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A B S T R A C T   

This paper examines the efficiency and asymmetric multifractal features of NFTs, DeFi, cryptocurrencies, and 
traditional assets using Asymmetric Multifractal Cross-Correlations Analysis covering the period from November 
2017 to February 2022. Considering the full sample with a significant variation among asset classes, the study 
reveals DeFi-DigiByte is the most efficient while the cryptocurrency-Tether is the least efficient. However, S&P 
500 showed high efficiency before COVID-19, and DeFi-Enjin Coin advanced as the most efficient asset during 
COVID-19. The volatility dynamics of NFTs, DeFi, and cryptocurrencies follow strong nonlinear cross- 
correlations, but evidence of weaker nonlinearity exists in traditional assets. Additionally, the sensitivity to 
smaller events in bull markets is high for NFTs and DeFi. The findings have significant implications for portfolio 
diversification when an investor’s portfolio set includes traditional assets and cryptocurrency and relatively new 
blockchain-based assets like NFTs and DeFi.   

1. Introduction 

Since their inception, the blockchain-based digital asset classes have 
received immense interest from investors and portfolio managers as an 
alternative investment platform. Along with other established tradi
tional cryptocurrencies such as Bitcoin, Litecoin, Ripple, and Ethereum, 
new blockchain asset classes such as Decentralized Finance (DeFi) and 
Non-Fungible Tokens (NFTs) have made a considerable contribution to 
the asset market’s recent expansion (Aharon & Demir, 2021; Alam, 
Chowdhury, Abdullah, & Masih, 2023; Maouchi, Charfeddine, & el 
Montasser, 2021; Yousaf & Yarovaya, 2022). Fundamentally, NFTs and 
DeFi differ from traditional cryptocurrencies as they are not virtual 
currency. Where NFTs are non-transferable cryptographic digital assets 

created by Ethereum smart contracts and can be sold and traded, the 
interchangeability of NFTs when comparing the other cryptocurrencies 
is very low (Karim, Lucey, Naeem, & Uddin, 2022; Q. Wang, Li, Wang, & 
Chen, 2021; Y. Wang, 2022). 

On the other hand, DeFi is a new financial technology service based 
on distributed ledgers and smart contracts using blockchain, providing 
financial instruments without relying on intermediaries like brokers, 
exchanges, or banks (Karim et al., 2022; Yousaf, Nekhili, & Gubareva, 
2022). The NFTs and DeFi are relatively contemporary and unexplored 
asset classes, but their market capitalization has grown substantially as 
risk minimizing assets, particularly during the COVID-19 period. In the 
NFT space, the pandemic has increased demand for digital art and col
lectibles as the shift to remote work, and online commerce fueled 
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interest in digital assets (Alam et al., 2023). The interest has driven up 
prices for some NFTs and has contributed to a general increase in the 
popularity of NFTs. However, for the DeFi assets, the pandemic has had 
a mixed impact. The global economic downturn has also increased in
terest in DeFi tokens, yield farming platforms, and stablecoins to access 
financial services and investments that are not be available through 
traditional channels (Karim et al., 2022; Yousaf & Yarovaya, 2022). 
However, the pandemic-led decrease in overall spending and investment 
caused a slowdown in the DeFi market. In addition, unlike the return on 
NFTs, which is considered uncorrelated with other assets, such as stocks, 
bonds, and commodities, because they are not tied to any underlying 
financial performance or revenue streams, increased return volatility in 
the broader financial markets has had a spillover effect on the DeFi 
market. 

From 2014 through 2022, the NFTs and DeFi market and prices are 
influenced by various factors, including the development of blockchain 
technology, underlying protocols and products, the level of liquidity in 
the market, and shifts in investor sentiment toward the NFTs and DeFi 
ecosystem (Alam et al., 2023; Ko, Son, Lee, Jang, & Lee, 2022). NFTs 
gained widespread attention in the blockchain space in 2017 with the 
launch of the Ethereum network’s ERC-721 standard (Wilson, Karg, & 
Ghaderi, 2021). In the early days of NFTs, the market was relatively 
small, with sales typically tens of thousands of dollars. However, the 
market for NFTs has seen tremendous growth since 2019, with some 
sales reaching millions of dollars in 2020. The first popular NFTs were 
CryptoKitties, a collectible game built on the Ethereum blockchain, and 
CryptoPunks, a set of 10,000 unique digital characters (Dowling, 2022a; 
Pinto-Gutiérrez, Gaitán, Jaramillo, & Velasquez, 2022). The concept of 
decentralized finance (DeFi) was first introduced in the blockchain 
space in the early- to mid-2010s, with the launch of the Ethereum 
network and the development of smart contracts (Karim et al., 2022). 
The rapid growth of decentralized exchanges and the popularity of yield 
farming and liquidity provision have driven the growth of a new asset 
class composed of various DeFi tokens and protocols. Since its inception, 
DeFi assets have generated substantial returns for investors in a short 
period, particularly during the yield farming craze in the summer of 
2020, with the total value locked in DeFi protocols reaching all-time 
highs in billions of dollars in 2020 and 2021 (Maouchi et al., 2021). 

Overall, the historical development of the NFTs and DeFi market has 
been one of rapid growth but with high volatility. As a result, these two 
markets can be highly volatile, with prices for some NFTs and DeFi as
sets changing dramatically quickly. This high volatility is partly due to 
the fact that the markets are still in their early stages, with a limited 
number of buyers and sellers. 

Furthermore, asymmetric price movement and spike of short-term 
risk spillover were observed during the COVID-19 period among NFTs, 
DeFi, cryptocurrencies, and other assets (Karim et al., 2022), therefore 
investor had to pay attention to the selection of efficient assets in 
portfolio construction. Moreover, the interest in asset allocation based 
on asset efficiency criteria has gained new momentum as the extreme 
events of the COVID-19 lockdown (Abdullah, Wali Ullah, & Chowdhury, 
2022), followed by the Russia-Ukraine war, have triggered severe stress 
in the global financial markets. 

Extreme events in financial markets generated from outside the 
system, rather than those endogenous shocks, are often characterized as 
unexpected asset price volatility that makes investors uncertain about 
their investment decisions (Alam, 2022). The degree of uncertainty is 
primarily driven by unknown asymmetrical nonlinear dynamics, scaling 
patterns, asset class self-similarity, long memory, herding behavior, and, 
notably, the lack of conformity of assets with the efficient market hy
pothesis (EMH) (Fama, 1970). For example, recent studies (Bariviera, 
2021; Frezza, Bianchi, & Pianese, 2021; Manahov & Urquhart, 2021; 
Urquhart, 2016) found that cryptocurrency’s information efficiency is 
mainly violated during the overreaction of investors to extreme events. 
EMH assumes that all assets have the same information and price his
tory, and prices follow a random walk. However, returns and volatility 

are highly influenced by information asymmetry in a limited number of 
buyers and sellers for NFTs, DeFi, and Cryptocurrencies, where market 
participants have different levels of informational advantage over 
market maturity and on-random price movements. Also, the EMH is not 
well supported for other asset classes in the short run and during crisis 
periods because of typical streams of multifractality in the financial time 
series. Understandably, accurate measurement of volatility scaling pat
terns, fractality, and nonlinear dynamics is essential for investors since 
scaling patterns play a vital role in identifying and sorting efficient 
assets. 

In the light of the significance of volatility scaling patterns, we aim to 
examine the efficiency and multifractality of NFTs and DeFi along with 
cryptocurrencies and other traditional assets using Asymmetric Multi
fractal Cross-Correlations Analysis (MF-ADCCA) (Cao, Cao, Xu, & He, 
2014). The traditional financial assets include gold, crude oil, and 
S&P500. Our sample period ranges from November 2017 to February 
2022, covering the starting date of three major NFTs and DeFi, volatility 
calm periods of major assets and commodities, and the Covid-19 
pandemic crisis. 

