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ABSTRACT
This paper extends the previous paper [6] by implementing two
blockchain simulators of Solidity-style smart contracts – a simple
and a complex one, using the interactive theorem prover Agda. In
the previous article [6], we built a simple and complex abstract
model of Solidity-style smart contracts in Agda. These models had
many features, such as calling different smart contracts, supporting
the ability to call different smart contracts, and providing simple
and complex instructions. Because of the use of coalgebras for
representing smart contracts they supported loops and conditionals,
using the support of those features for coalgebraic programs in
Agda. The complex model supported gas costs and pure functions,
similar to the Solidity language.

In this paper, we implement and design interfaces which allow to
interactively interact with users in the simple and complex models.
This makes use of the fact that Agda is as well a dependently typed
programming language. Therefore we can write interactive pro-
grams which are running in the same language in which we will in
a future next step verify smart contracts, avoiding the translation of
programs which could be a source of errors. The simple blockchain
simulator we have created can call other contracts, transfer funds
to specific contracts, and update contracts. The complex blockchain
simulator has in addition features that can deal with more complex
blockchain instructions, support gas costs, and evaluate and update
pure functions.

CCS CONCEPTS
• Theory of computation → Logic and verification; Type theory;
Interactive computation; • Security and privacy→ Logic and ver-
ification; Formal security models; • Computing methodologies
→ Distributed algorithms; Modeling methodologies.
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Agda, smart contracts, Solidity, theorem prover, Ethereum, interface,
simulator, blockchain
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1 INTRODUCTION
Blockchains are distributed digital ledgers that operate without
a centralised authority. A blockchain is a form of database that
is decentralised, reliable, and difficult to utilise for fraud. Once
a transaction publishes in the blockchain network, no one can
change it except by changing the ledger, e.g., by a 50% attack, which
is unlikely in the case of Ethereum.

Blockchain technology is the foundation for Ethereum [13] and
other cryptocurrencies, enabling peer-to-peer transactions through
a distributed public record. The technology supports other appli-
cations as well, such as smart contracts [40]. Thus, the technology
offers countless possibilities.

Ethereum was first suggested by Vitalik Buterin [13] in 2013.
Since its launch in 2015, the project has rapidly risen to become one
of the most widely used blockchain platforms. Ethereum is used to
build many decentralised applications (DApps).

Smart contracts in blockchain are programs that automatically
run when specific criteria are met [26]. Due to the immutability of
blockchains, once a smart contract has been issued, it cannot be
modified in any way. Therefore, before deploying smart contracts,
it is necessary to verify their correctness and security to avoid
possibly triggering substantial financial losses.

Many languages can be used to write Ethereum’s smart contracts,
such as Solidity [15] and Vyper [41], both high-level languages.
Other cryptocurrencies have their own languages [9].

Formal verification is one way to detect weaknesses and vulner-
abilities at an early stage in smart contracts. It is also a promising
way to provide security guarantees by mathematically verifying
designs that use various mathematical and logical methods [22].
There are many approaches to formal verification, such as theorem
proving [21] and modelling checking [33]. In theorem proving, it
is possible to verify the correctness of different types of systems,
such as smart contracts [21].

In our approach, we use the interactive theorem prover Agda [3]
to execute the blockchain simulator. One interesting aspect of Agda
is that it can be used as a dependently typed programming lan-
guage [34]. Therefore, together with the fact that it is also a theo-
rem prover, Agda allows the writing of verified programs, where
the verification takes place in the same language in which the pro-
gram is written. This prevents translation problems that might arise
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because the verified program differs from the implemented one.
However, what we do not do at this stage is to translate solidity
programs automatically into Agda, this is done manually.

As a background for this paper we note as well that the main
unit of the Ethereum currency is ether, where 1 ether = 1018 wei.

The remaining parts of this paper are as follows: In Sect. 2, we
present related work. In Sect. 3, we briefly introduce the proof
assistant Agda and the library used to build our interface. In Sect. 4,
we implement and design two simulators of Solidity-style smart
contracts. We end with a conclusion and future work in Sect. 5.

Git repository. This work was created and formalised using
the proof assistant Agda. All of the Agda code shown in this paper
was derived from the type-checked Agda code. The source code
can be found in [37]. The git repository also contains a pdf file [8]
that explains how to translate Solidity code manually into Agda.
There we show as well how to deal with arithmetic overflow – in
the main paper for brevity we use unrestricted integers.

2 RELATEDWORK
In this section, we describe the work that have focused on verifying,
formalizing, and analyzing smart contracts using theorem provers
such as Agda [3], Coq [11, 14], and Isabelle/HOL [24]. Then, we
provide research using model checking, tools, and a framework to
analyze and verify smart contracts. Our earlier articles [5–7] anal-
ysed the relevant literature in more depth, this part only provides a
brief update.

