛,𝑚 ◦ (𝑓𝑛 ∧ 𝐸𝑚) for all 𝑛,𝑚 ⩾ 0. We denote the category of right 𝐸-modules by
Mod𝐸.

The following definition is motivated by the fundamental graded category of Voevodsky’s
framed correspondences, in which the role of  is played by the category of pointedmotivic spaces
, is given by pointedmotivic spaces of the form𝑋+with𝑋 ∈ Sm∕𝑘,𝑃 is the pointed projective
line (ℙ1,∞), and 𝐸 = (𝗉𝗍+, 𝑇, 𝑇2, …) with 𝑇 = 𝔸1∕(𝔸1 − {0}).
In what follows, we shall tacitly use iterated monoidal products and coherence.

Definition 2.3. Suppose is a full subcategory of  closed under ∧ and 𝑃 ∈ Ob. Let 𝐸 be a ring
object of Σ. We define the set of (𝐸, 𝑃)-correspondences of level 𝑛 between two objects 𝑋,𝑌 ∈ 
by

Corr𝐸𝑛 (𝑋, 𝑌) ∶= Hom(𝑋 ∧ 𝑃∧𝑛, 𝑌 ∧ 𝐸𝑛).

This set is pointed at the zeroth map. By definition, Corr𝐸
0
(𝑋, 𝑌) ∶= Hom(𝑋, 𝑌 ∧ 𝐸0).

Define a pairing

𝜑𝑋,𝑌,𝑍 ∶ Corr
𝐸
𝑛 (𝑋, 𝑌) ∧ Corr

𝐸
𝑚(𝑌, 𝑍) → Corr𝐸𝑛+𝑚(𝑋, 𝑍)

by the rule: 𝜑𝑋,𝑌,𝑍(𝑓 ∶ 𝑋 ∧ 𝑃∧𝑛 → 𝑌 ∧ 𝐸𝑛, g ∶ 𝑌 ∧ 𝑃
∧𝑚 → 𝑍 ∧ 𝐸𝑚) is given by the composition

𝑋 ∧ 𝑃∧𝑛 ∧ 𝑃∧𝑚
𝑓∧𝑃∧𝑚

QQQQQQ→ 𝑌 ∧ 𝐸𝑛 ∧ 𝑃
∧𝑚 𝑡𝑤

QQ→ 𝑌 ∧ 𝑃∧𝑚 ∧ 𝐸𝑛
g∧𝐸𝑛
QQQQQ→ 𝑍 ∧ 𝐸𝑚 ∧ 𝐸𝑛

𝑡𝑤
QQ→

→ 𝑍 ∧ 𝐸𝑛 ∧ 𝐸𝑚
𝑍∧𝜇𝑛,𝑚
QQQQQQQ→ 𝑍 ∧ 𝐸𝑛+𝑚.

Theorem 2.4. Let 𝐸 be a ring object in Σ and  is a full subcategory of  closed under monoidal
product. Then can be enriched over the closed symmetricmonoidal category of symmetric sequences
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 129

of pointed sets 𝑆𝑒𝑡𝑠Σ∗ . Namely, 𝑆𝑒𝑡𝑠
Σ
∗ -objects of morphisms are defined by

(Corr𝐸0 (𝑋, 𝑌), Corr
𝐸
1 (𝑋, 𝑌), Corr

𝐸
2 (𝑋, 𝑌), …), 𝑋, 𝑌 ∈ . (1)

Compositions are defined by pairings 𝜑𝑋,𝑌,𝑍 . The resulting 𝑆𝑒𝑡𝑠Σ∗ -category is denoted by Corr
𝐸
∗ ().

Moreover, if 𝐸 is a commutative ring object then Corr𝐸∗ () is symmetric monoidal. The monoidal
product of 𝑋,𝑌 ∈ Ob(Corr𝐸∗ ()) is defined as 𝑋 ∧ 𝑌, where ∧ is the monoidal product in .
Proof. The left action of the symmetric group Σ𝑛 on Corr𝐸𝑛 (𝑋, 𝑌) = Hom(𝑋 ∧ 𝑃∧𝑛, 𝑌 ∧ 𝐸𝑛) for
each 𝑛 ⩾ 0 is given by conjugation. In detail, for each 𝑓 ∶ 𝑋 ∧ 𝑃∧𝑛 → 𝑌 ∧ 𝐸𝑛 and each 𝜏 ∈ Σ𝑛 the
morphism 𝜏 ⋅ 𝑓 is defined as the composition

𝑋 ∧ 𝑃∧𝑛
𝑋∧𝜏−1

QQQQQQ→ 𝑋 ∧ 𝑃∧𝑛
𝑓
Q→ 𝑌 ∧ 𝐸𝑛

𝑌∧𝜏
QQQQ→ 𝑌 ∧ 𝐸𝑛. (2)

With this definition each Corr𝐸𝑛 (𝑋, 𝑌) becomes a pointed Σ𝑛-set. Here Σ𝑛 acts on 𝑃∧𝑛 by
permutations, using the commutativity and associativity isomorphisms.
As the multiplication maps 𝜇∗,∗ for 𝐸 are Σ𝑛 × Σ𝑚-equivariant and the diagram

is commutative for any 𝛼 ∈ Σ𝑛, 𝛽 ∈ Σ𝑚, it follows that the pairing 𝜑𝑋,𝑌,𝑍 is Σ𝑛 × Σ𝑚-equivariant.
If there is no likelihood of confusion, we shall simetimes write (𝑋 ∧ 𝑃∧𝑛, 𝑌 ∧ 𝐸𝑛) to denote

Hom(𝑋 ∧ 𝑃∧𝑛, 𝑌 ∧ 𝐸𝑛). The “associativity square”

is commutative for all 𝑛,𝑚, 𝑝 ⩾ 0 due to the associativity of the multiplication maps 𝜇∗,∗ for 𝐸,
and so 𝜑𝑋,𝑌,𝑍 is an associative pairing.
The identity morphism is defined by

𝑢𝑋 ∶ 𝑋
𝜌−1

≅ 𝑋 ∧ 𝑆
id𝑋 ∧𝜄0
QQQQQQ→ 𝑋 ∧ 𝐸0 ∈ Corr

𝐸
0 (𝑋, 𝑋),

where 𝜄0 ∶ 𝑆 → 𝐸0 is the unit map. We see that  is enriched over 𝑆𝑒𝑡𝑠Σ∗ by means of
(𝐸, 𝑃)-correspondences.
Suppose 𝐸 is a commutative ring object in Σ. If there is no likelihood of confusion, we shall

simetimes write [𝑋, 𝑌] to denote the 𝑆𝑒𝑡𝑠Σ∗ -object of morphisms (1). To show that Corr𝐸∗ () is a
symmetric monoidal 𝑆𝑒𝑡𝑠Σ∗ -category, we need to define a 𝑆𝑒𝑡𝑠

Σ
∗ -functor

𝜓 ∶ Corr𝐸∗ () ∧ Corr𝐸∗ () → Corr𝐸∗ (),
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130 GARKUSHA

where Ob(Corr𝐸∗ () ∧ Corr𝐸∗ ()) = ObCorr𝐸∗ () × ObCorr𝐸∗ () and [(𝑋, 𝑌), (𝑋′, 𝑌′)] =

[𝑋, 𝑋′] ∧ [𝑌, 𝑌′] (see [1, p. 305]). By definition, 𝜓(𝑋, 𝑌) = 𝑋 ∧ 𝑌 for all (𝑋, 𝑌) ∈ Ob(Corr𝐸∗ () ∧
Corr𝐸∗ ()).
Composition law in Corr𝐸∗ () ∧ Corr𝐸∗ () is given by (see [1, p. 305] for details)
[(𝑋, 𝑌), (𝑋′, 𝑌′)] ∧ [(𝑋′, 𝑌′), (𝑋′′, 𝑌′′)] = [(𝑋, 𝑋′)] ∧ [𝑌, 𝑌′] ∧ [(𝑋′, 𝑋′′)] ∧ [𝑌′, 𝑌′′]

𝑡𝑤𝑖𝑠𝑡
QQQQ→

[(𝑋, 𝑋′)] ∧ [(𝑋′, 𝑋′′)] ∧ [𝑌, 𝑌′] ∧ [𝑌′, 𝑌′′]
𝜑𝑋,𝑋′,𝑋′′ ∧𝜑𝑌,𝑌′,𝑌′′
QQQQQQQQQQQQQQ→ [(𝑋,𝑋′′)] ∧ [𝑌, 𝑌′′] = [(𝑋, 𝑌), (𝑋′′, 𝑌′′)].

It sends each quadruple

(𝑓 ∶ 𝑋 ∧ 𝑃∧𝑝 → 𝑋′ ∧ 𝐸𝑝, g ∶ 𝑌 ∧ 𝑃
∧𝑞 → 𝑌′ ∧ 𝐸𝑞)

∧(𝑓′ ∶ 𝑋′ ∧ 𝑃∧𝑠 → 𝑋′′ ∧ 𝐸𝑠, g
′ ∶ 𝑌′ ∧ 𝑃∧𝑡 → 𝑌′′ ∧ 𝐸𝑡)

to

(𝑓 ∶ 𝑋 ∧ 𝑃∧𝑝 → 𝑋′ ∧ 𝐸𝑝, (𝜒𝑠,𝑞, 𝑓
′ ∶ 𝑋′ ∧ 𝑃∧𝑠 → 𝑋′′ ∧ 𝐸𝑠),

g ∶ 𝑌 ∧ 𝑃∧𝑞 → 𝑌′ ∧ 𝐸𝑞, g
′ ∶ 𝑌′ ∧ 𝑃∧𝑡 → 𝑌′′ ∧ 𝐸𝑡)

and then to the couple

(𝜒𝑠,𝑞, 𝑓 ◦𝑓
′ ∶ 𝑋 ∧ 𝑃∧𝑝+𝑠 → 𝑋′′ ∧ 𝐸𝑝+𝑠, g ◦ g

′ ∶ 𝑌 ∧ 𝑃∧𝑞+𝑡 → 𝑌′′ ∧ 𝐸𝑞+𝑡),

where 𝜒𝑠,𝑞 ∈ Σ𝑝+𝑠+𝑞+𝑡 is the permutation id ×𝜒𝑠,𝑞 × id ∈ Σ𝑝 × Σ𝑠+𝑞 × Σ𝑡.
Define

𝜓𝑋,𝑌
𝑋′,𝑌′

∶ Corr𝐸𝑝(𝑋, 𝑋
′) ∧ Corr𝐸𝑞 (𝑌, 𝑌

′) → Corr𝐸𝑝+𝑞(𝑋 ∧ 𝑌,𝑋
′ ∧ 𝑌′)

by sending (𝑓 ∶ 𝑋 ∧ 𝑃∧𝑝 → 𝑋′ ∧ 𝐸𝑝, g ∶ 𝑌 ∧ 𝑃
∧𝑞 → 𝑌′ ∧ 𝐸𝑞) to the composition

𝑋 ∧ 𝑌 ∧ 𝑃∧𝑝 ∧ 𝑃∧𝑞
𝑡𝑤
QQ→ 𝑋 ∧ 𝑃∧𝑝 ∧ 𝑌 ∧ 𝑃∧𝑞

𝑓∧g
QQQQ→ 𝑋′ ∧ 𝐸𝑝 ∧ 𝑌

′ ∧ 𝐸𝑞
𝑡𝑤
QQ→ 𝑋′ ∧ 𝑌′ ∧ 𝐸𝑝 ∧ 𝐸𝑞

𝑌∧𝑌′∧𝜇𝑝,𝑞
QQQQQQQQQQ→ 𝑋′ ∧ 𝑌′ ∧ 𝐸𝑝+𝑞.

The pairing 𝜓𝑋,𝑌
𝑋′,𝑌′

is plainly Σ𝑝 × Σ𝑞-equivariant.
We have a commutative diagram
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 131

Commutativity of the top square follows from commutativity of themultiplicationmaps, commu-
tativity of the remaining squares follows from equivariancy of the multiplication maps. It follows
that

𝜑𝑋∧𝑌,𝑋′∧𝑌′,𝑋′′∧𝑌′′ (𝑓 ∧ g , 𝑓′ ∧ g ′) = 𝜑𝑋,𝑋′,𝑋′′ (𝑓, 𝑓
′) ∧ 𝜑𝑌,𝑌′,𝑌′′ (g , g

′).

For 𝑋,𝑌 ∈ , the corresponding unit map of Corr𝐸∗ () ∧ Corr𝐸∗ () is given by (see [1, p. 305])

𝑆
𝜌−1

QQQ→ 𝑆 ∧ 𝑆
𝑢𝑋∧𝑢𝑌
QQQQQQ→ [𝑋,𝑋] ∧ [𝑌, 𝑌].

Clearly, 𝜓𝑋,𝑌
𝑋,𝑌

takes it to the unit 𝑢𝑋∧𝑌 ∶ 𝑆 → [𝑋 ∧ 𝑌,𝑋 ∧ 𝑌].
We see that 𝜓 ∶ Corr𝐸∗ () ∧ Corr𝐸∗ () → Corr𝐸∗ () is a 𝑆𝑒𝑡𝑠Σ∗ -functor. It defines a symmetric

monoidal 𝑆𝑒𝑡𝑠Σ∗ -category structure on Corr
𝐸
∗ () with the unit 𝑆 ∈ ObCorr𝐸∗ (). 𝑆𝑒𝑡𝑠Σ∗ -natural

associativity, symmetry isomorphisms and two 𝑆𝑒𝑡𝑠Σ∗ -natural unit isomorphisms are inherited
from the same isomorphisms of the symmetric monoidal category structure on. This completes
the proof of the theorem. □

The proof of the theorem implies the following result.

