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Rain can significantly impair the driver’s sight and affect his performance when driving in wet conditions. Evaluation of driver
visibility in harsh weather, such as rain, has garnered considerable research since the advent of autonomous vehicles and the
emergence of intelligent transportation systems. In recent years, advances in computer vision and machine learning led to
a significant number of new approaches to address this challenge. However, the literature is fragmented and should be reorganised
and analysed to progress in this field. There is still no comprehensive survey article that summarises driver visibility meth-
odologies, including classic and recent data-driven/model-driven approaches on the windshield in rainy conditions, and
compares their generalisation performance fairly. Most ADAS and AD systems are based on object detection. Thus, rain visibility
plays a key role in the efficiency of ADAS/AD functions used in semi- or fully autonomous driving. This study fills this gap by
reviewing current state-of-the-art solutions in rain visibility estimation used to reconstruct the driver’s view for object detection-
based autonomous driving. These solutions are classified as rain visibility estimation systems that work on (1) the perception
components of the ADAS/AD function, (2) the control and other hardware components of the ADAS/AD function, and (3) the
visualisation and other software components of the ADAS/AD function. Limitations and unsolved challenges are also highlighted

for further research.

1. Introduction

Intelligent transportation systems (ITS) and the develop-
ment of intelligent cars, often referred to as smart cars, have
revolutionised the automotive industry. These technologies
take advantage of cutting-edge computing, connectivity, and
automation to improve road safety, optimise traffic flow, and
improve the overall driving experience. In this context,
visibility estimation and warning systems play a crucial role
in ensuring the safety and reliability of intelligent cars,
particularly during adverse weather conditions such as rain.

Rain affects driver visibility in a variety of ways but is
most detrimental at night and has an immediate effect on
visibility. According to the Met Office, 9 out of 10 deaths and
serious injuries related to weather occurred on roads during

rain, even moderate rain can reduce your ability to see and
be seen [1]. Rain can alter visibility through its effects af-
fected by headlights, windshields, road surfaces, and road
markers. An object is usually visible when light from
a source, such as the sun, street lamps, or headlights, bounces
off it and back to the eye. Rain has many detrimental effects
on this process; for example, it reduces the effectiveness of
headlights and other light sources by filtering off some of
their light output and obscuring the road ahead. The layer of
water filled with debris that passing vehicles splash on the
headlights may further reduce the lighting efficiency. When
the raindrops are struck by light, only a fraction of them
passes through, whereas the remainder disperses. As a result,
some of the light reflected by objects is blocked, resulting in
less light reaching the driver’s sight. A portion of the
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headlight light is reflected by the driver’s eye through
“backscatter,” or light reflected by rain, which serves as
a curtain, reducing the contrast of anything within the field
of view. The rain then obstructs the return of light from
items on the road, decreasing their contrast due to back-
scattering effects. Additionally, backscatter produces glare,
which is characterised as the light that is substantially
brighter than the driver’s dark adaption threshold. Glare
produces visual discomfort and affects contrast visibility.
Glare affects vision in all drivers but is particularly harmful
to senior drivers. Due to low vision, individuals focus their
attention immediately ahead to view their destination. This
reduces the likelihood of detecting anything within the
peripheral field, making it more difficult to spot a vehicle or
person approaching from the side. Rainwater smooths the
rough edges and creates a mirror-like surface on the road.
When the headlight beams come into contact with the road,
they reflect forward rather than backward. The road seems
darker, making it more difficult to spot people wearing dark
clothing as their contrast is reduced. The mirror finish of the
road also increases the likelihood that light from other
sources, such as street lamps, business signs, or other cars’
headlights, would beam directly into the driver’s eyes and
generate glare.

Furthermore, intelligent cars can incorporate ADAS
which utilise artificial intelligence and machine learning
(ML) algorithms to enhance safety in various driving sce-
narios, including rainy conditions. These systems can pro-
vide real-time alerts and warnings to the driver, assist with
lanekeeping, and apply emergency braking if necessary. By
continuously monitoring the surroundings and analysing
data from multiple sources, ADAS can help drivers navigate
safely through rain and other challenging weather
conditions.

ADAS/AD functions used in semi- or fully autonomous
driving vehicles consist of the three main components of
perception, control, and visualisation [2]. These interact as
depicted in Figure 1.

The perception components consist of software and
vehicle sensors that are used to understand and estimate the
driving scene and road conditions. Control components
mainly involve the hardware used in-vehicle steering and
navigation [3]. The visualisation part is the newest of the
three used in the communication between the ADAS/AD
functions and the driver. At the heart of all these, three
ADAS/AD functions are object detection [4]. The driving
scene and conditions are interpreted, and then, the detected
objects are converted into an object list from the perception
components. Then, the object list is processed by the control
components, who will translate the object coordinates and
other dimension information into navigation and steering
commands. At the same time, the list of objects can be used
by the visualisation components to communicate with the
driver steering the trajectory paths, potential collision
avoidance and evasion prevention alerts, and other in-
formation related to the infotainment. Therefore, on all types
of roads, visibility is an essential element of driving activity,
and a decrease in visibility affects the reconstruction of the
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F1GURE 1: The three perception, visualisation, and control ADAS/AD
function components and their interaction.

scene and consecutively the list of generated objects used by
the ADAS/AD functions.

This survey focuses on methods for estimating visibility
in real time using deep learning and simulation-based ap-
proaches that can be either model-based or data-driven.
Automated visibility detection and warning systems are
critical tools to identify and respond to reduced visibility
caused by precipitation, which can increase the risk of ac-
cidents. However, such systems are not yet widely deployed,
resulting in a significant number of fatal accidents in areas
without them. While most research on autonomous vehicles
has focused on fully autonomous vehicles, there has been
limited attention given to human drivers’ perception and
semiautonomous vehicles. We argue that the human per-
ception component in the rain is another key point in
semiautonomous and fully autonomous vehicles and should
be further investigated. To shed more light on the current
state of the literature, we present a survey highlighting
deficiencies in current studies, thus calling for more em-
phasis on some specific areas, including visibility estimation
for ADAS integration, and suggesting how the literature can
be integrated into these ADAS components. Unlike previous
research from the 1970s to the 1990s [5-7], which focused on
determining speed limits in the rain, the main focus in recent
years is concentrated on improving exterior sensors for level
5 autonomous vehicles in adverse weather conditions
[8-10]. Moreover, most research on visibility estimations is
particularly focused on fog [11-13]. However, this survey
does not cover the exploration of fog-related research.
Another crucial aspect not considered is the human driver’s
visibility from inside the vehicle looking through the
windshield in the rain. Therefore, the objective of this survey
is to explore the development of more effective visibility
detection and warning systems by evaluating and analysing
current visibility estimation methods. Our goal is to identify
the physical factors that contribute to reduced visibility and
classify them by their respective ADAS components, thus
enhancing driver safety and reducing the number of acci-
dents caused by reduced visibility.

The remainder of the study is arranged as follows:

(i) Section 2 presents three topics of discussion, first the
causes of visibility reduction in the rain, scene
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interpretation and reconstruction, and finally the
ADAS hardware

(ii) Section 3 discusses the role of sensor performance
software for deraining

(iii) Section 4 presents an analysis of current rain visi-
bility estimation solutions

(iv) Section 5 provides a comparison of visibility systems
and groups them into the three aforementioned
ADAS categories

(v) Section 6 concludes the article by summarising and
discussing relevant outcomes from this study

(vi) Section 7 highlights areas of improvement that need
to be investigated in future works

2. Rain Visibility Estimation Systems

2.1. Physical Factors Contributing to Reduced Visibility on
Windshield and Perception. Visibility is reduced by rain on
the windshield, impacting the driver’s perception of the
surrounding environment. This reduction in visibility due to
rain can introduce challenges to the driver’s perception,
increasing the risk of accidents. Studies, such as the one
conducted by [14], have examined the association between
decreased visibility and crash risk in real-time visibility
conditions. The findings highlight a significant percentage
(95.4%) of vehicles speed under low visibility conditions,
which significantly increases the likelihood of rear-end
collisions if the leading vehicle does not abruptly stop, as
most vehicles may not be able to stop in time due to reduced
visibility.

Perception plays a crucial role in responding to driving
conditions, including reduced visibility caused by rain. The
driver’s perception of the environment is influenced by
factors such as raindrop size, lighting conditions, and their
individual visual acuity. These factors can affect how the
driver perceives and interprets objects, distances, and po-
tential hazards on the road. It is essential to consider both
the physical factors that contribute to reduced visibility and
the driver’s perception when assessing the impact of rain on
driving safety.

