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A B S T R A C T   

This paper investigates spillover from energy commodities to Shanghai stock exchange and Eu-
ropean Stock market, and identifies possible risks transmission and portfolio diversification op-
portunities. The study is conducted on daily spot prices of carbon (CO2) emission, natural gas and 
crude oil from 16 December 2010 to 29 December 2022, employing Granger causality test, dy-
namic conditional correlation (DCC), Diebold-Yilmaz (2012) and Barunik-Krehlic (2017) models. 
Results identify higher volatility and imply greater connectedness in the longer run. Additionally, 
natural gas is witnessed as the highest contributor of the shocks and crude oil as the highest 
receiver of the shocks from the network connection. Further results suggest for investment in 
energy commodities in shorter run rather than long run for efficient portfolio diversification. 
Results from this study are expected to have practical implications for portfolio managers, in-
vestors, and market regulators, given the suggestion of this study to incorporate energy stocks for 
efficient diversification of risk.   

1. Introduction 

Continuous integration of global financial markets, coupled with increasing financialization of energy commodities, has evinced 
interest in studies on conditional risk spillover among major security and commodity markets. In the recent times, focus on examining 
the diffusion of return linkages and volatility across capital markets has gained prominence (Al-Hajieh, 2023). During the market 
crisis, it becomes imperative for managers of portfolios and practitioners to take corrective measures against the possible transmission 
of risk in capital markets. Empirical research analysing spillover intensity or dynamic linkages amongst markets provides insights that 
enable accurate predictions of both return and volatility. Co-movement and variations between energy commodities and stock markets 
present bigger challenges, especially for policymakers. It is because, the interdependence in these markets not only affects the cost of 
production, corporate incomes and employment growth rates but also considerably impacts macroeconomic policies. It therefore 
becomes critical that investors comprehend the effect of change in energy commodities on the risk and return characteristics of their 
investment portfolios. Many contemporary studies are incorporating raw materials as an essential component of investment portfolios 
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jointly with classes of stocks (Vivian and Wohar, 2012). Traders are using inferences from these studies to detect the fluctuations in 
both stock and commodity markets, and hence identify the trend and mutuality in the markets (Choi and Hammoudeh, 2010). 

Many events between 2009 and 2019 have affected both energy and stock markets, resulting in volatility spillover amongst major 
world markets (Bouteska et al., 2023). Numerous studies have investigated an association among commodities and the stock market 
establishing economic activities of different countries. For instance, Hamilton (1983) identified that oil price shocks as the key factor 
that contributed to the US recession. Malik and Ewing (2009) applied the DCC approach and identified correlation between weekly 
WTI (West Texas Intermediate) oil prices and equity market. Chang et al. (2013) analysed the correlations among S&P500 stock 
indices, FTSE100, crude oil, Dow Jones and NYSE. Bastianin et al. (2016) highlighted the significance of association of crude oil prices 
and instability in markets as it impacts management of risk and structuring of optimum macroeconomic and energy policy. Chebbi 
et al. (2020) undertook a study on relationship of two energy commodities: natural gas and crude oil with QE Al Rayan Islamic index 
and suggested a robust relationship between returns on commodity and those of stock index. Hung, (2020) investigated the return 
spillover among crude oil prices and the five major equity markets in Europe, namely France, Italy, German, UK and Spain before and 
during the COVID-19. Likewise, Zhu et al. (2020) undertook a study on volatility spillover of carbon with electricity market in Europe. 
In the Chinese context, Cong and Shen (2013) found that over a longer period, energy prices explained fluctuations in equity market, 
with every 1% rise in energy price index, the equity market index went down by 0.54%. They concluded that higher risk is found in 
high frequency models than the low frequency model. Another study by Liu et al. (2019) assessed the effect of crude oil price un-
certainty on three major markets of China, i.e., stock, commodity and foreign exchange. Meng et al. (2020) established the spillover 
effect of global crude price fluctuation on commodity market. Their study concluded the presence of asymmetric spillover effects, with 
downside spillover higher than the upside spillover. 

In view of the mixed outcomes of extant empirical literature, this paper exhaustively explores volatility spillover of three energy 
commodities and investigates the resemblances and disparities of spillover in the Chinese and European stock markets. The three 
energy commodities which are considered in this study in light of their growing prominence in commodity markets are: crude oil, 
natural gas and CO2 emission. Natural gas has been gaining importance as it is cleaner and emits lesser greenhouse gas (GHG) 
emissions, outperforming other energy commodities in major industries like residential, industrial, power production, in terms of its 
utility. Crude oil is considered precious as an energy commodity that serves as a vital raw material in electricity generation and is 
crucial for industries worldwide. As an answer to the GHG emission problem, CO2 emission is emerging as a crucial commodity in the 
form of crude oil, natural gas, and coal usages (Fan et al., 2017). Import and export of these commodities are bound to have significant 
ramifications on equity market. On the global level, the World Population Review (2022) has revealed China, Europe and the US as the 
three leading energy consumers in the top-50 list of countries in the world, having intakes of 145.56EJ, 94.39EJ and 87.79EJ 
respectively. China has emerged as a major centre for energy trade while Europe has surpassed the US in terms of importing energy 
commodities, with its energy needs being fulfilled by non-EU member countries including Russia. Therefore, due to their empirical 
prominence, this study has chosen Shanghai stock exchange – the largest stock exchange of China, and Euronext – the pan-European 
stock exchange that connects European economies to global capital markets, as proxies of the Chinese and the European stock markets, 
respectively. 