Some efforts verify smart contracts using the theorem prover.
Ayoade et al. [10] proposed and developed a framework for rewrit-
ing Ethereum bytecode without access to the source code. Their
approach enables bytecode modifications to Ethereum without a
high-level language’s source code. They used the Coq theorem
prover to implement and verify the Ethereum virtual machine code.
Zheng et al. [42] developed Lolisa, an intermediate specification
language for Ethereum smart contracts in Coq. Lolisa has a major
subset of Ethereum’s Solidity programming language in its formal
syntax and semantics. Lolisa’s formal syntax uses a stronger static
type system than Solidity to improve type safety. Lolisa also incor-
porates general-purpose programming language capabilities and
a substantial fraction of Solidity syntax components. Thus, trans-
lating Solidity programs into Lolisa is possible. Lolisa is naturally
generalizable and can express various programming languages. Fi-
nally, Coq interprets Lolisa’s syntax and semantics. Thus, Coq can
execute and verify Lolisa’s smart contracts symbolically. In [5, 7], we
have proved the correctness of Bitcoin script in Agda and developed
a methodology to obtain a human-readable weakest precondition
of Hoare logic. This helps to fill the validation gap between user
needs and the formal specification of smart contracts. We have
applied this methodology to two standard scripts, Pay to Public Key
Hash (P2PKH) and Pay to Multisig (P2MS). Marmsoler et al. [27]
propose an executable denotational semantics of Solidity in the
Isabelle/HOL proof assistant. Their formal semantics creates the
groundwork for an interactive program verification environment
for the Solidity program and enables checking Solidity programs
by symbolic execution.

Many types of research analyse and verify smart contracts using
frameworks, model checking, and tools. Mavridou et al. [29] de-
veloped FSolidM, a framework for creating more secure contracts
on ETH via a graphical interface for developing finite state ma-
chines that can immediately be converted into ETH smart contracts.
Nam et al. [32] presented a novel formal verification approach us-
ing an alternating-time temporal logic (ATL) model to investigate
blockchain smart contracts developed through solidity. They used
MCMAS [25], an effective ATL model checker that verifies multi-
agent systems. They aimed at identifying subtle defects in real
smart contracts. So et al. [38] presented a static analysis tool, VeriS-
mart, to ensure the arithmetic safety of Ethereum smart contracts.
They focused on detecting arithmetic bugs, such as integer over/un-
derflows and division-by-zeros, because smart contracts typically
involve many arithmetic operations which are major sources for
security vulnerabilities.

3 BACKGROUND
3.1 A brief introduction to the Agda theorem

prover
Agda [12, 39] is a language that implements Martin-Löf’s type
theory [28], with expanding records and modules. It serves as a
functional programming language and proof assistant.

In the following we provide a concise overview of Agda; more
comprehensive information on the proof assistant Agda is available
in our previous papers [5–7].

Agda’s user interface is based on Emacs, which has been benefi-
cial for interactively developing and verifying proofs [12]. When
using Agda, programmers can write their code incrementally, al-
lowing them to leave certain parts unfinished. With the help of
Agda’s type-checking tool, they can receive useful guidance on
completing these sections step by step.

Agda is based on dependent types. (𝑥 : 𝐴) → 𝐵 is the type of
functions which takes an element 𝑥 : 𝐴 and map it to an element
of 𝐵, where 𝐵 may depend on 𝑥 . Agda supports hidden arguments
with syntax {𝑥 : 𝐴} → 𝐵 – in this case we can omit the application
of the function to its argument, if it can be inferred uniquely by
the compiler. If it cannot be inferred, one can provide the hidden
argument explicitly, writing 𝑓 {𝑎} for the application of 𝑓 to hidden
argument 𝑎. Nondependent function types are instances of depen-
dent types with no dependency, and we write𝐴 → 𝐵 for the type of
functions from 𝐴 to 𝐵. In Agda one writes ∀𝑥 → 𝐵 for (𝑥 : 𝐴) → 𝐵

and ∀{𝑥 }→𝐵 for {𝑥 : 𝐴}→𝐵, if 𝐴 can be inferred uniquely by Agda.
Furthermore, _ denotes arguments which are not used, or can be
inferred uniquely.

Apart from dependent function types, Agda supports inductive
(data) types and record types, where the latter can be coinductive
types. As an example of a data type, we define ErrorMsg, which
will be used in the simple simulator later in this article. It can be
used to describe a variety of error messages as follows:

data ErrorMsg : Set where
strErr : String→ ErrorMsg
numErr : N→ ErrorMsg
undefined : ErrorMsg
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We define three different error message constructors in the Er-
rorMsg data type. The strErr constructor is used for error messages
given by a string, numErr is used for error messages given by a nat-
ural number, and undefined is used for reporting the error message
“undefined”. We can define functions by using pattern matching on
these constructors, e.g.

errorMsg2Str : ErrorMsg → String
errorMsg2Str (strErr s) = s
errorMsg2Str (numErr n) = show n
errorMsg2Str undefined = "undefined"

The function errorMsg2Str converts an error into a readable string
suitable for printing or displaying to users.

An example of a record type is as follows:

record StateIO : Set where
constructor 〈_ledger,_initialAddr,_gas〉
field
ledger : Ledger
initialAddr : Address
gas : N

It has a constructor 〈_ledger,_initialAddr,_gas〉 which is mix fix
(_ denote the argument positions of this function). It constructs
from elements of Ledger, Address, N an element of StateIO. The
projection of a record types to its field (also called observation)
is defined using the dot notation, for instance if 𝑥 : StateIO, then
𝑥 .ledger : Ledger. Elements of a record type can be defined by
copattern matching (see [1]): We can introduce an element 𝑎 :
StateIO by determining its components 𝑎 .ledger, 𝑎 .initialAddr,
and 𝑎 .gas.

Record types can refer directly or indirectly via other types to
themselves. If we add the word coinductive, then an element of it
can be defined using copattern matching by using full recursion
referring to itself, as long as in the chain from on element to itself
there is at least one observation. This allows to define coalgebras in
Agda. They are infinite structures which don’t break normalisation
in Agda (which means every term in Agda has finite normal formal),
because in order to unfold a term one needs to apply one of the
observations (fields) of the record type. For more details see [1].