MF-ADCCA is a modified version of the symmetric Multifractal 
Detrended Fluctuation Analysis (MFDFA) technique that detects multi
fractality and assumes that the influence of a downward trend on price 
dynamics is the same as that of an upward trend. The phrase fractals and 
multifractality were initially proposed by Mandelbrot and Mandelbrot 
(1982) and utilized to illustrate geometric shapes containing self-similar 
structures randomly distributed on small scales. In early influential work 
in finance, Peters (1994) introduced the fractal market hypothesis 
(FMH) in investment decisions based on Mandelbrot’s fractal frame
work. The argument was that the financial market follows a standard 
stochastic process with interactive and adaptive properties. However, as 
Dowling (2022b) shows, unlike traditional assets, the NFTs and DeFi 
respond differently during up and down trends and have varied impacts 
on their volatility and returns. Therefore, we use the MF-ADCCA 
framework, given its merit in capturing asymmetric upward and 
downward motions, identifying the scaling performance of assets, and 
its utility in sorting the most efficient assets. Furthermore, given the 
advantage of the MF-ADCCA approach and the fact of information 
asymmetry in the asset market, identification of the multifractality has 
significant implications for portfolio diversification and predicting asset 
price volatility when an investor’s portfolio set includes not only 
traditional and cryptocurrency but also relatively new blockchain-based 
assets like NFTs and DeFi. 

Our main findings show a considerable asymmetry in asset efficiency 
variation among the asset classes, where Digi Byte is the most efficient 
asset class and the cryptocurrency Tether is the least efficient. Relatively 
weak multifractality of all assets is evidenced during an uptrend 
compared to the downtrend market conditions. DeFi, NFTs, and Gold are 
more efficient than cryptocurrencies. Before COVID-19, traditional asset 
(S&P 500) was the most efficient asset class, while during the COVID-19 
period, DeFi (Enjin Coin) ranked first, and Traditional Asset (S&P 500) 
ranked second in terms of efficiency. Considering the entire sample 
period, DeFi (Digi Byte) is the most efficient asset class, and Gold is 
second most efficient. The asymmetric spectrum result suggests NFTs 
and DeFi are more sensitive to smaller events, large fluctuations domi
nating bull markets, and small fluctuations dominating bear markets. 

The findings of this paper contribute to the three areas of literature 
focusing on the efficiency and multifractality of financial and digital 
asset markets. Firstly, the empirical estimation of the MF-ADCCA adds to 
the literature that estimates the multifractal properties of NFTs and 
DeFi. It also ranks the assets in terms of their degree of efficiency. In 
addition, the multifractality provides evidence of nonlinear assets’ 
cross-correlations, long-memory, and biased herding behavior. Sec
ondly, the findings of our study provide new evidence on possible cross- 
assets asymmetries in price and volatility movements between pre-and 
during-COVID-19 periods. Finally, while EMH often fails to capture 
scaling patterns and herding behavior, the asymmetric herding behavior 
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presented in our findings can signal short- and long-term investors. 
In addition, this study extends Dowling (2022a) rolling window 

Hurst Exponent analysis in the asymmetric MF-DFA framework by 
splitting the sample into the pre-and during-COVID-19 periods. As a 
result, it is possible to provide economic interpretations of the asym
metric MF-DFA coefficients and scaling exponent that represents the 
long-range power-law correlation properties. This economic interpre
tation can contribute to the development of fintech theory in which 
portfolio managers, investors, and policymakers can design strategies to 
choose efficient assets in extreme crises. For example, our approach 
provides evidence of the long-range power-law correlation in asset 
returns in which heterogeneous investors with diverse investment ho
rizons interact. So, an underlying theoretical conjecture is that investors 
choose efficient asset in a dynamic multi-asset (NFTs, DeFi, Crypto
currencies, and other assets) environment that is subject to accurate 
forecasting on how multifractality in asset price volatility will evolve in 
the future. Furthermore, the estimated values of the q-th order volatility 
functions in the MF-ADCCA method can predict how an asset allocation 
model should consider the various magnitudes of fluctuations over the 
short- and long-run investment horizon. 

The rest of the paper is outlined as follows: Section 2 provides a brief 
literature review, Section 3 discusses the methodology and data of this 
study, Section 4 elaborates on the empirical findings, Section 5 discusses 
the findings with policy implications and Section 6 concludes the study. 

2. Literature review 

The efficient market hypothesis (EMH) is a foundational theory of 
modern finance (Fama, 1970); EMH categorizes market efficiency into 
three levels based on how much accessible information is represented in 
asset price: strong, semi-strong, and weak. Investing in a financial in
strument is deemed efficient in the weak form if market prices 
completely represent the available information. However, NFTs, DeFi, 
and Cryptocurrencies have unique characteristics as these asset classes 
are relatively new and still evolving, where returns and volatility are 
highly influenced by asymmetric market sentiment in a limited number 
of buyers and sellers and the success or failure of underlying protocols 
and products. In addition, behavioral biases such as artist popularity, 
herding, overconfidence, and overreaction can further affect the prices 
of these assets in ways that are not reflected in the underlying EMH. 

Peters (1994) introduced the fractal market hypothesis (FMH) based 
on Mandelbrot’s fractal framework (Mandelbrot & Mandelbrot, 1982) 
and considered the financial market as a sophisticated stochastic process 
with interactive and adaptive properties. FMH has gained popularity in 
capital markets research due to its ability to explain numerous economic 
events that traditional efficient market theories cannot. The FMH is 
based on the idea that financial markets are characterized by self-similar 
patterns, or fractals, which can be used to predict future price move
ments. However, unlike the EMH, the literature in FMH suggests that 
financial markets are not perfectly efficient and that prices can be pre
dicted based on the recognition of fractal patterns. Furthermore, the 
hypothesis argues that the efficiency of different asset classes may vary 
depending on the presence or absence of fractal patterns. In this context, 
the scope of our findings in explaining asset class efficiency refers to its 
ability to provide insight into the efficiency of underlying asset classes, 
such as DeFi, NFTs assets, and cryptocurrencies, in constructing efficient 
portfolios. 

Fractal theories are classified into two types: monofractal theories 
and multifractal theories. As it can only characterize the microstructure 
outline of capital asset price movements, the monofractal theory could 
illustrate the internal structure and properties of asset price movements. 
The multifractal theory may offer comprehensive information on the 
levels of volatility in capital asset values across time (Mandelbrot, 
1997). As a result, multifractal theory, as contrasted with monofractal 
theory, gives a more thorough explanation of the complicated nonlinear 
dynamics of capital markets. Two typical multifractal analysis 

approaches are the rescaled range analysis (R/S) method and the mul
tifractal detrended fluctuation analysis (MF-DFA) method based on the 
Hurst exponent (Hurst, 1951). The MF-DFA approach was developed by 
Kantelhardt et al. (2002) as a generic analytical method relying on the 
DFA method (Peng et al., 1994). 