Extant literature is primarily focussed on connectedness between energy commodities and stock markets, missing to document the 
impact of risk transmission on investor portfolios. This study, therefore, explores connectedness of volatility in both time and fre-
quency domains and contributes to the existing literature in three ways. First, it investigates spillovers of three prominent energy 
commodities in two major stock markets, using the underpinnings of Diebold-Yilmaz (2012) and Barunik-Krehlik (2017) models in one 
particular study. Second, it analyses spillovers between energy commodities (crude oil, natural gas and CO2 emissions) on Chinese and 
European indices using the Diebold-Yilmaz (2012) approach in the time domain, that enables to quantify the contribution of each asset 
to total market volatility, inferring the net transmitters and net receivers of volatility. Third, it additionally applies the Barunik-Krehlik 
(2017) model to investigate spillovers in the frequency domain and provides insights into time horizons during which the different 
spillovers play, proposing effective mitigation of risk by holding assets for shorter time periods against longer time durations. 
Moreover, given the scarce studies exploring the link between natural gas, carbon emissions and stock markets, the results of this study 
will provide greater understanding of energy commodities and stock market relationship to recognize the possible risks of trans-
missions. Also, since the integration of financial markets necessitates the portfolio managers’ awareness of the diversification benefits 
of energy commodities, this study provides new understanding of energy commodities and their nexus with the financial markets and 
hence enable portfolio managers to make better comprehensions of the impact of changes in energy commodities on the risk, return 
characteristics of their investor’s portfolios. 

The remaining paper is structured as follows: Section 2 conducts a detailed review on spillover or dynamic linkages of energy 
commodity, stock market and other asset classes. Section 3 discusses data and the econometric model applied, while Section 4 dis-
cusses the empirical results and Section 5 outlines conclusion and policy implications. 

2. Literature review 

The correlation between stock markets and oil price is essential to policymakers and financial investors. The portfolio strategies of 
investors are associated with connectedness between financial assets and investors. In other words, diverse asset classes are expected to 
have cross-market influences, and this supports market participants to have different hedging strategies. Several occurrences between 
2009 and 2019 have affected both energy and stock markets and numerous studies have investigated the linkage between these two 
markets. Further, Kling (1985) conducted a study on oil price volatility and the US stock market and exhibited a negative relationship 
of return on stock market with crude oil price. Likewise, Jones and Kaul (1996) evaluated the reactions of the US, the UK, Canada and 
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Japan to crude oil price movements and noticed some impact of the oil price variations on return of these select stock markets. Malik 
and Hammoudeh (2007) noticed strong connectedness of uncertainty and shock amongst crude oil, the US equity and the Gulf equity 
markets. Next, Choi and Hammoudeh (2010) employed multivariate DCC and observed a rise of S&P 500 index in connection with 
commodities (namely, gold, copper, silver, Brent oil and WTI oil) since 2003. 

While historical literature establishes the interdependence of crude oil and stock market, recent literature focuses on their cor-
relation in the volatility phase as fluctuations in the oil price and the equity market are significant factors in the assessment of the 
financial risk of the market and asset pricing. Bastianin et al. (2016) highlighted the significance of the cohesive relationship of 
financial volatility with crude oil prices due to impact of risk management and the design of suitable macroeconomic policies related to 
energy. Due to its ability to influence a company’s bottom line and its inadvertent bearing on the business cycles, crude oil also 
contributes to stock market volatility, hence raising an associated question whether crude oil price is exogenous vis a vis fluctuation in 
equity market. Bastianin et al. (2016) proposed that initial studies might have unsuccessfully represented the nexus between the two 
variables because crude oil was deemed exogenic in these studies. Conversely, latest studies (e.g., Economou, 2016; Arezki et al., 2017) 
have acknowledged that the price of crude oil is ascertained by demand and supply components, and it is more appropriate to consider 
them as endogenic. 

Various studies across the world have examined the relationship and effects of stock markets on energy prices and vice versa. In the 
earlier stage, Sadorsky (1999) applied VAR to examine linkage between S&P 500 index and monthly oil prices. The empirical proof 
implies that oil price shock propels S&P 500 equity return. Sadorsky (2003) used monthly and daily data from July 1986 to December 
2000 and discovered that conditional volatility of oil price had a major influence on technology prices. Onour and Sergi (2010) 
emphasized that the volatility in oil price affects stock price and found the connectedness of S&P 500 index with the GCC stock 
markets. Filis et al. (2011) applied time varying approach to analyse the association of stock market shock with oil price and found 
robust correlation between these two markets. Similarly, Zhang and Asche (2015) identified a linkage of oil price with the Nordic stock 
exchange. Ma et.al. (2020) established the linkage structure model of China’s energy market, capital market and carbon emission 
trading market by applying the DCC-MVGARCH model to investigate the linkage mechanism of the three markets. Lin and Chen (2019) 
explored the association and volatility spillovers amongst stock market of NEC, Beijing CET market and coal market by applying VAR 
(1)-DCC-GARCH(1,1) model and VAR(1)-BEKK-AGARCH(1,1) model. Further, Chebbi et al. (2020) studied the dynamic association 
between the Islamic index and energy commodities, and recommended robust association between the stock index and commodity 
returns, signifying financialization of commodity markets. Xiao and Wang (2020) however observed that there are nonlinear bidi-
rectional causative exchanges and consequential knowledge transfers of equity market with crude oil price. 

There are existing studies on association of energy commodities between equity market of South-East Asian economies. For 
instance, Hussin et al. (2012) found that the EMAS Islamic law index and FTSE Bursa Malaysia move positively with oil market. 
Ghorbel et al. (2014) observed positive temporal relationship between oil, Malaysian and Indonesian stock markets through the 
financial crisis of 2008–09. Lou and Chen (2015) examined realised volatility forecasts for various time periods on the China Stock 
Index 300 using HAR model and found the model performing best in mid-term and long term. Chen and Lv (2015) investigated the 
asymptotic reliance among the Chinese stock market and the world crude oil market centred on the Extreme Value Theory (EVT) and 
observed a positive extremal reliance. EVT adequately encapsulates the Chinese special oil price adjustment process. Fang et al. (2018) 
examined the cross-correlations among CO2 emission allowance and stock series by applying multifractal detrended cross-correlation 
analysis (MF-DCCA), thereby observing that the cross-correlation is multifractal in Chinese and European markets. Liu et al. (2019) 
assessed the dynamic linkage of risk and expressed that in a number of major events, China’s macro-financial risks were significantly 
plagued by international fossil fuel movements. Yousaf and Hassan (2019) assessed volatility spillover and returns among emergent 
Asian stock markets and crude oil in the course of the Chinese stock market collapse of 2015. The empirical results showed a certain 
underlying impact from crude oil price shifts to the widely held stock markets. Wei et al. (2019) disclosed effects of future oil stock on 
the Chinese equity market significantly. Likewise, Zhu et al. (2020) investigated the volatility spillover impact of carbon and electricity 
markets, and pointed out more risk in high frequency models than those in medium and low frequency models. More recently, Wu et al. 
(2022) used the Diebold-Yilmaz and Barunik-Krehlik approaches to methodically scrutinise the dynamic frequency spillovers amid 
carbon emission trading (CET), fossil energy and sectoral stock markets in China. The findings reveal that the short-term (no more than 
30 days) spillovers dictate both the total spillover and the net spillovers of the CET markets. Also, the net pairwise spillovers of CET 
with the stock markets and the same with the fossil energy markets are negative or nearly negative, and the former is recorded to be 
weaker than the latter. 