Corollary 2.5. Under the notation of Theorem 2.4 any morphism of two ring objects 𝛾 ∶ 𝐸 → 𝐸′ in
Σ induces a morphism of 𝑆𝑒𝑡𝑠Σ∗ -categories 𝛾∗ ∶ Corr

𝐸
∗ () → Corr𝐸

′

∗ ().
Day’s theorem [2] together with Theorem 2.4 also imply the following result.

Corollary 2.6. Under the notation of Theorem 2.4 if 𝐸 is a commutative ring object in Σ then the
category of Corr𝐸∗ ()-modules is a closed symmetric monoidal category.

3 SYMMETRIC SPECTRA

Let  be the category from the previous section and let𝑇 be an object of . Following [22, section 7]
consider the free commutative monoid 𝑆𝑦𝑚(𝑇) on the object (0, 𝑇, 0, 0, …) of Σ . Then 𝑆𝑦𝑚(𝑇)
is the symmetric sequence (𝑆, 𝑇, 𝑇∧2, 𝑇∧3, …), where Σ𝑛 acts on 𝑇∧𝑛 by permutation, using the
commutativity and associativity isomorphisms.

Definition 3.1.

(1) Following [22, Definition 7.2], the category of symmetric spectra 𝑆𝑝Σ(, 𝑇) is the category of
modules in Σ over the commutative monoid 𝑆𝑦𝑚(𝑇) in . That is, a symmetric spectrum 𝑋

is a sequence of Σ𝑛-objects 𝑋𝑛 ∈  and Σ𝑛-equivariant maps 𝑋𝑛 ∧ 𝑇 → 𝑋𝑛+1, such that the
composite

𝑋𝑛 ∧ 𝑇
∧𝑝 → 𝑋𝑛+1 ∧ 𝑇

∧𝑝−1 → ⋯→ 𝑋𝑛+𝑝

is Σ𝑛 × Σ𝑝-equivariant for all 𝑛, 𝑝 ⩾ 0. A map of symmetric spectra is a collection of
Σ𝑛-equivariant maps 𝑋𝑛 → 𝑌𝑛 compatible with the structure maps of 𝑋 and 𝑌.

(2) A symmetric ring 𝑇-spectrum is a ring spectrum 𝐸 ∈ Σ such that there is another unit map
𝜄1 ∶ 𝑇 → 𝐸1 subject to the following condition:
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132 GARKUSHA

(Centrality) The diagram

commutes for all 𝑛 ⩾ 0.
𝐸 is commutative if it is commutative as a ring object of Σ. A morphism 𝑓 ∶ 𝐸 → 𝐸′ of

symmetric ring spectra is a morphism of ring objects in Σ such that 𝑓1𝜄1 = 𝜄′1.
(3) A right module 𝑀 over a symmetric ring 𝑇-spectrum 𝐸 is a symmetric right 𝑇-spectrum

which is also a right 𝐸-module in the sense of Definition 2.2. We denote the category of
right 𝐸-modules byMod𝐸 (its morphisms are morphisms of symmetric 𝑇-spectra satisfying
Definition 2.2).

Because 𝑆𝑦𝑚(𝑇) is a commutative monoid, the category 𝑆𝑝Σ(, 𝑇) is a symmetric monoidal
category, with 𝑆𝑦𝑚(𝑇) itself as the unit. We denote the monoidal structure by 𝑋

⋀
𝑌 = 𝑋 ∧𝑆𝑦𝑚(𝑇)

𝑌, where𝑋 ∧𝑆𝑦𝑚(𝑇) 𝑌 is defined similarly to [32, p. 499] as the coequalizer, in Σ, of the two maps
induced by the actions of 𝑆𝑦𝑚(𝑇) on 𝑋 and 𝑌, respectively.

Given 𝑋 ∈  and a pointed set (𝐾, ∗), we shall write 𝑋 ∧ 𝐾 to denote
⋁
𝐾⧵∗ 𝑋. Let 𝑃 ∈  and

𝜎 ∶ 𝑃 → 𝑇 be a morphism in . Denote by 𝑇𝑛 ∶= 𝑇∧ 𝑛
⋯ ∧𝑇 (respectively, 𝑃∧𝑛 = 𝑃∧ 𝑛

⋯ ∧𝑃). This
notation is inherited from the standard notation for pointed motivic spaces 𝑇𝑛 and ℙ∧𝑛 associ-
ated with pointed motivic spaces 𝑇 = 𝔸1∕(𝔸1 − {0}) and (ℙ1,∞), where 𝜎 ∶ (ℙ1,∞) → 𝑇 is the
canonicalmotivic equivalence given by the level 1 framed correspondence ({0}, 𝔸1, 𝑡) ∈ Fr1(𝗉𝗍, 𝗉𝗍).
In what follows 𝑆1 is the standard simplicial circle with 𝑛-simplices being 𝑛+ = {0, 1, … , 𝑛}

and 𝑆𝑛 ∶= 𝑆1∧
𝑛
⋯ ∧𝑆1. Given a symmetric right 𝑇-spectrum 𝐸, let 𝟏𝐸 denote the following

𝑆1-spectrum in 𝐒∙:

𝟏𝐸 ∶= (Hom(𝑆, 𝐸0), Hom(𝑃, 𝐸1 ∧ 𝑆1), Hom(𝑃∧2, 𝐸2 ∧ 𝑆2), …).

Here each𝐸𝑛 ∧ 𝑆𝑛 is performed in every degree to produce a simplicial object in  and a simplicial
Hom-set. We also call 𝟏𝐸 the 𝑃𝑇-spectrum of 𝐸.
Each simplicial Hom-set is pointed at the zero morphism. Each structure map

𝑢𝑛 ∶ Hom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) ∧ 𝑆1 → Hom(𝑃∧𝑛+1, 𝐸𝑛+1 ∧ 𝑆𝑛+1)

coincides termwise with the natural morphisms
⋁

Hom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) → Hom(𝑃∧𝑛+1,
⋁
(𝐸𝑛+1 ∧ 𝑆

𝑛)),

where coproducts are indexed by nonbasepoint elements of 𝑆1𝑛 = 𝑛+ = {0, 1, … , 𝑛}. They take an
element 𝑓 ∶ 𝑃∧𝑛 → 𝐸𝑛 ∧ 𝑆

𝑛 of the 𝑘th summand to the composition

𝑃∧𝑛+1
𝑓∧𝜎
QQQQ→ (𝐸𝑛 ∧ 𝑆

𝑛) ∧ 𝑇
𝑣−1

≅ (𝐸𝑛 ∧ 𝑇) ∧ 𝑆
𝑛 → 𝐸𝑛+1 ∧ 𝑆

𝑛
𝜄𝑘
↪

⋁
𝐸𝑛+1 ∧ 𝑆

𝑛.

Here 𝜄𝑘 is the inclusion into the 𝑘th summand. If 𝐸 = 𝑆𝑦𝑚(𝑇) then 𝟏𝐸 will be denoted by 𝟏Σ.
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 133

Though the author was unable to find the following result in the literature, he does not pretend
to originality.

Theorem 3.2. Given a symmetric right 𝑇-spectrum 𝐸 ∈ 𝑆𝑝Σ(, 𝑇), the following statements are
true:

(1) the spectrum 𝟏𝐸 is a symmetric 𝑆1-spectrum;
(2) if 𝐸 is a (commutative) symmetric ring 𝑇-spectrum, then 𝟏𝐸 is a (commutative) symmetric ring

𝑆1-spectrum.

Proof.

(1.) We follow [31, section I.1] to verify the relevant conditions for symmetric 𝑆1-spectra. The left
action of the symmetric group Σ𝑛 onHom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) for each 𝑛 ⩾ 0 is given by conjuga-
tion. In detail, for each 𝑓 ∶ 𝑃∧𝑛 → 𝐸𝑛 ∧ 𝑆

𝑛 and each 𝜏 ∈ Σ𝑛 the morphism 𝜏 ⋅ 𝑓 is defined as
the composition

𝑃∧𝑛
𝜏−1

QQQ→ 𝑃∧𝑛
𝑓
Q→ 𝐸𝑛 ∧ 𝑆

𝑛 𝜏∧𝜏
QQQ→ 𝐸𝑛 ∧ 𝑆

𝑛. (3)

With this definition each Hom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) becomes a Σ𝑛-simplicial set. Here Σ𝑛 acts on
𝑃∧𝑛 and 𝑆𝑛 by permutations.
There are natural morphisms

⋁
Hom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) → Hom(𝑃∧(𝑛+𝑘),

⋁
(𝐸𝑛+𝑘 ∧ 𝑆

𝑛)),

where coproducts are indexed by nonbasepoint elements of 𝑆𝑘𝓁 = 𝓁∧𝑘+ = ({1, … ,𝓁}×𝑘)+. They
take an element 𝑓 ∶ 𝑃∧𝑛 → 𝐸𝑛 ∧ 𝑆

𝑛 of the (𝑗1, … , 𝑗𝑘)th summand to the composition

𝑃∧𝑛+𝑘
𝑓∧𝜎∧𝑘

QQQQQQ→ (𝐸𝑛 ∧ 𝑆
𝑛) ∧ 𝑇𝑘

𝑣−1

≅ (𝐸𝑛 ∧ 𝑇
𝑘) ∧ 𝑆𝑛 → 𝐸𝑛+𝑘 ∧ 𝑆

𝑛
𝜄(𝑗1,…,𝑗𝑘)
QQQQQQQ→

⋁
𝐸𝑛+𝑘 ∧ 𝑆

𝑛.

Here 𝜄(𝑗1,…,𝑗𝑘) is the inclusion into the (𝑗1, … , 𝑗𝑘)th summand. The middle arrow comes from
𝐸𝑛 ∧ 𝑇

𝑘 → 𝐸𝑛+𝑘. It is induced by structure maps of the symmetric 𝑇-spectrum 𝐸 and is
(Σ𝑛 × Σ𝑘)-equivariant. Each natural morphism above coincides termwise with the composite
map

𝑢𝑛+𝑘−1 ◦ ⋯ ◦ (𝑢𝑛 ∧ id) ∶ Hom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) ∧ 𝑆𝑘 → Hom(𝑃∧(𝑛+𝑘), 𝐸𝑛+𝑘 ∧ 𝑆𝑛+𝑘). (4)

The fact that (4) is (Σ𝑛 × Σ𝑘)-equivariant follows from commutativity of the diagram

in which (𝜏, 𝜇) ∈ Σ𝑛 × Σ𝑘, 𝜇𝑆
𝑘 permutes summands of the right upper corner by the rule

(𝑗1, … , 𝑗𝑘) ↦ (𝑗𝜇(1), … , 𝑗𝜇(𝑘)). We see that 𝟏𝐸 is a symmetric 𝑆1-spectrum.
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134 GARKUSHA

(2). Suppose 𝐸 is a symmetric ring 𝑇-spectrum. Define multiplication maps

𝜈𝑛,𝑚 ∶ Hom(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆𝑛) ∧ Hom(𝑃∧𝑚, 𝐸𝑚 ∧ 𝑆𝑚)

→ Hom(𝑃∧(𝑛+𝑚), 𝐸𝑛+𝑚 ∧ 𝑆𝑛+𝑚), 𝑛,𝑚 ⩾ 0,

by

(𝑓, g) ↦ (𝑃∧(𝑛+𝑚)
𝑓∧g
QQQQ→ 𝐸𝑛 ∧ 𝑆

𝑛 ∧ 𝐸𝑚 ∧ 𝑆
𝑚 ≅ 𝐸𝑛 ∧ 𝐸𝑚 ∧ 𝑆

𝑛+𝑚
𝜇𝑛,𝑚∧id
QQQQQQQ→ 𝐸𝑛+𝑚 ∧ 𝑆

𝑛+𝑚),

where 𝜇𝑛,𝑚 is the multiplication map of 𝐸 (it is Σ𝑛 × Σ𝑚-equivariant).
The map 𝜈𝑛,𝑚 is Σ𝑛 × Σ𝑚-equivariant. Indeed, this follows from commutativity of the

diagram

in which (𝜏, 𝜋) ∈ Σ𝑛 × Σ𝑚. Clearly, the “associativity square”

is commutative for all 𝑛,𝑚, 𝑝 ⩾ 0 due to associativity of the multiplication maps 𝜇∗,∗ for 𝐸.
Next, two unit maps

𝑖0 ∶ 𝑆
0 → Hom(𝑆, 𝐸0) and 𝑖1 ∶ 𝑆

1 → Hom(𝑃, 𝐸1 ∧ 𝑆1) (5)

are defined as follows. Let 𝜄0 ∶ 𝑆 → 𝐸0 and 𝜄1 ∶ 𝑇 → 𝐸1 be the unit maps for the symmetric
ring 𝑇-spectrum 𝐸. Then 𝑖0 takes the unbased point of 𝑆0 to 𝜄0 and 𝑖1 coincides termwise with
the naturalmorphisms taking anunbased simplex 𝑗 of 𝑆1𝓁 = {0, 1, … ,𝓁} to the compositemap

𝑃
𝜎
Q→ 𝑇

𝜄1
Q→ 𝐸1 ↪

⋁
𝐸1,

where the right arrow is the inclusion into the 𝑗th summand.
The two “unit composites”

(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆
𝑛) ≅ (𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆

𝑛) ∧ 𝑆0
id∧𝑖0
QQQQQ→ (𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆

𝑛) ∧ (𝑆, 𝐸0)
𝜈𝑛,0
QQQ→ (𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆

𝑛)

(𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆
𝑛) ≅ 𝑆0 ∧ (𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆

𝑛)
𝑖0∧id
QQQQ→ (𝑆, 𝐸0) ∧ (𝑃

∧𝑛, 𝐸𝑛 ∧ 𝑆
𝑛)

𝜈0,𝑛
QQQ→ (𝑃∧𝑛, 𝐸𝑛 ∧ 𝑆

𝑛)

are the identity for all 𝑛 ⩾ 0 due to the same properties for 𝐸.
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 135

Furthermore, the “centrality diagram”

commutes for all 𝑛 ⩾ 0 due to the same properties for 𝐸. Here 𝜒𝑛,𝑚 ∈ Σ𝑛+𝑚 denotes the shuf-
fle permutation that moves the first 𝑛 elements past the last𝑚 elements, keeping each of the
two blocks in order.
It follows that 𝟏𝐸 is a symmetric ring 𝑆1-spectrum. Suppose 𝐸 is commutative. Then the

square

commutes for all 𝑛,𝑚 ⩾ 0. We also use here commutativity of the diagram

for all 𝑓 ∶ 𝑃∧𝑛 → 𝐸𝑛 ∧ 𝑆
𝑛 and g ∶ 𝑃∧𝑚 → 𝐸𝑚 ∧ 𝑆

𝑚. It follows that 𝟏𝐸 is commutative. □

Corollary 3.3. Suppose 𝐸 is a commutative symmetric ring 𝑇-spectrum. The category of right
𝟏𝐸-modules Mod𝟏𝐸 is closed symmetric monoidal, where 𝟏𝐸 is the commutative symmetric ring
spectrum of Theorem 3.2.