Recent literature utilized MF-DFA to analyze multifractal noise, 
market volatility, and portfolio selection in general, to improve price 
predictability for portfolio diversification and optimization. Closely 
related to our paper, several recent studies focus on the multifractal 
features of stock (Chai, Chu, Zhang, Abedin, & Lucey, 2022; Mensi, Lee, 
Vinh Vo, & Yoon, 2021; Tiwari, Aye, & Gupta, 2019), commodities (Guo 
et al., 2021; Mensi, Vo, & Kang, 2022), foreign exchange (Diniz-Mag
anini, Rasheed, & Sheng, 2021) and cryptocurrencies (Bariviera, 2021; 
Cao & Xie, 2021; Chowdhury, Abdullah, & Masih, 2022; Kakinaka & 
Umeno, 2022). Tiwari et al. (2019) examine the multifractality and ef
ficiency of emerging and developed countries’ financial markets. They 
provide time-varying evidence of multifractality where nearly all asset 
markets show higher efficiency in the long term. Finally, Chai et al. 
(2022) focus on Chinese emission trading schemes’ multifractality and 
document a significant multifractal trait across Chinese provinces. 

On the application of multifractality in digital currencies, Kristjan
poller and Bouri (2019) compare multifractal features of cryptocurren
cies and traditional currencies. Their result suggests a robust 
multifractal feature of Bitcoin and Litecoin. Another study by Mensi, 
Lee, Al-Yahyaee, Sensoy, and Yoon (2019) investigates the multi
fractality characteristics of Bitcoin and Ethereum and shows Ethereum is 
more efficient than Bitcoin. El Alaoui, Bouri, and Roubaud (2019) also 
found similar findings for Bitcoin’s low efficiency. Finally, using 84 
cryptocurrencies, Bariviera (2021) documents heterogenous long-range 
dependence, some of which follow multifractality dynamics, and others 
follow monofractality. Concerning the efficiency property of assets, 
Mensi et al. (2021) analyze the efficiency of top crude oil-producing 
countries and consumer countries’ stock markets. Their findings sug
gest a strong multifractality in a bull market and a decline in efficiency 
during the global financial crisis COVID-19. Using data from 20 ex
change rates, Diniz-Maganini, Diniz, and Rasheed (2021) examine ex
change rates’ regime-specific efficiency and show that managed-float 
countries’ currencies are less efficient than free-float currencies. They 
also analyze the influence of the 2008 global financial crisis and find 
that efficiency recovery is prolonged in free-float countries. 

Nevertheless, as the asset price movements and return volatility are 
asymmetrical between short- and long-run horizons and in bull and bear 
market conditions, Lee, Song, Park, and Chang (2017) propose an index- 
based MF-DFA method based on Cao et al. (2014)‘s asymmetric MF-DFA. 
Recent development and an extension of the MF-DFA to cross- 
correlations are the MF-ADCCA. The MF-ADCCA shows an improve
ment in prediction, as it considers the asymmetric price movements, 
cross-correlations, multifractal scaling patterns, and dynamic non- 
linearity between two-time series. Several studies examine the asym
metric multifractality in BTC and other leading currencies using the MF- 
ADCCA approach. For example, Kakinaka and Umeno (2021) examine 
the cryptocurrency market’s asymmetric price and volatility dynamics. 
They find significant cross-correlations concerning volatility and price 
of Ethereum, Bitcoin, Litecoin, and Ripple, where volatility responses 
are asymmetrical in bull and bear markets. Kristjanpoller and Bouri 
(2019) also examine the asymmetric multifractality of cryptocurrencies 
and traditional currencies. Stavroyiannis, Babalos, Bekiros, Lahmiri, and 
Uddin (2019) focus on the multifractal properties of BTC, and Gajardo, 
Kristjanpoller, and Minutolo (2018) examine price behaviors of BTC and 
world‑leading currencies. Finally, for the COVID-19 periods, Naeem, 
Bouri, Peng, Shahzad, and Vo (2021) and Kakinaka and Umeno (2022) 
examine cryptocurrencies’ multifractality and efficiency properties. The 
findings suggest weak multifractal features in the long-term but strong 
in the short-term. 

This paper is also associated with another stream of literature on 
NFTs and DeFi, and that literature is still growing. Several studies have 
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been conducted after this topic received attention during COVID-19. 
Dowling (2022a) examined the Decentraland pricing and argues that 
because of its initial stage of growth, the NFTs market is still inefficient. 
A recent study by Ante (2021) demonstrates that Ethereum and Bitcoin 
drive NFTs price, while cryptocurrencies price are not affected by NFTs. 
Another study by Dowling (2022b) investigated the linkages between 
NFTs and cryptocurrency pricing and found that there is a minor vola
tility transmission between NFTs and cryptocurrencies and co- 
movement between NFTs and Ethereum. Karim et al. (2022) investi
gated the extreme risk transmission of blockchain markets using quan
tile connectedness methodology and discovered that, among other 
blockchain markets, NFTs provide greater diversification avenues with 
significant risk-bearing potential to protect investments and minimize 
extreme risks. Yousaf and Yarovaya (2022) examined the static and 
dynamic return and volatility spillovers between DeFi, NFTs, and 
traditional assets and found some DeFi and NFTs are net transmitters of 
volatility and return spillovers and connectedness became higher during 
COVID-19. 

Moreover, another study by Yousaf, Nekhili and Gubareva (2022) 
examined the returns spillover between DeFi and traditional currencies 
and found DeFi return spillovers vary over time, and connectedness 
increased during the initial stage of COVID-19. Vidal-Tomás (2022) 
analyzed the dynamics and short/long-run performance of NFTs, and his 
findings suggest there are significant performance dynamics and lower 
co-movement with the cryptocurrency market. Ko et al. (2022) inves
tigated the diversification benefit of using NFTs over traditional assets 
and found that NFTs are decoupled from traditional financial assets, and 
there is diversification benefit using NFTs. Another study by Maouchi 
et al. (2021) discussed digital bubbles in the context of the COVID-19 
pandemic, showing specific DeFi and NFT bubbles in summer 2020, 
with bubbles occurring less frequently before the pandemic period. 
During the COVID-19 outbreak, Aharon and Demir (2021) investigated 
the spillover of NFTs across Ethereum stocks, gold, foreign exchange, 
and oil and discovered that overall connectedness significantly 
increased. In contrast, Umar, Gubareva, Teplova, and Tran (2022) 
recently demonstrated that NFTs connectedness holds only for horizons 
of less than two weeks in the short run. 

Based on the above discussion of related literature, the efficiency and 
asymmetric multifractal features of newly developed blockchain based 
assets NFTs and DeFi has not yet been uncovered. Among these studies, 
the application of MF-ADCCA most similar to our study is Kakinaka and 
Umeno (2022). However, while they are mainly interested in two 
cryptocurrencies, we focus on the multifractality and efficiency measure 
in a comprehensive portfolio set that incorporates four heterogeneous 
asset classes. In addition, the sample period of our study differs from 
Kakinaka and Umeno (2022) in measuring asset market efficiency and 
identifying the asymmetric spectrum parameters. 

3. Data and methodology 

3.1. Data 

We choose twelve assets from four heterogenous asset classes, where 
NFTs and DeFi are selected based on higher market capitalization. As the 
data of Enjin Coin, one of the most important NFT with significant 
market capitalization, is available from November 21, 2017, the sample 
period of this study covers from November 21, 2017, to February 8, 
2022. The description of variables and their data sources are presented 
in Table 1. To examine the sensitivity of efficiency across major eco
nomic events, which is COVID-19 in the study sample period, the dataset 
was split into three panels: Panel A: Full Sample (2017/11/21 to 2022/ 
02/08), Panel B: Before COVID-19 (2017/11/21 to 2019/12/31), and 
Panel C: During COVID-19 (2020/01/01 to 2022/02/08). NFTs, DeFi, 
and cryptocurrencies data are collected from CoinMarketCap, while the 
data of traditional assets (Gold, WTI, and S&P500) are sourced from 
DataStream. 