Some studies on volatility spillover have also explored the European financial markets and energy commodities. For instance, 
Arouri et al. (2011) employed VAR-GARCH model to explore the sector-level propagation of fluctuations between the European and 
the US oil prices and financial markets. Unidirectional association is witnessed from oil market to the European financial market while 
bidirectional spillover is found from oil to the US financial market. On the other hand, Arouri et al. (2012) analyzed the volatility 
spillover of oil prices with the European financial markets, using the data spanning from January 1998 to December 2009 of both 
cumulative and sectoral indices. Their study exhibited volatility connectedness in these markets and indicated that improved insight 
into these relationships is crucial for portfolio management. Khalfaoui et al. (2015) undertook a study on the nexus of WTI with return 
on stock market using various GARCH models in G7 countries, and observed a significant level of connectedness. More recently, Tan 
et al. (2020) used modified error variance decomposition and network diagrams to hold a methodical analysis of the way information 
from other markets affects the European carbon market, and stressed that the type of information spillover varies over the time ho-
rizons. Many other authors such as Huang et al. (1996), Sadorsky (1999), Park and Ratti (2008), Apergis and Miller (2009), Wang and 
Liu (2016), Ashok et al. (2022), Goodell et al. (2022), Yadav et al. (2022), among others, studied oil stocks and emphasised it as a 
crucial portfolio component. 
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To the best of our awareness, limited literature is available on exploring the dynamic linkages between oil price movements and 
stock indices in the European and the Chinese markets together. Although many researchers have explored the links between crude oil 
and stock markets in the last two decades, studies on dynamic linkage of natural gas and CO2 emissions with stock markets are scarce. 
Owing to the integration of financial markets, diversification benefits of energy commodities should be known to portfolio managers. 
Most of the existing literature is focussed on association between energy commodities and stock markets, disregarding the impact of 
risk transmission on investor portfolios. Therefore, a new understanding of energy commodities and their relationship with financial 
markets need to be developed. In consideration of these gap areas, this study intends to enrich the literature and assist portfolio 
managers in making better comprehensions of the impact of changes in energy commodities on the risk, return characteristics of their 
investor’s portfolios. 

3. Data and econometric model 

3.1. Data 

The study examines the dynamic linkages from energy commodities to Chinese and European stock exchanges, selecting Shanghai 
stock exchange – the largest stock exchange of China, and Euronext – the pan-European stock exchange connecting European econ-
omies to global capital markets as proxies, respectively. The World Population Review (2022) has revealed China, Europe and the US 
as the three-leading energy consumers in the top-50 list of countries in the world. China has emerged as a major centre for energy trade 
while Europe has surpassed US in terms of importing energy commodities. China is currently the world’s largest carbon emitter (30.7% 
of global emissions), fuelled by its growing demand for fossil fuels for electricity generation and manufacturing and exceeding con-
sumption by the US (13.8%) (Jiang and Chen, 2022). The energy commodities are proxied by crude oil index, natural gas index and 
carbon emissions index (spot prices), as highlighted in Table 1. 

The daily closing prices of constituent series is collected from 16 December 2010–29 December 2022. This is followed by con-
version of the raw series into return (log) series, calculating the log differences between prices of two consecutive days (Khera et al., 
2022). The conversion is done by using the following formula: 

Ri,t = log

(
Yi,t

(
Yi,t− 1

)

)

Where Rit is representative of return(log) series at time t, whereas Yit–1 and Yit represents the daily observation value(closing) of ith fund 
on consecutive days. The data description of these constituent markets is presented in Table 1 as follows: 

3.2. Econometric model 

Our methodology follows a three-step framework. Firstly, we employ granger causality test to identify the direction of causality 
among the variables. Secondly, we apply the Dynamic Conditional Correlation (DCC) model to identify time varying correlations of 
asset returns to ascertain the behaviour of asset prices and their co-movements. Such associations have important implications in 
portfolio diversification and risk management. We eventually apply the Diebold-Yilmaz (2012) model to quantify the connectedness 
and to identify directional and net spillovers, followed by Barunik-Krehlik (2017) frequency domain spillover index that decomposes 
contribution of each asset to global volatility at different frequencies. Further details of these models are provided below: 

3.2.1. Granger causality method 
Granger causality (GC), one of the most significant tools of analysis to assess the causal linkages between variables (Roebroeck, 

2015). It helps to identify the direction of causality in a time series data, determining whether shift in one series influences other or not 
(unidirectional, bidirectional and none). If X Granger causes Y, it suggests that the past value of X contains important information that 
helps to predict Y (Friston et al., 2003). GC estimates variations in the model error in case of inclusion of a new series, to focus on 
valuing the dependent signal (Granger, 1969). GC test influences without the requirement of any priori hypothesis. This is centred on 
assumptions that: (a) cause occurs before its effect, and (b) cause can lead to distinctive knowledge of future values. The series must be 
stationary to employ this method; if the series is not stationary, we have to convert series into stationary series either by detrending or 
differencing prior to applying this test. The GC equation can be presented as follows: 

Table 1 
Data description of constituent series.  

