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A B S T R A C T

Dynamic point clouds are widely used for 3D data representation in various applications
such as immersive and mixed reality, robotics and autonomous driving. However, their
irregularity and large scale make efficient compression and transmission a challenge.
Existing methods require high bitrates to encode point clouds since temporal correla-
tion is not well considered. This paper proposes an end-to-end dynamic point cloud
compression network that operates in latent space, resulting in more accurate motion
estimation and more effective motion compensation. Specifically, a multi-scale motion
estimation network is introduced to obtain accurate motion vectors. Motion information
computed at a coarser level is upsampled and warped to the finer level based on cost
volume analysis for motion compensation. Additionally, a residual compression net-
work is designed to mitigate the effects of noise and inaccurate predictions by encoding
latent residuals, resulting in smaller conditional entropy and better results. The pro-
posed method achieves an average 12.09% and 14.76% (D2) BD-Rate gain over state-
of-the-art Deep Dynamic Point Cloud Compression (D-DPCC) in experimental results.
Compared to V-PCC, our framework showed an average improvement of 81.29% (D1)
and 77.57% (D2).

1. Introduction

The rapid advancement of sensing and acquisition technol-
ogy has led to the widespread use of dynamic point cloud (DPC)
in various fields, including autonomous driving, virtual real-
ity, intelligent cities, and robotics [1]. Nowadays, different
sensors and algorithms enable the capture of complex moving
objects and scenes, resulting in large DPCs with intricate de-
tails. However, effectively storing and transmitting such large
DPCs present challenges, requiring dynamic point cloud com-
pression (DPCC) for efficient utilization in these applications.
Unlike regular pixelized videos, DPCs exhibit irregularity, non-
uniformity and sparsity, with varying numbers of points in each
frame. Consequently, establishing explicit temporal correspon-
dence between points in contiguous DPC frames becomes dif-
ficult. This hinders the exploration of temporal correlation.

In this paper, our focus is to reduce temporal redundancies in
the neural inter-frame geometry compression of DPC, utilizing
motion estimation, motion compensation, and a deep entropy
model in the latent space.

DPCC methods can be classified into two categories: tradi-
tional algorithms and neural methods. Traditional algorithms
are rule-based methods that often rely on hand-crafted fea-
tures and perform inter-prediction on consecutive frames. Due
to the limitations of manual feature engineering, the restricted
expressiveness and challenges in generalization and adaptabil-
ity to new dataset, these often lead to suboptimal compres-
sion performance [2, 3]. The Moving Picture Experts Group
(MPEG) has also approved two prominent point cloud compres-
sion standards: video-based point cloud compression (V-PCC)
and geometry-based point cloud compression (G-PCC) [1, 4].
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V-PCC projects dynamic point clouds onto 2D images and tex-
ture videos, and uses video codecs for compression. How-
ever, this approach can encounter challenges with occlusion and
shape distortion when mapping 3D patches onto 2D patches.
In contrast, G-PCC employs an octree-based model and offers
advantages in multiple resolutions and contextual range. How-
ever, it is limited to encoding static point clouds (SPC) only.
To address temporal redundancy, Kammerl et al. proposed
a double-tree structure to calculate the disparity between the
octrees of consecutive frames and enable inter-prediction [5].
Other traditional algorithms, such as the work by Thanou et al.
[6], leverage graph-based representations and feature match-
ing for motion estimation. Similarly, Mekuria et al. [7] rely
on hand-crafted features and rigid transformations. However,
these traditional approaches heavily rely on point space opera-
tions, which can lead to inaccurate motion estimation and less
effective motion compensation owing to the irregular and sparse
nature of DPC [8].

Inspired by the success of deep learning techniques in image
and video compression, recent research has focused on neural
point cloud compression, surpassing traditional rule-based al-
gorithms. For compressing static point clouds (SPC), learning-
based methods can be classified into point-based, voxel-based,
and octree-based approaches. Wang et al. [9] proposed a voxel-
based method that utilizes the sparsity of point clouds to loss-
lessly compress geometric occupancy using autoencoders based
on sparse convolution. In an effort to extend learning-based
SPC compression techniques to DPCC, Akhtar et al. [10] de-
signed a predictor that performs convolution on target coordi-
nates. They incorporate multi-scale features from the previ-
ous frame for motion compensation. However, their network
lacks an explicit motion estimation and motion compensation
(MEMC) network to guide inter-prediction. Fan et al. [11] pro-
posed D-DPCC, which includes an end-to-end MEMC mod-
ule. This module computes latent features of two successive
frames for subsequent motion estimation. Moreover, they intro-
duced 3D adaptively weighted interpolation (3DAWI) for mo-
tion compensation. While D-DPCC outperforms other DPCC
frameworks, it employs a relatively simple concatenate oper-
ation for inter-prediction which limits the accuracy for fine
motion prediction between consecutive frames. The relatively
simple factorized entropy model for residual compression also
leaves room for further encoding of redundancies. All in all,
we observe a crucial limitation in current DPCC techniques,
namely their inadequate modeling of temporal dynamics.