However, accurately quantifying the impact of rain on
visibility and perception can be challenging due to the
complexity of the factors involved and the subjective nature
of the driver’s visibility experience.

2.1.1. Rain Intensity and Properties of Rain. Rainfall in-
tensity (RI) is a measure of the amount of rain that falls over
time. The intensity of rain is measured in the height of the
water layer that covers the ground over a period of time.
According to the UK Met Office [15], there are four types of
rain intensity classes, namely, light rain (LR)-less than
0.5mmh™!; moderate rain (MR)-2 to 10mmh™}; heavy
rain (HR)-10 to 50 mmh™; and violent rain (VR)-greater
than 50 mm h™'. The raindrop must be larger than 0.5 mm in
diameter to be classified as rain, and the visibility distance in
rain decreases as the intensity of the rain increases [16, 17],
and this tends to be due to the physical properties of the rain

(PoR) hitting the windshield, which tends to blur and distort
the background and objects [18]. Additionally, rain de-
creases the reflectivity of most materials. Because less illu-
mination is reflected back from the object, the items look
darker and have less contrast. Pedestrians dressed in dark
clothing would become considerably darker and perhaps
harder to notice. Rain also has an effect on vision because it
alters the amount of light that reflects off the road and
bounces back to the driver’s eye. Road markers, such as
pavements, are obscured by rain. A reflecting component is
included in the paint used to produce road markings. The
reflective coating reflects headlight lights back to the driver’s
eyes under dry conditions. Water, on the other hand, acts as
a lens, scattering light such that a considerable percentage of
it is reflected in several directions. As a consequence, the
lines are almost invisible to the motorist. The same effect
causes the road to look darker. The surface of a normal road
is rough, causing part of the headlight beam to reflect back to
the driver’s eyes.

2.1.2. Vehicle Speed. The visual impression of the intensity of
the precipitation continues invariably while you remain
immobile. When moving in a certain direction, an increase
in rain intensity is perceived due to the coalition with or
passing through raindrops at a rate proportional to the speed
of motion. The perceived severity of the rain is directly
related to the number of drops with which you or your
vehicle collides; the faster you drive, the more raindrops
clash with your windscreen; the more raindrops that collide
with the windshield, the less the driver perceives the world,
this is known as the relative velocity.

This phenomenon is intuitive and can be explained
formally simply by noting that an individual raindrop
(falling vertically at a speed v,,;,) hits a vehicle (travelling at
a speed whose horizontal component is v,.) with a perceived
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moving faster.

Note that in the case of stationary rain, the windshield (that
is, the vehicle) moves at the same speed v with respect to the
rain, where v,;, = v, represents the speed component at which
the windshield moves. In this context, let A, be the area of the
windshield and 0 be the angle between the vector indicating
vehicle motion and the normal (unit) vector 77 to the wind-
shield, to simply obtain its cross section as A, cos (6). Typi-
cally, the number of raindrops hitting the windshield per
second is expressed as p v - & = p(v,a, + v,a,), where p is

giving the impression of

the density of the raindrops and @ = A, 7 is the area vector
of the windshield.

This simplified model shows that the number of rain-
drops hitting the windshield increases when driving faster,
that is, when v, (the only variable term) increases. Obvi-
ously, in a real scenario, things can be more difficult to
model. For example, driving with an increase v, in the
presence of wind, but not faster and in the same direction as
the wind, would mitigate the intensity of raindrops hitting
the windshield. However, when speed increases, the layer of
water on the windshield becomes thicker and more



distorted, thus reducing visibility [5]. According to [19], the
speed of the vehicle V plays an even more important role in
the reduction of visibility than the thickness of the water
film, and this reduction is even more severe when there is the
coexistence of raindrops and water spray, in addition to
spray alone. This was determined by looking at the safe speed
against inadequate visibility, which was determined by ex-
amining the sight distance at the stop distance.

2.1.3. Wiper Frequency. Rain significantly affects visibility
through a vehicle’s windshield, even when windshield wipers
are in use. This issue is particularly relevant in the context of
intelligent vehicles. Rainwater splashing on the windshield
intermittently obscures visibility, acting as a lens that scatters
light and distorts the visual representation of the scene [20].
Additionally, debris and movement caused by rain further
contribute to reduced visibility and obscure road objects.
While windshield wipers are designed to clear the wind-
shield, they are not always completely effective and often
leave a thin film of water behind. Moreover, the wipers only
clear a portion of the visual field for a limited time,
depending on the intensity of the rain.

Spray is also a potentially deadly hazard induced by rain,
and it happens when rainfall is pushed up off the road by
passing vehicles. Spray can quickly cover the windscreen,
drastically reducing sight to near-zero levels. This issue
becomes even more crucial in the context of intelligent cars.
While larger vehicles such as lorries and buses produce more
spray, even a regular-sized family car equipped with clever
features and moving at a moderate pace might produce
enough spray to be dangerous. When spray hits the wind-
screen in these conditions, it virtually blinds the driver until
the intelligent vehicle’s advanced technologies operate to
clear the scene. As a result, in the context of intelligent cars,
correct prediction of local visibility, including the influence
of spray, becomes critical for assuring the safety and per-
formance of these vehicles, especially in severe weather
situations. Rain-sensing wipers, for example, are a standard
feature on many current vehicles. These wipers detect rain
on the windscreen and alter their speed appropriately, en-
suring maximum vision for the driver. Furthermore, in-
telligent headlamp systems, such as adaptive headlights, may
modify their angle and intensity depending on the weather
conditions, including rain. This improves vision and reduces
the danger of accidents by better illuminating the
road ahead.

2.1.4. Depth. Estimating the depth of field (DoF) while
driving is of great use to the driver, forward-looking depth
information plays a crucial role in the ADAS/AD system
[21]. A comprehensive and accurate approach to estimating
the depth of a traffic incident can effectively ensure road
safety. For example, driving in darkness makes it more
difficult to judge the distance between incoming vehicles,
which is dangerous. As autonomous and self-driving cars
become more prevalent, the need for accurate depth per-
ception increases. Accurate depth data aid in gaining a better
picture of the situation and making rapid and safe
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judgements. Existing approaches, such as lidar, radar, and
monocular cameras, present obstacles. Charles Wheatstone
proposed stereopsis in 1838 as a sense of three-dimensional
objects. This meant that two eyes experienced the same
image from different angles and distances in the horizontal
plane. This generates horizontal disparity depth indications,
also known as binocular disparity. This phenomenon was
widely used for experimental purposes. When coupled with
chromatically opposing 2D coloured glasses, anaglyphs were
used to achieve stereoscopic 3D effects (usually, red and
cyan). Recently, powerful algorithms have been employed to
extract depth from two images using stereopsis. Two or more
image sensors make up a stereo camera. This allows the
camera to simulate human binocular vision and sense
of depth.

2.1.5. Time of Day and Time Series. The time of day in the
rain is especially dangerous at night, with fatalities occurring
at rates higher than those of driving at night [22]. The key
factors that make driving at night especially dangerous are
reduced visibility and substantially longer visual reaction
time under reduced light [23]. For the visual perception of
the environment lying down, a foundation for scene re-
construction and interpretation with a focus on detection
conditions in the forward field at night is particularly im-
portant for understanding how the visual system works
under nighttime driving conditions in the rain [24]; fur-
thermore, information such as the sequential time series at
which the driver is driving under low visibility conditions is
critical both in daytime and especially in nighttime condi-
tions where contrast and DoF are lower. Moreover, rain on
the windshield also accumulates over a series of time, and
this is crucial in the prediction of rain over time that will
reduce the visibility based on the factors aforementioned in
the properties of rain and the contrast of the scene in the
field of view.

2.2. Scene Interpretation and Reconstruction in Autonomous
Vehicles. Camera sensors in intelligent and smart cars play
an important part in ADAS and AD functionalities. These
sensors are used in a variety of components, including
perception and visualisation, to allow for scene in-
terpretation, object detection, and tracking, moreover scene
reconstruction. They can be used in all three components of
the rain visibility estimation function as shown in Figure 1.
The perception components of the ADAS/AD functions,
which use monocular [25] or camera surround view or
stereo vision, can be used to interpret the scene by detecting
objects and their distances. In the visualisation components
of the ADAS/AD functions, a full 3D reconstruction of the
scene from multiple camera views is usually necessary [26].
In effect, to achieve scene reconstruction, 3D models from
a set of 2D images need to be built. Surround-view (SV)
systems have played an important role in scene re-
construction [27]. Using several camera sensors, a 360-
degree field depth of field of the vehicle’s surrounding
can be extracted by combining those 2D images into a 360-
degree 3D view [28, 29].
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A depth map is used to separate foreground objects from
detected background objects. Then, the distance of each
detected object from the centre point of the front camera was
computed using monocular geometry or stereo-vision-based
techniques [30]. When using more than one camera sensor,
depth can be calculated from stereo photogrammetry
measurements by triangulating image points from the
camera’s central point [31]. When only a single camera
sensor is available, the problem of depth estimation becomes
more difficult. In this scenario, the geometry features of the
shapes extracted from the scene should be used for online
camera calibration algorithms [32]. Self-supervised mon-
ocular depth estimation methods have previously been
implemented that exhibit good performance results [33].