Lemma 3.4. Under the assumptions of Theorem 3.2 two unit maps (5) can be extended to a ring
morphism between symmetric ring spectra 𝛿 ∶  → 𝟏𝐸 , where  is the sphere spectrum.

Proof. This is straightforward. □

4 RECONSTRUCTING STABLE HOMOTOPY THEORY 𝑺𝑯

We refer the reader to [28] for basic facts on compactly generated triangulated categories. Below
we will often use the following lemma.

Lemma 4.1 (see [13]). Let  and  be compactly generated triangulated categories. Suppose there
exists a set of compact generators Σ in  and a triangulated functor 𝐹 ∶  →  that preserves direct
sums such that

(1) the collection
{
𝐹(𝑋)|𝑋 ∈ Σ

}
is a set of compact generators in  ,
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136 GARKUSHA

(2) for any 𝑋,𝑌 in Σ, the induced map

𝐹𝑋,𝑌[𝑛] ∶ Hom
(
𝑋,𝑌[𝑛]

)
→ Hom

(
𝐹𝑋, 𝐹𝑌[𝑛]

)

is an isomorphism for all 𝑛 ∈ ℤ.

Then 𝐹 is an equivalence of triangulated categories.

Let𝑆𝑝𝑆1,𝔾(𝑘)denote the category of symmetric (𝑆1, 𝔾)-bispectra associatedwith the closed sym-
metric monoidal category of pointed motivic spaces  (see the notation). Here the 𝔾-direction
corresponds to the pointedmotivic space𝔾, which is themapping cone in of themap 1 ∶ 𝗉𝗍+ →
(𝔾𝑚)+. The category 𝑆𝑝𝑆1,𝔾(𝑘) is equipped with a stable motivic model category structure [24].
Denote by 𝖲𝖧(𝑘) its homotopy category. If  is a bispectrum and 𝑝, 𝑞 are integers, recall that
𝜋𝑝,𝑞() is the Nisnevich sheaf of bigraded stable homotopy groups associated to the presheaf

𝑈 ∈ Sm∕𝑘⟼ 𝖲𝖧(𝑘)(Σ∞
𝑆1
Σ∞
𝔾∧1𝑚
𝑈+, 𝑆

𝑝−𝑞 ∧ 𝔾∧𝑞 ∧ ).
A map of bispectra 𝑓 ∶  →  ′ is a stable motivic equivalence if and only if 𝜋∗,∗(𝑓) is an isomor-
phism. The category 𝖲𝖧(𝑘) has a closed symmetric monoidal structure with monoidal unit being
the motivic sphere bispectrum 𝑘 ∶= Σ∞𝑆1Σ∞𝔾 𝑆0 (see [24] for details).
The following theorem was proven by Levine [25] for algebraically closed fields of characteris-

tic zero, with embedding �̄� ↪ ℂ and extended by Wilson–Østvær [37, Corollaries 1.2 and 6.5] to
arbitrary algebraically closed fields.

Theorem 4.2. Let �̄� be an algebraically closed field of exponential characteristic 𝑒 and  be the
sphere spectrumΣ∞

𝑆1
𝑆0. For all𝑛 ⩾ 0 the homomorphism𝕃𝑐 ∶ 𝜋𝑛()[𝑒−1] → 𝜋𝑛,0(�̄�)[𝑒−1] is an iso-

morphism,where 𝑐 ∶ 𝑆𝐻 → 𝖲𝖧(�̄�) is the functor induced by the functor 𝑐 ∶ 𝐒∙ → sending pointed
simplicial sets to constant motivic spaces.

The following statement was proven by Zargar [38, Theorem 1.1] by using the stable étale
realization functor.

Corollary 4.3. Let �̄� be an algebraically closed field of exponential characteristic 𝑒. The triangulated
functor

𝕃𝑐 ∶ 𝑆𝐻[1∕𝑒] → 𝖲𝖧(�̄�)[1∕𝑒]

is full and faithful.

Proof. Using Lemma 4.1, our statement follows fromTheorem 4.2 if we note that 𝑆𝐻[1∕𝑒] (respec-
tively, the image of 𝑆𝐻[1∕𝑒]) is compactly generated by [1∕𝑒] (respectively, by �̄�[1∕𝑒]). □

Recall from [19] that one of the equivalent ways to define Voevodsky’s framed correspondences
of level 𝑛 ⩾ 0 between smooth 𝑘-schemes 𝑋,𝑌 ∈ Sm∕𝑘 is as follows:

Fr𝑛(𝑋, 𝑌) ∶= Hom(𝑋+ ∧ ℙ∧𝑛, 𝑌+ ∧ 𝑇𝑛),

where ℙ∧𝑛 (respectively, 𝑇𝑛) is the smash product of 𝑛 copies of (ℙ1,∞) ∈ (respectively, 𝑇 =
𝔸1∕(𝔸1 − {0}) ∈).
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 137

Remark 4.4. Due to Voevodsky’s lemma [19, section 3] there is an equivalent description of the
sets Fr𝑛(𝑋, 𝑌) in terms of explicit geometric data. In detail, each element in that description is the
equivalence class of a quadruple (𝑍,𝑈, 𝜑, g), where 𝑍 is a closed subset of𝔸𝑛

𝑋
that is finite over𝑋,

𝑈 is an etale neighborhood of 𝑍 in 𝔸𝑛
𝑋
, 𝜑 = (𝜑1, … , 𝜑𝑛) is a collection of regular functions on 𝑈

such that ∩𝑛
𝑖=1
{𝜑𝑖 = 0} = 𝑍, and g is a morphism from 𝑈 to 𝑌. The equivalence relation on such

quadruples depends on the choice of the neighborhood 𝑈. If the base field is ℂ and 𝑋 = 𝑌 = 𝗉𝗍,
the Hom-sets Hom(ℙ∧𝑚, 𝑇𝑛), 𝑚, 𝑛 ⩾ 0, can also be described in terms of holomorphic framed
correspondences – see [12]. These are equivalence classes of triples (𝑍,𝑈, 𝑓), where 𝑍 consists of
finitely many points in ℂ𝑚,𝑈 is an open neighborhood of 𝑍, 𝑓 = (𝑓1, … , 𝑓𝑛) ∶ 𝑈 → ℂ𝑛 is a holo-
morphic map such that 𝑍 = 𝑓−1(0). The latter description essentially follows from the Implicit
Function Theorem in Complex Analysis.

Following notation of [19] one sets for any finite pointed set 𝐾,

Fr𝑛(𝑋, 𝑌 ⊗ 𝐾) ∶= Hom(𝑋+ ∧ ℙ∧𝑛, 𝑌+ ∧ 𝑇𝑛 ∧ 𝐾), 𝑋, 𝑌 ∈ Sm∕𝑘.

There is a distinguished framed correspondence 𝜎 ∶ (ℙ1,∞) → 𝑇 in Fr1(𝗉𝗍, 𝗉𝗍) associated with
the triple ({0}, 𝔸1, 𝑡). The external smash product by 𝜎 gives rise to a map Fr𝑛(𝑋, 𝑌 ⊗ 𝐾) →

Fr𝑛+1(𝑋, 𝑌 ⊗ 𝐾). One sets,

Fr(𝑋, 𝑌 ⊗ 𝐾) ∶= colim(Fr0(𝑋, 𝑌 ⊗ 𝐾)
−∧𝜎
QQQQ→ Fr1(𝑋, 𝑌 ⊗ 𝐾))

−∧𝜎
QQQQ→ ⋯).

LetΔ∙
𝑘
denote the standard cosimplicial affine scheme 𝑛 ↦ Spec(𝑘[𝑥0, … , 𝑥𝑛]∕(𝑥0 +⋯ + 𝑥𝑛 − 1))

and 𝐶∗ Fr(𝑋, 𝑌 ⊗ 𝐾) ∶= Fr(𝑋 × Δ∙
𝑘
, 𝑌 ⊗ 𝐾). By the Additivity Theorem of [19], the assignment

𝐾 ∈ Γop ↦ 𝐶∗ Fr(𝑋, 𝑌 ⊗ 𝐾) ∈ 𝐒∙ (6)

gives rise to a special Γ-space of pointed simplicial sets. Its Segal 𝑆1-spectrum 𝐶∗ Fr(𝑋, 𝑌 ⊗

(Σ∞
𝑆1
𝑆0)) is denoted by𝑀𝑓𝑟(𝑌)(𝑋) and is called the framed motive of 𝑌 evaluated at 𝑋.

The following theorem was proven by Garkusha and Panin [19] for algebraically closed fields
of characteristic zero, with embedding �̄� ↪ ℂ.

Theorem 4.5 (Garkusha–Panin [19]). Let �̄� be an algebraically closed field of characteristic 0.
Then the framed motive𝑀𝑓𝑟(𝗉𝗍)(𝗉𝗍) of the point 𝗉𝗍 = Spec(�̄�) evaluated at 𝗉𝗍 has the stable homo-
topy type of the classical sphere spectrum  = Σ∞

𝑆1
𝑆0. If �̄� is an algebraically closed field of positive

characteristic 𝑒 > 0 then𝑀𝑓𝑟(𝗉𝗍)(𝗉𝗍)[1∕𝑒], 𝗉𝗍 = Spec(�̄�), has the stable homotopy type of [1∕𝑒].
Proof. The proof literally repeats that of [19, Theorem 11.9] if we use Corollary 4.3. □

Definition 4.6. Given a field 𝑘, denote by

𝟏𝑘 ∶= (Fr0(𝗉𝗍, 𝗉𝗍), Fr1(𝗉𝗍, 𝑆
1), Fr2(𝗉𝗍, 𝑆

2), …), 𝗉𝗍 = Spec(𝑘),

the right 𝑆1-spectrum of pointed simplicial sets with structure maps defined as

Fr𝑛(𝗉𝗍, 𝑆
𝑛)

−∧𝜎
QQQQ→ Fr𝑛+1(𝗉𝗍, 𝑆

𝑛) Q→ Hom
𝐒∙
(𝑆1, Fr𝑛+1(𝗉𝗍, 𝑆

𝑛+1)).
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138 GARKUSHA

The sphere spectrum over a field 𝑘 is the 𝑆1-spectrum of pointed simplicial sets

𝖲𝑘 ∶= (Fr0(Δ
∙
𝑘
, 𝗉𝗍), Fr1(Δ

∙
𝑘
, 𝑆1), Fr2(Δ

∙
𝑘
, 𝑆2), …).

The simplicial setFr𝑚(𝗉𝗍, 𝑆𝑚) can be regarded as the constant simplicial pointed set 𝑆𝑚 together
with the “coefficients set” Fr𝑚(𝗉𝗍, 𝗉𝗍) attached to it. Hence, the 𝑆1-spectrum 𝟏𝑘 can be regarded as
a graded “tensor algebra” associated to 𝑆1 with “Fr∗(𝗉𝗍, 𝗉𝗍)-coefficients”. In other words, we add
Fr∗(𝗉𝗍, 𝗉𝗍)-coefficients to the classical sphere spectrum  = (𝑆0, 𝑆1, …).

Proposition 4.7. The spectra 𝟏𝑘 , 𝖲𝑘 are commutative symmetric ring spectra in 𝑆𝑝Σ𝑆1 .

Proof. We apply Theorem 3.2:  is replaced by the category of pointed motivic spaces , 𝑃
(respectively, 𝑇) is replaced by ℙ∧1 ∶= (ℙ1,∞) (respectively, by 𝑇 = 𝔸1∕(𝔸1 − {0})), 𝐸 is replaced
by the commutative symmetric sphere𝑇-spectrum𝑘 = (𝑆0, 𝑇, 𝑇2, …). With this notation 𝟏𝑘 = 𝟏𝐸
of Theorem 3.2, and hence a commutative symmetric ring spectrum.
The commutative symmetric ring structure on 𝖲𝑘 is defined in a similar fashion if we use the

cosimplicial diagonal morphism diag ∶ Δ∙
𝑘
→ Δ∙

𝑘
× Δ∙

𝑘
. □

Denote by Mod𝖲𝑘 the category of right 𝖲𝑘-modules in 𝑆𝑝Σ𝑆1 . The natural map of ring objects → 𝖲𝑘 induces a pair of adjoint functors

𝐿 ∶ 𝑆𝑝Σ
𝑆1
⇄ Mod𝖲𝑘 ∶ 𝑈, (7)

where𝑈 is the forgetful functor and its left adjoint 𝐿 is the “extension of framed scalars” functor.
Following [32, section 4], we define the stable model structure on Mod𝖲𝑘 by calling a map 𝑓 of
𝖲𝑘-spectra a stable equivalence or fibration if so is𝑈(𝑓). By [32, Theorem 4.1] this model structure
is also cofibrantly generated monoidal satisfying the monoid axiom. By construction, (𝐿,𝑈) is a
Quillen pair.