3.2. Methodology 

Asymmetric Multifractal Detrended Fluctuation Analysis (A-MFDFA) 
is a technique that is often used to examine the efficiency of a financial 
time series. It also detects the random walk features of the asset using 
generalized Hurst exponents. A generalized Hurst exponent investigates 
long-term memory in a financial time series. The Hurst exponent cal
culates the comparative propensity of a time series either to regress 
intensely to the average or to cluster in a direction. If the time series has 
a greater level of long-term autocorrelation, there are evident in
efficiencies (Kantelhardt et al., 2002). This study applies the index-based 
Multifractal Asymmetric Detrended Cross-correlation Analysis (MF- 
ADCCA) proposed by Cao et al. (2014) and Lee et al. (2017), which is a 
modified version of the symmetric MFDFA technique that detects mul
tifractality and assumes that the influence of a downward trend on price 
dynamics is the same as that of an upward trend. As previously 
mentioned, the NFTs and DeFi respond differently during up and down 
trends (Dowling, 2022b), which has a varied impact on NFTs or DeFi 
volatilities and returns. Consequently, MF-ADCCA allows us to capture 
asymmetric upward and downward trends, as well as asymmetry in 
scaling performance of NFTs and DeFi. 

As previously mentioned index-based MF-ADCCA was employed, 
which requires the return and volatility of assets. Therefore, the daily 
return of each asset is calculated using the following logarithmic equa
tion (Kakinaka & Umeno, 2021): 

ri,t = ln
(
pi,t

)
− ln

(
pi,t− 1

)
(1)  

where ri, t = return, i = asset, pi denotes the price of the asset at time t. 
Next, the Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model proposed by Bollerslev (1986) is applied to estimate the 
volatility for daily returns. Following the simple constant expected re
turn (CER) model, the continuously compounded daily return, Rt on an 
asset can be expressed as, 

Rt = μ+ εt, t = 1,…,T  

εt = σZt  

Zt ∼ iid N(0, 1). (2)  

here, εt is the unexpected return, σ is the unconditional volatility of the 
unexpected return and assumed to be constant, and Z is the standardized 
unexpected return (Zt = εt/σ). Then, following Glosten, Jagannathan, 
and Runkle (1993) and Zakoian (1994) we define the univariate 
threshold generalized autoregressive conditional heteroskedasticity 
(TGARCH) (1,1) model to estimate the daily return volatility as, 

Table 1 
List of selected assets.  

Variables Description Asset class Data source 

BAT Basic Attention Token NFTs CoinMarketCap 
LINK Chainlink NFTs CoinMarketCap 
MANA Decentraland NFTs CoinMarketCap 
DGB DigiByte DeFi CoinMarketCap 
ENJ Enjin Coin DeFi CoinMarketCap 
MKR Maker DeFi CoinMarketCap 
BTC Bitcoin Cryptocurrency CoinMarketCap 
ETH Ethereum Cryptocurrency CoinMarketCap 
USDT Tether Cryptocurrency CoinMarketCap 
Gold Gold Traditional Asset DataStream 
WTI Crude Oil Traditional Asset DataStream 
S&P500 The Standard and Poor’s 500 Traditional Asset DataStream  
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σ2
i,t = α1 +(α2 + γ Dt− 1)ε2

t− 1 + βσ2
t− 1 (3)  

where α′s, γ, and β are nonnegative parameters satisfying standard as
sumptions of a GARCH model, and D is an indicator variable, 

Dt− 1 =

{
1 if εt− 1 < 0
0 if εt− 1 ≥ 0 (4) 

The TGARCH model in Eq. (3) considers the impact of a past positive 
and a negative shock separately and uses zero as the threshold level 
volatility value (Alam, 2022). Finally, we calculate the change in vola
tility as follows (Kakinaka & Umeno, 2022): 

vi,t = ln
( ̅̅̅̅̅̅

σ2
i,t

√ )
− ln

( ̅̅̅̅̅̅̅̅̅̅

σ2
i,t− 1

√ )
(5)  

where v presents the volatility of asset i at time t. 
Afterward, based on asymmetric cross-correlations across return and 

volatility, MF-ADCCA approach evaluates if the aggregated index has a 
positive or negative fluctuation {xt : t = 1,…,N} and {yt : t = 1,…,N}. 
First, the outlines from the data set are created. 

X(k) =
∑k

t=1
(xt − x), t = 1,…,N, (6)  

Y(k) =
∑k

t=1
(yt − y), t = 1,…,N, (7)  

where x and y are the averages of the entire return series. The proxy 
series index is also computed at I(k) = I(k 1) exp (xk) for k = 1, …, N with 
I(0) = 1, which evaluates if the directions of the index series are negative 
and positive. The X(k), Y(k), and proxy index I(k) profiles are then 
allocated into Ns = [N/s] non-overlapping sections of length s. If N is not 
a multiple of s, just a small portion of the profile remains. To analyze the 
entire profile, the division is repeated beginning at the opposite end of 
the data set. As a result, each series has a total of 2Ns segments. 

The series is then detrended, and the local trends of the profiles are 
measured by fitting a degree-2 polynomial least-square Xv and Yv to 
detrend X(k) and Y(k), respectively, for each section v = 1, …, 2Ns of 
interval s. Simultaneously, the linear least-square fit is evaluated, Iv(i) =
aIv + bIv i (i = 1,…, s) for X(k) and Y(k), in order to determine the index 
series’ local asymmetric direction. The slope bIv determines whether the 
trend is positive (upward) or negative (downward). Then, for each of the 
2Ns segments, the detrended covariance is calculated as follows: 

f 2(s, v) =
1
s
∑s

i=1
|X((v − 1)s+ i ) − Xv(i) ||Y((v − 1)s+ i ) − Yv(i) | (8) 

For v = 1, …, Ns and 

f 2(s, v) =
1
s
∑s

i=1
|X(N − (v − Ns)s+ i ) − Xv(i) | |Y(N − (v − Ns)s+ i ) − Yv(i) |

(9) 

For v = Ns + 1, …, 2Ns. The downward and upward qth order 
volatility functions are measured by considering the mean of all sections 
and dividing it by the number of sections: 

F+
q (s) =

{
1

M+

∑2Ns

v=1

1 + sgn( bIv )

2
[
f 2(s, v)

]q/2

}1/q

(10)  

F−
q (s) =

{
1

M−

∑2Ns

v=1

1 − sgn( bIv )

2
[
f 2(s, v)

]q/2

}1/q

, (11) 

For any real value q ∕= 0, and 

F+
0 (s) = exp

{
1

2M+

∑2Ns

v=1

1 + sgn( bIv )

2
ln
[
f 2(s, v)

]
}

, (12)  

F−
0 (s) = exp

{
1

2M−

∑2Ns

v=1

1 − sgn( bIv )

2
ln
[
f 2(s, v)

]
}

, (13)  

when q = 0,M− =
∑2Ns

v=1
1− sgn( bIv )

2 and M+ =
∑2Ns

v=1
1+sgn( bIv )

2 denote the 
number of sections with negative and positive trends, respectively, 
under the assumption that bIv ∕= 0 for each v = 1, …, 2Ns, therefore M+ +

M− = 2Ns. The overall trend’s qth order fluctuation functions correspond 
to the MF-DCCA method, which is demonstrated as: 

Fq(s) =

{
1

2Ns

∑2Ns

v=1

[
f 2(s, v)

]q/2

}1/q

(14) 

For q = 0, and q ∕= 0 

F0(s) = exp

{
1

4Ns

∑2Ns

v=1
ln
[
f 2(s, v)

]
}

(15) 

The qth order volatility functions emulate a power-law of the func
tions Fq

+(s)~shxy+ (q), Fq
− (s)~shxy− (q),and Fq(s)~shxy(q) if the financial time se

ries xk and yk are power-law and long-range cross-correlated. The scaling 
exponent, also known as the generalized Hurst exponent, is used to 
illustrate the long-range power-law correlation features. A log–log linear 
regression is used to calculate the scaling exponent. On the other hand, 
the regression’s performance is largely determined by the range of scales 
used. A scale ranging from smin = max (20,N/100) to smax = min (20smin, 
N/10) and 100 points in the regression, as suggested by Thompson and 
Wilson (2016), is used to avoid biases. 