It is worth highlighting that scene interpretation and
reconstruction become more difficult during motion [34].
To maintain an accurate representation of the extracted
objects list, a dynamic algorithm should be implemented
taking into account vehicle motion when computing depth
maps and objects’ distances and coordinates [35]. Odometry
is used to estimate vehicle motion from visual input [36].
Typically, in odometry algorithms, different geometrical
scene characteristics are extracted and then tracked between
consecutive frames in combination with vehicle speed data
and camera calibration data for the estimation of ego
emotion [37].

In the context of scene interpretation using camera
sensors, tracking and detection are fundamental processes
for understanding and analysing the objects present in the
scene [38]. These processes enable the identification,
tracking, and estimation of the positions, movements, and
characteristics of the objects captured by the cameras.

Detection refers to the initial step of identifying objects
in the scene. It involves applying computer vision algorithms
and techniques to analyse the camera images and detect the
presence of objects such as vehicles, pedestrians, traffic signs,
and other relevant entities. Object detection algorithms,
such as deep learning-based approaches (e.g., convolutional
neural networks), are commonly employed to achieve ac-
curate and robust detection results.

Once objects are detected, the tracking process comes
into play. Tracking involves following objects over time, and
continuously estimating their positions, velocities, and other
relevant attributes. Tracking algorithms use object detection
information from consecutive frames to establish object
trajectories, associate detections across frames, handle oc-
clusions, and predict future object locations. Multiple object
tracking algorithms can employ techniques such as Kalman
filters, particle filters, or deep learning-based methods to
maintain accurate and consistent object tracks [39].

By combining detection and tracking, the system can
create a comprehensive understanding of the scene dy-
namics and the behaviour of individual objects. This in-
formation is crucial for decision-making processes in
autonomous vehicles, such as collision avoidance, path
planning, and interaction with the environment [40].

In the aforementioned context, the camera sensors
(whether monocular, surround view, or stereo vision)
provide the necessary visual input for both detection and

tracking algorithms. These algorithms analyse the camera
images, extract features, compare them across frames, and
use motion models to estimate the positions and movements
of the objects. The utilisation of multiple camera sensors
allows for a more comprehensive and accurate un-
derstanding of the scene, as it provides different viewpoints
and perspectives that can improve detection and tracking
performance.

Tracking and detection using camera sensors can sim-
ulate the driver’s visibility and perception from inside the car
during rainy conditions. By analysing the camera images
captured through the windshield, the system can identify
and track objects, enabling it to make informed decisions
based on the same visual cues that a driver would rely on.
This enhances the safety and performance of autonomous
vehicles in adverse weather, replicating the driver’s ability to
perceive and respond to the environment.

2.3. Hardware-Based Sensors for Scene Interpretation and
Reconstruction in Autonomous Driving. The integration of
visibility estimation into intelligent cars involves analysing
the effects of rain on headlights, windshields, road surfaces,
and road markers. These factors impact the efficiency of light
sources, create backscatter and glare, and affect the overall
contrast and visibility of objects on the road as mentioned in
Section 2. By understanding these effects, intelligent cars can
adjust their perception algorithms and adapt their driving
behaviour to ensure safety.

The perception sensors can be classified into two main
types: passive and active. Passive sensors solely capture the
energy emitted by the surroundings and generate output
signals accordingly. This category includes monocular
cameras, stereo cameras, omnidirectional cameras, event
cameras, and infrared cameras. On the other hand, active
sensors emit energy and gauge the response from the en-
vironment. They measure a portion of the reflected energy,
enabling them to gather data. Examples of active sensors are
LiDAR, radar, and ultrasonic signals [41]. While both
perception and visibility play critical roles in ADAS oper-
ation during rainy conditions, it is important to differentiate
between the two concepts. Perception involves the accurate
interpretation of sensor data by the ADAS system, enabling
it to understand the surrounding environment. Perception
relies on the inputs from various sensors and their ability to
detect objects, recognises road markings, and assesses po-
tential hazards. On the other hand, visibility primarily
concerns the driver’s direct view and the physical barriers
that can arise due to rain, such as water accumulating on the
windshield, as shown in Figure 2.

Multiple hardware-based sensors are necessary for au-
tonomous vehicles to acquire a reliable ADAS model for the
interpretation and reconstruction of the surrounding en-
vironment. These include the following:

(i) RGB, i.e., monocular, stereo vision, or near-infrared
(NIR) camera sensors
(ii) Ultrasonic proximity (US) sensors

(iii) Global position system (GPS) sensor
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FIGURE 2: ADAS/AD components of the rain visibility estimation function.

(iv) Radio detection and ranging (RADAR) sensor
(v) Light detection and ranging (LIDAR) sensor

The NIR sensors installed in the environment operate in
the wavelength range of 780nm — -3 mm to detect the
distance of objects up to 4 m in the scene. Their operation is
based on the time-of-flight (ToF) principle and the phase
difference between the transmitted and received light pulses.
Often, when used in poor lighting conditions, it can offer
advantages in detecting objects in comparison to the RGB
visible light camera sensors. In addition to NIR sensors,
stereo-vision cameras also play a crucial role in perception
tasks. By utilising multiple cameras, stereo-vision systems
capture depth information and enhance the understanding
of the surrounding environment. This depth perception
allows for more accurate object detection, tracking, and
scene understanding. Here, increasing the number of sen-
sors adds to the computational and overall costs of an
ADAS/AD function. Therefore, we propose the use of
combined hardware-based sensors only as necessary, rather
than as a baseline.

In autonomous vehicles, USs are responsible for
detecting objects, in solid, liquid, granular, or other forms,
by transmitting sonic waves from 40 kHz to 70 kHz [42]. The
US does not get affected by scattering effects when trans-
mitting and receiving back the sonic waves. However, the
composition of the air, the temperature, or the noisy road
scenes could affect their performance. USs have a limited
detection range of objects of no more than 2 m and limited
angular sensing resolution. Therefore, their performance in

detecting the location of objects and the velocity of vehicles
can be inconsistent.

The RADAR sensor uses radio waves for object de-
tection. When transmitted waves are reflected back by an
object on its path, the RADAR antenna collects the returned
signal, and the TOF principle is applied to calculate the
precise distance of the object and its velocity with respect to
the location of the RADAR. The operational wavelengths of
RADAR can range from 24 GHz to 79 GHz for autonomous
vehicles and are classified as short-, medium-, and long-
range detection. RADAR systems can be used to improve the
safety of autonomous vehicles [43] and integrate them into
ADAS/AD functions such as cross-traffic warning, adaptive
cruise control, blind spot detection, collision avoidance
systems, and others.

LIDAR sensors use the TOF principle for a pulse of
infrared, or NIR, light from a laser diode. LIDAR operational
waves are commonly in the range of 905 — 1550 nm. Their
performance problems are mainly due to interference from
their mechanical scanning system and other light sources.
Most modern LIDAR systems offer a detection range of
200 — 300 m [42].

GPS-based sensors are used for various localisation
systems. Their performance may suffer when the satellite
signal is lost. GPS sensors are often used in combination with
inertia measurement units (IMU) to also measure the an-
gular rate and orientation of the autonomous vehicle.
Combined GPS and IMU solutions play a key role in various
visualisation, control, and perception components of ADAS/
AD functions [44].
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3. Sensor Performance Software for Deraining:
Enhancing Perception, Visualisation,
and Control

Rain-induced distortions present considerable challenges to the
performance of sensor technologies used in ADAS. Cameras,
LiDAR, and radar systems encounter difficulties in tasks such
as segmentation, tracking, and object detection due to adverse
weather conditions, particularly rain. Addressing these chal-
lenges is crucial to ensuring the safety and reliability of ADAS
technologies under rain and other weather conditions leading
to poor visibility. It is worth noting that rain-induced visibility
issues can also impact the clarity of windshields. Currently,
many fully autonomous vehicles are working on deraining
methods to address this problem. However, semiautonomous
vehicles, where the driver remains involved, have not received
adequate attention when operating in heavy rain conditions.
The adaptation of ADAS for fully autonomous and semi-
autonomous vehicles is a persistent concern, and the in-
tegration of ML and deep learning (DL) approaches into
deraining algorithms is emerging as a promising solution to
mitigate these challenges [45].