To address this limitation, we propose a novel end-to-end
DPCC network that operates in the latent space and introduces
a more effective MEMC network and deep entropy model.
Firstly, a feature extraction module is designed to generate the
latent representations of point clouds. Then, Our MEMC net-
work leverages a multi-scale latent scene flow (LSF) estima-
tion module to estimate finer motion information. To do so, we
specifically incorporate a warping operation and cost volume
layer in the motion estimation module, allowing it to focus on
the smaller motion between the warped previous frame and cur-
rent frame whilst the multi-scale network adapts to non-rigid
or large motion. After calculating the motion vector, the mo-

tion compensation is carried out by passing the warped frame,
previous frame, and motion vector together into the compensa-
tion module for prediction. To encode the residual efficiently,
we propose a deep entropy model, combining spatial hyper-
prior and temporal prior, to estimate the parameters for Gaus-
sian entropy model. The model enhances compression effi-
ciency, eliminates temporal redundancy, and maintains accu-
racy of reconstructed frames. All these successfully improve
the modelling of temporal redundancies and result in an inno-
vative DPCC with improved performance. Our main contribu-
tions are:

• We propose a novel end-to-end deep learning framework
for 3D DPCC, which operates entirely in the latent space.

• We propose a Latent Scene Flow (LSF) module for our
MEMC network. LSF enables the learning of motion vec-
tors in latent space. By incorporating a multi-scale scene
flow network, we can effectively and efficiently obtain ac-
curate motion information for large-scale point clouds.

• We introduce a deep entropy model which joins the spatial
hyper-prior and temporal prior for residual compression.
It can enhance compression efficiency and improve recon-
structed frame accuracy.

• To demonstrate the effectiveness of our proposed frame-
work, we conduct experiments on the 8iVFB dataset [12]
recommended by MPEG and show that our framework
outperforms D-DPCC [11] by achieving state-of-the-art
compression performance.

2. Related Work

2.1. Static Point Cloud Geometry Compression
Traditional method for compressing static point clouds in-

volves creating a tree-based data structure [13] to reduce ge-
ometric redundancy. However, this approach has limitations
in terms of reducing the size of point clouds. To address this
issue, recent works [1] [14] have introduced handcrafted con-
texts for arithmetically encoded octrees to compress bitstreams.
Although these methods have shown promising results, they
are not efficient in capturing complex dependencies and corre-
lations between nodes in the tree. OctSqueeze [2] addresses
this problem by modeling dependencies between nodes and
their multiple ancestral nodes as context information using a
deep learning-based entropy model. However, this method does
not consider the dependence between sibling nodes. To ad-
dress this limitation, OctAttention [15] introduced the atten-
tion mechanism and extended the context acceptance domain
to capture strong dependencies between sibling nodes. Addi-
tionally, voxel-based methods have been proposed, where the
point cloud is quantified and the voxel occupancy rate is clas-
sified by neural network VoxelDNN[16]. MSVoxelDNN [17]
combines octree and voxelization methods to adaptively divide
point clouds and reduce their sparsity. Sparse convolution [18]
has also been used to further reduce memory requirements and
speed up computation, resulting in better compression perfor-
mance [9]. However, these methods only consider spatial re-
dundancy and cannot be easily extended to DPCC.
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2.2. Dynamic Point Cloud Geometry Compression
Temporal redundancy is a challenging problem in DPCC, as

the lack of time correspondence in the point cloud makes the
redundancy of time difficult to remove. Although motion es-
timates can effectively remove the temporal redundancy, the
points of two adjacent point clouds do not correspond one-
to-one, making motion estimation challenging. Some existing
methods, such as [6], have used graph-based representations
and feature matching to estimate motion, while others, like [7],
rely on handcrafted features and rigid transformations. Loss-
less coding methods, such as the 4D context used in [19], avoid
the estimation of motion vectors but require a higher bit rate.
D-DPCC [11] proposed an end-to-end deep DPCC framework
based on a lossy autoencoder. However, their method uses a
simple convolution network to obtain the original flow embed-
ding between two frames. Despite the proposed multi-scale fu-
sion module to refine the motion vectors, the limited depth of
the CNN would limit the accuracy of fine motion. In summary,
these methods suffer from limitations, such as the reliance on
handcrafted features, rigid transformations, or inaccurate mo-
tion estimation to effectively encode temporal redundancies. To
address this limitation, we follow deep learning approach and
propose a Latent Scene Flow module to better estimate motion.