In the absence of cross-correlations, hxy(q) = 0.5 is sufficient. The 
cross-correlations among the financial time series are perseverance with 
long-memory if hxy(q) > 0.5. hxy(q) < 0.5, on the other hand, implies that 
the financial time series’ cross-correlations are anti-perseverance with a 
short memory. For hxy

+ (q) and hxy
− (q), the same explanation applies, but 

the cross-correlations scaling exponents are calculated individually for 
negative and positive fluctuations. 

The order of q indicates how the various magnitudes of fluctuations 
should be weighed. The behavior of larger fluctuations is reflected by 
scaling exponents for q > 0, where the volatility function Fq(s) is 
dominated by extensive movements. Because small movements influ
ence the volatility function, scaling exponents for q < 0 represents the 
dynamics of smaller movements. The scaling dynamics of the detrended 
covariance f2(s,v) is different for each section if hxy(q) is not influenced 
by q, in this case the series’ cross-correlation is monofractal. On the 
other hand, if the value varies with q, and small and large movements 
have distinct scaling characteristics, then the cross-correlations of the 
series are multifractal. Moreover, it is worth noting that when q = 2, the 
Hurst exponent equates to hxy(q). 

Additionally, multifractality characteristics can be further investi
gated using the following function: 

τxy(q) = qhxy(q) − 1 (16) 

The cross-correlation of the financial time series is monofractal if 
τxy(q) is a linear function of q; otherwise, it is multifractal. The singu
larity spectrum is measured using the following function: 

α = hxy(q)+ h′

xy(q), (17)  

fxy(α) = q
(
α − hxy(q)

)
+ 1, (18)  

where α is the bivariate series’ singularity. The level of multifractality of 
the bivariate time series is represented by Δα = αmax − αmin, where αmax 
and αmin are the α values at the max and min of fxy(α), respectively. The 
singularity spectrum in the situation of monofractality is theoretically 
nothing more than a point. The multifractal features of asymmetric 
generalized Hurst exponents hxy

+ (q) and hxy
− (q) were investigated using 

the prior discussions. Therefore, the singularity spectra, hxy
+ (q) and 
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hxy
− (q), as well as the asymmetric cases of the Rényi’s exponent, τxy

+ (q) 
and τxy

− (q), can be calculated. 

4. Empirical results 

4.1. Summary statistics results 

Tables 2, 3, and 4 present descriptive statistics and unit-root test 
results of assets return series of Panel A, Panel B, and Panel C, respec
tively. The mean return of NFTs (MANA & LINK) and DeFi (ENJ) surpass 
cryptocurrencies (BTC, ETH, and USDT) and other traditional financial 

assets (Gold, WTI, and S&P500) in the entire sample period. Before 
COVID-19, LINK had the highest return, whereas, during COVID-19, 
MANA had the highest return. The maximum return shows that NFT 
(MANA) has the highest return in the full sample (0.923), before COVID- 
19 (0.923), and during COVID-19 (0.779). 

A recent study by Yousaf and Yarovaya (2022) also found a higher 
return of NFTs and DeFi than other assets. The standard deviation shows 
NFTs, DeFi, and cryptocurrencies returns are much higher than the 
returns of traditional assets. NFTs, DeFi, and cryptocurrencies are highly 
volatile compared to other assets. Therefore, DeFi and NFTs offer more 
returns at a higher risk compared to the other assets we have examined. 

Fig. 1. Historical return of assets.  

Fig. 2. Historical series of returns volatility.  
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As a result, the risk-return outlines of NFTs and Defi assets significantly 
differ from traditional financial assets. Skewness values suggest LINK, 
MKR, BTC, ETH, Gold, WTI, and S&P500 are negative in the whole 
sample while other assets have positive skewness. The kurtosis values 
show that most asset returns have fat tail distribution across all panels. 
The Augmented Dickey-Fuller (ADF) test and the Phillips–Perron (PP) 
unit-root test are used to examine the stationarity of variables, and the 
results demonstrate that all variables return series are stationery. 

Nevertheless, we also calculate the assets’ daily returns volatility 
using the univariate TGARCH model using a full sample (2017/11/21 to 
2022/02/08). Next, we split the estimated volatility into two panels 
where Panel B: Before COVID-19 (2017/11/21 to 2019/12/31), and 
Panel C: During COVID-19 (2020/01/01 to 2022/02/08). The descrip
tive statistics and unit-root test results of all assets’ daily returns vola
tility are presented in Tables 5, 6, and 7 for Panel A, Panel B and Panel C, 
respectively. Result shows on average, USDT have negative volatility in 
full sample and during COVID-19, whereas USDT were positive before 
COVID-19. The ADF and PP unit-root test results confirms the statio
narity of volatility series of all assets. Furthermore, the historical return 
of selected assets is presented in Fig. 1, and the volatility of all assets is 
presented in Fig. 2, where all assets show higher fluctuation during 
COVID-19 in both return and volatility. 

4.2. Asymmetric detrended cross-correlation analysis (MF-ADCCA) 
results 

The cross-correlations between price and volatility movement are 
reported first, to ensure that DFA-based methods are valid for the ana
lyses. To check for cross-correlations between bivariate series, the sta
tistical test suggested by Podobnik et al. (2009) is used. They defined the 
cross-correlation statistic for equal-length N series {xi} and {yi} as: 

Qcc(m) = N2
∑m

i=1

X2
i

N − i
, (19) 

Here Xi denotes the cross-correlation function, which is calculated as 
follows: 

Xi =

∑N

k=i+1
xkyk− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
x2

k
∑N

k=1
y2

k

√ (20) 

The null hypothesis of the test is that the first m cross-correlation 
coefficients are nonzero, which can be tested using the statistic Qcc(m), 
which follows approximate x2(m) distribution with m degrees of 
freedom. If Qcc(m) is larger than the critical value of x2(m), the null 
hypothesis should be rejected, and the series shows a substantial cross- 
correlation. 

The cross-correlation test statistics for volatility and price fluctua
tions of the NFTs, DeFi, cryptocurrencies, and traditional assets are 
calculated in Eqs. (19) and (20) with different degrees of freedom, m, 
starting from 1 to 1062. The x2(m) distribution critical values at the 5% 
level of significance are illustrated in Fig. 3. Results suggest that the 
statistic Qcc(m) differs significantly from the associated critical values for 
all NFTs, DeFi, cryptocurrencies, and traditional assets, suggesting that 
price and volatility movements have nonlinear cross-correlations. The 
test statistic for WTI and S&P500 deviates from the critical value less 
than other assets, implying that traditional assets have weaker nonlinear 
cross-correlations than NFTs, DeFi, and cryptocurrencies. 