Both supervised and unsupervised learning can be used
to train these algorithms to identify and remove rain-related
artefacts from sensor data, thus enhancing perception by
eliminating rain-induced interference. DL architectures,
such as convolutional neural networks (CNNs) and gen-
erative adversarial networks (GANs), can further improve
the visual representation of the road environment by en-
hancing the clarity and reliability of sensor data. A good
example of a DL system for deraining and image restoration
is “Transweather” [46], which employs transformer-based
image restoration techniques, and others can be found in the
comprehensive review on data-driven single image
deraining in [47]. As for the visualisation component,
systems such as “Weatherstream” [48] and the work on
learning weather-specific and weather-general characteris-
tics for image restoration in [49] provide further insight on
improving visual clarity under adverse weather conditions.

In this context, sensor fusion is becoming important to
augment the effectiveness of deraining algorithms. Through
the amalgamation of data from various sensor types, such as
cameras, LiDAR, and radars, ADAS can gain a more
comprehensive understanding of the environment. This
approach mitigates the adverse effects of rain on individual
sensors and ultimately improves the accuracy of decision-
making processes. Despite advances, significant challenges
persist, particularly when heavy rain complicates visibility
for vision-based ADAS. A classic example involves wind-
shield wipers that remove raindrops that distort images
captured by frontal view cameras in the vehicle. However,
this removal simultaneously causes occlusion, potentially
obstructing visibility, and further complicating the situation.
A mitigation system for occlusion is discussed in [50].

We emphasise that real-time performance is of para-
mount importance for deraining algorithms to be truly
effective in ADAS. Swift processing and correction of sensor
data are essential to enable timely responses to dynamic road

and weather conditions. Efficient software design plays
a pivotal role in ensuring real-time operation, empowering
these algorithms to significantly improve ADAS perfor-
mance in rainy conditions. Figure 3 illustrates how
a deraining pipeline should be integrated with an ADAS
system to benefit all its components and graphically reports
the implication of embedding deraining algorithms in au-
tonomous or semiautonomous vehicles.

Figure 3 delineates a multifaceted system adapted for
semiautonomous vehicles, demonstrating the integration of
a deraining pipeline with ADAS. Here, the perception block
is responsible for the initial processing of sensory data,
including the derivation of a rain map and the generation of
cleared images, thus mitigating rain-induced distortions and
interference. The visualisation block focuses on enhancing
the interface between the system and the human driver,
employing augmented reality tools, and facilitating seamless
transitions to manual control. The control block, in turn,
embodies the decision-making functionalities of the system,
analysing the impact of deraining algorithms and de-
termining  appropriate  vehicular  responses.  In-
terconnections between these blocks ensure a smooth flow of
information, allowing for real-time adaptation to rain
conditions.

4. Categorisation

In this section, we survey the existing literature and cate-
gorise it based on different methodologies and models.
Furthermore, we analyse them and extract key aspects from
each considered study to provide a detailed overview, also
displayed in schematic tables, thus summarising relevant
concepts and allowing comparative analysis across the study.
Figure 4 shows the combined articles surveyed on a chro-
matic and timeline basis. The timeline from left to right
shows chronological increases, showing the article’s pub-
lishing year and the names of the corresponding authors.
The chromatic analysis follows Figure 1 and Figure 2, i..,
perception and control-based articles that were surveyed
have been chromatically indicated, and the same applies to
the perception and visualisation and the visualisation and
control surveyed articles, also.

4.1. Real-Time Frame-Based Methodologies. Real-time
frame-based methodologies for rain visibility estimation
solutions mainly involve the perception and control
components of ADAS/AD functions in autonomous ve-
hicles. As camera sensor-based solutions do not suffer
from deterioration due to scattering effects or due to
precipitation in atmospheric conditions, these sensors are
not limited in their detection range from the TOF oper-
ational principle and are inexpensive, offering an overall
more reliable and cost-effective solution for developing
a rain visibility estimation system. For the purpose of this
categorisation, we group all such solutions under the
category of real-time frame-based methodologies. Modern
camera-based ADAS/AD functions can offer a near-hu-
man-like scene interpretation [24].
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The authors of [51] apply optical flow estimation to
understand and interpret rainy scenes caused by rain streaks
and rain accumulation. Their method combines both the
residue channel and the coloured residue image channel,
which are correspondingly free from rain streaks and rain
accumulation. To further improve the performance of their
proposed algorithm, they applied an optimisation technique
based on an objective function and piecewise smooth
structure layers. Their optimisation technique consists of
layer separation and optical flow computation steps. Assume
that the exposure time is T'and that the elapsed time, while
a raindrop passes through a pixel x, is 7. I = (I, I, ] BT is
the colour vector representing the intensity of the colour.
L=(L,,Ly, L,)" is the colour vector of the light brightness.
B=(B,,B g,,Bb)T is the colour vector of the background
reflection. p, consists of the refraction, specular reflections,
and internal coefficients of a raindrop. Then, the following
normalisation step to the input image I(x) is defined as
follows:

[(x) = i+ 1, (1)

where i = (1,1,1)7, I,, = 7p,,L, and Iy = (T = 71)Blo. The
vector division is performed element-wise. Thus, the vector
residue channel can be defined as follows:

I =1mM-1" (2)

res

where M = max{Ir, Ig,Ih} and I = min{Ir,Ig,Ib}. I, is
called the residue channel of image I and is free of rain
streaks. To evaluate the performance of the proposed optical
flow method for scene interpretation, the authors first
conducted an ablation study in which gradually more rain
streaks were placed to increase the levels of rain accumu-
lation. Then, three different types of dataset were tested as
follows:

(i) Images in which synthetic rain was added to them

(i) Images which combined real rain with synthesised
object motions and

(iii) Images which consisted of real rain and real
motion, too

This approach outperforms other state-of-the-art algo-
rithms over the three datasets under investigation.

An improved simultaneous localisation and mapping
(SLAM) method, based on the indirect visual SLAM tech-
nique ORB-SLAM2, is proposed in [52]. In ORB-SLAM2,
the extracted binary features are tracked between frames for
a consistent position estimation. Thus, the proposed ORB-
SLAM2 SVE model is able to take into account light
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scattering in the atmosphere to estimate dynamic visibility
distances based on the presence of fog. The extracted
characteristics are taken from the observed contrast of the
road markings. This model provides robust performances
when tested over various driving conditions, including fog
and glare caused by sunlight.

The work in [53] describes and assesses a real-time vision
system for identifying and tracking automobiles on roads
when visibility is decreased due to rain or other weather
circumstances. This solution uses a forward-looking video
camera mounted on the front of a moving car to calculate the
distance between the car and other cars on the road. The
authors describe findings from studies conducted on picture
sequences under adverse visibility circumstances. Visibility
is measured using the range of the most distant object on the
road that has at least 5% contrast using a car equipped with
an onboard camera. Instead, a transferable model is in-
troduced in [54] using speed probe data and associated
weather and visibility data. This concept is applicable to any
length of road. The method is based on the assumption that
traffic conditions can be divided into three regimes: con-
gestion, speed at capacity, and free flow. Additionally, the
speed distribution is made up of three parts. The mean of
each part is determined using linear regression, with various
weather conditions and visibility levels serving as predictors.
An in-vehicle camera is introduced that detects both the sky
and the road, and the results conclude that when visibility
increases, so does the speed of the driver. Furthermore, it is
the first to be able to automatically identify congestion. The
authors of [41] examine perception sensors installed on
a mobile platform for real-time visibility estimation in off-
road environments. The study highlights the challenges of
obstacle recognition in dense vegetation using LiDAR point
clouds and emphasises the need for advanced data pro-
cessing and higher-resolution scanners. Vision sensors, such
as cameras, also face difficulties in recognising objects
hidden behind vegetation. In [55], the camera characteristics
are combined to calculate the visual distance of the input
frame. The vehicle-mounted camera mimicked the shooting
and recording of the front scene in the experiment, while the
vehicle-mounted radar measured and recorded the distance,
relative speed, and angle of the barriers and vehicles in front
of the experimental vehicle. In this study, anthropic visibility
is defined as the period in which camera and radar captured
data were synchronised with vehicle distance assessed by
millimetre wave radar at the point of loss of tracking.
Humanistic visibility is measured in the same way that
human eyes do, and visibility detection using an in-vehicle
camera and millimetre wave (mm-W) radar, and weather
conditions and visibility predictors are provided. The
resulting algorithm achieves results similar to those of hu-
man eyes, with an accuracy of 88%, 91%, 90%, and 95% to
operate with no taillight and the vehicle clearance lamp,
emergency flasher, and fog lamp, respectively.