Agda employs different levels of types, with the smallest level
being called Set for historical reasons [23, 30]. In this article, we use
apart from Set the next higher type level Set1. Set1 encompasses
all sets (via an explicit embedding), but as well Set itself and types
formed from it such as Set → Set.

3.2 Interface Library
The representation of interactive programs as the IO monad [31]
in dependent type theory was developed by the second author and
Peter Hancock in a sequence of articles [16–20], see as well [1,
Sect. 4]. All the Agda code in this section is taken from [2, Sect. 4]
(with minor modifications). Interaction between a program with,
for example, an operating system dealing with IO can be created
as a series of commands (elements of Command) issued by the
program to the operating system. For each of these commands the
operating system returns a response (an element of Response). The
type Responsewill depend on the command being issued. As shown

in Figure 1, the interactive program gives a question to the world
using a command, and the world answers with some response. Then
the next command is issued depending on that response etc.

Program

World

CommandResponse

Figure 1: Interactive program. Source: [36]

Consequently, the interface for interaction consists of a set of
commands Command and a set of responses Response, depending
on commands. We define the type of interfaces in Agda as a record
type. Since its fields include the type Set, the type IOInterface
of interfaces resides in the type level Set1 above Set. IOInterface
has two fields: Command of type Set and a field Response which
depending on a command returns the set of responses (Source: [2]):

record IOInterface : Set1 where
field
Command : Set
Response : Command→ Set

In our interactive program interactions consist of input and output
of strings. We use the interface ConsoleCommand to deal with
console interface, which has two commands getLine and putStrLn.
The command getLine : ConsoleCommand has no argument, and
reads a user input line. The response returned by the system is the
String typed in by the user, therefore we define
ConsoleResponse getLine = String.
The command putStrLn command has one argument of type String,
namely the string to be printed, so we define
putStrLn : String→ ConsoleCommand.
The response is just the information that the string has been printed
(we assume this command always succeeds so there is no error
message), so the information is the void information given by the
one element type Unit, and we define putStrLn s = Unit.
The complete definition is as follows (Source: [2]):

data ConsoleCommand : Set where
putStrLn : String→ ConsoleCommand
getLine : ConsoleCommand

ConsoleResponse : ConsoleCommand→ Set
ConsoleResponse (putStrLn s) = Unit
ConsoleResponse getLine = String

The console interface consoleI is the interface consisting of Con-
soleCommand and ConsoleResponse (Source: [2]):
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consoleI : IOInterface
consoleI .Command = ConsoleCommand
consoleI .Response = ConsoleResponse

We define the set of interactive programs generically for any IOInt-
erface. We will abstract from it, which is written in Agda by using
the lines (Source: [2])

module _
(I : IOInterface ) (let C = I .Command) (let R = I .Response)

This line unpacks as well the interface into its two commands: the
set of commands (the set𝐶) and the response set 𝑅 of the abstracted
interface 𝐼 .

We now define the type IO of interactive programs mutually
recursively as a coinductive record IO together with the data type
IO’. This definition is coinductive, since interactive program in
principal are allowed to run an infinite non-terminating sequence of
interactions. In accordance with Moggi’s IO monad [31], interactive
programs may as well terminate, returning an element of type
𝐴. We use here sized types, which allow to define elements of
coalgebras in a more generic way which without sized types would
be rejected in this form by Agda’s termination checker, even though
they are productive. See [1, Sect. 6] for a detailed explanation of
sized types. As a first approximation the user might ignore all
arguments referring to the type Size in the following (most elements
of type Size will be inferred automatically by Agda when writing
Agda code). One could view sized types as a form of gas, where a
program of size 𝑛 is allowed to be unfolded at most 𝑛 times.

IO has a field (or observation) force, which returns an element
of type IO’. It has as well for convenience a lazy constructor delay
which turns an element 𝑝 of IO’ into an element of IO’ A, namely an
element, which when we apply .force to it returns 𝑝 . Elements of IO’
are either terminating programs return’ 𝑎, returning an element of
type𝐴. Or they are of the form exec’ c p, which means they execute
command 𝑐 : 𝐶 , and continue, if a response 𝑟 : 𝑅 𝑐 is returned,
executing program 𝑝 𝑟 .

The full definition is as follows (Source: [2]):

record IO (i : Size) (A : Set) : Set where
coinductive
constructor delay
field
force : {j : Size< i}→ IO’ j A

data IO’ (i : Size) (A : Set) : Set where
exec’ : (c : C) ( f : R c → IO i A)→ IO’ i A
return’ : (a : A) → IO’ i A

Note that elements of IO are not directly of the form (return’ 𝑎)
or (exec’ 𝑐 𝑝) – instead we need to apply observation .force to it in
order to unfold it into one these two choices. Otherwise an element
of IO representing a infinite sequence of interactions would reduce
to an infinite term, whereas Agda requires each correctly typed
term to reduce to a finite normal form. In order to unfold an IO’
once, we need to pay the price of applying once .force to it, breaking
a possibly infinite reduction sequence.

We define the monad operation bind [31] for the IO monad in
order to combine programs as follows (Source: [2]):

_>>=’_ : ∀{i}{A B : Set}(m : IO’ I i A) (k : A→ IO I (↑ i) B)→ IO’ I i B
exec’ c f >>=’ k = exec’ c _ x → f x >>= k
return’ a >>=’ k = (k a) .force

_>>=_ : ∀{i}{A B : Set}(m : IO I i A) (k : A→ IO I i B)→ IO I i B
(m >>= k) .force = m .force >>=’ k

The program 𝑝 >>=’ 𝑞 first executes program 𝑝 . If it terminates,
returning 𝑎 : 𝐴, then it continues executing 𝑞 𝑎. If that program
terminates the overall program terminates as well, returning the
response returned when executing 𝑞 𝑎.