2.3. Video-Based Dynamic Point Cloud Compression
Recent research on DPCC technology has mostly focused

on Video-based Point Cloud Compression (V-PCC), which has
shown significant improvement compared to previous geomet-
ric image-based methods. However, 2D projection technology
used in V-PCC can disrupt the motion continuity of the origi-
nal 3D object, leading to reduced efficiency of inter-frame cod-
ing. To address this, [20] proposed a method that calculates mo-
tion vectors (MVs) using 3D motion and 3D-to-2D correspon-
dences, and uses auxiliary information to estimate 2D geometry
and attributes. However, downsampling the image video during
compression can generate more noise points for the projected
3D point cloud. Researchers have explored the use of convo-
lutional neural networks to address this issue, improving the
accuracy of the occupied map video by transforming it into a
binary segmentation problem (where the pixel value is either 0
or 1) [21]. The V-PCC method requires projecting 3D onto 2D
images or videos, which can lead to problems such as occlusion
and shape distortion, resulting in inaccurate motion estimation
and increased residual coding. To tackle these technical chal-
lenges, we propose a new approach to DPCC based on deep
learning.

2.4. Scene Flow Estimation
Scene flow estimation is an extension of 2D optical flow

estimation in video compression, and using it in motion esti-
mation can yield more accurate motion vectors (MVs). Sev-
eral approaches, such as FlowNet3D [22], HPLFlowNet [23],
and PointPWC-Net [24], have been proposed for this purpose.
FlowNet3D [22] extracts features from point clouds [25] and
uses stream embedding to fuse information from successive
point clouds. HPLFlowNet [23] incorporates Bilateral Convo-
lutional Layers to recover structural information from unstruc-
tured point clouds and fuses information from two consecutive

point clouds, while PointPWC-Net [24] adopts a coarse-to-fine
strategy, using cost volumes, upsampling, and twist layers to
process point clouds. However, these methods estimate scene
flow in the original space point cloud and are not applicable
to large-scale point clouds. To address this issue, we propose a
new approach that utilizes sparse convolution in the latent space
to compress DPCs. Also, a multi-scale framework is employed
to estimate motion and obtain finer scene flow.

2.5. Deep Learning Based Video Compression

DVC [26] proposed the first end-to-end video compression
model, combining the classical architecture of traditional video
compression methods and the nonlinear representation power
of neural networks. However, it suffered from inaccurate cur-
rent frame prediction and high residuals. To address this issue,
[27] generated more precise current frame predictions using
multiple reference frames and associated multiple MV fields,
leading to reduced residuals. This approach aids in predicting
MVs, thus decreasing the coding cost of the MV field. Instead
of using the motion prediction module, [28] introduced an en-
tropy model framework to estimate spatio-temporal redundancy
in the feature space. By conducting all main operations in the
feature space, such as motion estimation, motion compression,
motion compensation, and residual compression, [8] achieved
superior performance compared to DVC.

3. Methodology

3.1. Overview

The input of our method is a dynamic point cloud sequence
P = {P1, P2, . . . , Pt−1, Pt, . . .}, where Pt represents the point
cloud frame at a time step t. We utilize sparse convolution to
improve the efficiency of tensor processing, resulting in a more
compact representation for each frame of the DPC sequence.
This is achieved by converting each frame into a sparse tensor,
represented by Pt =

{
CPt , FPt

}
, where CPt represents the coor-

dinate matrices of the point cloud, and FPt represents the as-
sociated feature matrices with all-one vectors to indicate voxel
occupancy. Our framework reduces the bit-rate consumption
of the entropy code by analyzing the correlation between the
current frame Pt and the previously reconstructed frame P̂t−1.
Our proposed framework, illustrated in Figure 1, consists of
five modules:

1) Feature Extraction. To generate the latent representa-
tions, the input frame Pt is encoded as Yt, and the previously
decoded frame P̂t−1 is encoded as Ŷt−1.

2) Motion Estimation. The LSF estimation module then es-
timates the motion between Yt and Ŷt−1 in the latent space to
obtain the corresponding MVs Mt.

3) Motion Compression and Compensation. The decoded
MVs (M̂t), along with Yt and Ŷt−1, are then processed by the
motion compensation module to generate the predicted frame
(Ȳt) for the current frame.