MF-ADCCA is estimated after validating the presence of nonlinear 
cross-correlations in the bivariate time series. The qth order fluctuation 
functions measured from the returns and volatility movements of the full 
sample panel with different q starting from − 10 to 10 are shown in 
Fig. 4, and before COVID-19 and after COVID-19 results are presented in 
Fig. S.1 and Fig. S.5. The fluctuation functions are also illustrated with 
the overall trend in distinct bear and bull market conditions (downtrend 
& uptrend). Results suggest that the fluctuation functions typically 
approach a power-law against the scale in all circumstances, meaning 
that the bivariate series cross-correlations have a long-range power-law 
feature. Consequently, the MF-ADCCA is suitable for studying cross- 
correlations and the asymmetry across uptrend and downtrend cross- 
correlations. Fig. 4, S.1, and S.5 demonstrate how the function of 
power-law cross-correlations differs across market circumstances with 
varied trends. To estimate the level of asymmetry of the cross- 
correlations for the given q, we utilize the metric defined as: 

Δhxy(q) = Δh+
xy(q) − Δh−

xy(q) (21) 

The higher the value, the more asymmetric the features in terms of 
each trend. If Δhxy(q) < 0 (Δhxy(q) > 0), the cross-correlation in uptrend 
situations has a smaller (larger) exponent than in uptrend conditions. 
While the bivariate time series have the same scaling exponent, theo
retically, Δhxy(q) is equal to zero, and the two-time series exhibit sym
metric cross-correlations. Moreover, we also compute the cases of q = −

10 (small fluctuations), q = 2 (corresponding to the Hurst exponent), 
and q = 10 (large fluctuations). The results of asymmetric cross- 
correlation and efficiency ranking are presented in Tables 8, 9, and 10 
for Panel A, Panel B and Panel C, respectively. Tables 8, 9, and 10 show 
that, irrespective of small and large fluctuations, Δhxy(q) is positive for 
all of the NFTs, DeFi, cryptocurrencies and traditional assets in panel A 
(except BAT, BTC, USDT, WTI and S&P500). The Panel B result shows 
before COVID-19 BAT, LINK, MANA, MKR, ETH, USDT, WTI and 
S&P500 are negative. Moreover, in panel C during COVID-19 BAT, 
MANA, MKR, WTI and S&P500 have negative Δhxy(q). Fig. 5, Fig. S.2 
and Fig. S.6 validate these findings where Δhxy

+ (q) is greater than 
Δhxy

− (q). Price–volatility in the uptrend markets’ cross-correlations are 
somewhat more persistent at all levels of volatility than downtrend 
markets’ cross-correlations. 

The existence of multifractality is estimated by examining whether 
or not the generalized Hurst exponents are order q dependent. Given 
that hxy(q) decreases as q increases in Fig. 5, Fig. S.2 and Fig. S.6, hxy(q) 
is not perpetual for q, and thus multifractal properties exist in the 
bivariate series cross-correlations of NFTs, DeFi, cryptocurrencies, and 
traditional assets. Moreover, the mass function of all assets is illustrated 
in Fig. 6, Fig. S.3, and Fig. S.7. To describe the variation from efficiency 
and monofractality statistically, the market efficiency measure (MDM) 
of Wang, Liu, and Gu (2009) is employed as follows: 

Dxy =
1
2
( ⃒
⃒hxy( − 10) − 0.5

⃒
⃒+

⃒
⃒hxy(10) − 0.5

⃒
⃒
)

(22) 

The association among the series is efficient if Dxy is zero or close to 
zero. Dxy values greater than one indicate greater inefficiency, while 
lower values imply less inefficiency. This indicator is helpful in deter
mining the degree of (in)efficiency (Y. Wang et al., 2009). Results of all 
panels’ Dxy are ranked according to their degree of efficiency. In Panel A, 

Fig. 3. Cross-Correlation of all assets.  
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Fig. 4. A. Log–log plots of NFTs (Panel A). 
B. Log–log plots of DeFi (Panel A). 
C. Log–log plots of Cryptocurrencies (Panel A). 
D. Log–log plots of Other Assets (Panel A). 
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Fig. 4. (continued). 
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DGN ranked first with Dxy= 0.063 and most efficient assets and USDT 
ranked last with Dxy= 0.422. Before COVID-19, the ranking in Panel B 
suggests S&P500 ranked first with Dxy= 0.097 and ENJ ranked last with 
Dxy= 0.533. In contrast, during COVID-19 ENJ ranked first with Dxy=

0.12 and USDT ranked last with Dxy= 0.937. A recent study by Mensi 
et al. (2021) also found a decline in the efficiency of the stock market 
during COVID-19. The result shows there is a big change in ENJ before 
and during COVID-19. Previous studies by Maouchi et al. (2021) and 
Yousaf, Nekhili and Gubareva (2022) also found similar behavior of 
DeFi. 

The asymmetric market trends of all panels are illustrated in Fig. 7, 
Fig. S.4, and Fig. S.8 using the singularity spectra fxy(α), fxy

+ (α), and fxy
− (α) 

as an additional examination of the multifractal characteristics. As ex
pected, the spectra are quite broad, and the width varies depending on 
NFTs, DeFi, cryptocurrencies, and traditional assets market trends. Ta
bles 11, 12, and 13 show the values of the asymmetric spectrum 
parameter Aαand Δα for the three financial market trends: downtrend, 
uptrend, and overall for Panel A, Panel B and Panel C. In the full sample, 
USDT has the highest degree of multifractality, with a value of Δα=1.070 
in the overall trend, and Gold has the lowest degree of multifractality 
with a value of Δα=0.193. Moreover, before COVID-19 (Panel B), ENJ 
has the highest degree of multifractality, with a value of Δα=1.757 in the 
overall trend, and S&P500 has the lowest degree of multifractality with 
a value of Δα=0.307. Furthermore, during COVID-19 (Panel C), USDT 
has the highest degree of multifractality, with a value of Δα=1.070 in the 
overall trend, and DGB has the lowest degree of multifractality with a 
value of Δα=0.193. 

We also go over the multifractal properties of another metric of the 
asymmetric spectrum parameter, Aα = ΔαL − ΔαR

ΔαL+ΔαR
, here ΔαL = α0 − αmin, ΔαR 

= αmax − α0, and α0 is the value of α at the singular spectrum’s 
maximum. The asymmetry here is due to the distortion of the singularity 
spectrum fxy(α), not too different from market trends. The metric Aα 
provides information for identifying the bivariate series compositions. If 
Aα > 0 (Aα < 0), the singular spectrum has a left-sided (right-sided) 
asymmetry, indicating that q > 0(q < 0) determines the scaling 

properties, and thus larger (smaller) fluctuations dictate the multifractal 
properties (Kakinaka & Umeno, 2021). 

As a result, in the left-sided case, multifractality is associated with 
larger fluctuations, whereas in the right-sided case, the opposite is true. 
When Aα = 0, the breadth of the spectrum on the left and right sides is 
equal, and small and large variations work on multifractality in a similar 
manner. Because the left-sided spectrum is more prevalent in real-world 
financial data, it is realistic to assume odd characteristics in greater 
fluctuations and noise-like properties in smaller variations (Kakinaka & 
Umeno, 2021). The full sample overall trend shows that with LINK, ENJ, 
BTC, USDT, and S&P500’s the asymmetric spectrum parameters Aα, and 
Aα
+ have negative values, whereas BTC and S&P500 have negative values 

in Aα
− . On the other hand, other assets have positive values. Kakinaka 

and Umeno (2021) and Kakinaka and Umeno (2022) also found similar 
properties of cryptocurrency. 