Definition 4.8. The categoryMod𝖲𝑘 is called the category of framed symmetric 𝑆1-spectra over
a field 𝑘. The stable homotopy category over a field 𝑘, denoted by 𝑆𝐻𝑘, is defined as the homo-
topy category of Mod𝖲𝑘 with respect to the stable model structure. 𝑆𝐻𝑘 is a closed symmetric
monoidal category.

If 𝑁 ∈ 𝑆𝑝Σ
𝑆1
is a symmetric right 𝑆1-spectrum, define an 𝑆1-spectrum

FrΣ∗(𝑁) ∶= (𝑁0,Hom(ℙ∧1, 𝑇 ∧ 𝑁1),Hom(ℙ∧2, 𝑇2 ∧ 𝑁2), …).

Each structure map

𝜐𝑛 ∶ Hom(ℙ∧𝑛, 𝑇𝑛 ∧ 𝑁𝑛) ∧ 𝑆1 → Hom(ℙ∧𝑛+1, 𝑇𝑛+1 ∧ 𝑁𝑛+1)

coincides termwise with the natural morphisms

⋁
Hom(ℙ∧𝑛, 𝑇𝑛 ∧ 𝑁𝑛) → Hom(ℙ∧𝑛+1, 𝑇𝑛+1 ∧ 𝑁𝑛+1),
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 139

where coproducts are indexed by nonbasepoint elements of 𝑆1𝓁 = 𝓁+ = {0, 1, … ,𝓁}. They take an
element 𝑓 ∶ ℙ∧𝑛 → 𝑇𝑛 ∧ (𝑁𝑛)𝓁 of the 𝑘th summand to the composition

ℙ∧𝑛+1
𝑓∧𝜎
QQQQ→ (𝑇𝑛 ∧ (𝑁𝑛)𝓁) ∧ 𝑇 ≅ 𝑇

𝑛+1 ∧ (𝑁𝑛)𝓁
𝜄𝑘
↪

⋁
𝑇𝑛+1 ∧ (𝑁𝑛)𝓁

= (𝑇𝑛+1 ∧ (𝑁𝑛)𝓁) ∧ 𝑆
1
𝓁 ≅ 𝑇

𝑛+1 ∧ (𝑁𝑛 ∧ 𝑆
1)𝓁

id ∧𝑢𝑛
QQQQQ→ 𝑇𝑛+1 ∧ (𝑁𝑛+1)𝓁 ,

where 𝑢𝑛 is the 𝑛th structure map of 𝑁. We can equivalently define 𝜐𝑛 by the composition

Hom(ℙ∧𝑛, 𝑇𝑛 ∧ 𝑁𝑛) ∧ 𝑆
1 → Hom(ℙ∧𝑛, 𝑇𝑛 ∧ 𝑁𝑛 ∧ 𝑆

1)
−∧𝜎
QQQQ→ Hom(ℙ∧𝑛+1, 𝑇𝑛 ∧ 𝑁𝑛 ∧ 𝑆

1 ∧ 𝑇)

≅ Hom(ℙ∧𝑛+1, 𝑇𝑛+1 ∧ 𝑁𝑛 ∧ 𝑆
1)

(𝑢𝑛)∗
QQQQ→ Hom(ℙ∧𝑛, 𝑇𝑛 ∧ 𝑁𝑛+1).

We also define an 𝑆1-spectrum

𝐶∗ Fr
Σ
∗(𝑁) ∶= (𝑁0,Hom((Δ∙𝑘)+ ∧ ℙ∧1, 𝑇 ∧ 𝑁1),Hom((Δ∙𝑘)+ ∧ ℙ∧2, 𝑇2 ∧ 𝑁2), …)

with the structure maps defined as above.
FrΣ∗(𝑁) and 𝐶∗ Fr

Σ
∗(𝑁) are symmetric 𝑆

1-spectra for the same reason as 𝟏𝐸 and 𝖲𝑘 are.
Following notation of [15, 19], one sets for any finite pointed set 𝐾 and any integer 𝑘 ⩾ 0,

Fr𝑛(𝑋, (𝑌 × 𝑇
𝑘) ⊗ 𝐾) ∶= Hom(𝑋+ ∧ ℙ∧𝑛, 𝑌+ ∧ 𝑇𝑘+𝑛 ∧ 𝐾), 𝑋, 𝑌 ∈ Sm∕𝑘.

The external smash product by 𝜎 gives rise to amapFr𝑛(𝑋, (𝑌 × 𝑇𝑘) ⊗ 𝐾) → Fr𝑛+1(𝑋, (𝑌 × 𝑇
𝑘) ⊗

𝐾). One sets,

Fr(𝑋, (𝑌 × 𝑇𝑘) ⊗ 𝐾) ∶= colim(Fr0(𝑋, (𝑌 × 𝑇
𝑘) ⊗ 𝐾)

−∧𝜎
QQQQ→ Fr1(𝑋, (𝑌 × 𝑇

𝑘) ⊗ 𝐾))
−∧𝜎
QQQQ→ ⋯)

and

𝐶∗ Fr(𝑋, (𝑌 × 𝑇
𝑘) ⊗ 𝐾) ∶= Fr(𝑋 × Δ∙

𝑘
, (𝑌 × 𝑇𝑘) ⊗ 𝐾).

By the Additivity Theorem of [19], the assignment

𝐾 ∈ Γop ↦ 𝐶∗ Fr(𝑋, (𝑌 × 𝑇
𝑘) ⊗ 𝐾) ∈ 𝐒∙

gives rise to a special Γ-space of pointed simplicial sets. The pointed motivic space 𝑋 ∈ Sm∕𝑘 ↦
𝐶∗ Fr(𝑋, (𝑌 × 𝑇

𝑘) ⊗ 𝐾) ∈ 𝐒∙ is denoted by 𝐶∗ Fr((𝑌 × 𝑇𝑘) ⊗ 𝐾) in [15, 19]. If 𝑌 = 𝗉𝗍 the latter
motivic space is denoted by 𝐶∗ Fr(𝑇𝑘 ⊗ 𝐾).

Definition 4.9. The symmetric framed motive of a symmetric 𝑆1-spectrum 𝑁 ∈ 𝑆𝑝Σ
𝑆1

is the
symmetric 𝑆1-spectrum

𝑀Σ
𝑓𝑟
(𝑁) ∶= (𝐶∗ Fr(𝗉𝗍, 𝗉𝗍 ⊗ 𝑁0),Hom(ℙ∧1, 𝐶∗ Fr(𝑇 ⊗ 𝑁1)), Hom(ℙ∧2, 𝐶∗ Fr(𝑇2 ⊗ 𝑁2)), …)

with structure maps and actions of the symmetric groups defined similarly to 𝐶∗ FrΣ∗(𝑁). The
framed motive of the suspension spectrum Σ∞

𝑆1
𝑋 of a pointed simplicial set 𝑋 will be denoted by

𝑀Σ
𝑓𝑟
(𝑋).
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140 GARKUSHA

Remark 4.10. If 𝑁 is the suspension symmetric spectrum Σ∞
𝑆1
𝑋 of a pointed simplicial set 𝑋, the

framed motive in the sense of the preceding definition is a bit different from the framed motive
of 𝑋 evaluated at 𝗉𝗍 defined as

𝑀𝑓𝑟(𝑋) ∶= 𝐶∗ Fr(𝗉𝗍, 𝗉𝗍 ⊗ (Σ∞
𝑆1
𝑋)),

where 𝐾 ∈ Γop ↦ 𝐶∗ Fr(𝗉𝗍, 𝗉𝗍 ⊗ 𝐾) ∈ 𝐒∙ is the special Γ-space (6).

Lemma 4.11. If 𝑘 is a perfect field, then the canonical map of ordinary 𝑆1-spectra 𝑀𝑓𝑟(𝑋) →

𝑀Σ
𝑓𝑟
(𝑋) is a level equivalence in positive degrees for any pointed simplicial set 𝑋.

Proof. Repeating the proof of [14, Lemma 4.12] word for word, we have that the canonical map of
connected spaces

𝐶∗ Fr(𝗉𝗍, 𝗉𝗍 ⊗ (𝑋 ∧ 𝑆𝓁)) → Hom(ℙ∧𝑘, 𝐶∗ Fr(𝑇𝑘 ⊗ (𝑋 ∧ 𝑆𝓁))), 𝑘,𝓁 > 0,

is a weak equivalence. It follows that the map𝑀𝑓𝑟(𝑋) → 𝑀Σ
𝑓𝑟
(𝑋) is a level equivalence of spectra

in positive degrees. □

The reader should not confuse 𝜋∗-isomorphisms (i.e., maps inducing isomorphisms of stable
homotopy groups) and stable equivalences of symmetric spectra. The first class is a proper subclass
of the second.
Though 𝑀𝑓𝑟(𝑋) is canonically a symmetric 𝑆1-spectrum, where Σ𝑛 acts on each space by

permuting 𝑆𝑛, the point is that it is not a 𝖲𝑘-module in contrast with𝑀Σ
𝑓𝑟
(𝑋).

Proposition 4.12. Given a field 𝑘 and𝑁 ∈ 𝑆𝑝Σ
𝑆1
, the following statements are true.

(1) 𝐶∗ FrΣ∗(𝑁) and𝑀
Σ
𝑓𝑟
(𝑁) are right 𝖲𝑘-modules.

(2) Every map of symmetric 𝑆1-spectra 𝑓 ∶ 𝑁 → 𝑁′ induces morphisms of right 𝖲𝑘-modules
𝐶∗ Fr

Σ
∗(𝑓) ∶ 𝐶∗ Fr

Σ
∗(𝑁) → 𝐶∗ Fr

Σ
∗(𝑁

′) and𝑀Σ
𝑓𝑟
(𝑓) ∶ 𝑀Σ

𝑓𝑟
(𝑁) → 𝑀Σ

𝑓𝑟
(𝑁′).

(3) The canonical map 𝛼 ∶ 𝖲𝑘 → 𝑀Σ
𝑓𝑟
(𝑆0) inMod𝖲𝑘 is a 𝜋∗-isomorphism (i.e., a stable equivalence

of ordinary spectra) whenever the base field 𝑘 is perfect.
(4) For every𝑁 ∈ 𝑆𝑝Σ

𝑆1
the canonicalmap𝛽 ∶ 𝐶∗ FrΣ∗(𝑁) → 𝑀Σ

𝑓𝑟
(𝑁) is a𝜋∗-isomorphismwhenever

the base field 𝑘 is perfect.

Proof.

(1). The desired pairing

(𝐶∗ Fr
Σ
∗(𝑁) ∧ 𝖲𝑘)𝑚 =

⋁
𝑞+𝑝=𝑚

(Σ𝑞+𝑝)+ ∧Σ𝑞×Σ𝑝 𝐶∗ Fr𝑞(𝑁𝑞) ∧ Fr𝑝(Δ
∙, 𝑆𝑝) → 𝐶∗ Fr𝑚(𝑁𝑚)

is defined as follows. Given two morphisms (𝛽 ∶ Δ𝓁
+ ∧ ℙ

∧𝑞 → 𝑇𝑞 ∧ 𝑁𝑞) ∈ Fr𝑞(Δ
𝓁 , 𝑁𝑞) and

(𝛼 ∶ Δ𝓁
+ ∧ ℙ

∧𝑝 → 𝑇𝑝 ∧ 𝑆𝑝) ∈ Fr𝑝(Δ
𝓁 , 𝑆𝑝), define a morphism 𝛽 ⋆ 𝛼 ∈ Fr(Δ𝓁 , 𝑁𝑞+𝑝) as the

composite

(Δ𝓁)+ ∧ ℙ
∧(𝑞+𝑝) 𝑑𝑖𝑎g∧id

QQQQQQQ→ (Δ𝓁 × Δ𝓁)+ ∧ ℙ
∧(𝑞+𝑝) ≅ (Δ𝓁

+ ∧ ℙ
∧𝑞) ∧ (Δ𝓁

+ ∧ ℙ
∧𝑝)

𝛽∧𝛼
QQQQ→ (𝑇𝑞 ∧ 𝑁𝑞) ∧ (𝑇

𝑝 ∧ 𝑆𝑝) ≅ 𝑇𝑞+𝑝 ∧ 𝑁𝑞 ∧ 𝑆
𝑝 → 𝑇𝑞+𝑝 ∧ 𝑁𝑞+𝑝.
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 141

It is straightforward to see that this pairing is Σ𝑞 × Σ𝑝-equivariant, satisfies associativity and
unit conditions, hence it defines the structure of a right 𝖲𝑘-module on 𝐶∗ FrΣ∗(𝑁). For the
same reasons,𝑀Σ

𝑓𝑟
(𝑁) is a right 𝖲𝑘-module.

(2). This is straightforward.
(3). Let Θ∞

𝑆1
be the naive stabilization functor of 𝑆1-spectra. It has the property that 𝑋 → Θ∞

𝑆1
(𝑋)

is a stable equivalence for every 𝑆1-spectrum 𝑋 [22, Proposition 4.7].
Let 𝐴𝑛,𝑟 ∶= 𝐶∗(ℙ∧𝑛, 𝑇𝑛 ∧ 𝑆𝑟), 𝐵𝑚,𝑛,𝑟 ∶= 𝐶∗(ℙ∧(𝑚+𝑛), 𝑇𝑚+𝑛 ∧ 𝑆𝑟), 𝑚, 𝑛, 𝑟 ⩾ 0. We have

maps of spaces

𝐴𝑛,𝑟
𝜎
Q→ 𝐴𝑛+1,𝑟 and 𝐵𝑚,𝑛,𝑟

𝜎
Q→ 𝐵𝑚+1,𝑛,𝑟

𝜎
Q→ 𝐵𝑚+1,𝑛+1,𝑟.