4) Residual Compression. The residual Rt between the cur-
rent frame Yt and the predicted frame Ȳt will be compressed by
a deep entropy model to enhance the reconstruction quality.
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Fig. 1. Our dynamic point cloud geometric compression framework involves several stages, starting with the selection of the previous frame P̂t−1 as a reference for
encoding the current frame Pt [29]. We then perform feature extraction, motion estimation, motion compression, motion compensation, and residual compression
in a specific order. In the latent space, we extract features Yt and Ŷt−1, and obtain latent motion vectors Mt and reconstructed motion vectors M̂t . After motion
compensation, we obtain the prediction Ȳt of Yt . The reconstruction residual is denoted by R̂t , and the reconstruction value of Yt in the latent space is Ŷt . Ultimately,
we obtain the reconstructed current frame P̂t .

5) Point Cloud Reconstruction. After incorporating the re-
constructed residual R̂t into the predicted frame Ȳt, we obtain
the latent reconstructed frame Ŷt. Subsequently, the decoded
frame P̂t is reconstructed using a hierarchical reconstruction ap-
proach based on binary classification. This method effectively
trims erroneous voxels, ensuring the preservation of details in
the reconstructed point cloud [9].

Our framework’s advantage lies in its ability to accurately
preserve the details of the reconstructed point cloud while min-
imizing the bit-rate consumption of the entropy code.

3.2. Feature Extraction
We propose a novel framework that utilizes the powerful rep-

resentation capability of deep features to reduce spatial or tem-
poral redundancy in DPC through motion compensation and
residual compression in the latent space. To generate the latent
representations, we encode the input frame Pt and the previ-
ously reconstructed frame P̂t−1 as Yt and Ŷt−1, respectively. To
enable efficient feature extraction, we adopt sparse convolution-
based CNN down-sampling similar to [11] and [9]. The feature
extraction module includes two sparse convolution layers with
a step of 2 for down-sampling, followed by three Inception-
Residual Network units (as shown in Figure 2(b)) for effective
local feature aggregation. The use of sparse convolution of-
fers the advantage of reducing bit-rate consumption for entropy
coding by analyzing the correlation between Pt and P̂t−1.

3.3. Motion Estimation
D-DPCC utilizes the Inter Prediction method for DPCC.

However, its approach of connecting two frames in series
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Fig. 2. Feature Extraction. (a) The architecture of sparse convolution is repre-
sented by Conv(c, n, s), where c is the output channel, n is the kernel size, and s
is the step size. ReLU denotes the Rectified Linear Unit. We employ Inception-
Residual Network (IRN) units for local feature aggregation. (b) Diagram of the
IRN unit. The Concatenate module is utilized to concatenate feature channels.

through the convolutional network to obtain the original stream
embedding lacks accuracy, resulting in lower residual compres-
sion efficiency. In order to overcome this limitation, we intro-
duce the scene flow module for MV estimation.

To this end, we observe that most existing MV estimation
methods have their own drawbacks. Coarse-to-fine methods
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Fig. 3. (a) Our scene flow estimation adopts a multi-scale, bottom-up approach. (b) The motion estimation framework in one level includes an upsampling module
to warp the previous frame using coarser MVs, a cost volume layer for patch-to-patch cost aggregation, and a scene flow predictor layer for finer MV prediction.
The coarse motion estimation module takes two sparse tensors as input and directly outputs finer MVs using the scene flow predictor network.

can estimate large-scale scene flows but are time-consuming
and struggle with fast-moving small objects. On the other hand,
single-scale methods can accurately estimate the scene flow, but
they require computing a similarity matrix of N * N, where N
is the number of points in the current frame. Such methods are
not suitable for DPCs with millions of points per frame. To ad-
dress this challenge, our proposed framework conducts scene
flow estimation in the latent space, which serves as a higher-
dimensional abstraction of the original data. This allows for
efficient computation of the MVs without the need to calculate
the coordinates of points in the original point cloud. To our
knowledge, all existing scene flow estimation methods operate
in the original space of the point cloud and cannot estimate the
MVs based on the latent representation.

To efficiently handle large-scale DPCs, our proposed frame-
work estimates the motion using latent tensors of adjacent
frames and sparse convolution. The advantage of using sparse
convolution lies in its ability to correlate coordinates in the
downscaled latent space while matching the features of the flow
embedding layer, making it an ideal solution to compress DPCs.
Our multi-scale framework also allows for finer scene flow esti-
mation. As depicted in Figure 3, the framework adopts a multi-
scale, bottom-up approach. In each level of motion estimation
module, the previous frame of point cloud is warped by the
upsampled coarser MVs, then the warped previous frame and
the current frame are concatenated to aggregate the cost in a
patch-to-patch manner using the cost volume module and then
obtains finer MVs using the Scene Flow Predictor module. The
coarse motion estimation module takes two sparse tensors as in-
put and directly outputs finer MVs using the scene flow predic-
tor network. In our design, we specifically incorporate a warp-
ing operation and cost volume module in the motion estimation
module, allowing it to focus on the smaller motion between the
warped previous frame and current frame whilst the multi-scale