Moreover, before COVID-19, DGB and ETH had positive values Aα, 
Aα
+, and Aα

− of the asymmetric spectrum parameters and other assets had 
negative values. In contrast, during COVID-19 (Panel C), DGB and Gold 
had positive values Aα, Aα

+, and Aα
− of the asymmetric spectrum pa

rameters and other assets had negative values. Because their right- 
skewed spectra indicate that smaller events play a bigger part in the 
underlying multifractality, the results show that NFTs and DeFi are more 
sensitive to smaller events and these markets’ price-volatility behavior is 
quite complex. Some cryptocurrencies and traditional assets, on the 
other hand, had left-skewed spectra, which represents weak multifractal 
features and denotes larger events contribute more to the multifractal 
behavior. Studies by Mensi et al. (2019), El Alaoui et al., (2019), and 
Kakinaka and Umeno (2022) also found weak multifractal features of 
cryptocurrencies. 

5. Discussion and policy implications 

Multifractality and efficiency of financial assets are very crucial for 
investors and policymakers. Attempts to explain the elements that 
contribute to increased efficiency and multifractality of new blockchain- 
based asset class NFTs and DeFi are still in their early stages, and we 

Table 8 
Efficiency ranking of Panel A: Full sample.   

BAT LINK MANA DGB ENJ MKR BTC ETH USDT Gold WTI SP500 

Panel A: Full Sample 
Δhxy(− 10) − 0.220 0.230 0.144 0.276 0.313 0.258 − 0.035 0.152 0.537 0.020 0.025 0.060 
Δhxy(2) − 0.183 0.142 0.061 0.059 0.178 0.094 − 0.079 0.111 − 0.018 0.208 − 0.003 − 0.093 
Δhxy(10) − 0.116 0.338 − 0.030 0.003 0.196 0.091 0.055 0.182 − 0.007 0.322 − 0.147 − 0.155 
Dxy 0.156 0.411 0.229 0.063 0.288 0.288 0.389 0.225 0.422 0.144 0.213 0.241 
Rank 3 11 6 1 9 8 10 5 12 2 4 7  

Table 9 
Efficiency ranking of Panel B: Before COVID-19.   

BAT LINK MANA DGB ENJ MKR BTC ETH USDT Gold WTI SP500 

Δhxy(− 10) − 0.114 0.187 − 0.165 0.122 0.919 0.471 0.881 0.283 0.021 − 0.185 − 0.034 − 0.314 
Δhxy(2) − 0.100 − 0.098 − 0.021 0.061 0.176 − 0.066 0.046 − 0.044 − 0.068 0.167 − 0.125 0.046 
Δhxy(10) − 0.081 − 0.029 0.346 0.099 0.377 − 0.092 0.001 − 0.283 − 0.227 0.137 − 0.029 − 0.061 
Dxy 0.300 0.265 0.293 0.105 0.533 0.344 0.459 0.229 0.226 0.224 0.207 0.097 
Rank 9 7 8 2 12 10 11 6 5 4 3 1  

Table 10 
Efficiency ranking of Panel A: Full sample.   

BAT LINK MANA DGB ENJ MKR BTC ETH USDT Gold WTI SP500 

Δhxy(− 10) − 0.165 0.501 − 0.368 − 0.127 0.119 − 0.001 − 0.134 − 0.035 1.486 0.385 0.305 0.124 
Δhxy(2) − 0.111 0.164 0.075 0.324 0.273 0.015 0.058 0.134 0.785 0.369 0.128 − 0.103 
Δhxy(10) − 0.024 0.412 − 0.029 0.583 0.107 − 0.039 0.362 0.182 1.222 0.424 − 0.004 − 0.186 
Dxy 0.236 0.437 0.253 0.206 0.120 0.404 0.478 0.271 0.937 0.308 0.348 0.204 
Rank 4 10 5 3 1 9 11 6 12 7 8 2  
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have only a limited grasp of what causes an asset to be efficient or 
inefficient. The findings of our study uncover some salient information 
concerning the multifractality and efficiency of NFTs, DeFi, and a 
heterogenous class of assets. The market efficiency result using MDM 
shows that in the full sample, DGB is the most efficient asset class. 
However, before COVID-19, S&P500 is the most efficient asset class, 
whereas ENJ is the most efficient asset class during the COVID-19 
period. A possible cause for the efficiency of S&P500 before COVID-19 
driven by the random walk of the assets, a previous study by Diniz- 
Maganini et al. (2021) also found that the stock market is more effi
cient than other assets. Interestingly, over the whole sample and during 

COVID-19, DeFi (DGB and ENJ) exhibits the highest level of efficiency, 
which suggests investors are moving toward DeFi from traditional as
sets. These findings indicate that after the COVID-19 outbreak, investors 
move their investments to DeFi, and this efficiency surge indicates in
vestors’ herding behavior (Al-Yahyaee, Mensi, & Yoon, 2018; Naeem 
et al., 2021). A recent study by Maouchi et al. (2021) also found a digital 
bubble in the DeFi market due to COVID-19. 

We also find that Tether outperforms Gold, WTI, and the S&P500 in 
terms of multifractality. The higher level of multifractality indicates 
there is a higher level of herding behavior persistent in the crypto
currency market. This result implies that cryptocurrency investors move 

Fig. 5. Generalized Hurst exponents (Panel A).  
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their investments due to strong herding behavior (Al-Yahyaee et al., 
2018; Kakinaka & Umeno, 2022; Naeem et al., 2021). More importantly, 
traditional assets have substantially weaker nonlinearity than NFTs, and 
DeFi in terms of their volatility dynamics. The reason behind the higher 
nonlinearity of NFTs and DeFi is strong cross-correlations between re
turn and volatility. Nevertheless, NFTs and DeFi show a higher sensi
tivity to small fluctuations in bull markets, which implies these assets 
are highly event-dependent and there is an existence of herding behavior 
(Kakinaka & Umeno, 2021, 2022). 

Our empirical findings also offer significant policy implications for 
academics, investors, portfolio managers, and regulators. From a 

theoretical standpoint, NFTs and DeFi support the efficient market hy
pothesis and fractal market hypothesis, as small fluctuations dominate 
in bear markets and large fluctuations dominate in bull markets. From 
the investor’s and portfolio manager’s perspective, there is a diversifi
cation benefit by adding NFTs and DeFi as they are efficient compared to 
other assets during financial turmoil, such as COVID-19. From the reg
ulatory and policymaker perspective, our findings show that while NFTs 
and the DeFi bubble raised during COVID-19 (Maouchi et al., 2021), 
NFTs and DeFi markets are still developing so policymakers should 
closely monitor the market. The abnormal growth of NFTs and DeFi 
could have a negative impact on other cryptocurrencies and financial 

Fig. 6. Mass Function Plots (Panel A).  
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markets, which is cause for concern. 

6. Conclusion 

This study examines the efficiency and asymmetric multifractal 
features of NFTs, DeFi, cryptocurrencies, and traditional assets. Specif
ically, we examine the multifractal features of asymmetric cross- 
correlations when the market condition is in an upward or downward 
trend and the overall market trend. Results shows existence of power- 
law cross-correlations as well as multifractal features among NFTs, 
DeFi, cryptocurrencies, and traditional assets. We observed that 

bivariate series exhibit distinct features in negative and positive market 
trends. However, Tether has the highest degree of multifractality in the 
entire sample period, and gold has the lowest degree of multifractality. 
Moreover, during COVID-19, Tether has remained an asset of the highest 
multifractality. When we rank assets according to the degree of effi
ciency, S&P 500 is the most efficient asset with its lowest degree of 
multifractality before the COVID-19. While the Enjin Coin (ENJ) showed 
the highest degree of multifractality before COVID-19, we notice that 
the ENJ is the most efficient asset class during the pandemic period. 
DeFi, NFTs, S&P 500, and gold are relatively more efficient assets than 
cryptocurrencies for the entire sample period. We also observe that the 

Fig. 7. Singularity Spectrum Plots (Panel A).  
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price and volatility movement of NFTs, DeFi, and traditional assets 
follow nonlinear cross-correlations, but traditional assets, particularly 
gold and S&P500, show relatively weaker nonlinear cross-correlations 
than NFTs, DeFi, and cryptocurrencies. Finally, NFTs and DeFi show a 
higher sensitivity to smaller events in bull markets. 