In [56], an image-processing approach is used to eval-
uate the visibility of traffic lights for drivers in wet weather. It
generates visual noise that matches the visual properties of
human eyes and was used to estimate the visibility of traffic
lights for drivers. Visual noise is quantified by counting the

quantity and size of raindrops on the windshield, then in-
tegrating visual noise and texture data to evaluate the vis-
ibility of traffic signals to drivers. An experiment using
photos from the vehicle camera demonstrated that, unlike
previous techniques, the new method is capable of properly
estimating the visibility of traffic signals for vehicles in wet
weather conditions. These algorithms calculate two char-
acteristics: the number of raindrops detected on the
windshield, called I,, and the average size of the raindrops,
called I. The value of each characteristic was determined by
the following equation:

r rain’
I _ 1 Nrain S (3)
) N rain  j=( "

where S; is the area of the raindrop i and N, is the
number of raindrops. The visibility of a traffic light is
proportional to the degree of textural contrast between the
signal and its surroundings. Therefore, by operating in the
frequency domain, the suggested technique assesses the
textural difference between a traffic signal and its sur-
roundings and uses it to compute visibility. The proposed
method surrounds a traffic signal with three-by-three blocks.
Here, the width and height of the traffic signal are W and H,
respectively, and the i block is represented as
fi(i=0,1,...,8). Then, the pixel values in each block are
converted into the (spacial) frequency domain through the
fast Fourier transform (FFT), which produces the power
spectrum F;(j,k) of each block. Subsequently, the texture
difference between the traffic signal and its surroundings is
calculated as the following equation:

=)

8
i=0 j

H
¥ |Eo (k) = F; (. K)l. (4)

0 k=0

M=

Finally, with linear regression, the features of visual noise
and texture difference are combined and derived, and
a visibility equation is set as follows:

N
V=Y L1, (5)
n=1

where N is the number of features to estimate visibility, #,, is
the n feature calculated by applying the method described
above, and A, is the weight of the n'" feature.

The authors of [57] propose two image processing
techniques, i.e., enhanced dark channel prior (DCP) and
weighted image entropy (WIE), as well as a support vector
machine (SVM) classifier to provide a real-time visibility
indicator. Results show a 25% accuracy enhancement over
other estimation techniques, and the speed of the proposed
model is also faster by 26% than other conventional DCP
methods.

The authors of [58] propose an algorithm for rain detection
and severity classification to use in vision-based systems of
autonomous driving scenarios. The algorithm is based on
a neural network that takes localised discrete cosine transform
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(DCT) and image-based features as input. The algorithm is
tested on a real dataset and subjectively quantified with respect
to the severity of the rain. The authors performed experiments
in multiple settings to obtain the optimal configuration con-
sisting of a DCT window size of 32 x 32 and 10 DCT co-
efficients. This returns the best possible accuracy of 99.9%,
outperforming the state-of-the-art algorithms in terms of ac-
curacy. In terms of complexity, it also requires significantly less
memory. In fact, current state-of-the-art algorithms require up
to 80% more memory usage. The proposed algorithm is
suitable for the implementation of the classification of road
severity of rain for autonomous vehicles.

The authors of [59] assess the brightness of the road
markings and the pavement of the nearby road, to calculate
the so-called “Weber” contrast. The study shows that the
average contrast ratio on typical roads is 0.8 during the day
and 2.0 at night. These values are significantly enhanced by
digital image modification, resulting in an increase of 2.3 and
6.8, respectively. In low-light conditions (glare or rain in-
terference), the average contrast ratio drops to 0.5 (improved
to 1.4); in the worst-case scenario, it drops below 0.1. As
a result, the authors conclude that current machine vision
technologies may fail in low-light circumstances. However,
image enhancement appears to substantially increase both
the original and digitally enhanced contrast ratios for ma-
chine vision equipment.

Key details of this analysis are reported in Table 1 for
comparison between studies.

4.2. Deep Learning. DL methodologies for rain visibility
estimation are mainly integrated into the perception and
visualisation components of the ADAS/AD functions in
autonomous vehicles.

The study in [61] presents a technique to assess the
robustness of visual perception systems to demanding
weather events using generated meta-datasets. The authors
study the elements affecting the resilience of the visual
perception system, establish a physics-based weather pro-
duction model for rainy and foggy settings, and provide
measurable meta-datasets with visibility in fog and rain
intensity as changeable parameters. The researchers then
used regression analysis and statistical testing to assess the
resilience of object recognition systems in the face of more
demanding weather frames. This technique allows for
a quantitative evaluation of the dependability of AI devices
using predetermined performance measures.

In [62], the authors propose a deep learning system that
features a domain-incremental mechanism through statistical
correction. This is obtained with a simple online zero-forgetting
strategy that can progressively learn new scenarios, such as rain,
without the need for retraining or costly memory banks. Their
technique provides a physics-based rain model to simulate
photorealistic rain at 8 different levels of severity, and targets
such as cars, pedestrians, and cyclists are observed.

In [63], a deep convolutional neural network (CNN) is
used to measure visibility whether a wiper is needed, and
a pretrained “ResNet” model is used for rain detection. The
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day experiments yielded a precision result of 64.4%, while
the night experiment yielded a precision of 53.5%.

The authors of [64] propose a novel deep sensor fusion
framework that estimates vehicle movement using pose and
uncertainty estimations from multiple cameras onboard.
The deep learning models employed do not require manually
selected scene features due to their ability to learn mean-
ingful feature representations using the input scene images.
Precisely, a hybrid CNN-recurrent neural network (RNN)
architecture is used for the extraction of spatio-temporal
features from images. Instead, a mixture density network
(MDN) is used to predict the probability distributions of
motion for each camera. In this study, a total of 6 cameras
are considered in the vehicle in the nuScenes dataset (which
included images in different weather and lighting condi-
tions, such as daylight, rain, and night). The results show that
the 6-camera fused deep learning model performs better
than individual camera-based estimates by incorporating
complementary information from different points of view.
Compared to other state-of-the-art methods using the same
dataset, the performance of other SLAM-based methods
decreases in rain and at night, while the proposed method
maintains its accurate trajectories’ predictions under all
weather and lighting conditions.

Similarly, the authors of [65] apply the evaluation
methodology using pixel accuracy depth evaluation (PA-
DE) in four characteristic automotive scenarios recorded in
varying weather conditions, using the naturalistic driving
study dataset. The results show that current stereo ap-
proaches provide significantly more stable depth estimates
than monocular methods and LIDAR completion in adverse
weather. Meanwhile, the authors of [66] adopt CNNs to
remove the effect of raindrops from the image. The approach
exploits shape-driven attention and outperforms commonly
accepted methods in terms of both quantitative metrics and
visual quality.

The authors of [66] propose a CNN-based method for
removing raindrops from a single image. The authors in-
troduce a double attention mechanism that takes advantage
of shape-driven attention and channel recalibration. The
shape-driven attention module uses physical shape priors of
raindrops, such as convexness and contour closedness, to
accurately locate raindrop regions. The channel recalibration
module improves the robustness when processing raindrops
with varying appearances. The proposed CNN outperforms
the state-of-the-art approaches in terms of both quantitative
metrics and visual quality.

The authors of [67] use a backpropagation neural net-
work (BPNN) applied to meteorological data from 238
weather monitoring stations to predict rain and fog con-
ditions on the link road. They have achieved comparable
accuracy.

Table 2 provides an overview of deep learning methods.

4.3. Simulation. Many simulations in the past had been
conducted using field tests and observational studies to
deduce the visibility approximation. However, recent
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advances in computer vision are driven by models with great
capacity trained on enormous datasets.

The authors of [5] consider several factors that can
contribute to a reduction in visibility in their simulation,
namely, vehicle speed, rainfall intensity, and wiper fre-
quency, among other factors that are less investigated, such
as colour and size of the subject, distance to the subject,
illumination, droplet distribution of water size, and wind-
shield clarity, to conclude that rainfall intensity is the main
factor in reducing visibility. Furthermore, if the windshield
wiper rate is on a low setting, they suggest that visibility from
inside a vehicle Sy, can be modelled as shown in the following

equation:
a b
K(v W;
SV = n _K ! > (6)
I'\V; Wik

where I" models the rain intensity, K is some constant
dictated by the objective, V; is any speed for which visibility
is to be computed, and V' is the speed at which the constant
K is determined. Similarly, W is the cyclic rate of the wipers,
and W is the cyclic rate of the wiper when K is empirically
determined.