Encoder DecoderWarping

C
o

n
ca

t
Pruning

Motion Compensation

tM̂

1
ˆ
−tY

tYC
tY

Fig. 4. Motion Compensation Module. Yt and Ŷt−1 are the corresponding latent
representations in the latent space. M̂t represents the reconstructed MVs, and
Ȳt is the predicted value of Yt . CYt is the coordinate of the current frame. The
Pruning step involves aligning the current frame by pruning the sparse tensor
of the rough predicted frame with the coordinates of the latent current frame.

network adapts to non-rigid or large motion. By doing so, our
scene flow modules allow finer MVs to be predicted. Unlike
[24], our approach uses the characteristic of sparse tensor ag-
gregation to avoid the expensive KNN search.

3.4. Motion Compression and Motion Compensation

We propose a lossy compression network based on auto-
encoder to compress the MVs, which are then used to calcu-
late the predicted frame in our motion compensation frame-
work (shown in Figure 4). As point clouds are unstructured and
sparse, matching between adjacent frames can be challenging,
leading to larger errors and reducing compression efficiency. To
address this, we use the interpolation method [25] to warp the
previous frame and obtain the latent warped frame of the current
frame. We also incorporate temporal prior [26] by splicing the
warped frame, the latent previous frame, and the reconstructed
MVs to improve prediction accuracy and reduce residual com-
pression. The rough prediction frame is obtained through a
sparse convolution network, and ’pruning’ is performed on the
coordinates of the latent current frame to align them and ob-
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Fig. 5. Overall framework for residual compression, which includes several components such as quantization (Q), arithmetic encoding (AE), arithmetic decoding
(AD), hyper encoder (HE), hyper decoder (HD), temporal prior (TP), and entropy parameter (EP). The variables used in this framework include sparse tensors
Yt , Ȳt ,Rt , R̂t ,Yc,Zt , and Ẑt . Yt and Ȳt are latent current frame and latent predicted frame respectively. The residual feature between Yt and Ȳt is represented by
Rt , and R̂t is the decoded residual. Yc is the concatenation of Yt and Ȳt , Zt is the hyper latent obtained from Yc, and Ẑt is the decoded hyper latent. Additionally,
CRt , FRt , and FZt are needed for encoding. The parameters µi and δi are obtained using gEP(ϕ, γ; θEP), where ϕ is obtained using gHD(ẑt; θHD), and γ is obtained
using gT P(Ȳt; θT P) in the Gaussian Entropy model [30]. More network details are shown in Figure 6.

tain the fine prediction frame. Importantly, we use the coordi-
nate information of the current frame in both the interpolation
and the final ’pruning’ module, which is losslessly compressed
and transmitted to the decoder at the beginning of the network
framework. Our proposed method provides more accurate time
information, reduces matching errors, and improves overall pre-
diction accuracy.

3.5. Residual Compression

Despite various compression methods, distortions still exist
in the prediction frame of point clouds. Traditional point cloud
compression methods such as XOR [5] and pixel-based com-
pression methods like [26] have limitations in capturing the
subtle movement of points in the octree structure, leading to
large changes in the underlying octree. In recent studies, en-
coding residuals in the latent space has shown better results for
both video compression methods [8] and point cloud compres-
sion methods [9]. This is because downsampled point clouds
have similar geometric information between two frames, and
the high-dimensional feature information in the latent space can
reduce the impact of noise in the residual network. Motivated
by the spatio-temporal entropy model [28], we introduce a deep
entropy model for residual compression, which can further en-
hance the compression efficiency and maintain the accuracy of
the reconstructed frames.

The proposed residual compression, shown in Figure 5, is
inspired by the autoencoder-based image compression works
[30] which employ a hyperprior entropy model to more accu-
rately model the probability distribution of latent variables. In
our framework, the Hyper Encoder, Hyper Decoder, Temporal
Prior, and Entropy Parameter are multi-layer perceptrons with
different network parameters based on sparse convolution. The
advantage of our approach is that it enables the hyper-prior spa-
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Fig. 6. Details of each module in the residual compression network. ‘Conv’ de-
notes sparse convolution followed by the number of output channels, the kernel
size, and the stride. The ‘Deconv’ corresponds to upsampled convolutions.