Let 𝐴𝑟 ∶= colim𝑛⩾𝑟 𝐴𝑛,𝑟, 𝐵𝑚,𝑟 ∶= colim𝑛 𝐵𝑚,𝑛,𝑟, 𝐵𝑟 ∶= colim𝑚,𝑛 𝐵𝑚,𝑛,𝑟. The spaces 𝐴𝑟, 𝐵𝑟
constitute right 𝑆1-spectra 𝐴 and 𝐵. Each structure map 𝐴𝑟 → Hom(𝑆1, 𝐴𝑟+1) is the
composite map determined by the following commutative diagram

(we omit 𝐶∗ here and below for brevity). Each structure map 𝐵𝑟 → Hom(𝑆1, 𝐵𝑟+1) is defined
in a similar fashion.
There is a commutative diagram of spectra

in whichΘ∞
𝑆1
(𝐴) = Θ∞

𝑆1
(𝖲𝑘),Θ∞𝑆1(𝐵) = Θ

∞
𝑆1
(𝑀Σ

𝑓𝑟
(𝑆0)). Themaps 𝑎, 𝑏, 𝑐 are defined in a canon-

ical way. By the two-out-of-three property 𝑎, 𝑏 are stable equivalences. Therefore, 𝛼 is a stable
equivalence if and only if 𝑐 is.
But 𝑐 is the infinite composition

𝐴𝑟 ≅ 𝐵0,𝑟 → 𝐵1,𝑟 → 𝐵2,𝑟 →⋯𝐵𝑟.

Each composition 𝐴𝑟 → 𝐵𝑚,𝑟 is isomorphic to the canonical map of spaces

𝐶∗ Fr(𝑆
𝑟) → Hom(ℙ∧𝑚, 𝐶∗ Fr(𝑇𝑚 ⊗ 𝑆𝑟)).

Repeating the proof of [14, Lemma 4.12] word for word, the map is a weak equivalence for
positive 𝑟, and hence 𝑐 is a weak equivalence in positive degrees.

(4). The proof literally repeats that of (3) if we replace 𝑆𝑟 by 𝑁𝑟. □
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142 GARKUSHA

Recall that we distinguish classical (also called naive) stable homotopy groups 𝜋∗(𝑁) of 𝑁 ∈

𝑆𝑝Σ
𝑆1
and “true” stable homotopy groups (denote them by 𝜋

∗
(𝑁), see, e.g., [31] for details). They

coincide for semistable symmetric spectra.

Corollary 4.13. Given a perfect field 𝑘, the symmetric spectrum 𝖲𝑘 is semistable and 𝜋0(𝖲𝑘) =
𝜋
0
(𝖲𝑘) = 𝐾

𝑀𝑊
0

(𝑘), where 𝐾𝑀𝑊
0

(𝑘) is the Milnor–Witt group of 𝑘.

Proof. By [19, Corollary 11.2] 𝜋0,0(Σ∞𝑆1Σ
∞
𝔾𝑚
𝑆0) = 𝜋0(𝑀𝑓𝑟(𝗉𝗍)). By a theorem of Morel [26], one has

𝜋0,0(Σ
∞
𝑆1
Σ∞
𝔾𝑚
𝑆0) = 𝐾𝑀𝑊

0
(𝑘). By definition [19],𝑀𝑓𝑟(𝗉𝗍) is the Segal symmetric spectrumassociated

with a special Γ-space. Therefore,𝑀𝑓𝑟(𝗉𝗍) is semistable by [30, Example 4.2]. Our statement now
follows from Lemma 4.11 and Proposition 4.12(3). □

By 𝑒−1-stable equivalences (respectively 𝜋∗[𝑒−1]-isomorphisms), we mean maps of symmet-
ric spectra (respectively, ordinary spectra) inducing isomorphisms in 𝑆𝐻[𝑒−1] (respectively,
isomorphisms of stable homotopy groups with 𝑒−1-coefficients).

Theorem 4.14. If �̄� is an algebraically closed field of exponential characteristic 𝑒, then the natural
maps of symmetric 𝑆1-spectra

𝜈 ∶ 𝑁 Q→ 𝐶∗ Fr
Σ
∗(𝑁), 𝛽 ◦ 𝜈 ∶ 𝑁 Q→ 𝑀Σ

𝑓𝑟
(𝑁)

are𝜋∗[𝑒−1]-isomorphisms, where𝛽 ∶ 𝐶∗ FrΣ∗(𝑁) Q→ 𝑀Σ
𝑓𝑟
(𝑁) is a canonicalmap. In particular, amap

𝛾 ∶ 𝑁 → 𝑁′ of symmetric 𝑆1-spectra is an 𝑒−1-stable equivalence or a 𝜋∗[𝑒−1]-isomorphism if and
only if𝑀Σ

𝑓𝑟
(𝛾) is.

Proof. The map 𝛽 is a 𝜋∗-isomorphism by Proposition 4.12(4). Consider a commutative diagram

We see that 𝑎 is a 𝜋∗-isomorphism. Therefore, 𝜈 is a 𝜋∗[𝑒−1]-isomorphism if and only if 𝜘𝑁 is.
We claim that the map of 𝑆1-spectra 𝜘𝑋 ∶ Σ∞𝑆1𝑋 → 𝑀𝑓𝑟(𝑋) is a 𝜋∗[𝑒−1]-isomorphism. Indeed,

if 𝑋 is a finite pointed set regarded as a constant simplicial pointed set, this follows from
Theorem 4.5. If 𝑋 is any pointed set, then 𝜘𝑋 is a directed colimit of maps 𝜘𝑊 , where 𝑊
runs over finite pointed subsets of 𝑋. Hence, 𝜘𝑋 is a 𝜋∗[𝑒−1]-isomorphism as directed colimits
preserve 𝜋∗[𝑒−1]-isomorphisms. Finally, as the geometric realization of a simplicial 𝜋∗[𝑒−1]-
isomorphism is an 𝜋∗[𝑒−1]-isomorphism, then so is 𝜘𝑋 for an arbitrary pointed simplicial set 𝑋
as claimed.
Next, every (ordinary) spectrum 𝑁 ∈ 𝑆𝑝𝑆1 equals colim𝑖 𝐿𝑖(𝑁), where each spectrum 𝐿𝑖(𝑁) =

(𝑁0, … ,𝑁𝑖−1, 𝑁𝑖, 𝑁𝑖 ∧ 𝑆
1,𝑁𝑖 ∧ 𝑆

2, ……). Then 𝜘𝑁 ∶ 𝑁 → 𝑀𝑓𝑟(𝑁) equals 𝜘𝑁 = colim𝑖 𝜘𝐿𝑖(𝑁). It is
a 𝜋∗[𝑒−1]-isomorphism as each 𝜘𝐿𝑖(𝑁) is (this follows from the previous claim about 𝜘𝑋).
Therefore, the natural map of 𝑆1-spectra 𝜘𝑁 ∶ 𝑁 → 𝑀𝑓𝑟(𝑁) is a 𝜋∗[𝑒−1]-isomorphism for all
𝑁 ∈ 𝑆𝑝𝑆1 . □
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 143

We are now in a position to prove the main result of this section saying that the stable
homotopy category of classical symmetric spectra can be recovered from the stable homotopy
category of framed spectra over an algebraically closed field (after inverting the exponential
characteristic).

Theorem 4.15. Suppose 𝑘 = �̄� is an algebraically closed field of exponential characteristic 𝑒. The
Quillen pair (𝐿,𝑈) (7) is a Quillen equivalence. In particular, it induces an equivalence of compactly
generated triangulated categories

𝐿 ∶ 𝑆𝐻[𝑒−1] ⇄ 𝑆𝐻𝑘[𝑒
−1] ∶ 𝑈.

Moreover, the equivalence 𝐿 is isomorphic to the functor

𝑀Σ
𝑓𝑟
∶ 𝑆𝐻[𝑒−1]

∼
Q→ 𝑆𝐻𝑘[𝑒

−1]

that takes a symmetric 𝑆1-spectrum𝑁 to its symmetric framed motive𝑀Σ
𝑓𝑟
(𝑁).

Proof. 𝑆𝐻 = Ho(𝑆𝑝Σ
𝑆1
) is compactly generated by the sphere spectrum  . 𝑆𝐻𝑘 is compactly gen-

erated by the framed sphere spectrum 𝖲𝑘. By construction, 𝐿() = 𝖲𝑘. Therefore, our statement
that (𝐿,𝑈) is a Quillen equivalence reduces to showing that the composite map of 𝑆1-spectra is a
𝑒−1-stable equivalence

𝜑 ∶  → 𝑈𝐿() = 𝑈(𝖲𝑘) → 𝑈(𝖲
𝑓

𝑘
),

where 𝖲𝑓
𝑘
is a fibrant replacement of 𝖲𝑘 inMod𝖲𝑘 (we also use Lemma 4.1 here).

We claim that 𝖲𝑓
𝑘
= Ω𝑆1𝑀

Σ
𝑓𝑟
(𝑆1). Indeed, the canonical map 𝛼 ∶ 𝖲𝑘 → 𝑀Σ

𝑓𝑟
(𝑆0) in Mod𝖲𝑘 is a

𝜋∗-isomorphism by Proposition 4.12(3). It follows from [19, Theorem 4.1] that 𝑀Σ
𝑓𝑟
(𝑆0) is a pos-

itively fibrant symmetric Ω-spectrum, and hence Ω𝑆1𝑀Σ
𝑓𝑟
(𝑆1) is an Ω-spectrum. It follows that

𝖲
𝑓

𝑘
= Ω𝑆1𝑀

Σ
𝑓𝑟
(𝑆1). Theorem 4.14 implies that 𝜑 is a 𝜋∗[𝑒−1]-isomorphism.

Next, Theorem 4.14 implies that 𝑁 ↦ 𝑀Σ
𝑓𝑟
(𝑁) induces a functor

𝑀Σ
𝑓𝑟
∶ 𝑆𝐻[𝑒−1] Q→ 𝑆𝐻𝑘[𝑒

−1].

We have that𝑀Σ
𝑓𝑟
() ≅ 𝖲𝑘 is a compact generator. The first part of the proof implies that

𝑆𝐻[𝑒−1]([∗],) → 𝑆𝐻𝑘[𝑒
−1](𝑀Σ

𝑓𝑟
()[∗],𝑀Σ

𝑓𝑟
())

is an isomorphism of graded Abelian groups, hence 𝑀Σ
𝑓𝑟
is an equivalence of compactly gener-

ated triangulated categories by Lemma 4.1. By Theorem 4.14, the canonical map of 𝑆1-spectra
𝑁 → 𝑀Σ

𝑓𝑟
(𝑁) is a 𝜋∗[𝑒−1]-isomorphism for any 𝑁 ∈ 𝑆𝑝Σ

𝑆1
. Therefore, id → 𝑈 ◦𝑀Σ

𝑓𝑟
is an iso-

morphism of functors. Composing it with (𝑀Σ
𝑓𝑟
)−1, where (𝑀Σ

𝑓𝑟
)−1 is a quasi-inverse functor

to 𝑀Σ
𝑓𝑟
, we get an isomorphism of functors (𝑀Σ

𝑓𝑟
)−1 ≃ 𝑈. By the first part of the proof 𝐿 is

a quasi-inverse functor to 𝑈, and hence 𝐿 is isomorphic to the functor 𝑀Σ
𝑓𝑟
, as was to be

shown. □
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144 GARKUSHA

5 SPECTRAL CATEGORIES ASSOCIATED TO SYMMETRIC RING
SPECTRA

In what follows by a spectral category, we mean a category enriched over the closed symmetric
monoidal category of symmetric 𝑆1-spectra 𝑆𝑝Σ

𝑆1
.

Recall from [31, Construction 5.6] that for every pair of symmetric spectra𝑋,𝑌 amorphism𝑋 ∧

𝑌 → 𝑍 to a symmetric spectrum𝑍 is the same as giving a bimorphism 𝑏 ∶ (𝑋, 𝑌) → 𝑍.We define a
bimorphism 𝑏 ∶ (𝑋, 𝑌) → 𝑍 as a collection of Σ𝑝 × Σ𝑞-equivariant maps of pointed simplicial sets
𝑏𝑝,𝑞 ∶ 𝑋𝑝 ∧ 𝑌𝑞 → 𝑍𝑝+𝑞 for 𝑝, 𝑞 ⩾ 0, such that the “bilinearity diagram” commutes for all 𝑝, 𝑞 ⩾ 0:

(8)

In this section,  is the category from Section 2.

Definition 5.1. Suppose is a full subcategory of  closed under∧ and 𝜎 ∶ 𝑃 → 𝑇 is amorphism
in . Let 𝐸 be a symmetric ring 𝑇-spectrum in 𝑆𝑝Σ(, 𝑇). We define the symmetric 𝑆1-spectrum
of (𝐸, 𝜎)-correspondences Corr𝐸,𝜎∗ (𝑋, 𝑌) between two objects 𝑋,𝑌 ∈  as follows. First, let

Corr𝐸,𝜎𝑛 (𝑋, 𝑌) ∶= Hom(𝑋 ∧ 𝑃∧𝑛, 𝑌 ∧ 𝐸𝑛 ∧ 𝑆𝑛).

This simplicial set is pointed at the zerothmap. By definition,Corr𝐸,𝜎
0
(𝑋, 𝑌) ∶= Hom(𝑋, 𝑌 ∧ 𝐸0).

Similarly to (3), each Corr𝐸,𝜎𝑛 (𝑋, 𝑌) is a Σ𝑛-simplicial set. The left action of Σ𝑛 on Corr
𝐸,𝜎
𝑛 (𝑋, 𝑌) is

given by conjugation: for each 𝑓 ∶ 𝑋 ∧ 𝑃∧𝑛 → 𝑌 ∧ 𝐸𝑛 ∧ 𝑆
𝑛 and each 𝜏 ∈ Σ𝑛 the morphism 𝜏 ⋅ 𝑓 is

defined as the composition

𝑋 ∧ 𝑃∧𝑛
𝑋∧𝜏−1

QQQQQQ→ 𝑋 ∧ 𝑃∧𝑛
𝑓
Q→ 𝑌 ∧ 𝐸𝑛 ∧ 𝑆

𝑛 𝑌∧𝜏∧𝜏
QQQQQQ→ 𝑌 ∧ 𝐸𝑛 ∧ 𝑆

𝑛.