The authors of [7] use adaptive iterative image filtering,
this article provides an effective approach to display the
visual effects induced by rain on the windshield, having the
benefit of being simply implemented in a pipeline. Exten-
sions based on the suggested technique may be introduced as
the final steps of the visualisation pipeline to current ren-
dering systems. The proposed technique can be used to
generate realistic effects in real time in a variety of appli-
cations, including a visibility simulator.

Similarly, in [16], the authors studied the visibility of the
target cars from a distance during natural rains. The ob-
servers were mounted on a vehicle and were alerted when
they identified a target vehicle when their wipers were active
or had just stopped. These trials show that detection dis-
tances drop dramatically with ambient light and that visi-
bility distances decrease with increasing rain intensity. The
visibility distance for observers onboard a moving vehicle
(versus stationary) is found to be shorter as a result of the
higher concentration of water on the windscreen. A model
for the visibility distance of vehicles through the windshield
is defined in rainy and sunny conditions, based on these
tests, with the simplified formulation expressed in the fol-
lowing equation:

D=c¢, (rt)fclech", (7)

where ¢, ¢;, and c, are strictly positive constants, r, denotes
the accumulation of rainwater on the windshield (that is, r is
the intensity of the rain and t is the duration between wiper
operations), and L, denotes the ambient brightness. The
authors of [74] developed a model to evaluate the effec-
tiveness of a driver visibility system in the presence of rain at
night. The system is composed of two components: a labo-
ratory system in which calibrated rain can be generated to
imitate rain on a car’s windshield in a dark tunnel with
regulated lighting and a field system in which calibrated rain
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can be created to replicate rain on a field. The second
component of the methodology is an experimental pro-
cedure. Two visual tasks were chosen, one that involved
danger recognition (target detection) and the other that
involved reading traffic signs (word vs. non-word
discrimination).

In [75], the authors establish a technique to simulate the
impact of rain on driver vision by analysing and modelling
real video footage taken in dry and rainy settings, during the
day and at night. Baseline raw video footage that is not
affected by rain is monitored, and using projection mapping
and rain modelling, this baseline film is generated to ac-
curately depict the impact of rain on driver vision. The
strategy presented in this article employs video projection
mapping techniques to construct a virtual environment
based on video. Because the lighting, texture, and material
properties of the computer environment can be controlled
and altered, the simulated world can be customised to vi-
sually match the rain conditions. This technique simulates
heavy, moderate, or light rain by altering the properties of
the reflections, refraction, and lighting of the materials.
Compared to the actual video footage, the contrast and
lighting factors are fairly realistic.

The authors of [76] evaluated visibility using 3D point
clouds and road network maps. The proposed technique
overlays depth images with lane locations from a road
network map and a 3D scan of the driving environment
from a point cloud map. These images are compared to
identify visible and obscured areas of the driving environ-
ment. The visibility ratio, a numerical number that encap-
sulates visibility information for a specific area, is also
suggested. The visibility ratio is obtained by dividing the
viewable area by the driving area. The suggested technique
was evaluated in both simulated and real-world driving
scenarios. Furthermore, the test findings reveal that the
visibility ratio reflects the real visibility of certain sites.

The authors of [77] present a rain rendering pipeline that
allows for the evaluation of computer vision algorithms
under controlled amounts of rain. Three different methods
are presented to add synthetic rain to existing image
datasets: completely physics-based, completely data-driven,
and a combination of both. The rendered rain is validated
with a user study and found to be 73% more realistic than the
state-of-the-art. The study shows that the performance of
object detection, semantic segmentation, and depth esti-
mation algorithms decreases in degraded weather, on the
order of 15%, 60%, and a 6-fold increase in depth estimation
error. However, fine-tuning of the synthetic augmented data
results in improvements of 21% in object detection, 37% in
semantic segmentation, and 8% in depth estimation. It can
be observed that object detection and depth estimation
capacity is reduced with higher intensity in rain, plus per-
formance decreases when raindrops block the view or fog-
like limits the visibility in the image.

The authors of [19] investigate how precipitation impairs
visibility, thereby increasing the probability of traffic acci-
dents. It presents a numerical simulation method for ana-
lysing the degree to which the coupling of spray and raindrops
reduces visibility and suggests safe speeds in the event of poor
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visibility. Using real highway design parameters and rainfall
conditions, the study models the spray-raindrop coupling
particles. This study estimates the visibility of the road by
simulating the multiple scattering of taillights in a spray-rain
medium. It calculates the maximum safe speed when visibility
is poor by comparing visibility with the required stopping
sight distance. The results indicate that a high front-mounted
truck speed or a thick water film significantly reduces road
visibility and the maximum safe speed of the ego vehicle.
Additionally, the study indicates that the speed of the front
vehicle has a greater impact on visibility reduction than the
thickness of the water film. The authors then provide
a quantitative examination of the relationship between visi-
bility, precipitation, and vehicle speed. It suggests that re-
ducing the speed of the lead vehicle can significantly improve
road visibility and suggests safe speeds to prevent traffic
accidents in the event of inadequate visibility.

Table 3 provides a comprehensive overview of the
aforementioned simulation methods.

5. Comparison

This section entails the comparison of the models based on
their methods of estimating visibility by evaluating all the
physical factors contributing to reduced visibility mentioned
in Section 2, we then critically analyse how they can be
integrated into ADAS components such as; Perception and
Control, Perception and Visualisation, and finally Visual-
isation and Control. Figure 3 shows the combined timeline-
based and chromatic-based surveyed articles that we used in
4 and now in this section.

5.1. Perception and Control. Real-time visibility estimation
in ADAS is a crucial process that requires the coordinated
operation of both the perception and control components.
The perception component uses a variety of sensors such as
cameras, Lidars, and radars to gather data about the envi-
ronment and the vehicle’s surroundings. These data are then
processed and analysed using sophisticated algorithms to
extract valuable information, such as object detection, lane
detection, and obstacle recognition. The resulting in-
formation is passed on to the control component, which uses
it to assist the driver in making safe and informed driving
decisions. This section reviews real-time techniques with
respect to their potential integration in the perception and
control component.

[51] uses a robust optical flow in rainy scenes for the
purpose of visibility improvement under intense rain con-
ditions, and in low-contrast scenes, a residue channel is
applied to detect the rain using a high-frequency layer,
a charge-coupled device (CCD) is used to get the darkness of
the image, no exact rain intensity is highlighted, speed and
wiper frequency has not been considered, such optical flow
optimised models for rainy scenes would be utilised in the
perception component of the ADAS/AD functions. The
algorithm would be used to generate the list of objects. Then,
the list of objects would be used in the control component to
train the steering function of the autonomous vehicle.
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Similarly with [51] in [52] SLAM models for stereo scene
reconstruction would be used in the perception component
of the ADAS/AD vehicle functions. The reconstructed stereo
scene would be used for extracting the scene objects and,
then, for the generation of the object list. The control
component would read the object list to train the steering
function of the autonomous vehicle.

Similarly to [64], SLAM models for stereo scene re-
construction would be used in the perception component of
the ADAS/AD vehicle functions. The reconstructed stereo
scene would be used for extracting the scene objects and,
then, for the generation of the object list. The control
component would read the object list to train the steering
function of the autonomous vehicle.