tial and temporal information to be fused to estimate the pa-
rameters (mean µ and scale δ) required by the Gaussian entropy
model [30]. Specifically, the current and predicted frames are
concatenated to obtain Yc as input for the hyper-prior spatial
entropy model, which is then used to obtain the hyper latent
Zt through Hyper Encoder coding. The resulting quantized at-
tributes FZt are then factorized entropy encoded to obtain the
bitstream. Similarly, the hyper-prior temporal entropy is ob-
tained by passing the predicted frame Ȳt through the Temporal
Prior module. The Entropy Parameter then fuses the hyper-
prior spatial and temporal information to estimate the param-
eters (mean µ and scale δ) required by the Gaussian entropy
model. The residual Rt, obtained from Yt and Ȳt, is losslessly
compressed using a traditional octree encoder [1] in MPEG for
the geometry coordinates CRt , and using arithmetic encoding
[31] for the quantized attributes F̂Rt . The probability distribu-
tion is modeled as a Gaussian distribution using the obtained
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parameters, and R̂t can be reconstructed.

3.6. Point cloud Reconstruction
The reconstructed residuals R̂t and Ȳt are added up by the

decoder to reconstruct the current frame P̂t. The decoder here
is a hierarchical reconstruction based on binary classification,
upsampled by three sparse transposed convolutional layers with
a step size of 2. The three classification networks use a binary
classification method to trim the wrong voxels to guarantee the
reconstructed point cloud details [9].

3.7. Loss Function
Our proposed framework takes advantage of a rate-distortion

joint loss function to optimize the loss L:

L = R + λD = LF̂Mt
+ LF̂Zt

+ LF̂Rt
+ λ

 1
M

M∑
j=1

L j
BCE

 (1)

with R representing the bits per point (bpp) by encoding the
current frame Pt. We utilize a multiscale loss (D) [9] to mea-
sure the distortion between the decoded current frame P̂t and
Pt, with λ serving as a Lagrange multiplier to trade off distor-
tion against rate. LF̂Mt

, LF̂Zt
and LF̂Rt

represent the number of
bits used to encode F̂Mt , F̂Zt and F̂Rt respectively, with M repre-
senting the number of scales. The binary cross entropy (BCE)
loss is applied, with L j

BCE denoting the j-th scale BCE. Binary
classification is used to determine whether generated voxels are
occupied or not. Our framework offers significant advantages in
terms of rate-distortion optimization and effective binary clas-
sification.

Lϑ =
1
Nϑ

Nϑ∑
i=1

− log2 (pϑ) , ϑ ∈
{
F̂Mt′ , F̂Zt′ , F̂Rt

}
(2)

where Lϑ can be calculated using the corresponding probability
density function, and Nϑ represents the number of correspond-
ing attributes.

L j
BCE =

−1
NPt

∑
i

[
oi log2 pi + (1 − oi) log2 (1 − pi)

] (3)

where oi represents the occupancy label of the corresponding
voxel, with 0 indicating empty and 1 indicating occupied. pi

denotes the probability of a voxel being occupied.

4. Experiments

4.1. Experimental Settings
Training strategy. To ensure a fair comparison, we adopt a

similar training strategy as the most advanced method D-DPCC
[11], using the same training and testing datasets. Our model is
optimized using the Adam optimizer [32] with = (0.9, 0.999),
along with a learning rate scheduler that reduces the learning
rate by a factor of 0.7 every 10 epochs. To obtain the optimal
model parameters for different rate points, we trained our model
for 100 epochs with λ = 3, 4, 5, 7, 9 as the training parameters.
During training, the batch size was set to 1 and the learning rate
was 0.0008.

Training Dataset. We train our model using the Owlii
dynamic human point cloud dataset [33], consisting of four
point cloud sequences: basketball player, dancer, exercise, and
model. Each sequence spans 20 seconds with a frame rate of 30
frames per second, resulting in 600 frames in total, each with
a resolution of 11 bits. To speed up training, reduce storage
consumption, and enhance model robustness, we quantized the
dataset from 11-bit precision to 9-bit precision.

Testing Datasets. In order to assess the effectiveness of
our proposed method, we employ the 8i Voxelized Full Bod-
ies dataset [12] which is potential test material for MPEG
and/or JPEG standardization efforts. This dataset comprises
four point cloud sequences, namely Soldier, Loot, Redand-
black, and Longdress, each featuring a full-body human subject
captured at 30 fps over a period of 10s. The spatial resolution
of each frame is 1024*1024*1024, and the number of points in
each frame ranges from 700,000 to 1,100,000.

Evaluation Metrics. We measure the effectiveness of our
proposed framework using bpp as the metric for the average
number of bits used per point in each frame. To evaluate
the quality of our compressed point cloud sequences, we use
point-to-point error (D1 ↑) and point-to-surface error (D2 ↑)
[34]. These metrics help us derive the peak signal-to-noise ra-
tio (PSNR) and measure the distortion between the decoded and
ground-truth frames. Our goal is to achieve the highest PSNR
possible under the same bpp constraint.