4 A SIMULATOR OF SOLIDITY-STYLE SMART
CONTRACTS IN AGDA

4.1 Simulator of the simple model
In the previous work [6], we developed a simple model of Solidity-
type smart contracts. This model had as commands transferc for
transferring money from one contract to another, callc for calling a
function (in object-orientation terminology a method) of another
contract, updatec for updating one of the functions of the contract,
we are making the call from. In addition we had commands for
looking up the address of the current contract and the balance (wei)
of any contract.

These commands formed the set of commands (CCommands) of
an interactive program. We defined for each command the set of
possible responses CResponse returned in response to issuing this
command. Since CResponse depends on CCommands, it’s type is
that of a function from CCommands to the type of sets Set.

Smart contracts are given as elements of a coinductive type
Contract. They possibly infinitely often issue a command (element
of CCommands) and depending on the response (CResponse) ob-
tained when executing it execute the next command. They are
similar to the interactive programs described in Sect. 3.2, however
the commands are executed on the ledger instead of asking the user
for a response via an operating system. The resulting responses
are obtained from the ledger, and the ledger changes as a result of
the execution. The execution forms an object-model of Ethereum,
similar to the object models developed by the second author with
coauthors in [1, 35]. Smart contracts are given as coinductive inter-
active programs, executing this sequence of commands, with the
commands computed depending on the response to the previous
command. In Agda they are represented as a coinductive record type
SmartContract (in [6] we called it SmartContractExec, but thought
this shorter name improves readability of this paper). SmartCon-
tract is defined similar to the type of interactive programs, but it is
running on the ledger instead of an operating system.

Contracts (Contract) are records consisting of the balance (amount
of wei) given as a natural number and a function from function
names to SmartContract. A ledger (Ledger) is a function from ad-
dresses (natural numbers) to Contract.

In this section we build, based on our previous work [6], a sim-
ulator of the simple model of Solidity-style smart contracts. The
simple simulator supports the above mentioned operations, i.e. call-
ing functions from other contracts, updating functions, transferring
funds, and obtaining the money balance in other smart contract.
However, at this level, the simple simulator does not include an
explicit cost of gas – that will be included in the complex model.
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Without gas, execution of smart contracts may not terminate. This
is reflected by the fact that in the file Ledger-Simple-Model.agda
in the git repository [37], two auxiliary functions used in the evalu-
ation of smart contracts are under the pragma
{-# NON_TERMINATING #-}
Agda requires that the programs terminate in order to be consis-
tent as a theorem prover, and uses a termination checker to check
for termination. Using this pragma, we can break the termination
checker. Because of these nontermination problems, the simulator,
which makes use of the evaluation function, is not guaranteed to
terminate (an example would be a contract calling itself with the
same argument it is called). This problem will be repaired in the
complex model, where we add an explicit gas limit. We could as
well restrict in the simple model the number of recursive calls to a
certain number, having the effect of a simple form of gas limit.

Arguments of functions and the results returnedwill be serialised
messages, which allows the encoding of complex data structures as
byte arrays. In order to abstract from the process of serialisation,
we use a data typeMsg representing serialised messages:

data Msg : Set where
nat : N →Msg
list : List Msg →Msg

The simplest elements of it are of the form nat 𝑛, representing the
serialised number 𝑛. All inputs of functions will be elements of Msg
and outputs will be elements of MsgOrError (which includes in ad-
dition to Msg an error element). In Solidity, numbers are restricted
integers or restricted positive integers. Integers can be, for instance,
represented as pairs consisting of a Boolean value representing
the sign and number, whereas Booleans can be represented as the
natural numbers 0 and 1. When sending or receiving elements of
these data types, one needs in Agda to check that the numbers are
in the range given by the data type and, if they are not, deal with it
according to what is done in Solidity, which means for the current
version 0.8.21, to raise an exception.

In the simple model, variables are represented as constant func-
tions, which returns the value of the variable. In order to change a
variable, we update the function representing it.

We illustrate the simulation interface by referring to the follow-
ing example testLedger. It will have only one defined contract at
address 1 which has a variable "counter", and a function to incre-
ment this variable by 1. In order to demonstrate other features, we
have as well a function which transfers 10 wei to contract 0.

The definition of testLedger is as follows:

testLedger 1 .amount = 40
testLedger 1 .fun "counter" m = const 0 (nat 0)
testLedger 1 .fun "increment" m
= exec currentAddrLookupc _ addr→
exec (callc addr "counter" (nat 0))
_{(nat n)→ exec (updatec "counter" (const (suc n)))

_ _→ return (nat (suc n));
_→ error (strErr "counter returns not a number")}

testLedger 1 .fun "transfer" m
= exec (transferc 10 0) _ _→ return m

testLedger ow .amount = 0
testLedger ow .fun ow’ ow” = error (strErr "Undefined")

In testLedger, we define a contract at address 1. We set the bal-
ance (field amount) to 40. We have 3 functions: The first function
"counter" represents a variable. This variable is initialised with
the value nat 0.