Second, repeating the proof of Theorem 3.2(1) word for word the morphism 𝜎 induces natural
(Σ𝑛 × Σ𝑘)-equivariant maps

Corr𝐸,𝜎𝑛 (𝑋, 𝑌) ∧ 𝑆𝑘 → Corr𝐸,𝜎
𝑛+𝑘

(𝑋, 𝑌),

so that

Corr𝐸,𝜎∗ (𝑋, 𝑌) ∶= (Corr𝐸,𝜎
0
(𝑋, 𝑌), Corr𝐸,𝜎

1
(𝑋, 𝑌), Corr𝐸,𝜎

2
(𝑋, 𝑌), …)

becomes a symmetric 𝑆1-spectrum.

Define a pairing

𝜑𝜎𝑋,𝑌,𝑍 ∶ Corr
𝐸,𝜎
𝑛 (𝑋, 𝑌) ∧ Corr𝐸,𝜎𝑚 (𝑌, 𝑍) → Corr𝐸,𝜎𝑛+𝑚(𝑋, 𝑍)
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 145

by the rule: 𝜑𝜎
𝑋,𝑌,𝑍

(𝑓 ∶ 𝑋 ∧ 𝑃∧𝑛 → 𝑌 ∧ 𝐸𝑛 ∧ 𝑆
𝑛, g ∶ 𝑌 ∧ 𝑃∧𝑚 → 𝑍 ∧ 𝐸𝑚 ∧ 𝑆

𝑚) is given by the
composition

𝑋 ∧ 𝑃∧𝑛 ∧ 𝑃∧𝑚
𝑓∧𝑃∧𝑚

QQQQQQ→ 𝑌 ∧ 𝐸𝑛 ∧ 𝑆
𝑛 ∧ 𝑃∧𝑚

𝑡𝑤
QQ→ 𝑌 ∧ 𝑃∧𝑚 ∧ 𝐸𝑛 ∧ 𝑆

𝑛
g∧𝐸𝑛
QQQQQ→

𝑍 ∧ 𝐸𝑚 ∧ 𝑆
𝑚 ∧ 𝐸𝑛 ∧ 𝑆

𝑛 𝑡𝑤
QQ→ 𝑍 ∧ 𝐸𝑛 ∧ 𝐸𝑚 ∧ 𝑆

𝑛 ∧ 𝑆𝑚
𝑍∧𝜇𝑛,𝑚∧𝑆

𝑛∧𝑆𝑚

QQQQQQQQQQQQQQ→ 𝑍 ∧ 𝐸𝑛+𝑚 ∧ 𝑆
𝑛+𝑚.

Theorem 5.2. Let 𝐸 be a symmetric ring 𝑇-spectrum in 𝑆𝑝Σ(, 𝑇) and  is a full subcategory of 
closed under monoidal product. Then  can be enriched over the closed symmetric monoidal cate-
gory of symmetric 𝑆1-spectra 𝑆𝑝Σ

𝑆1
. Namely, 𝑆𝑝Σ

𝑆1
-objects of morphisms are defined by the symmetric

spectra Corr𝐸,𝜎∗ (𝑋, 𝑌) of (𝐸, 𝜎)-correspondences. Compositions are defined by pairings 𝜑𝑋,𝑌,𝑍 . The
resulting 𝑆𝑝Σ

𝑆1
-category is denoted byCorr𝐸,𝜎∗ (). Moreover, the 𝑆𝑝Σ

𝑆1
-categoryCorr𝐸,𝜎∗ () is symmet-

ric monoidal with the same monoidal product on objects as in  whenever 𝐸 is a commutative ring
𝑇-spectrum.

Proof. The identity morphism is defined by

𝑋
𝜌−1

≅ 𝑋 ∧ 𝑆
id𝑋 ∧𝜄0
QQQQQQ→ 𝑋 ∧ 𝐸0 ∈ Corr

𝐸
0 (𝑋, 𝑋),

where 𝜄0 ∶ 𝑆 → 𝐸0 is the unit map. Our proof now literally repeats that of Theorem 2.4. The only
thing one has to care about is that the pairings occurring here are bimorphisms of symmetric
spectra. This is clearly the case if one chases over the diagram (8). It is also worth noting that
(𝐸0, 𝐸1 ∧ 𝑆

1, 𝐸2 ∧ 𝑆
2, …) is a ring object in the category of simplicial symmetric sequences in ,

which is commutative whenever 𝐸 is. □

The proof of the theorem implies the following result.

Corollary 5.3. Under the notation of Theorem 5.2 any morphism of two symmetric ring 𝑇-spectra
𝛾 ∶ 𝐸 → 𝐸′ in 𝑆𝑝Σ(, 𝑇) induces a morphism of spectral categories 𝛾∗ ∶ Corr

𝐸,𝜎
∗ () → Corr𝐸

′,𝜎
∗ ().

Day’s Theorem [2] together with Theorem 5.2 also imply the following result.

Corollary 5.4. Under the notation of Theorem 5.2 if 𝐸 is a commutative symmetric ring 𝑇-spectrum
then the category of right Corr𝐸,𝜎∗ ()-modules is a closed symmetric monoidal category.
Theorem 5.5. Suppose 𝐸 is a commutative symmetric ring 𝑇-spectrum in 𝑆𝑝Σ(, 𝑇). Under the
assumptions of Theorem 5.2 the spectral category Corr𝐸,𝜎∗ () is also a symmetric monoidalMod𝟏𝐸-
category with the same monoidal product on objects as in , whereMod𝟏𝐸 is the closed symmetric
monoidal category of Corollary 3.3.

Proof. Each symmetric spectrum Corr𝐸,𝜎∗ ()(𝑈, 𝑉), 𝑈,𝑉 ∈ Ob, is canonically inMod𝟏𝐸 if we
define compositions 𝜃𝑝,𝑟 ∶ Corr

𝐸,𝜎
𝑝 ()(𝑈, 𝑉) ∧ 𝟏𝐸𝑟 → Corr𝐸,𝜎𝑝+𝑟()(𝑈, 𝑉) by

𝑈 ∧ 𝑃∧𝑝 ∧ 𝑃∧𝑟
𝑓∧g
QQQQ→ 𝑉 ∧ 𝐸𝑝 ∧ 𝑆

𝑝 ∧ 𝐸𝑟 ∧ 𝑆
𝑟 𝑡𝑤
QQ→ 𝑉 ∧ 𝐸𝑛 ∧ 𝐸𝑟 ∧ 𝑆

𝑛+𝑟
𝑉∧𝜇𝑛,𝑟∧𝑆

𝑛+𝑟

QQQQQQQQQQQ→ 𝑉 ∧ 𝐸𝑛+𝑟 ∧ 𝑆
𝑛+𝑟,
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146 GARKUSHA

where 𝑓 ∈ Corr𝐸,𝜎𝑝 ()(𝑈, 𝑉), g ∈ 𝟏𝐸𝑟 and 𝜇∗,∗ is the multiplicationmap of 𝐸. The proof is like that
of Theorem 5.2 if we observe that the diagram

(9)

is commutative with 𝑋 = Corr𝐸,𝜎∗ ()(𝑈, 𝑉), 𝑌 = Corr𝐸,𝜎∗ ()(𝑉,𝑊), 𝑍 = Corr𝐸,𝜎∗ ()(𝑈,𝑊) and
𝑏 = 𝜑𝑈,𝑉,𝑊 . □

Corollary 5.6. Under the notation of Theorem 5.5 any morphism of two symmetric ring 𝑇-spectra
𝛾 ∶ 𝐸 → 𝐸′ in 𝑆𝑝Σ(, 𝑇) induces amorphism ofMod𝟏𝐸-categories 𝛾∗ ∶ Corr

𝐸,𝜎
∗ () → Corr𝐸

′,𝜎
∗ ().

Day’s Theorem [2] together with Theorem 5.2 also imply the following result.

Corollary 5.7. Under the notation of Theorem 5.5 if 𝐸 is a commutative symmetric ring 𝑇-
spectrum then the category of Corr𝐸,𝜎∗ ()-modules in the category Mod𝟏𝐸 is a closed symmetric
monoidal category.

6 ENRICHEDMOTIVIC HOMOTOPY THEORY

One of the approaches to Morel–Voevodsky’s stable motivic homotopy theory 𝑆𝐻(𝑘) over a field
𝑘 is by means of symmetric 𝑇-spectra 𝑆𝑝Σ

𝑇
(𝑘), where 𝑇 = 𝔸1∕(𝔸1 − {0}) (see, e.g., [24]). In detail,

we start with motivic spaces equipped with the flasque motivic model structure in the sense
of [23] and then pass to 𝑆𝑝Σ

𝑇
(𝑘) equipped with the stable model structure. The homotopy category

of the latter model category is denoted by 𝑆𝐻(𝑘).
A genuinely local approach to 𝑆𝐻(𝑘), envisioned by Voevodsky in 2001, is presented in [20]. It

is based on Voevodsky’s framed correspondences and the machinery of framed motives [19].
In this section, we suggest yet another (genuinely local) approach to 𝑆𝐻(𝑘) and,more generally,

a local model for the category of 𝐸-modules in 𝑆𝐻(𝑘), where 𝐸 is a symmetric Thom ring spec-
trum. It is an application of enriched category theory of spectral categories and spectral modules
of Section 5. The same approach was used in [16, 17] to construct the theory of 𝐾-motives.
Following [14], a symmetric 𝑇-spectrum 𝐸 is called a Thom spectrum if each motivic space 𝐸𝑛

has the form

𝐸𝑛 = colim𝑖 𝐸𝑛,𝑖, 𝐸𝑛,𝑖 = 𝑉𝑛,𝑖∕(𝑉𝑛,𝑖 − 𝑍𝑛,𝑖),

where 𝑉𝑛,𝑖 → 𝑉𝑛,𝑖+1 is a directed sequence of smooth varieties, 𝑍𝑛,𝑖 → 𝑍𝑛,𝑖+1 is a directed system
of smooth closed subschemes in 𝑉𝑛,𝑖 . We say that a Thom spectrum 𝐸 has the bounding constant
𝑑 if 𝑑 is the minimal integer such that codimension of 𝑍𝑛,𝑖 in 𝑉𝑛,𝑖 is strictly greater than 𝑛 − 𝑑 for
all 𝑖, 𝑛. The 𝑇-spectrum 𝐸 is said to be a spectrum with contractible alternating group action, if for
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 147

any 𝑛 and any even permutation 𝜏 ∈ Σ𝑛 there is an𝔸1-homotopy 𝐸𝑛 → Hom(𝔸1, 𝐸𝑛) between the
action of 𝜏 and the identity map. In other words, 𝐸 neglects the action of even permutations up to
𝔸1-homotopy.
Unless it is specified otherwise𝐸 is a symmetric Thom ring 𝑇-spectrumwith the bounding con-

stant 𝑑 ⩽ 1 and contractible alternating group action throughout this section. By [14, Lemma 10.2],
𝐸 ∈ 𝑆𝐻𝖾𝖿𝖿 (𝑘), where 𝑆𝐻𝖾𝖿𝖿 (𝑘) is the full triangulated subcategory of 𝑆𝐻(𝑘) of effective 𝑇-spectra.
It is compactly generated by the suspension 𝑇-spectra Σ∞

𝑇
𝑋+, 𝑋 ∈ Sm∕𝑘. For instance, 𝐸 is the

algebraic cobordism 𝑇-spectrum 𝑀𝐺𝐿 or motivic sphere spectrum 𝑘 = (𝑆0, 𝑇, 𝑇2, …). Other
examples are commutative symmetric ring 𝑇2-spectra 𝑀𝑆𝐿 and 𝑀𝑆𝑝 [29]. The results that use
𝑇2-spectra are the same with those proven in this section and which use 𝑇-spectra. For brevity,
we will deal with 𝑇-spectra only.
We can apply Theorem 5.5 to the following data:

⋄  =;
⋄ the canonical map 𝜎 ∶ ℙ∧1 → 𝑇, where ℙ∧1 ∶= (ℙ1,∞) ∈, given by the framed correspon-
dence ({0}, 𝔸1, 𝑡) ∈ Fr1(𝗉𝗍, 𝗉𝗍);

⋄  = {𝑋+ ∣ 𝑋 ∈ Sm∕𝑘}.

Within this notation, the symmetric monoidal spectral categoryCorr𝐸,𝜎∗ () of Theorem 5.5 will be
denoted by 𝐸 for brevity and each Corr𝐸,𝜎𝑛 ()(𝑋, 𝑌) = Hom(𝑋+ ∧ ℙ∧𝑛, 𝑌+ ∧ 𝐸𝑛 ∧ 𝑆𝑛) will be
denoted by Fr𝐸𝑛 (𝑋, 𝑌 ⊗ 𝑆𝑛). Recall from [19, section 3] that each simplicial set Fr𝐸𝑛 (𝑋, 𝑌 ⊗ 𝑆𝑛) =

Hom(𝑋+ ∧ ℙ∧𝑛, 𝑌+ ∧ 𝐸𝑛 ∧ 𝑆𝑛)has an explicit geometric description due toVoevodsky’s lemma.
Similarly to Definition 4.6, we can consider a spectral category 𝐸

Δ
that is obtained from 𝐸 by

applying the Suslin complex to symmetric spectra of morphisms:

𝐸Δ(𝑋, 𝑌) ∶= (Fr𝐸0 (Δ∙𝑘 × 𝑋,𝑌), Fr𝐸1 (Δ∙𝑘 × 𝑋,𝑌 ⊗ 𝑆1), …).