Baseline. We compare our proposed method with several
state-of-the-art compression methods, including D-DPCC, V-
PCC Test Model v13, and a static point cloud geometric com-
pression method proposed in [9].

4.2. Experimental Results

Figure 7 displays the rate distortion (RD) curves of various
compression techniques. Our proposed method outperforms
other approaches significantly in the Soldier and Longdress
point cloud sequences, with some improvement observed in the
Loot dataset as well. Furthermore, the results for the Redand-
black dataset are comparable to those of the D-DPCC method.
Our framework achieves superior performance due to the LSF
and motion compensation modules compared to the state-of-
the-art methods.

The table 1 summarizes the BD-rate gains of our proposed
framework. Compared to D-DPCC, we achieved an average
improvement of 12.09% (D1) and 14.76% (D2). Furthermore,
compared to V-PCC, our framework showed an average im-
provement of 81.29% (D1) and 77.57% (D2). Our method
shows significant coding efficiency improvement over D-DPCC
for point cloud sequences with a compact model, particularly
for the datasets Soldier and Longdress. Our LSF approach
demonstrated superior performance compared to the Inter Pre-
diction method of D-DPCC and produced more accurate motion
vectors. However, for the dataset Redandblack, which consists
of a point cloud sequence of a woman wearing a skirt, there is a
significant gap between the skirt and the human body. To speed
up encoding and decoding time and save space cost, we traded
off the accuracy of the scene flow network, which resulted in
comparable results to D-DPCC. In future work, we aim to op-
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Fig. 7. Rate-distortion (RD) curves comparing our proposed codec with other methods, using the Soldier, Redandblack, Loot, and Longdress sequences as test data.
The graphs depicts results of PSNR measurements based on point-to-point error (D1) as in the first column and point-to-surface error (D2) as in the second column.
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Fig. 8. An ablation study was conducted on the Soldier point cloud sequence
to evaluate the impact of the Local Structure-aware Fusion (LSF) module. It is
noteworthy that the ’ours w/o LSF’ method also utilizes the scene flow network
but estimates motion vectors (MVs) in the original space.

timize the scene flow network to improve the prediction accu-
racy. Despite this implementation issue, the overall results show
significant double-digit improvements due to our emphasis to
better model temporal redundancies with scene flow.

Sequence D-DPCC Wang’s V-PCC
D1 ↓ D2 ↓ D1 ↓ D2 ↓ D1 ↓ D2 ↓

Soldier -21.44 -6.22 -48.92 -47.29 -94.37 -80.47
Redandblack 2.02 -16.72 -26.06 -47.89 -68.41 -74.63

Loot -8.52 -17.52 -40.13 -41.76 -80.58 -78.41
Longdress -20.41 -18.60 -34.74 -42.43 -81.81 -76.78
Average -12.09 -14.76 -37.46 -44.84 -81.29 -77.57

Table 1. Improvements in BD-Rate (%) compared to D-DPCC, Wang’s and
V-PCC (inter) framework. Negative values indicate bit-rate savings, while pos-
itive values indicate higher bit-rate costs. Smaller values (↓) indicate greater
improvement over the compared method.

4.3. Analysis and Ablation Study
Effectiveness of Latent Scene Flow. The scene flow net-

work is proficient in estimating motion vectors (MVs) accu-
rately between two consecutive frames of point clouds. Since
deep features possess robust representation in various appli-
cations, we have chosen to implement scene flow modules of
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Fig. 9. An ablation study was conducted on the Loot point cloud sequence to
evaluate the effectiveness of the motion compensation module with and without
temporal prior. The method without temporal prior refers to the direct use of
warped frames as the prediction frames for the current frame in the motion
compensation module.

Component
Method

Ours(ms) Ours w/o LSF(ms)

Feature Extraction 83 0
Sample 0 204

Scene Flow 369 922
Upsample 0 137

Total 452 1263

Table 2. Runtime in milliseconds. The runtime of the LSF module and the
scene flow method in the original space is compared (average on the whole
dataset). It is noteworthy that the ’ours w/o LSF’ method also utilizes the scene
flow network but estimates motion vectors (MVs) in the original space.

point clouds in the latent space. We visualize the estimated
MVs in the figure 11. The part of the red virtual coil in the
MVs in the figure represents the movement of the point cloud.
It can be seen from the figure that D-DPCC can only esti-
mate some large movements, and some fine movements cannot
be well estimated, which will increase the burden of residual
compression. Figure 8 presents the D1 and D2 rate-distortion
curves’ comparison results with/without the Latent Scene Flow
(LSF) module. The findings indicate that the LSF module sig-
nificantly enhances the original spatial scene flow estimation,
and obtains excellent performance for each bit per pixel (BPP).
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Fig. 10. An ablation study was conducted on the Redandblack point cloud se-
quence to evaluate the effectiveness of the entropy model with and without deep
entropy model. The method without deep entropy model refers to the factorized
entropy model[31] used in D-DPCC.