The second function is "increment", which will increment the
variable of "counter" by 1. In order to be independent of the
address, on which it is deployed, it will look up the current address
(which returns 1). Then it will lookup the value of the variable by
applying the function "counter" to an arbitrary value (we choose
nat 0). The function might return any serialised message, but it
should, if correctly used, return a serialised number. So we make a
case distinction on the serialised message: if it is of the form (nat
n), we update "counter" to the constant function returning (nat
(suc n)). Otherwise we return an error message, since "counter"
returned not a serialised number. The final function is "transfer",
which will transfer 10 wei to Address 0. All other contracts are
initialised to have a balance of 0, with all functions being undefined,
i.e. returning an error message ("Undefined"). In the same way, all
other functions (given by other strings) of contract 1 apart from the
three functions mentioned before return the same error message.
We use here the fact that in Agda patterns are evaluated in sequence.
The first matching pattern will be used to determine the result, and
any future pattern after a matching pattern will be ignored. So the
line testLedger ow .amount= 0 applies to all arguments 𝑜𝑤 (for
otherwise) which haven’t been covered by a previous pattern, in
this case all natural numbers except for 1.

Next, we develop our interface menu (mainBody) of the simple
simulator Solidity-style smart contract, which has four options a
user can select from to interact with the ledger, as shown in Figure 2.
These options are as follows: "Option 1", execute a function of
a contract; in case of our example testLedger, we can look up the
value of "counter", by executing it, increment that variable by
1, or execute the transfer given; "Option 2" allows changing the
calling address from which other contracts are called (the initial
value used is 0); "Option 3" looks up the balance of any contract;
and "Option 4" terminates the program.

Figure 2: The simple blockchain simulator program interface.

The mainBody takes two arguments, ledger and callAddr. The
definition of mainBody is as follows:

mainBody : ∀{i}→ Ledger→ (callAddr : Address)
→ IOConsole i Unit

mainBody ledger callAddr .force
= WriteString’
"Please choose one of the following options:

1- Execute a function of a contract.
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2- Look up the balance of a contract.

3- Change the calling address.

4- Terminate the program."

_ str → (GetLine >>= _ str →
if str == "1"

then executeLedger ledger callAddr
else (if str == "2"

then executeLedgercheckamount ledger callAddr
else (if str == "3"

then executeLedgerChangeCallingAddress ledger callAddr
else (if str == "4"

then WriteString "The program will be terminated"

else WriteStringWithCont "Please enter 1,2,3 or 4"

_ _→ mainBody ledger callAddr))))

We define mainBody mutually recursively with auxiliary func-
tions for the different options. In case of "Option 1" these are
executeLedgerStep2 - executeLedgerStep5. Function executeLedger
asks a user to enter the calling address, i.e. the contract of which we
want to execute a function. Then executeLedgerStep2 will check
whether the result was a number. If yes, it asks for the function
name to be executed (given as a string) After that, executeLedger-
Step2 will call executeLedgerStep3 to ask the user to enter the
argument of the function name as a natural number (we currently
only support arguments of functions which are serialised natural
numbers, in a future version, we will allow arbitrary serialised mes-
sages as inputs). Then, executeLedgerStep4 will check whether the
user entered indeed a number, and if yes, return the result of evalu-
ating the function applied to the message using executeLedgerStep5
and return to the start menu. Here the result returned will be the
number returned if it was a number, a message indicating it was a
list, if the result was a list, and otherwise, the error message. Note
that in case of an error the ledger will return to its initial state
except for gas used in the failed execution being deducted.

When converting a user input to a natural number, we get an
element of Maybe N having elements (just 𝑛) for a successful con-
verted natural number and nothing, if the string was not a natural
number. Our code makes therefore a case distinction on whether
the result of that conversion was nothing or (just 𝑛).

For example, as shown in Figure 3, we selected "Option 1", and
execute at address 1 function "counter" with argument 1. The
result is nat 0 (returning the content of the variable counter).

Figure 3: Execute a function of a contract (option 1).

The types of executeLedger and the auxiliary functions are as
follows:

executeLedger : ∀{i} → Ledger→ (callAddr : Address)
→ IOConsole i Unit

executeLedgerStep2 : ∀{i} → Ledger→ (callAddr : Address)
→Maybe N→ IOConsole i Unit

executeLedgerStep3 : ∀{i} → Ledger→ (callAddr : Address) → N
→ FunctionName→ IOConsole i Unit

executeLedgerStep4 : ∀{i} → Ledger→ (callAddr : Address) → N
→ FunctionName→ Maybe N→ IOConsole i Unit

executeLedgerStep5 : ∀{i} →MsgAndLedger
→ (callAddr : Address) → IO’ consoleI i Unit

In case of "Option 2", the program will ask for the address
to look up the balance for, print out the result and return to the
starting menu.

For example, as shown in Figure 4, when selecting "Option 2"
and entering the calling Address 1, the result will be the available
money, 40 wei, in Address 1, and it will return to the main interface.

Figure 4: Look up the balance of a contract (option 2).

The types of executeLedgercheckamount and the auxiliary func-
tion executeLedgercheckamountAux are as follows:

executeLedgercheckamount : ∀{i}→ Ledger
→ (callAddr : Address)→ IOConsole i Unit

executeLedgercheckamountAux : ∀{i}→ Ledger
→ (callAddr : Address) →Maybe N→ IOConsole i Unit

For "Option 3", which is defined by function executeLedger-
ChangeCallingAddress, the system asks for the new calling address,
and once obtained executes the same code as for "Option 1".