Market Asset Acronyms Source 

Energy commodity Crude oil RCO Bloomberg 
Energy commodity Natural Gas RNG Bloomberg 
Energy commodity Carbon emissions RCE Bloomberg 
Chinese stock exchange Shanghai Stock Exchange RSSE Bloomberg 
European stock exchange Euronext XLE Bloomberg 

Source: Authors’ own presentation 
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X(t) =
∑p

j=1
A11,j;X(t− j) +

∑p

j=1
A12,j;Y(t− j) + ε1(t) (1)  

Y(t) =
∑p

j=1
A21,j;X(t− j) +

∑p

j=1
A22,j;Y(t− j) + ε2(t) (2) 

Where, p signifies the lag of variables considered in this paper. 

3.2.2. Dynamic conditional correlation 
Dynamic Conditional Correlation (DCC) is one of the bivariate or multivariate models that assists in complex financial decisions 

like risk management, hedging and portfolio optimization and asset pricing after getting the dynamic linkages or spillover from one 
market to another market or one series into another series. It is a measure of the degree of volatility, as developed by Engle (2002). It 
captures the time varying correlations of asset returns. This model is applied in two different stages: the first stage consists of 
determining the parameters of GARCH and the residuals derived from GARCH are used in DCC model to determine the correlation in 
the second stage. To apply DCC model, conditions like presence of volatility clustering and ARCH effect must be satisfied. Further, the 
value of both ARCH and GARCH terms should be significant, with their sum less than one. The model is depicted as Ht = Dt Rt Dt, 
where, Ht is the estimator of conditional correlation, Dt signifies conditional standard deviation while Rt denotes conditional corre-
lation. The equation can be shown as follows:  

Rt = Qt*− 1Qt Qt*− 1                                                                                                                                                                 (3) 

Where, Qt = (1 − a − b)Q + aεt − 1 εtT− 1 + b Qt− 1 in which Q depicts an unconditional covariance matrix obtained from error, i.e., 
expressed as Cov[εtεtT]. Qt* denotes diagonal matrix which is represented as diag (q1/211t, q1/222t,.,q1/2mnt). In this equation, a 
and b denote DCC parameters in form of short and long run spillover respectively. 

3.2.3. Diebold and Yilmaz (2012) 
In this study, after investigating the spillover effect, Diebold and Yilmaz (2012) and Barunik and Krehlik (2017) are employed to 

analyze dynamic connectedness among variables. Diebold and Yilmaz (2012) is a model for quantifying connectedness, measuring 
forecast error variance breakdown. This method focusses on variance composition and captures both directional and net spillovers 
between markets. The forecasted error variance of ith series is disintegrated and is attributed to other variables examined in the system. 
A vector autoregressive model is fitted initially for a multivariate series, then H period forecast is created followed by breakdown of the 
forecast error variance with respect to each variable for shocks from similar or other constituent series at time t. dH is used to denote the 
ijth H-step forecast error variance, i.e dH is representative of the ijij. 

fraction of variable i’s H-step, due to the forecast error variance in variable j. It is to be noted that dH,i,j = 1,⋅⋅⋅N, iƒ=j, while iƒ= j, 
emphasize that the connectedness measured in the study are “non-own” or “cross”. 

3.2.4. Barunik and Krehlik (2017) 
We employ spillover index methodology of Barunik and Krehlik (2017) to identify time–frequency dynamics of return connect-

edness. This method is an extension of the spillover. 
index of Diebold and Yilmaz (2012) since it assesses directional spillovers at multiple frequencies. It helps to identify the largest 

contributor/receiver of spillovers and recognizes the source of contagion to enhance investment decisions. Using Barunik and Krehlik 
method, this study explains the frequency dynamics of spillover and decomposition of variance during short, medium and long-run. 
enabling decomposition of the contribution of each asset to total volatility at varying frequencies. Connectedness present at high 
frequencies is suggestive of instant information transmission by stock markets, with movement in one asset having an impact in the 
short term. Connectedness present at lower frequencies, suggests continuing shocks transferred for longer periods. Barunik and Krehlik 
model measures the frequency dynamics of connectedness, describing the spectral formulation of variance decomposing; hence, we 
consider a frequency response function, Ψ e− iω =

∑
e− iωhΨh, which is obtained as a Fourier transform of the coefficients shown as 

below: 

(f (ω))j,k ≡

σ− 1
kk
∑∞

h=0(

⃒
⃒
⃒Ψ(e− iw)Σ)j,k

⃒
⃒
⃒

2
)

∑∞

h=0
(Ψ(ω− iw)ΣΨ ′

(e+iw))jj

(4)  

where, Ψ e− iω =
∑

h e− iωhΨh are the Fourier transform of the impulse response function Ψ and (f (ω))j, k denotes the portion of the 
spectrum of the j-th variable under frequency ω due to shocks in the kth variable. As the denominator holds the spectrum of the j-th 
variable under frequency ω, we can interpret the above Equation as the quantity within the frequency causation. To obtain the 
generalized decomposition of variance decompositions under frequency ω, we weigh the function (f (ω))j,k by the frequency share of 
the variance of the j-th variable. We define weighting function as in form of following equation: 
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Γj(ω) =

(
Ψ(ω− iw)ΣΨ

′

(e+iw))jj

1
2π

∫ π
− π

(
Ψ(ω− iw)ΣΨ ′

(e+iw))jjdλ′
(5) 

The above equation shows the power of the j-th ums of the frequencies to a constant value of 2π. We should note that although the 
Fourier transform of the impulse response is a complex number value, the generalized factor spectrum is the squared coefficients of the 
weighted complex numbers. 