Moreover, the LSF module’s computation time is reduced by
more than half, as the original spatial scene flow estimation in-
volves sampling and interpolation steps. The comparison of
runtime is shown in the table 2. The improved performance
validates the efficacy of the LSF module.

Effectiveness of motion compensation. In the motion com-
pensation module, we employ motion vectors (MVs) to deform
the previous frame and obtain the warped frame. Then, we in-
troduce time information into the warped frame within the mo-
tion compensation module. Figure 9 presents the comparison
results of the D1 and D2 rate-distortion curves with/without
temporal prior. Notably, the motion compensation method of
refining the warped frame by splicing MVs and the previous
reconstruction frame enhances the efficiency compared to the
approach lacking temporal prior. In particular, when using the
same hyperparameters λ, we observed that the reconstruction
accuracy of the point cloud sequence remains similar, while the
cost of bits per pixel (BPP) significantly increases. Our motion
compensation module provides more precise time information
to refine the warped frame further, thereby reducing the match-
ing error between two consecutive frames of voxelized point
cloud and improving the predicted frame’s accuracy.

Effectiveness of Entropy Model. In the residual compres-
sion module, we use the deep entropy model which joins the

Last Current Overlap MVs MVs
Frame Frame (D-DPCC) (ours)

Fig. 11. Visualization of estimated motion vectors (MVs). The left two columns
are the 34th and 35th frames of the Longdress point cloud sequence. The mid-
dle column shows the result of overlapping the previous frame and the current
frame, where the yellow dashed box indicates the area with obvious movement.
In order to facilitate observation, the color attributes of the current frame are
hidden. The two columns on the right are the MVs estimated by D-DPCC and
ours respectively, where the red dotted box represents the position of the mo-
tion. In the comparison in the second row, due to the overlap of point cloud
visualization colors, the displayed MVs are oriented towards the front of the
character.

spatial hyper-prior and temporal prior. The results are shown in
the Figure 10. Using the spatial and temporal prior information
of the point cloud in the latent space, the deep entropy model
can further improve the compression performance, especially at
low bpp.

4.4. Visualization Analysis

We compared the reconstruction results with D-DPCC, and
the results are shown in the figure 12. It can be found that when
the compression ratios of ours and D-DPCC are both set to 0.25
bit rates per pixel (bpp), the reconstruction results have some
distortion, as shown in the enlarged yellow circle in the figure.
Obviously, our reconstruction effect is better than D-DPCC. As
shown in the figure 13, we compared the reconstruction results
of our method under different bpps. Comparing the previous
two images, we can clearly see that the facial details of the char-
acters become clear. As the bpp increases, the protrusions and
missing on the surface of the reconstructed point cloud gradu-
ally decrease.
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Original D-DPCC Ours

Fig. 12. Visual comparison of frame reconstruction between D-DPCC and our
method, based on the 30th frame of the Loot point cloud sequence, which con-
tains 779986 points. The compression rate is set to 0.25 bpp. D1-PSNR of
D-DPCC and our method are 75.6 and 76, respectively.

5. Conclusion

We present a novel deep end-to-end compression framework
for DPCs that optimizes motion estimation, motion compensa-
tion, motion compression, and residual compression modules,
all in latent space. We utilize sparse convolution for DPCC and
a multi-scale framework to estimate motion in the latent space,
which enhances the accuracy of the scene flow. Inspired by
video compression techniques, we introduce time information
to the motion compensation module of the current frame to im-
prove the prediction accuracy and reduce residual compression.
Additionally, for residual compression, we adapt the deep en-
tropy model from video-based compression and introduce it to
DPCC for the first time, which provides a more precise model-
ing of the probability distribution of latent variables. We con-
duct an end-to-end joint training of the entire framework to op-
timize the rate-distortion ratio. Compared to state-of-the-art D-
DPCC, our proposed compression network achieves a BD-Rate
gain of 12.09 %.
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Fig. 13. Visual comparison under different bit rates per pixel (bpp) based on the
10th frame of the soldier point cloud sequence. The first row shows the enlarged
views of the image contents highlighted by the corresponding red dotted boxes.
Obvious protrusions or missing details are highlighted by the yellow boxes.
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[30] J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image
compression with a scale hyperprior, in: arXiv:1802.01436 [eess.IV],
2018. doi:10.48550/arXiv.1802.01436.
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