Let be a spectral category and letMod be the category of-modules. Recall that the projec-
tive stable model structure onMod is defined as follows (see [33]). The weak equivalences are
the objectwise stable weak equivalences and fibrations are the objectwise stable projective fibra-
tions. The stable projective cofibrations are defined by the left lifting property with respect to all
stable projective acyclic fibrations.
Let  denote the set of elementary distinguished squares in Sm∕𝑘 (see [27, 3.1.3])

and let  be a spectral category over Sm∕𝑘. By  denote the set of squares

(10)

which are obtained from the squares in by taking𝑋 ∈ Sm∕𝑘 to(−, 𝑋). The arrow(−,𝑈′) →

(−, 𝑋′) can be factored as a cofibration (−,𝑈′) ↣ 𝐶𝑦𝑙 followed by a simplicial homotopy
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148 GARKUSHA

equivalence 𝐶𝑦𝑙 → (−, 𝑋′). There is a canonical morphism 𝐴𝑄 ∶= (−,𝑈)⨆(−,𝑈′) 𝐶𝑦𝑙 →(−, 𝑋).
Definition 6.1 (see [16, 17]). We say that  is Nisnevich excisive if for every elementary distin-
guished square𝑄 the square𝑄 (10) is homotopy pushout in the Nisnevich local model structure
on 𝑆𝑝Σ

𝑆1
(𝑘) ∶= 𝑆𝑝Σ(, 𝑆1).

The Nisnevich local model structure on Mod is the Bousfield localization of the stable
projective model structure with respect to the family of projective cofibrations

 = {cyl(𝐴𝑄 → (−, 𝑋))} .

The homotopy category for the Nisnevich local model structure will be denoted by 𝑆𝐻𝗇𝗂𝗌
𝑆1
.

Suppose  is symmetric monoidal. By a theorem of Day [2], Mod is a closed symmetric
monoidal category with smash product ∧ and (−, 𝗉𝗍) being the monoidal unit. The smash
product is defined as

𝑀 ∧ 𝑁 = ∫
Ob⊗

𝑀(𝑋) ∧ 𝑁(𝑌) ∧ (−, 𝑋 × 𝑌). (11)

The internal Hom functor, right adjoint to − ∧ 𝑀, is given by

Mod(𝑀,𝑁)(𝑋) ∶= 𝑆𝑝Σ(𝑀,𝑁(𝑋 × −)) = ∫𝑌∈Ob 𝑆𝑝
Σ(𝑀(𝑌),𝑁(𝑋 × 𝑌)).

By [6, Corollary 2.7] that there is a natural isomorphism

(−, 𝑋) ∧ (−, 𝑌) ≅ (−, 𝑋 × 𝑌).
Theorem 6.2 [16]. Suppose  is a Nisnevich excisive spectral category. Then the Nisnevich local
model structure on Mod is cellular, proper, spectral and weakly finitely generated. Moreover, a
map of -modules is a weak equivalence in the Nisnevich local model structure if and only if it is a
weak equivalence in the Nisnevich local model structure on 𝑆𝑝Σ

𝑆1
(𝑘). If  is a symmetric monoidal

spectral category then themodel structure onMod is symmetricmonoidal with respect to the smash
product (11) of -modules.
In our setting, we regard spectral categories𝐸 , 𝐸

Δ
as symmetric monoidalMod𝟏𝐸-categories

with the same monoidal product on objects as in Sm∕𝑘 (see Theorem 5.5), where Mod𝟏𝐸 is the
closed symmetric monoidal category of Corollary 3.3. Denote by 𝖬𝗈𝖽𝐸 and 𝖬𝗈𝖽𝐸

Δ
the closed

symmetricmonoidal categories of𝐸- and𝐸
Δ
-modules in the categoryMod𝟏𝐸 (see Corollary 5.7).

The Nisnevich local model structure on 𝖬𝗈𝖽𝐸 and 𝖬𝗈𝖽𝐸
Δ
as well as their homotopy

categories 𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸 and 𝖲𝖧𝗇𝗂𝗌

𝑆1
𝐸
Δ
are defined similarly to Definition 6.1.

Given 𝑋 ∈ Sm∕𝑘 and a motivic space 𝐺 ∈, denote by 𝐶∗ Fr
𝐸
𝑛 (𝑋+ ∧ 𝐺) the pointed

motivic space 𝑈 ∈ Sm∕𝑘 ↦ Hom((𝑈 × Δ∙
𝑘
)+ ∧ ℙ

∧𝑛, 𝑋+ ∧ 𝐺 ∧ 𝐸𝑛). One has a canonical map
𝐶∗ Fr

𝐸
𝑛 (𝑋+ ∧ 𝐺) → 𝐶∗ Fr

𝐸
𝑛+1

(𝑋+ ∧ 𝐺) defined by the composition

Hom((𝑈 × Δ∙
𝑘
)+ ∧ ℙ

∧𝑛, 𝑋+ ∧ 𝐺 ∧ 𝐸𝑛)
−∧𝜎
QQQQ→

Hom((𝑈 × Δ∙
𝑘
)+ ∧ ℙ

∧𝑛+1, 𝑋+ ∧ 𝐺 ∧ 𝐸𝑛 ∧ 𝑇) → Hom((𝑈 × Δ∙
𝑘
)+ ∧ ℙ

∧𝑛+1, 𝑋+ ∧ 𝐺 ∧ 𝐸𝑛+1).
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 149

We set,

𝐶∗ Fr
𝐸(𝑋+ ∧ 𝐺) ∶= colim(𝐶∗ Fr

𝐸
0 (𝑋+ ∧ 𝐺) → 𝐶∗ Fr

𝐸
1 (𝑋+ ∧ 𝐺) → ⋯).

If we drop Δ∙
𝑘
from the definition of 𝐶∗ Fr𝐸(𝑋+ ∧ 𝐺), one gets motivic spaces Fr𝐸(𝑋+ ∧ 𝐺).

Definition 6.3. The symmetric 𝐸-framed motive of a smooth algebraic variety 𝑋 ∈ Sm∕𝑘 is the
symmetric 𝑆1-spectrum

𝑀Σ
𝐸(𝑋) ∶= (𝐶∗ Fr

𝐸(𝑋),Hom(ℙ∧1, 𝐶∗ Fr𝐸(𝑋+ ∧ 𝐸1 ∧ 𝑆1)), Hom(ℙ∧2, 𝐶∗ Fr𝐸(𝑋+ ∧ 𝐸2 ∧ 𝑆2), …)

with structure maps defined similarly to𝑀Σ
𝑓𝑟
(𝑁) of Definition 4.9.

Remark 6.4. The 𝐸-framed motive in the sense of the preceding definition is a bit different from
the 𝐸-framed motive of 𝑋 in the sense of [14] defined as

𝑀𝐸(𝑋) ∶= (𝐶∗ Fr
𝐸(𝑋), 𝐶∗ Fr

𝐸(𝑋 ∧ 𝑆1)), 𝐶∗ Fr
𝐸(𝑋 ∧ 𝑆2)), …).

Lemma 6.5. If 𝑘 is a perfect field, then the canonical map of ordinary 𝑆1-spectra𝑀𝐸(𝑋) → 𝑀Σ
𝐸
(𝑋)

is a level local equivalence in positive degrees for any 𝑋 ∈ Sm∕𝑘.

Proof. The proof is like that of Lemma 4.11. We also use [14, section 7] here. □

Though𝑀𝐸(𝑋) is canonically a symmetric 𝑆1-spectrum in 𝑆𝑝Σ
𝑆1
(𝑘), whereΣ𝑛 acts on each space

by permuting 𝑆𝑛, the point is that it is not an 𝐸
Δ
-module in contrast with𝑀Σ

𝐸
(𝑋).

Proposition 6.6. Given a field 𝑘 and 𝑋 ∈ Sm∕𝑘, the following statements are true:

(1) 𝑀Σ
𝐸
(𝑋) is an 𝐸

Δ
-module.

(2) The canonical map 𝛼 ∶ 𝐸
Δ
(−, 𝑋) → 𝑀Σ

𝐸
(𝑋) in𝖬𝗈𝖽𝐸

Δ
is a sectionwise 𝜋∗-isomorphism (i.e., a

stable equivalence of ordinary spectra) whenever the base field 𝑘 is perfect.

Proof.

(1). 𝑀Σ
𝐸
(𝑋) is an 𝐸

Δ
-module for the same reasons as the representable 𝐸

Δ
(−, 𝑋) is.

(2). The proof is like that of Proposition 4.12. We also use [14, section 7] here. □

Theorem 6.7. Let 𝑘 be a perfect field. The commutative spectral category 𝐸
Δ
is Nisnevich exci-

sive and the Nisnevich local model structure on 𝖬𝗈𝖽𝐸
Δ
has all the properties of Theorem 6.2.

The category 𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸
Δ
is closed symmetric monoidal compactly generated triangulated with com-

pact generators being the symmetric 𝐸-framedmotives {𝑀Σ
𝐸
(𝑋) ∣ 𝑋 ∈ Sm∕𝑘}. The monoidal product

𝑀Σ
𝐸
(𝑋) ∧𝐿 𝑀Σ

𝐸
(𝑋) in 𝖲𝖧𝗇𝗂𝗌

𝑆1
𝐸
Δ
is isomorphic to𝑀Σ

𝐸
(𝑋 × 𝑌).

Proof. 𝐸
Δ
is Nisnevich excisive by [14, section 9], Lemma 6.5, and Proposition 6.6. The fact that

the Nisnevich local model structure on𝖬𝗈𝖽𝐸
Δ
has all the properties of Theorem 6.2 follows from

the fact that 𝐸
Δ
is Nisnevich excisive symmetric monoidal.

𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸
Δ
is closed symmetric monoidal compactly generated triangulated with compact gen-

erators being the representable 𝐸
Δ
-modules {𝐸

Δ
(−, 𝑋) ∣ 𝑋 ∈ Sm∕𝑘}. The isomorphism𝑀Σ

𝐸
(𝑋) ∧
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150 GARKUSHA

𝑀Σ
𝐸
(𝑌) ≅ 𝑀Σ

𝐸
(𝑋 × 𝑌) in 𝖲𝖧𝗇𝗂𝗌

𝑆1
𝐸
Δ
follows from the isomorphism

𝐸Δ(−, 𝑋 × 𝑌) ≅ 𝐸Δ(−, 𝑋) ∧ 𝐸Δ(−, 𝑌) ≅ 𝐸Δ(−, 𝑋) ∧𝐿 𝐸Δ(−, 𝑌)
and Proposition 6.6(2). The previous proposition also shows that compact generators can be given
by the symmetric 𝐸-framed motives {𝑀Σ

𝐸
(𝑋) ∣ 𝑋 ∈ Sm∕𝑘}. □

Let 𝔾∧1𝑚 be the mapping cone in Δop Fr0(𝑘) associated with 1 ∶ 𝗉𝗍 → 𝔾𝑚. There is a suspension
functor Σ∞

𝔾𝑚
from𝖬𝗈𝖽𝐸

Δ
to (𝑆1, 𝔾)-bispectra 𝑆𝑝𝑆1,𝔾(𝑘):

Σ∞
𝔾𝑚
() ∶= ((𝗉𝗍),(𝔾∧1𝑚 ),(𝔾∧2𝑚 ), …).

Here(𝔾∧𝑛𝑚 ) ∶=  ∧𝖬𝗈𝖽𝐸
Δ
𝐸
Δ
(−, 𝔾∧𝑛𝑚 ) is regarded as a presheaf of 𝑆1-spectra. Each structuremap

is induced by the adjunction unit morphism

(𝔾∧𝑛𝑚 ) → Hom
𝖬𝗈𝖽𝐸

Δ
(𝐸Δ(−, 𝔾∧1𝑚 ),(𝔾∧𝑛+1𝑚 )).

Corollary 6.8. Let 𝑘 be a perfect field. There is a triangulated equivalence of compactly generated
triangulated categories

𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸Δ ≃ Mod𝖾𝖿𝖿𝑆𝐻(𝑘) 𝐸.

Proof. 𝑆𝐻(𝑘) = Ho(𝑆𝑝Σ
𝑇
(𝑘)) is naturally zigzag equivalent to the category of bispectra 𝖲𝖧(𝑘) =

Ho(𝑆𝑝𝑆1,𝔾(𝑘)). Let M̃od
𝖾𝖿𝖿

𝑆𝐻(𝑘)𝐸 be the essential image of Mod𝖾𝖿𝖿
𝑆𝐻(𝑘)

𝐸 under this zigzag equiva-

lence. The category M̃od
𝖾𝖿𝖿

𝑆𝐻(𝑘)𝐸 is compactly generated by the images of {𝑋+ ∧ 𝐸 ∣ 𝑋 ∈ Sm∕𝑘}

in M̃od
𝖾𝖿𝖿

𝑆𝐻(𝑘)𝐸. By the proof of [14, Theorem 9.13] the latter are isomorphic in M̃od
𝖾𝖿𝖿

𝑆𝐻(𝑘)𝐸 to
motivically fibrant bispectra

𝑀𝔾
𝐸(𝑋)𝑓 ∶= (𝑀𝐸(𝑋)𝑓,𝑀𝐸(𝑋+ ∧ 𝔾

∧1
𝑚 )𝑓,𝑀𝐸(𝑋+ ∧ 𝔾

∧2
𝑚 )𝑓, …),

where “𝑓” refers to level local fibrant replacements of motivic 𝑆1-spectra. We have a triangulated
functor of compactly generated triangulated categories

𝐿Σ∞
𝔾𝑚

∶ 𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸Δ → M̃od

𝖾𝖿𝖿

𝑆𝐻(𝑘)𝐸.