4. Empirical estimation and discussion 

In this section, we document the results of preliminary analysis, GC, DCC, Diebold and Yilmaz (2012), and Barunik and Krehlik 
(2017) as below: 

4.1. Preliminary analysis and Granger causality (GC) 

The descriptive statistics of the energy commodities (i.e., crude oil, natural gas and CO2 emissions), Shanghai stock exchange and 
Euronext is exhibited in Table 2. We notice that each series is spotted with positive average return except the return of carbon 
emissions (RCE) which is negative (− 0.3268). It is evident that RCE is the most volatile (in terms of riskiness) due to its high standard 
deviation (0.055), followed by return on natural gas (RNG) and crude oil (RCO). Based on skewness, the results show that except for 
CO2 emissions, the return on all the variables are left-skewed. This indicates an asymmetric tail that expands to negative value. Each 
series is right-skewed that denotes each series is higher peaked and contains fatter tails. Thus, skewness and kurtosis represents that 
examined series are not normally distributed, and the same has been verified by the result obtained from Jarque–Bera test. Since the 
presence of stationarity is required to check the dynamic connectedness, Augmented Dickey Fuller (ADF) test is applied to confirm the 
same. As evident in Table 2, the P-value of ADF test is less than 0.05 of each return series, confirming that series is integrated at I(0). 
Additionally, Phillips Perron (PP) test is employed to check the stationarity which is also in the similar line of ADF test. Next, GC test is 
used to examine the cause-and-effect relationship amongst the return series. 

Table 3 provides GC results of the constituent series. GC is employed to analyze the direction of information between variables 
(Gupta and Guidi, 2012). It can be observed from the Table that neither crude oil (RCO) nor Shanghai Stock Exchange (RSSE) Granger 
causes each other. Similarly, natural gas (RNG) does not Granger cause Shanghai Stock Exchange (RSSE) and RSSE also does not 
Granger cause RNG. The causality between carbon emissions (RCE) and Shanghai Stock Exchange (RSSE) is unidirectional as RCE 
Granger causes RSSE while RSSE does not Granger cause RCE. The causality between crude oil (RCO) and European stock exchange 
(REN) is also found to be unidirectional, i.e., RCO Granger causes REN but REN does not Granger cause RCO. There is no cause and 
effect between Natural Gas (RNG) and European Stock market (REN). Similarly, there is no cause and effect between Carbon Emissions 
(RCE) and European Stock market (REN). 

In sum, we find that none of the energy commodities have bidirectional causality with either of the two stock exchanges (RSSE and 
REN). Crude oil (RCO) and Carbon emissions (RCE) are the only two energy commodities that exhibit unidirectional impact on the 
European Stock exchange (REN) and Shanghai Stock Exchange (SSE) respectively. 

Fig. 1 presents the raw price series of crude oil, natural gas, carbon emission, Chinese stock exchange and European stock exchange 
respectively. These series follow stochastic trend based on data from December 16, 2010 to December 29, 2022 as there is no constant 
change. We notice that energy markets (crude oil, natural gas and carbon emission) are witnessed with high fluctuation during Russia- 
Ukraine invasion. Further, these raw series have been converted into log difference to remove the stochastic trend which is log return 
series presented in Fig. 2. It seems that each series is mean reverting. 

Next, we apply DCC-GARCH to investigate the spillover effect from energy commodities to European and Chinese stock exchanges 
which is presented in Table 4. Referring to the result of Table 4, ‘Mean’ denotes overall mean whereas ‘Constant’ signifies the intercept 
term. Further, ARCH effect (shown as a1) denotes the effect of the previous disturbance while GARCH (b1) signifies the effect of 

Table 2 
Descriptive Statistics of constituent variables.   

RCO RNG RCE RSSE REN 

Mean -0.3268 -0.4571 -0.5573 -0.1160 -0.1275 
Minimum 0.2822 0.1805 0.6306 0.0771 0.0988 
Maximum -0.0001 0.0002 0.0003 0.0000 0.0002 
Std. Dev. 0.0277 0.0338 0.0550 0.0137 0.0119 
Skewness -0.9074 -1.1621 0.8836 -1.0762 -0.6760 
Ex. Kurtosis 30.1592 14.1564 35.6932 9.1963 9.8366 
Jarque-Bera Test 111157 

(0.0000)* ** 
25081 
(0.0000)* ** 

155615 
(0.0000)* ** 

10873 
(0.0000)* ** 

12016 
(0.0000)* ** 

ADF Test -12.45 
(0.0100)* * 

-14.08 (0.0000)* ** -14.82 
(0.0100)* * 

-13.97 
(0.0100)* ** 

-14.06 
(0.0000)* ** 

PP Test 0.0000 * ** 0.0000 * ** 0.0000 * ** 0.0000 * ** 0.0000 * ** 

Source: Authors’ own presentation. 
Notes: * * and * ** denotes the significance level at 1% and 0.1% respectively. 
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previous variance. As regards with the result of DCC from return on crude oil (RCO) to return on Shanghai Stock Exchange (RSSE) 
shown in Table 4(A), ARCH and GARCH parameters of the RCO are significant, indicating the persistence of volatility. Further, GARCH 
term of Shanghai Stock exchange is significant while ARCH is not significant, implying the volatility persistence in the long term but 
absence in short term. It is noticed that the summation of a1 and b1 is less than 1 which signifies that stationarity and decay in volatility 
persistence over the time exist. Further, Chinese stock exchange is witnessed with least sum of alpha 1 and beta 1 (0.9793) that in-
dicates the fast decay in volatility persistence while crude oil has slow decay in volatility persistence as it is backed by 0.9883 sum of a1 
and b1. The reason for the volatility persistence could be due to the equity market determinants and decrease in the variability of 
economic information. The dcc a1 is insignificant while dcc b1 is significant. The result reveals that there is no spillover from RCO to 
RSSE in short run while the spillover exists in long run. 

With reference to results of DCC from return on natural gas (RNG) to return on Shanghai Stock Exchange (RSSE) presented in 
Table 4(B), GARCH terms of both return on natural gas (RNG) and RSSE are significant, while ARCH terms are not significant, implying 
the volatility persistence in long run but absent in the short term. We notice that the summation of alpha 1 and beta 1 is less than 1 that 
signifies the presence of stationarity and decay in volatility persistence. RNG has less decay in volatility persistence whereas Chinese 
stock market has fast decay. The dcc a1 is significant while dcc b1 is insignificant. It indicates that there is spillover effect from RNG to 
RSSE in short run only. Moreover, the results of DCC from return on carbon emissions (RCE) to return on Shanghai Stock Exchange 
(RSSE) is presented in Table 4(C). ARCH and GARCH parameters of RCE are significant, implying persistence in volatility both over the 
shorter and the longer term. GARCH term of RSSE is only significant that indicates volatility persistence over the long run but absent in 
the short run. Sum of alpha 1 and beta 1 is less than 1, signifying the stationarity and decay in volatility persistence. Further, RCE and 
Chinese stock market are witnessed with slow and fast decay in volatility persistence because of its summation of alpha 1 and beta 1 
respectively. It is evident from the table that dcc a1 is insignificant while dcc b1 is significant, the spillover or dynamic linkage is 
present from RCE to RSSE only in long run not in short run. 