For instance, as shown in Figure 5, when selected, "Option 3"
will ask to enter the new calling address; in our case, we enter the
new calling address 1, the function "increment", and the func-
tion’s argument as 0. The result will be (nat 1), and the operation
increments the variable "counter" to 1.

The types of executeLedgerChangeCallingAddress and
executeLedgerChangeCallingAddressAux are as follows:

executeLedgerChangeCallingAddress : ∀{i}→ Ledger
→ (callAddr : Address) → IOConsole i Unit

executeLedgerChangeCallingAddressAux : ∀{i} → Ledger
→ (callAddr : Address) →Maybe Address → IOConsole i Unit

Finally we define the main function, as follows:

main : ConsoleProg
main = run (mainBody testLedger 0)
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Figure 5: Change the calling address (option 3).

The main function serves as the entry point when executing the
Agda program. It is in charge of starting the program and executing
its main logic. In this scenario, themain function appliesmainBody
to the testLedger and starts with calling Address set to 0. This
creates an interactive program. run translates it into a native IO
program. Agda’s compiler MAlonzo [4] will then create an interac-
tive program. The compiled executable will execute the interactive
program as described above.

4.2 Simulator of the complex model
In the previous work [6], we developed the complex model. One
main feature is that it has in addition to normal functions pure
functions. Pure functions are given as functions of type
Msg → MsgOrError
Pure functions don’t interact with other functions or make updates,
and directly compute from its input either the result or an error.
Pure functions can be updated from the contract they belong to.
Standard functions get a new command updatec which allows to
update a pure function by referring to its previous definition. This
is useful to represent maps in Solidity, which are finite functions
from input to output. We represent maps as pure functions. We
can update them for one argument to a new value, by checking
whether the argument is equal to the updated argument (in which
case we return the updated result) or not (in which case we return
the result of the previous version of this function).

Another addition of the complex model is the use of gas cost.
Since we cannot control the cost of execution of functions in Agda
from Agda, we require that the user states the cost for computing
the various operations explicitly as part of all commands of normal
functions. Note that the main purpose of the model is to verify
smart contracts. Whether a contract is correct depends on making
realistic choices for the gas cost.

The main change to accommodate the gas cost is in the following
definition of the commands for the complex model:

data SmartContract (A : Set) : Set where
return : N→ A→ SmartContract A
error : ErrorMsg → DebugInfo→ SmartContract A
exec : (c : CCommands)→ (CResponse c → N)

→ (CResponse c → SmartContract A)
→ SmartContract A

The constructor return for terminating a SmartContract has an
extra argument of type N which determines the cost for computing
the result – the value returned could be computed by a very time
consuming computation, and the argument states that cost. The
constructor exec, which creates an program which executes one
command and depending on the result returned executes a contin-
uing SmartContract has an extra argument of type
CResponse c→ N
which determines the cost of computing the continuation. The
gas cost of each instruction will be at least one (technically we
increment any gas cost stated by one), and therefore termination is
guaranteed. The code actually passes Agda’s termination checker,
overcoming the obstacle of nontermination of the simple model,
which compromises consistency of the theorem prover.

In the complex model SmartContract has new commands
data CCommands : Set where
callPure : Address→ FunctionName →Msg→ CCommands
updatec : FunctionName→ ((Msg→ MsgOrError)

→ (Msg→MsgOrError))→ ((Msg→MsgOrError)
→ (Msg → N)→ Msg→ N) → CCommands

raiseException : N→ String → CCommands
– ... in addition commands as in the simple model

CResponse : CCommands → Set
CResponse (callPure addr fname msg) = MsgOrError
CResponse (updatec fname fdef cost) = ⊤
CResponse (raiseException _ str) = ⊥

callPure calls a pure function. updatec updates a pure function by
referring to the previous version of it, using argument
((Msg →MsgOrError)→ (Msg →MsgOrError))
Furthermore, we add an explicit error command raiseException
with an explicit cost and error message.

Using the implementation of the complex model in our previ-
ous work [6], we expand the simple simulator into the complex
one, adding more complex options for the user: to evaluate pure
functions, and to change and check the gas limit.

In order to demonstrate our interface, we develop a simple voting
example (testLedger). The current example has only one candidate.
We leave it to the user to enhance this example to a more advanced
one involving multiple candidates (by making the counter and vote
functions depend on a candidate number).

The definition of testLedger is as follows:
testLedger 1 .amount = 100
testLedger 1 .purefunction "checkVoter" msg = theMsg (nat 0)
testLedger 1 .purefunction "counter" msg = theMsg (nat 0)
testLedger 1 .purefunctionCost "checkVoter" msg = 1
testLedger 1 .fun "addVoter" msg =
exec (updatec "checkVoter" (addVoterAux msg) _ _ _ _ → 1)
(_ _→ 1) _ _→ return 1 msg

testLedger 1 .fun "deleteVoter" msg =
exec (updatec "checkVoter" (deleteVoterAux msg) _ _ _ _ → 1)
(_ _→ 1) _ _→ return 1 msg

testLedger 1 .fun "vote" msg
= exec callAddrLookupc (_ _→ 1)
_ addr → exec (callPure addr "checkVoter" (nat addr))
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(_ _ → 1) _ check→ voteAux addr check msg
testLedger 0 .amount = 100
testLedger 3 .amount = 100
testLedger ow .amount = 0
testLedger ow .fun ow’ ow”
= error (strErr "Undefined") 〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .purefunction ow’ ow” = err (strErr "Undefined")
testLedger ow .purefunctionCost ow’ ow” = 1

In our example testLedger at address 1, we have three fields, as
follows:

• Amount (amount) (i.e. balance of the contract in wei) is 100;
• We define two pure functions (purefunction) as follows:
– "checkVoter", which determines for its argumentwhether
the argument (which is assumed to be (nat 𝑛) for an ad-
dress𝑛) represents a voter who is allowed to vote; Booleans
are represented as (nat 0) for false and (nat (suc 𝑛)) for
true. "checkVoter" initially always returns (nat 0) for
false, i.e. nobody is allowed to vote.