ByLemma 6.5, Proposition 6.6, and Theorem6.7,𝑀𝔾
𝐸
(𝑋)𝑓 ≅ 𝐿Σ

∞
𝔾𝑚
(𝐸

Δ
(−, 𝑋)). It follows that 𝐿Σ∞

𝔾𝑚
takes compact generators to compact generators with isomorphic Hom-sets. It remains to apply
Lemma 4.1. □

Next, we can stabilize our constructions in the 𝔾∧1𝑚 -direction as follows. Denote by −⊠𝔾∧1𝑚
the endofunctor  ∈ 𝖬𝗈𝖽𝐸

Δ
↦ (𝔾∧1𝑚 ). Following Hovey [22, section 8], we consider the stable

model structure on 𝔾∧1𝑚 -symmetric spectra 𝑆𝑝Σ(𝖬𝗈𝖽𝐸
Δ
, 𝔾∧1𝑚 ) (we start with the Nisnevich local

stable model structure on 𝖬𝗈𝖽𝐸
Δ
). Its homotopy category is denoted by 𝖲𝖧𝑆1,𝔾𝑚𝐸Δ. Given  ∈

𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸
Δ
we write (1) to denote  ⊠𝐿 𝔾∧1𝑚 .
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 151

Corollary 6.9. Let 𝑘 be a perfect field. There is a triangulated equivalence of compactly generated
triangulated categories

𝖲𝖧𝗇𝗂𝗌
𝑆1,𝔾𝑚

𝐸Δ ≃ Mod𝑆𝐻(𝑘) 𝐸,
whereMod𝑆𝐻(𝑘) 𝐸 is the category of 𝐸-modules in 𝑆𝐻(𝑘). Moreover, the functor

Σ∞
𝔾𝑚

∶ 𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸Δ → 𝖲𝖧𝗇𝗂𝗌

𝑆1,𝔾𝑚
𝐸Δ

is fully faithful. In particular,Hom𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸
Δ
( , ′) → Hom𝖲𝖧𝗇𝗂𝗌

𝑆1
𝐸
Δ
((1), ′(1)) is an isomorphism for

all  , ′ ∈ 𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸
Δ
.

Proof. The proof is similar to that of Corollary 6.8. We compare compact generators and Hom-sets
between them in both categories. □

It is worth mentioning that we do not use any motivic equivalences or the 𝔸1-relation in any
of our definitions above (similarly to constructions of [20]). All constructions here are genuinely
local. On the other hand, we can do the usual Voevodsky approach [34] to constructing the tri-
angulated category of motives 𝐷𝑀𝖾𝖿𝖿 (𝑘). We start with the spectral category 𝐸 and Cech local
model structure on the stable model category of 𝐸-modules𝖬𝗈𝖽𝐸 .
For each finite Nisnevich cover {𝑈𝑖 → 𝑋} we let 𝐸(−, �̌�∗) be the realization of the simpli-

cial module which in dimension 𝑛 is ∨𝑖0,…,𝑖𝑛𝐸(−,𝑈𝑖0…𝑖𝑛 ), with the obvious face and degeneracy
maps. Here 𝑈𝑖0…𝑖𝑛 stands for the smooth scheme 𝑈𝑖0 ×𝑋 ⋯ ×𝑋 𝑈𝑖𝑛 . The reader should not con-
fuse𝐸(−, �̌�∗)with the realization𝐸(−, �̌�(𝑈∗)) of the simplicial module which in dimension 𝑛
is 𝐸(−, ⊔𝑖0,…,𝑖𝑛𝑈𝑖0…𝑖𝑛 ).
Lemma 6.10. Each natural map ∨𝑖0,…,𝑖𝑛𝐸(−,𝑈𝑖0…𝑖𝑛 ) → 𝐸(−, �̌�(𝑈𝑛)) is a schemewise stable
equivalence of ordinary 𝑆1-spectra.

Proof. It is enough to show that the natural map

𝛽 ∶ (Fr𝐸0 (𝑋, 𝑉), Fr
𝐸
1 (𝑋, 𝑉 ⊗ 𝑆1), …) ∨ (Fr𝐸0 (𝑋,𝑊), Fr𝐸1 (𝑋,𝑊 ⊗ 𝑆1), …) →

→ (Fr𝐸0 (𝑋, 𝑉 ⊔𝑊), Fr𝐸1 (𝑋, (𝑉 ⊔𝑊) ⊗ 𝑆1), …)

is a stable equivalence of ordinary 𝑆1-spectra for any𝑋,𝑉,𝑊 ∈ Sm∕𝑘. This is a stable equivalence
if and only if Θ∞

𝑆1
(𝛽) is. The latter map is a stable equivalence if and only if

𝛾 ∶ (Fr𝐸(𝑋, 𝑉), Fr𝐸(𝑋, 𝑉 ⊗ 𝑆1), …) ∨ (Fr𝐸(𝑋,𝑊), Fr𝐸(𝑋,𝑊 ⊗ 𝑆1), …) →

→ (Fr𝐸(𝑋, 𝑉 ⊔𝑊), Fr𝐸(𝑋, (𝑉 ⊔𝑊) ⊗ 𝑆1), …)

is a stable equivalence. This is amap of Segal 𝑆1-spectra associated to Segal spaces of the form𝐾 ∈

Γop ↦ Fr𝐸(𝑋, 𝑉 ⊗ 𝐾), hence 𝛾 is amap of connective spectra. The StableWhitehead Theorem [31,
Proposition II.6.30] implies 𝛾 is a stable equivalence if and only if

ℤ(𝛾) ∶ (ℤFr𝐸(𝑋, 𝑉), ℤ Fr𝐸(𝑋, 𝑉 ⊗ 𝑆1), …) ∨ (ℤFr𝐸(𝑋,𝑊), ℤFr𝐸(𝑋,𝑊 ⊗ 𝑆1), …) →

→ (ℤFr𝐸(𝑋, 𝑉 ⊔𝑊), ℤFr𝐸(𝑋, (𝑉 ⊔𝑊) ⊗ 𝑆1), …)
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152 GARKUSHA

is a stable equivalence, where ℤFr𝐸(𝑋, 𝑉) is the reduced free Abelian group of the pointed set
Fr𝐸(𝑋, 𝑉). Repeating the proof of [15, Theorem 1.2] word for word, ℤ(𝛾) is stably equivalent to the
map

𝛿 ∶ (ℤ𝐹𝐸(𝑋, 𝑉), ℤ𝐹𝐸(𝑋, 𝑉 ⊗ 𝑆1), …) ∨ (ℤ𝐹𝐸(𝑋,𝑊), ℤ𝐹𝐸(𝑋,𝑊 ⊗ 𝑆1), …) →

→ (ℤ𝐹𝐸(𝑋, 𝑉 ⊔𝑊), ℤ𝐹𝐸(𝑋, (𝑉 ⊔𝑊) ⊗ 𝑆1), …),

where ℤ𝐹𝐸(𝑋,𝑉) = colim𝑛 ℤ𝐹
𝐸
𝑛 (𝑋, 𝑉) with ℤ𝐹

𝐸
𝑛 (𝑋, 𝑉) the free Abelian group freely generated

by 𝐸-framed correspondences with connected support [14]. As ℤ𝐹𝐸(𝑋,𝑉 ⊔𝑊) = ℤ𝐹𝐸(𝑋,𝑉) ×

ℤ𝐹𝐸(𝑋,𝑊), the map 𝛿 equals the stable equivalence of 𝑆1-spectra

(ℤ𝐹𝐸(𝑋, 𝑉), ℤ𝐹𝐸(𝑋, 𝑉 ⊗ 𝑆1), …) ∨ (ℤ𝐹𝐸(𝑋,𝑊), ℤ𝐹𝐸(𝑋,𝑊 ⊗ 𝑆1), …) →

→ (ℤ𝐹𝐸(𝑋, 𝑉), ℤ𝐹𝐸(𝑋, 𝑉 ⊗ 𝑆1), …) × (ℤ𝐹𝐸(𝑋,𝑊), ℤ𝐹𝐸(𝑋,𝑊 ⊗ 𝑆1), …).

This completes the proof of the lemma. □

TheCechmodel category𝖬𝗈𝖽𝐸
𝐶𝑒𝑐ℎ

associatedwithNisnevich topology is obtained from𝖬𝗈𝖽𝐸
by Bousfield localization with respect to all maps 𝜂 ∶ 𝐸(−, �̌�∗) → 𝐸(−, 𝑋) running over the
set of finite Nisnevich covers. It follows from [36, Corollary 5.10] (see also [5]) that 𝖬𝗈𝖽𝐸

𝐶𝑒𝑐ℎ
coincides with the Nisnevich local model category 𝖬𝗈𝖽𝐸

𝗇𝗂𝗌
, with stable weak equivalences

defined stalkwise.
We say that a spectral category  is Cech excisive if for any finite Nisnevich cover {𝑈𝑖 → 𝑋} the

induced map 𝜂 ∶ (−, �̌�∗) → (−, 𝑋) is a local stable weak equivalence.
Theorem 6.11. Let 𝑘 be any field. The commutative spectral category𝐸 is Cech excisive. The Cech
model structure coincides with Nisnevich local model structure on𝖬𝗈𝖽𝐸 . This model structure has
all the properties of Theorem 6.2. The homotopy category 𝐷𝐸,𝖾𝖿𝖿 (𝑘) of𝖬𝗈𝖽𝐸

𝐶𝑒𝑐ℎ
is closed symmet-

ric monoidal compactly generated triangulated with compact generators being the representables
{𝐸(−, 𝑋) ∣ 𝑋 ∈ Sm∕𝑘}. The monoidal product 𝐸(−, 𝑋) ∧ 𝐸(−, 𝑌) in 𝐷𝐸,𝖾𝖿𝖿 (𝑘) is isomorphic
to 𝐸(−, 𝑋 × 𝑌).
Proof. By Lemma 6.10 each map ∨𝑖0,…,𝑖𝑛𝐸(−,𝑈𝑖0…𝑖𝑛 ) → 𝐸(−, �̌�(𝑈𝑛)) is a schemewise sta-
ble equivalence, and hence the realization is. The proof of [35, Theorem 4.4] shows that the
map 𝐸(−, �̌�(𝑈∗)) → 𝐸(−, 𝑋) is a level local equivalence. We see that 𝜂 is a local stable weak
equivalence. The rest is now straightforward. □

The homotopy category𝐷𝐸,𝖾𝖿𝖿 (𝑘) plays the same role as the derived category𝐷(Shv𝗇𝗂𝗌𝑡𝑟 (Sm∕𝑘))
of cochain complexes of Nisnevich sheaves with transfers. Recall from [34] that Voevodsky’s
category of motives 𝐷𝑀𝖾𝖿𝖿 (𝑘) is the localization of 𝐷(Shv𝗇𝗂𝗌𝑡𝑟 (Sm∕𝑘)) with respect to the family
{ℤ𝑡𝑟(−, 𝑋 × 𝔸

1) → ℤ𝑡𝑟(−, 𝑋) ∣ 𝑋 ∈ Sm∕𝑘}. If 𝑘 is perfect, 𝐷𝑀𝖾𝖿𝖿 (𝑘) is equivalent to the full sub-
category of𝐷(Shv𝗇𝗂𝗌𝑡𝑟 (Sm∕𝑘)) consisting of chain complexes with homotopy invariant cohomology
sheaves [34]. Likewise, localize𝖬𝗈𝖽𝐸

𝐶𝑒𝑐ℎ
with respect to the maps {𝐸(−, 𝑋 × 𝔸1) → 𝐸(−, 𝑋) ∣

𝑋 ∈ Sm∕𝑘}. Denote by 𝐷𝐸,𝖾𝖿𝖿mot (𝑘) its homotopy category.
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CORRESPONDENCES AND STABLE HOMOTOPY THEORY 153

Theorem 6.12. Let 𝑘 be a perfect field. The homotopy category 𝐷𝐸,𝖾𝖿𝖿mot (𝑘) is equivalent to the
full triangulated subcategory 𝐷𝐸𝖾𝖿𝖿 (𝑘) of 𝐷𝐸,𝖾𝖿𝖿 (𝑘) consisting of modules with homotopy invari-
ant sheaves of stable homotopy groups. The inclusion 𝐷𝐸𝖾𝖿𝖿 (𝑘) → 𝐷𝐸,𝖾𝖿𝖿 (𝑘) has a right adjoint 𝐶∗
taking a module𝑀 ∈ 𝐷𝐸,𝖾𝖿𝖿 (𝑘) to its Suslin complex 𝐶∗(𝑀).
Moreover, there is a triangulated equivalence of compactly generated triangulated categories

𝐷𝐸𝖾𝖿𝖿 (𝑘) ≃ 𝖲𝖧𝗇𝗂𝗌
𝑆1
𝐸Δ.

Proof. The proof of the first part is like that of [17, Theorem 3.5]. One also uses here the fact that if 𝑘
is perfect then by [18] (complemented by [4] in characteristic 2 and by [3, A.27] for finite fields) any
𝔸1-invariant quasi-stable radditive framed presheaf of Abelian groups , the associatedNisnevich
sheaf 𝗇𝗂𝗌 is strictly 𝔸1-invariant.
The equivalence 𝐷𝐸𝖾𝖿𝖿 (𝑘) ≃ 𝖲𝖧𝗇𝗂𝗌

𝑆1
𝐸
Δ
follows from the fact that both categories are compactly

generated by symmetric 𝐸-framed motives with the same Hom-sets (as usual we use Lemma 4.1
here). □

We call the category𝐷𝐸𝖾𝖿𝖿 (𝑘) from the preceding theorem the triangulated category of𝐸-framed
motives. We finish the paper with the following result saying that 𝐷𝐸𝖾𝖿𝖿 (𝑘) recovers the category
of effective 𝐸-modules in 𝑆𝐻(𝑘).

Corollary 6.13. Let 𝑘 be a perfect field. There is a triangulated equivalence of compactly generated
triangulated categories

𝐷𝐸𝖾𝖿𝖿 (𝑘) ≃ Mod𝖾𝖿𝖿
𝑆𝐻(𝑘)

𝐸.

Proof. This follows from the preceding theorem and Corollary 6.8. □
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