The result of DCC from return on crude oil (RCO) to return on European stock exchange (REN) is presented in Table 4(D). ARCH and 
GARCH terms of both RCO and REN are significant, implying volatility persistence over the longer as well as shorter time span. As 
summation of alpha 1 and beta 1 is less than 1, it can be said that there is stationarity and decay in volatility persistence. On this note, it 
is noticed that European stock has slow decay while RCO has fast decay in volatility persistence. The reason for the volatility 
persistence could be due to the equity markets determinants and decrease in the variability of economic information. The dcc a1 is 
insignificant while dcc b1 is significant indicating absence of spillover effect from crude oil to REN in short term while presence in the 
long term. 

With reference to the result of DCC from return on natural gas (RNG) to return on European Stock Exchange (REN) in Table 4(E), 
GARCH terms of RNG are significant, while ARCH term is insignificant, which imply the volatility persistence over the long time span 
but absent in the short span. The sum of alpha 1 and beta 1 is less than one, signifying stationarity and decay in volatility persistence. 
RNG and REN have high and low summation of alpha 1 and beta 1; the same denotes that RNG is slow and REN is fast in capturing the 
decay in their volatility persistence. The reason for the volatility persistence could be due to the equity markets determinants and 
decrease in the variability of economic information. The dcc a1 is insignificant while dcc b1 is significant implying spillover effect from 
RNG to REN in long run and no spillover effect in the short run. 

The results obtained from the DCC of return on carbon emissions (RCE) to return on European Stock Exchange (REN) is displayed in 
Table 4(F). The RCE and REN are spotted with significant ARCH and GARCH term ensuring the presence of volatility persistence. 
Additionally these two markets have less than one summation of alpha 1 and beta 1 which signifies stationarity and decay in volatility 
persistence. The dcc a1 is insignificant while dcc b1 is significant implying spillover effect from RCE to REN in the long term and no 
spillover effect in the short term. 

Further, Table 5 presents an average spillover amongst energy markets, Chinese stock exchange and European Stock Exchange 
(REN) employing Diebold and Yilmaz (2012) model. In this table, within and cross-market spillovers are represented by diagonal and 
off-diagonal elements of the matrix respectively. ‘From’ in last column signifies the mean spillover derived from the network con-
nections considered under examination while values in the sixth row “To” depicts the average spillover contributed to constituent 

Table 3 
Results of Granger causality.  

Ho F-value P-value 

RCO does not → RSSE  0.8100 0.4025 
RSSE does not → RCO  1.6129 0.1852 
RNG does not → RSSE  2.3068 0.0559 
RSSE does not → RNG  0.6141 0.6525 
RCE does not → RSSE  2.578 0.0357 * 
RSSE does not → RCE  0.2214 0.9266 
RCO does not →REN  3.1643 0.0132 * 
REN does not →RCO  0.9570 0.4300 
RNG does not → REN  0.3875 0.8177 
REN does not → RNG  2.2638 0.0600 
RCE does not → REN  0.9805 0.4397 
REN does not → RCE  0.2930 0.8702 

Source: Authors’ own presentation. 
Notes: → indicates Granger causing, * indicates significant level at 5% level. 
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Fig. 1. Graphical display of raw series.  
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Fig. 2. Graphical presentation of log return series.  
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Table 4 
Dynamic Conditional Correlation Results.  