– "counter" is a variable counting the number of votes for
the only candidate. It is initialised with the value of 0.

• We define pure function cost (purefunctionCost) to calculate
the pure function for each process.

• Three functions (fun) are added as follows:
– "addVoter" updates the pure function"checkVoter" to
allow the address represented by its argument to vote. It
makes use of the following function, which determines
the new value "checkVoter" by checking whether the
argument was updated or not, and if not referring to the
old version of "checkVoter":

addVoterAux : Msg→ (Msg →MsgOrError)
→Msg →MsgOrError

addVoterAux (nat newaddr) oldCheckVoter (nat addr) =
if newaddr ≡b addr
then theMsg (nat 1) – return 1 for true

else oldCheckVoter (nat addr)
addVoterAux ow ow’ ow” =
err (strErr " You cannot add voter ")

– "deleteVoter" deletes a voter. The implementation is
almost the same as "addVoter", except for that it sets
"checkVoter" to 0 for false, in case the argument is the
voter to be deleted.

– "vote" does the following:
It looks up the calling address first, then evaluates the
("checkVoter") function applied to it to check whether
the caller is allowed to vote or not. Then it invokes voteAux
to make a case distinction on whether the result was
true, false, or a message not representing a number. If
the voter is permitted to vote, the counter (pure function
("counter")) is increased by one, and the voter is deleted
from "checkVoter" to prevent double voting. Otherwise,
an error will be returned. The full definition of voteAux is
as follows:

voteAux : Address →MsgOrError→ (candidate : Msg)
→ SmartContract Msg

voteAux addr (theMsg (nat zero)) candidate
= error
(strErr "The voter is not allowed to vote")
〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (theMsg (nat (suc n))) candidate
= exec (updatec "checkVoter"
(deleteVoterAux (nat addr)) _ _ _ _ → 1)(_ _→ 1)
(_ x → (incrementAux1 (theMsg candidate)))

voteAux addr (theMsg ow) candidate
= error (strErr "The message is not a number")
〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (err x) candidate
= error (strErr " Undefined ")
〈 0 » 0 · "The message is undefined" [ nat 0 ]〉

For other addresses, and for other normal and pure functions for
contract 0, we will return an error ("Undefined") that includes the
debug information, such as the last call address, current address,
last function name call, and the last function argument.

We define our main menu of the complex simulation interface
mainBody, as shown in Figure 6. We have created three additional
options ("Option 4", "Option 5", and "Option 6") to complement
the existing ones in the simple simulator. These new options aid
in verifying the voting example and show the gas consumption at
each stage. Below are explanations for all seven options:

• "Option 1", "Option 2", and "Option 3", which are func-
tions similarly to the simple simulator. However, these op-
tions have been redefined to incorporate gas cost and pure
function.

• "Option 4" may be utilized to update the gas limit used
when calling smart contracts.

• "Option 5" may be used to verify the amount of gas left
before or after each operation.

• "Option 6", which we use to evaluate pure functions. In
Solidity, pure functions do not call other functions. When
called externally, these functions do not incur any gas cost.
However, gas costs will be required if they are called from
an internal function.

• "Option 7", which terminates the simulator.

Figure 6: The complex blockchain simulator program inter-
face.

The state of the system will be given by an element 𝑠𝑡𝐼𝑂 : StateIO
defined below. The mainBody function depends on that state vari-
able stIO. The definition of the complex simulator (mainBody) is as
follows:
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mainBody : ∀{i} → StateIO→ IOConsole i Unit
mainBody stIO .force
= WriteString’ ("Please choose one of the following:

1- Execute a function of a contract.

2- Look up the balance of a contract.

3- Change the calling address.

4- Update the gas limit.

5- Check the gas limit.

6- Evaluate a pure function.

7- Terminate the program.") _ _→
GetLine >>= _ str →
if str == "1" then executeLedger stIO
else (if str == "2" then executeLedger-CheckBalance stIO
else (if str == "3" then

executeLedger-ChangeCallingAddress stIO
else (if str == "4" then executeLedger-updateGas stIO
else (if str == "5" then executeLedger-checkGas stIO
else (if str == "6" then executeLedger-purefunction stIO
else (if str == "7" then

WriteString "The program will be terminated"

else WriteStringWithCont
"Please enter a number 1 - 7"

_ _→ mainBody stIO ))))))

We develop the StateIO, a record type that defines the current
state of computation. It comprises three fields:

• ledger is the current ledger on which the calculation will be
executed.

• initialAddr is the initial address used to initialise the calcula-
tion; in our case, we initialised it to 0, but it can be changed
by using "Option 3".