[53] provides an estimate of visibility by measuring the
contrast of attention between consistent road character-
istics at various distances ahead of the vehicle. Daytime
rain, with significant water buildup on the windshield and
substantial suspended spray in the air, is approximately
0.2% compared to the normal visibility condition during
the daytime driving tested in this study. The disadvantage
of this approach is that it gives an absolute estimate of how
far ahead a feature or obstacle can be found. Furthermore,
it does not give measures of the intensity of the rain. Such
real-time vision systems would be used by the perception
component of ADAS/AD functions. Distance values
extracted from detected road vehicles would be integrated
into the generated object list and then fed from the
perception component into the control component. The
control component would be reading the object list and
using it to train the steering and braking functions of the
vehicle. A different approach, proposed in [54], proposes
this time as an estimate of visibility using speed as
a characteristic between 0 — 80 mph, light rain, medium,
heavy, and freezing, the model can work day and night
and provides precise congestion identification consider-
ing the weather condition and visibility in a time series
approach. The limitations are first that visibility is not
clearly defined and that the depth of the driver is not taken
into account. Such a model that combines vehicle speed
data and associated weather and visibility data would be
used in the perception component of the ADAS/AD
functions. The extracted categorisation of traffic condi-
tions, such as congestion, speed at capacity, and free flow,
would be included together with the list of objects and
passed to the control component. The control component
would incorporate traffic categorisation information
when training mainly the vehicle break function to op-
timise it under those traffic conditions. [55] considers
heavy rain and uses a visibility range between 150 — 200 m
to pose a risk; however, this method can only work for
local visibility estimation when the taillights are on and
only has a few use cases during the day, for example, if fog
is considered. Such algorithms which provide visibility
predictors under various weather conditions are used as
a parameter in the perception component of the ADAS/
AD functions. Then, the computed depth estimates of the
detected road objects could be adjusted before producing
the object list.
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In [57], the authors use visibility as a function of the
distance from the images between 38 — 358 m. The model
includes day and night conditions, as well as rainy conditions
and an adaptive speed limit mechanism. However, it does not
justify the local visibility in high-intensity rain through the
windshield. Such image-processing-based techniques for es-
timating visibility would be used in the perception component
of the ADAS/AD functions. Thus, the computed visibility
estimate values would be passed along with the object list to the
control component. The control component could then use
these values to train the vehicle break function of the vehicle.
Similarly to [57] above, in [56] the image processing algorithms
will be used in the perception component of the ADAS/AD
functions. Thus, the extracted information on the visibility of
the traffic lights in rainy conditions would be passed along
together with the object list to the control component. The
control component could then use that information to train,
for example, the collision avoidance braking function. An
approach based on measuring the contrast ratio (CR) is
proposed in [59], where the CR is compared with the enhanced
CR image under day and night conditions, and the speed was
evaluated up to 140km/h. However, no speed-based evaluation
was present; CR was evaluated under rainy conditions, drizzle,
and glare; however, a limitation is that intensity does not
appear to be considered, which could reduce the results of
using Weber contrast for machine vision technology in higher
intensities of rain [56] estimate the visibility of drivers toward
traffic lights during rainy conditions, raindrops, and heavy rain
during the day. However, this is only applicable to traffic
signals and not to other potential hazards; another limitation is
that it does not differentiate the colours of traffic lights.
Moreover, this has not been tested during nighttime condi-
tions; depth is not considered, so the model does not state how
far it can process the traffic lights to prewarn the driver of the
colour. Such algorithms to assess the brightness of the scene
would be used in the perception component of the ADAS/AD
functions. Then, the extracted average contrast ratio values
could be used together with the generated objects list and
passed into the control component. Then, those values would
be used for training the steering function of the vehicle, e.g. in
automated parking scenarios.

The authors of [58] propose a solution for visibility based
on the severity of the rain. Their system uses images captured
from a camera installed in the vehicle and analyses the rain
droplets on the sensor screen as well as the overall loss of
information (or entropy) caused by the rain. The severity of
the rain can be classified on the basis of these two factors.
Although the camera is placed inside the vehicle, the fre-
quency of the wiper has not been considered to classify the
severity of the rain. Furthermore, it is unclear how the
authors classed the initial rain classes as the intensities of
rain did not appear to be indicated in the manuscript. Their
solution to visibility based on the severity of the rain could
help improve the performance of these sensors during rainy
conditions. For example, using the vehicle, the autonomous
vehicle could detect the severity of the rain and adjust the
settings of its cameras to improve their performance in rainy
conditions. This could allow the vehicle to better perceive the
environment around it and make more accurate decisions,
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such as adjusting its speed, changing lanes, or avoiding
obstacles on the road. Furthermore, the solution for visibility
based on the severity of the rain could also help improve the
control of the autonomous vehicle during rainy conditions.
By automatically adjusting its speed, trajectory, and other
control parameters based on the severity of rain, the vehicle
could maintain safe driving conditions and avoid possible
accidents. The perception and control of off-road autono-
mous driving are examined in [41]. Due to uneven terrain,
fluctuating sunlight, and the presence of obstacles such as
rocks, trees, and flora, oftf-road settings present special
problems for perception systems. To recognise and track
objects in these difficult situations, the authors suggest
a perception framework that integrates camera pictures and
LiDAR point clouds. They emphasise the need for
cutting-edge data-processing approaches for reliable per-
ception and draw attention to the shortcomings of current
algorithms in accurately interpreting off-road scenes. The
article also examines various control modes, including path
planning and speed control, and assesses how useful they are
in off-road driving situations. To ensure safe and effective
operation, the analysis of braking distances also emphasises
the integration of perceptual and control components.
Research advances the development of intelligent trans-
portation technologies in difficult locations by addressing
these elements and providing insightful contributions on
perception and control issues unique to ADAS systems
working in off-road circumstances.

A summary of the real-time methods is provided in
Table 4 with respect to their perception and control
components.

5.2. Perception and Visualisation. This section reviews deep
learning techniques with respect to their perception and
visualisation components. ADAS leverage the combination
of perception and visualisation to improve driver safety and
awareness. Perception involves using sensors to gather data
about the driving environment, such as the vehicle’s sur-
roundings, while visualisation presents these data to the
driver in a format that is easy to understand and act upon. By
using these two technologies together, ADAS can provide
drivers with valuable information and alerts to help them
make informed driving decisions.

Deep learning techniques can further improve the ac-
curacy and reliability of ADAS by enabling the system to
classify objects in the driving environment. With the in-
tegration of deep learning techniques, such as CNNs in
perception and visualisation technologies, ADAS can.

(1) Identify potential hazards and other important
information;

(2) Classify them accurately;

(3) Present information to the driver in an easily un-
derstandable format, making it easy to react to them.

Incorporating deraining techniques into ADAS can
enhance perception data obtained after deraining and can be
utilised to improve both the perception and visualisation
components, including the heads-up display (HUD).
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Deraining algorithms remove rain streaks and enhance
the visibility of captured images or videos, improving the
quality and reliability of the perception system. This en-
hanced perception data, free from unwanted artefacts caused
by rain, can provide a clearer and more accurate repre-
sentation of the driving environment. By idolising this
improved perception data, ADAS can better detect and
interpret objects, road conditions, and potential hazards,
even in rainy conditions.

The derained perception data can then be utilised in the
visualisation component, such as the HUD, to present
meaningful and actionable information to the driver. The
HUD overlays this information onto the driver’s line of
sight, typically on the windshield or a dedicated display
surface, allowing the driver to access critical information
without diverting their attention from the road, in vehicles
that are not autonomous or have ADAS capability this
information is typically displayed on an infotainment dis-
play in the vehicle for better visual capability to the driver in
dangerous situations such as providing night-vision for
detecting pedestrians.

This approach provides drivers with the information
they need to make safe driving decisions, thus reducing the
risk of accidents and improving overall road safety. The
combination of perception, visualisation, and deep learning
is then a powerful approach to improving driver safety and
awareness.

Hereinafter, we explore these deep learning visibility
estimation techniques and evaluate their capabilities along
with their potential for integration in their ADAS
components.

In [63], images from the perspective of a driver of the
entire windshield are trained both for day and night. The
intensity of the rain is mentioned; however, the data are
collected manually from online sources and are considered
to activate the wiper. Therefore, no true intensity of the rain
is considered and a time series is given for input after 1.2 s
using 6 frames to decide when to activate the wiper. Depth is
not considered a function of visibility, nor are contrast and
properties of rain. The main limitation is the manual ex-
traction of data, which requires someone to check every
frame to determine if it is degraded in visibility, and, seeing
as the pattern of heavy rain is finite, you would need to
manually class each different image. Information on accu-
racy calculations under different conditions, daytime and
nighttime, would be incorporated into the perception
component when reconstructing the scene and used by the
ADAS/AD functions. Furthermore, the visualisation com-
ponent would incorporate accurate information to assist in
driver decision-making and road navigation.

The authors of [61] employ Al-based visual perception
systems and test them in severe weather conditions to assess
their resilience. The main focus is on the components that
affect the visual perception system’s resilience and the design
of a weather-generating model for rainy and foggy settings.
The model creates realistic visual data that meet difficult
weather formation. The authors create synthetic meta-
datasets to test sophisticated algorithms under more diffi-
cult weather conditions. Regression analysis and statistical
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testing confirm the nonlinear link between model perfor-
mance and weather variation. The research covers the need
to analyse and test Al-based visual perception systems in
severe weather conditions for ADAS. Indeed, it simplifies
data collection for the evaluation of the robustness of the
visual perception system, and it improves operational Al
dependability. This study shows an interaction with ADAS’
perception and visualisation components by evaluating the
resilience of Al-based visual perception systems in diverse
weather circumstances, thus making ADAS more reliable
and safer in adverse weather conditions. Unfortunately, the
authors did not specify how they captured the intensities of
the rain and the relationship between the speed of the car
and the rain properties. This is a big limitation in terms of
replicability as these may change when considering
a windshield of a vehicle and the realism may also be dif-
ferent from the physical rain simulator.