4 (A) DCC GARCH from RCO to RSSE 

Variables Coefficient Std. Error t-statistics p-value 
[RCO]. Mean -0.0001 0.0003 -0.4169 0.6768 
[RCO]. Constant 0.0000 0.0000 0.6556 0.5121 
[RCO]. a1a1 0.1242 0.0265 4.6808 0.0000 * ** 
[RCO]. b1b1 0.8641 0.0318 27.1983 0.0000 * ** 
[RSSE]. Mean 0.0002 0.0004 0.5413 0.5883 
[RSSE]. Constant 0.0000 0.0000 0.1244 0.9010 
[RSSE]. a1 0.0848 0.1681 0.5045 0.6139 
[RSSE]. b1 0.8945 0.0350 25.5876 0.0000 * ** 
dcca1 0.0059 0.0096 0.6208 0.5347 
dccb1 0.9270 0.0691 13.4130 0.0000 * ** 
4(B) DCC GARCH of RNG with RSSE 
[RCO]. Mean 0.0001 0.0006 0.1946 0.8457 
[RCO]. Constant 0.0000 0.0001 0.0898 0.9285 
[RCO]. a1 0.0853 0.2554 0.3339 0.7384 
[RCO]. b1 0.9051 0.0280 32.2750 0.0000 * ** 
[RSSE]. Mean 0.0002 0.0004 0.5608 0.5750 
[RSSE]. Constant 0.0000 0.0000 0.1347 0.8929 
[RSSE]. a1 0.0846 0.1542 0.5488 0.5831 
[RSSE]. b1 0.8948 0.0322 27.7529 0.0000 * ** 
dcca1 0.0512 0.0243 2.1041 0.0354 * 
dccb1 0.3021 0.1673 1.8062 0.0709 
4(C) DCC GARCH of RCE with RSSE 
[RCO]. Mean 0.0007 0.0006 -1.3468 0.1781 
[RCO]. Constant 0.0000 0.0000 1.0283 0.3038 
[RCO]. a1 0.0954 0.0116 8.2556 0.0000 * ** 
[RCO]. b1 0.9036 0.0175 51.5825 0.0000 * ** 
[RSSE]. Mean 0.0002 0.0004 0.5609 0.5749 
[RSSE]. Constant 0.0000 0.0000 0.1346 0.8929 
[RSSE]. a1 0.0846 0.1542 0.5487 0.5832 
[RSSE]. b1 0.8948 0.0322 27.7474 0.0000 * ** 
dcca1 0.0045 0.0090 0.4995 0.6174 
dccb1 0.8611 0.0989 8.7022 0.0000 * ** 
4(D) DCC GARCH of RCO with REN 
[RCO]. Mean -0.0001 0.0003 -0.4185 0.6756 
[RCO]. Constant 0.0000 0.0000 0.6554 0.5122 
[RCO]. a1 0.1242 0.0266 4.6756 0.0000 * ** 
[RCO]. b1 0.8641 0.0317 27.2258 0.0000 * ** 
[RSSE]. Mean 0.0006 0.0002 3.0910 0.0020 * ** 
[RSSE]. Constant 0.0000 0.0000 0.6974 0.4855 
[RSSE]. a1 0.1468 0.0270 5.4367 0.0000 * ** 
[RSSE]. b1 0.8303 0.0490 16.9367 0.0000 * ** 
dcca1 0.0000 0.0001 0.0004 0.9997 
dccb1 0.9256 0.0907 10.2033 0.0000 * ** 
4(E) DCC GARCH of RNG with REN 
[RCO]. Mean 0.0001 0.0006 0.1946 0.8457 
[RCO]. Constant 0.0000 0.0001 0.0898 0.9285 
[RCO]. a1 0.0853 0.2554 0.3339 0.7385 
[RCO]. b1 0.9051 0.0280 32.2693 0.0000 * ** 
[RSSE]. Mean 0.0006 0.0002 3.0820 0.0021 * ** 
[RSSE]. Constant 0.0000 0.0000 0.7034 0.4818 
[RSSE]. a1 0.1464 0.0269 5.4409 0.0000 * ** 
[RSSE]. b1 0.8307 0.0486 17.0859 0.0000 * ** 
dcca1 0.0000 0.0003 0.0001 0.9999 
dccb1 0.9279 0.2832 3.2769 0.0010 * ** 
4(F) DCC GARCH of RCE with REN 
[RCO]. Mean -0.0007 0.0006 -1.3461 0.1783 
[RCO]. Constant 0.0000 0.0000 1.0286 0.3037 
[RCO]. a1 0.0954 0.0116 8.2558 0.0000 * ** 
[RCO]. b1 0.9036 0.0175 51.5796 0.0000 * ** 
[RSSE]. Mean 0.0006 0.0002 3.0825 0.0021 * ** 
[RSSE]. Constant 0.0000 0.0000 0.7034 0.4818 
[RSSE]. a1 0.1464 0.0269 5.4413 0.0000 * ** 
[RSSE]. b1 0.8307 0.0486 17.0862 0.0000 * ** 
dcca1 0.0071 0.0088 0.8071 0.4196 
dccb1 0.8679 0.1544 5.6209 0.0000 * ** 

Source: Author’s own calculation., 
Notes: * and * ** denote the significance level at 5% and 0.1% respectively. 
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markets. As regards with this table, we notice that crude oil (RCO) is the highest receiver of the shocks with 8.04% followed by Natural 
gas (RNG). On the other hand, Chinese stock exchange (RSSE) is the least receiver of the shock. 

Turning to the contribution of shocks, it is noticed that Natural gas (RNG) is witnessed with highest contributor (8.80) followed by 
crude oil (RCO) while European stock exchange (REN) is least contributor (4.16) of the shocks to network connection. Further, both 
stock exchanges (Chinese and European) are net receiver of the shocks as they receive more shocks than they contribute. In energy 
market, crude oil is net receiver (− 0.8) while natural gas (RNG) and carbon emission (RCE) are net contributors of the shocks with 0.86 
and 0.22 respectively. As regards with its own contribution of shocks, 91. 96% of RCO, 92.07% of RNG, 93.15% of RCE, 95.78% of 
RSSE and 94.85% of REN is attributed by their own shocks. Next, graphical representation of total shocks, received and contributed 
shocks are displayed in Figs. 3, 4 and 5 respectively. We notice that shock is high in each case (total, contribution and recipient) at the 
end of 2021 (COVID-19) and beginning of Russia- Ukraine invasion. However, there is no high connectedness during this invasion. It 
infers that Russia-Ukraine invasion does not push towards these examined markets towards large connectedness. 

Additionally, to examine the spillover in two different frequency domains; one is from day 1 to day 4 (short term frequency 
connectedness) and other is from 4 days to infinity (long term frequency connectedness), we apply Barunik and Krehlic (2017) method, 
presented in Table 6(A) and 6(B). As regards with the table, “WTH” signifies within, “ABS” denotes the absolute, “From” refers to the 
spillover obtained from other series and “To” depicts the spillover contributed to other respective assets class or markets. 

Referring to Table 6(A), it is observed that return on Euronext (REN) has highest return spillover (2.26%) derived from other series 
followed by return on natural gas (RNG) which is 1.13% in the short run. Clearly, return on crude oil (RCO) is contributing the 
maximum to the other series. 

Further, return on Euronext (REN) has high frequency connectedness (4.34%) obtained from other series while return on crude oil 
(RCO) contributes more to the volatility spill over (7.21%) in the long run. From Barunik and Krehlic (2017) frequency-domain result, 
total connectedness of the five series is observed to be higher in long-run than in the short run suggesting reduced diversification 
opportunities in the long run. 

5. Conclusions and policy implications 

Commodities have emerged as a significant financial asset with distinguishable properties from the traditional asset classes. Several 
studies have incorporated raw materials in investment portfolios with other asset classes (Vivian and Wohar, 2012). Commodities are 
significant not only due to their usage but also since they are increasingly used as an asset class in form of investment alternatives. For 

Table 5 
Diebold-Yilmaz (2012) results of Frequency Connectedness.   