• gas is the quantity of gas left for use in the calculation.
The constructor for StateIO requires three parameters, which are
the values that are to be used for each of the three fields. The
definition of StateIO is as follows:

record StateIO : Set where
constructor 〈_ledger,_initialAddr,_gas〉
field
ledger : Ledger
initialAddr : Address
gas : N

As an example, the line of code below establishes the element of
StateIO that has the ledger as our voting example (testLedger), 0
as initial address, and a gas amount of 20 wei:
〈 testLedger ledger, 0 initialAddr, 20 gas〉
As we mentioned before, "Option 1", "Option 2", and "Option
3" have comparable functions and structures as the simple simula-
tor, with the inclusion of gas cost. For instance, as shown in Figure 7,
when selecting "Option 3", entering a new calling address 1 in-
stead of the previous address 0, it will start to execute the contract
function "Option 1" by entering the "addVoter" function and
the argument of the function 1. The result will be that the initial
address is 1, the call address is 1, the argument of the function name

is (nat 1), the remaining gas is 16 wei, and the value returned is
(theMsg (nat 1)).

Figure 7: Change the calling address in the complex
blockchain simulator (option 3).

In addition, we have created the executeLedger-updateGas func-
tion along with its corresponding auxiliary function
(executeLedgerStep-updateGasAux) mutually recursively. These
functions allow for the implementation of "Option 4", which en-
ables updating the gas limit. Upon execution of executeLedgerStep-
updateGasAux, the user will be prompted to input a new value
for the gas amount. If the input is successful, executeLedgerStep-
updateGasAux will be called, and the function will return both the
new and old gas limit values. For example, as shown in Figure 8,
when selecting "Option 4", then entering the new gas limit 30.
The result is that the gas limit has been updated successfully, the
new gas limit is 30 wei, and the old value is 20 wei.

Figure 8: Update the gas limit in the complex blockchain
simulator (option 4).

The type of executeLedger-updateGas and its auxiliary function
(executeLedgerStep-updateGasAux) are as follows:

executeLedger-updateGas : ∀{i} → StateIO
→ IOConsole i Unit

executeLedgerStep-updateGasAux : ∀{i} → StateIO→Maybe N
→ IOConsole i Unit
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For "Option 5", we have developed a mutually recursive func-
tion called executeLedger-checkGas. This function ensures that the
gas limit is verified after updating to the new value, as illustrated
in Figure 9.

Figure 9: Check the gas limit in the complex blockchain
simulator (option 5).

The definition of executeLedger-checkGas is as follows:

executeLedger-checkGas : ∀{i}→ StateIO
→ IOConsole i Unit

Moreover, we develop mutually recursively
executeLedger-purefunction together with its auxiliary functions
(executeLedger-purefunction, executeLedger-purefunction0,
executeLedger-purefunction1, executeLedger-purefunStep1-2,
executeLedger-purefunStep1-3, and
executeLedger-purefunStep1-4), in order to implement "Option
6". As an example, after using "Option 1" to add 1 as a voter, we
proceed to select "Option 6", by entering calling address 1, called
address 1, and the pure function "checkVoter" along with its argu-
ment 1. The result is that the initial address is 1, the called address
is 1, and the pure function returns theMsg (nat 1), signifying that
it is true, as shown in Figure 10.

Figure 10: Evaluate a pure function in the complex simulator
at (option 6).

The types of executeLedger-purefunction and its auxiliary func-
tions are as follows:

executeLedger-purefunction : ∀{i} → StateIO→ IOConsole i Unit
executeLedger-purefunction0 : ∀{i}→ StateIO
→Maybe Address → IOConsole i Unit

executeLedger-purefunction1 : ∀{i}→ StateIO → IOConsole i Unit
executeLedger-purefunStep1-2 : ∀{i}→ StateIO
→Maybe Address → IOConsole i Unit

executeLedger-purefunStep1-3 : ∀{i}→ StateIO
→ (calledAddr : Address) →Maybe FunctionName
→ IOConsole i Unit

executeLedger-purefunStep1-4 : ∀{i}→ StateIO
→ (calledAddr : Address) → FunctionName
→Maybe N→ IOConsole i Unit

Finally, we define the main function to run the program:
main : ConsoleProg
main = run (mainBody (〈 testLedger ledger, 0 initialAddr, 20 gas〉))

The main function has one single argument, and it will run the
mainBody, which includes an argument with a tuple of three values
- the ledger, the initial address, and the gas limit. The mainBody
function will use our ledger (testLedger), start from the initial
address 0, and have the gas limit of 20 wei.

In the git repository [37], we demonstrate our complex simulator
by an example. The example shows that, if we change first the
calling address to address 1, and then try to vote, the vote is rejected,
because voter 1 has not been added yet. If we then add voter 1, and
vote (with calling address 1), the vote succeeds, and the counter is
incremented by 1. If contract 1 votes again, it is rejected, and we
see that the number of votes stays at 1.

5 CONCLUSION AND FUTUREWORK
This paper presents two blockchain simulators of Solidity-style
smart contracts in the theorem prover Agda. The first is the simple
simulator, which has simple instructions for transferring money
to specific addresses and executing and updating smart ‘contracts.
The second is the complex simulator, which has more features and
complex instructions, supports gas costs, uses a pure function simi-
lar to the Solidity language, and displays better error messages than
the simple simulator. The simulator is written in the interactive
theorem prover Agda, in the same language in which we plan to
carry out the verification. Therefore, there is no explicit transla-
tion needed from the simulated program to the verified program,
avoiding translation errors.

In future work, we will verify contracts which can be run in
the simple and complex blockchain simulators by using weakest
preconditions [5, 7]. In our previous articles [5, 7]. we already imple-
mented, proved, and verified Bitcoin’s smart contracts in the Agda
proof assistant using weakest preconditions. We plan to expand
the work in those previous articles in order to verify Solidity-style
smart contracts.
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