Based on our findings, more research in this area is clearly needed. 
Future studies may examine the NFTs and DeFi market sentiment and 
forecasting methodology for NFTs and DeFi prices. 
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Table 11 
The asymmetric degree of singularity spectra of Panel A: Full sample.    

BAT LINK MANA DGB ENJ MKR BTC ETH USDT Gold WTI SP500 

Overall α0 0.525 0.554 0.410 0.528 0.520 0.564 0.574 0.455 0.274 0.441 0.553 0.590 
αmax 0.699 1.125 0.480 0.531 0.959 0.764 1.200 0.630 0.915 0.602 0.719 0.827 
αmin 0.348 0.145 − 0.031 0.359 0.265 0.075 0.244 0.109 − 0.119 0.274 0.188 0.573 
Aα 0.008 − 0.166 0.726 0.972 − 0.266 0.419 − 0.309 0.328 − 0.240 0.019 0.374 − 0.864 
Δα 0.384 0.802 0.628 0.433 0.780 0.641 0.753 0.453 1.070 0.193 0.736 0.356 

Uptrend α0
+ 0.435 0.590 0.474 0.591 0.619 0.569 0.528 0.509 0.262 0.516 0.597 0.633 

αmax
+ 0.616 1.154 0.587 0.770 1.050 0.778 1.092 0.701 0.985 0.570 0.716 0.827 

αmin
+ 0.232 0.352 − 0.040 0.337 0.270 0.137 0.339 0.248 − 0.086 0.377 − 0.020 0.471 

Aα
+ 0.056 − 0.407 0.638 0.171 − 0.104 0.347 − 0.498 0.154 − 0.351 0.441 0.677 − 0.088 

Δα
+ 0.505 0.920 0.403 0.131 0.645 0.702 0.880 0.490 0.424 0.553 0.534 0.147 

Downtrend α0
− 0.604 0.499 0.314 0.485 0.401 0.554 0.618 0.387 0.291 0.343 0.526 0.634 

αmax
− 0.844 0.874 0.440 0.485 0.715 0.718 1.120 0.541 0.343 0.580 0.706 0.758 

αmin
− 0.339 − 0.046 0.037 0.353 0.071 0.016 0.240 0.051 − 0.081 0.028 0.172 0.612 

Aα
− 0.049 0.184 0.373 1.000 0.024 0.531 − 0.142 0.373 0.753 0.140 0.327 − 0.695 

Δα
− 0.351 0.980 0.512 0.171 0.694 0.689 0.956 0.521 1.034 0.328 0.531 0.255  

Table 12 
The asymmetric degree of singularity spectra of Panel B: Before COVID-19.    

BAT LINK MANA DGB ENJ MKR BTC ETH USDT Gold WTI SP500 

Overall α0 0.506 0.587 0.406 0.490 0.600 0.500 0.663 0.567 0.284 0.445 0.508 0.632 
αmax 0.885 0.922 0.810 0.545 1.689 0.973 1.554 0.758 0.488 0.780 0.818 0.680 
αmin 0.191 0.303 0.112 0.271 0.377 0.162 0.441 0.231 0.041 0.270 0.347 0.420 
Aα − 0.093 − 0.081 − 0.160 0.600 − 0.661 − 0.167 − 0.600 0.274 0.086 − 0.315 − 0.315 0.632 
Δα 0.645 0.708 0.492 0.394 1.757 1.032 1.452 0.799 0.603 0.405 0.507 0.307 

Uptrend α0
+ 0.478 0.569 0.353 0.537 0.774 0.551 0.741 0.611 0.277 0.519 0.438 0.615 

αmax
+ 0.804 0.994 0.681 0.657 2.198 1.218 1.905 0.882 0.496 0.643 0.833 0.650 

αmin
+ 0.159 0.286 0.189 0.263 0.441 0.185 0.453 0.083 − 0.106 0.238 0.326 0.342 

Aα
+ − 0.011 − 0.201 − 0.337 0.393 − 0.621 − 0.292 − 0.603 0.324 0.274 0.388 − 0.558 0.776 

Δα
+ 0.684 0.446 1.119 0.379 1.183 0.361 0.392 0.148 0.285 0.776 0.513 0.607 

Downtrend 

α0
− 0.533 0.622 0.468 0.485 0.535 0.501 0.645 0.545 0.297 0.352 0.590 0.564 

αmax
− 0.938 0.749 0.832 0.547 1.160 0.653 0.852 0.582 0.470 0.899 0.848 1.033 

αmin
− 0.255 0.303 − 0.286 0.168 − 0.023 0.292 0.460 0.434 0.185 0.123 0.335 0.426 

Aα
− − 0.186 0.427 0.348 0.671 − 0.058 0.157 − 0.058 0.507 − 0.214 − 0.409 − 0.007 − 0.545 

Δα
− 0.694 0.619 0.698 0.274 1.312 0.811 1.114 0.527 0.446 0.509 0.470 0.260  

Table 13 
The asymmetric degree of singularity spectra of Panel C: During COVID-19.    

BAT LINK MANA DGB ENJ MKR BTC ETH USDT Gold WTI SP500 

Overall α0 0.487 0.565 0.476 0.614 0.514 0.660 0.522 0.481 0.340 0.521 0.565 0.564 
αmax 0.761 1.258 0.514 0.878 0.607 1.030 1.366 0.731 2.011 0.859 1.029 0.789 
αmin 0.209 0.156 0.017 0.409 0.324 0.046 0.119 0.072 − 0.295 0.133 0.159 0.546 
Aα 0.006 − 0.256 0.846 − 0.124 0.342 0.248 − 0.354 0.243 − 0.449 0.070 − 0.066 − 0.846 
Δα 0.509 0.737 0.528 0.091 0.360 0.819 0.483 0.435 1.593 0.464 0.895 0.371 

Uptrend α0
+ 0.464 0.634 0.500 0.702 0.665 0.685 0.522 0.547 0.584 0.674 0.604 0.589 

αmax
+ 0.701 1.256 0.521 0.790 0.672 1.020 1.003 0.714 2.027 0.865 1.019 0.796 

αmin
+ 0.192 0.519 − 0.007 0.699 0.312 0.201 0.520 0.278 0.434 0.401 0.124 0.424 

Aα
+ 0.070 − 0.689 0.919 − 0.930 0.964 0.182 − 0.991 0.234 − 0.812 0.179 0.074 − 0.113 

Δα
+ 0.690 0.617 0.731 0.906 0.349 0.804 1.065 0.697 1.251 0.525 0.500 0.071 

Downtrend α0
− 0.542 0.503 0.424 0.500 0.329 0.617 0.555 0.419 0.152 0.322 0.483 0.614 

αmax
− 0.892 0.646 0.803 0.978 0.622 1.051 1.165 0.789 0.337 0.478 0.675 0.665 

αmin
− 0.202 0.029 0.072 0.071 0.273 0.247 0.100 0.091 − 0.914 − 0.047 0.175 0.594 

Aα
− − 0.014 0.535 − 0.036 − 0.054 − 0.682 − 0.079 − 0.144 − 0.060 0.704 0.406 0.235 − 0.441 

Δα
− 0.553 1.102 0.497 0.470 0.283 0.984 1.247 0.659 2.306 0.726 0.870 0.244  
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