RCO RNG RCE RSSE REN FROM 

RCO  91.96  3.64  2.28  0.79  1.33  8.04 
RNG  3.11  92.07  2.23  1.33  1.27  7.93 
RCE  2.51  2.05  93.15  1.38  0.90  6.85 
RSSE  1.06  1.31  1.19  95.78  0.66  4.22 
REN  1.28  1.80  1.37  0.70  94.85  5.15 
TO  7.96  8.80  7.07  4.20  4.16  32.19 
NET  -0.08  0.86  0.22  -0.02  -0.98   

Source: Authors’ own presentation 

Fig. 3. Graphical representation of total connectedness.  
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Fig. 4. Graphical representation of connectedness received from network connection.  
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Fig. 5. Graphical representation of connectedness contributed to network connection.  
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efficient risk measurement and management, understanding the connectedness of commodities on stock markets become imminent. A 
study of Wang and Wang (2019) have documented impact of energy commodities like crude oil (RCO), natural gas (RNG) and others on 
financial markets across the world. In this paper, we examine portfolio diversification opportunities by exploring spillover from energy 
commodities to the Chinese and European stock exchanges, in consideration of the negligible attempts that researchers have made so 
far to explore the link between natural gas (RNG), carbon emissions (RCE) and stock markets in understanding the nexus of equity 
market with energy market and recognising the possible risks of transmission. 

We apply Granger causality, dynamic conditional correlation (DCC), Diebold-Yilmaz (2012) and Barunik-Krehlic (2017) test to 
scrutinise the dynamic linkages. As regards with Granger causality test, the return on carbon emission (RCE) Granger causes return on 
Shanghai stock exchange (RSSE) and return on crude oil (RCO) Granger causes return on Euronext (REN). DCC results exhibit dynamic 
linkages from return on natural gas (RNG) to return on Shanghai stock exchange (RSSE) in the short run while there are dynamic 
linkages from return on crude oil (RCO) and return on carbon emission (RCE) to return on Shanghai stock exchange (RSSE) in the long 
run. Similarly, the study establishes dynamic linkages from return of crude oil (RCO), natural gas (RNG), and carbon emission (RCE) to 
return on Euronext (REN), indicating increased probability of simultaneous loss in the long run than in the short run. Referring to the 
results of Diebold-Yielmaz (2012), we notice that crude oil (RCO) is the highest receiver of the shocks with 8.04% followed by Natural 
gas (RNG). On the other hand, Chinese stock exchange (RSSE) is the least receiver of the shock. Natural gas (RNG) is witnessed with 
highest contributor (8.80) followed by crude oil (RCO) while European stock exchange (REN) is least contributor (4.16) of the shocks 
to network connection. At last, Barunik and Krehlic (2017) implies that the total connectedness of constituent series is high in the 
longer run (9.57) than in the shorter run (5.21). Hence, for effective risk transmission, hedging and arbitrage opportunities, the study 
advocates investment for the shorter term than longer time periods. 

The findings in this paper postulate some valuable inferences for portfolio managers, policy makers, financial managers, and in-
vestors in particular. Firstly, both carbon emissions (RCE) and crude oil (RCO) display significant connectedness with Shanghai Stock 
Exchange (RSSE) and European stock exchange (REN) respectively. This presents effective diversification and hedging opportunity to 
Chinese and European investors and advocates that these investors should focus on energy commodities to escape severe investment 
risks. Secondly, dynamic conditional correlation and volatility spillover results suggest that investors should diversify their portfolio in 
short run using stocks of RCE, RCO and RNG, as there is greater likelihood of losses in the longer run. Thirdly, results from the 
Diebold-Yilmaz (2012) identify crude oil (RCO) to be the highest volatility contributor to stock indices, hence it is advised that in-
vestors prudently invest in it especially during turbulent times. Lastly, findings from Barunik and Krehlic (2017) highlight greater 
connectedness in the longer periods, indicating higher volatility in the longer run. For effective risk transmission, this research paper 
thus advocates investors to hold carbon emission, crude oil and natural gas for relativelyshorter time periods only. It is because, the 
connectedness among these assets class is low and the same has been confirmed from dynamic conditional correlation. 

Given that the focus of this study has been to examine the volatility spillover of commodities with select stock markets by applying a 
novel combination of dynamic conditional correlation (DCC), Diebold-Yilmaz (2012) and Brunik-Krehlik (2017), we had a negligible 
scope of gauging the out-of-sample forecasting. We therefore emphasise to revisit the findings of this study by employing various 
stochastic volatility (SV) models to analyse the forecasting. To validate these findings, we propose future research on scrutinising the 
spillover impacts between commodities and stock markets by using not only Copula and BEKK (Baba, Engle, Kraft and Kroner) model, 
but more contemporary approaches such as wavelet analysis and quantile spillover models can be used further. 

Table 6 (A) 
Frequency: Short term frequency connectedness (1–4 days).   

RCO RNG RCE RSSE REN FROM_ABS FROM_WITH 

RCO  54.97  0.03  1.49  0.16  0.02  0.34  0.49 
RNG  3.20  72.32  0.72  0.01  0.00  0.78  1.13 
RCE  2.42  0.85  66.09  0.08  0.00  0.67  0.97 
RSSE  0.03  0.94  0.24  70.80  0.00  0.24  0.35 
REN  4.56  2.13  0.72  0.42  63.67  1.56  2.26 
TO_ABS  2.04  0.79  0.63  0.13  0.00  3.60   
TO_WTH  2.95  1.14  0.92  0.19  0.01    5.21 

Source: Authors’ own presentation 

Table 6(B) 
Frequency: 4 days to infinity, long term frequency connectedness.   

RCO RNG RCE RSSE REN TO_ABS TO_WITH 

RCO  41.73  0.03  1.39  0.16  0.01  0.32  1.04 
RNG  1.30  22.22  0.24  0.00  0.00  0.31  1.00 
RCE  4.38  0.32  25.78  0.08  0.00  0.96  3.10 
RSSE  0.00  0.06  0.08  27.85  0.00  0.03  0.09 
REN  5.44  0.71  0.50  0.04  21.81  1.34  4.34 
TO_ABS  2.22  0.23  0.44  0.06  0.00  2.95   
TO_WITH  7.21  0.73  1.43  0.18  0.01    9.57 

Source: Authors’ own presentation 
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