In [62], the authors develop a more robust object de-
tection system for autonomous vehicles by using camera
pictures taken from the KITTI dataset. Its objective is to
adapt to changes in the environment, such as heavy rain, and
it offers information on the key changes in performance to
detect various types of weather under varying rain in-
tensities. This work is heavily based on level 5 autonomous
vehicles; however, with the incrementally learned history of
the data, this can be used in semiautonomous vehicles by the
perception component; the authors could adapt this model
to use the perception and pass it to the visualisation com-
ponent to enable the driver to comprehend the upcoming
risks in heavy rain or other adverse weather conditions.

In [64], camera-based visual odometry approaches to
estimate vehicle trajectories under various road conditions
would be implemented in the perception component of the
ADAS/AD functions to generate the object list. Then, the
generated objects list would be utilised in the steering
function of the control component. Furthermore, the vis-
ualisation component could read the predicted trajectories
of the vehicle and assist the vehicle’s navigation by visual-
ising the information to the driver.

[65] takes a different approach based on the stereo vision
to capture the depth in metres, from 0 to 100 m, and also
considers light and heavy rain, i.e. with intensity in the range
15 — 55 mm/h/m?, with images taken both during the day
and at night. A limitation of this study is that it does not
provide visibility from inside the vehicle, as the cameras are
outside; the cyclic frequency and wiper are not considered
along with the windshield and speed of the vehicle, which
can affect depth accuracy. These stereo depth estimates
improve the object list generated by the perception com-
ponent of the ADAS/AD functions. Additionally, more
stable depth estimates would be used in the visualisation
component to improve driver navigation decision-making
in adverse conditions such as rain, fog, or snow. [66] adopts
a CNN to remove the effect of raindrops in images and takes
advantage of shape-driven attention. This approach out-
performs established methods in terms of both quantitative
metrics and visual quality. This technique would not affect
the objects list generated by the perception component, but
instead would be used for the visualisation component of the
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ADAS/AD functions by assisting in the stitched-up sur-
round view scene using the camera sensors. Meanwhile, the
authors of [67] predict visibility at the level of the road link,
considering the intensity of the rain up to 101 and
120 mm/h, the size of the drop, and physical properties
such as geometric scattering. However, this model can only
be used for specific regions and states and cannot provide
alocal visibility estimate from the driver’s perspective. As for
[66], this technique would be used mainly for the visual-
isation component of ADAS/AD functions by incorporating
the predicted conditions to inform the driver.

Table 5 provides an overview of the comparison of deep
learning approaches with respect to their perception and
visualisation components.

5.3. Visualisation and Control. The combination of visual-
isation and control components works in tandem with
simulated methods for estimating visibility. These simulated
methods allow researchers to study visibility in a controlled
and safe manner, without the risk of real-world accidents.
The visualisation component in ADAS plays a crucial role in
providing a visual representation of the data collected by the
perception component. The control component in ADAS is
responsible for utilising the data gathered by the perception
component to make real-time decisions that improve driver
safety. It integrates with the visualisation component to
provide a comprehensive understanding of the virtual en-
vironment and to inform the driver of potential hazards or
risks. If the perception component detects an obstacle in the
vehicle’s path, the control component can use the visual-
isation component to provide the driver with a visual
representation of the obstacle and suggest a course of action,
such as slowing down or changing lanes. Simulated methods
for estimating visibility in ADAS allow researchers to test
and evaluate the effectiveness of various visibility-enhancing
solutions and technologies in a controlled environment. By
integrating perception, visualisation, and control compo-
nents, these simulated methods provide a comprehensive
understanding of the virtual environment and enable re-
searchers to make informed decisions that enhance driver
safety. Ultimately, the combination of simulated methods
for estimating visibility with the visualisation and control
components of ADAS has the potential to improve road
safety and reduce accidents caused by low visibility. This
section then evaluates how the simulation techniques could
be concerning their visualisation and control components.

The work in [5] conducts a field test based on reviewing
photographs and obtaining visibility, developing an ap-
proximate equation for driver visibility that depends on the
intensity of rain, the speed of the vehicle, and the cyclic
frequency of windshield wipers. Traffic speeds above
45 mph are shown to be unsafe when passing manoeuvres
are performed during the rainfall of 1 in. In one hour, the
observed visibility of the driver was 30% in 60 mph and
3.9 in/handin 30 mph with 48 cycles and 15% with 35
cycles. This simulation is used to generate the control
component model, as shown above 7, in the ADAS/AD
functions. Furthermore, the simulated behaviour of the
observer distance learned from the trials during ambient
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light and intense rain can be used in the visualisation
component to assist in the decision-making of the driver’s
road navigation. Thus, the visualisation component would
adjust the visually shown stitched-up surround view scene to
match the actual distances between the vehicle and the road
objects.

The field test in [16] provides drivers with a button to
press when they can detect a target object. In most cases, they
neglected the vehicle speed beyond 64 — 72km/h because
they felt that the windshields could become very saturated at
that point, and their vision distance prediction was based on
similar characteristics that combine rain intensity, rain
accumulation time, and ambient daylight. In addition to
this, the contrast of the target vehicle concerning the
background is treated as a random variable. This contrast
could explain some of the variability in the seeing distances.
Furthermore, the intensity from light rain to heavy rain is
found to be equivalent from 1 cycle per minute to 45 cycles
per minute. This is a limitation, as the intensity of the rain is
only captured every 10 minutes, which may not work for the
estimation of local visibility in real time. This visibility model
can be used in the control component of the ADAS/AD
functions, as well as in the visualisation component. In the
control component, the visibility distance D (of equation
(7)) could be used to estimate the behaviour of vehicle failure
in heavy rain conditions and integrated in the visualisation
component for drivers to see. This would help them make
decisions while driving the vehicle.

In another field test, as described in [79], a simulation is
carried out with 57 cpm and heavy rain of 1 mm/pm. The
intensity of the rain is used here as a parameter, as is the
wiper frequency, to further improve the estimate of the
visibility of the driver. A strong focus is given to different
regions in the driver area of the windshield to conclude that
the wind speed with the intensity of the heavy rain reduces
visibility. A similar approach is adopted in [7], where an
image processing approach is used to simulate raindrops on
a windshield with both drops and film being considered to
estimate visibility. Such simulations are used in the visu-
alisation component of the ADAS/AD functions by in-
corporating those generated realistic visual effects of rain
when informing the driver about the driving conditions.

Instead, the study in [76] aims to calculate a visibility
ratio (0 — 1) for a particular area. Depth is also taken into
account using a road network map. The visibility ratio can be
used mainly in the control component of the ADAS/AD
functions. Therefore, the visibility ratio value could be used
to estimate the steering and braking behaviour of the vehicle
in these different driving environments. A limitation of this
method is that rain and other weather conditions can cause
degradation, which, as mentioned by the authors, could be
potentially solved with data fusion. Another limitation is
that it is not clear whether the model works at night. For
a night-based approach to estimating visibility, one can
consider the work in [74], focusing on the intensity of the
rain in 20 and 50 mm/h, corresponding to heavy and violent
rain at various distances from 5-25m of the target.
Contrast is also considered using black and white targets,
and in this study, two colour temperatures of 3000k and
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6000k are selected. A limitation of this approach is that the
measurements do not take into account the rain that ac-
cumulates on the windshield, and the cyclic frequency of the
windshield is also not considered to account for local vis-
ibility. These simulations could be used mainly in the vis-
ualisation component of the ADAS/AD functions to display
appropriate visual warnings to the driver to assist them in
making decisions while driving in rainy conditions. In [75],
both day and night conditions are considered, where visi-
bility in rain conditions is simulated using an in-vehicle
camera and a simulated environment using Nuke for pro-
jection mapping. Furthermore, there are also factors that
influence visibility based on contrast, reflections, lighting,
colour particles in the air, and rain intensity, such as light
(0.0t00.1in/h), moderate (0.11 —0.29in/h), and heavy
(0.30in/h or more), which are taken into account. Some
limitations of this study include the lack of data with a water
film on the windshield, and that the visibility ratio has not
been defined based on their simulated model. The model
could be used to simulate visibility estimation; however, the
data are limited and difficult to acquire. In addition, it does
not seem to show the correlation of the simulated envi-
ronment with the wiper and the cyclic frequency. The study
in [77] quantitatively assesses a simulation of rain based on
the performance of object detection and depth estimation. In
this system, the control component could take data from the
perception component, and the outputs of the object de-
tection and depth estimation systems can be fed to the
visualisation component to warn the driver of dangerous
visibility conditions. A limitation of this work is that speed is
not mapped to the intensity of the rain. Therefore, the
relative velocity is not taken into account and cannot be used
to assess the drivers’ visibility through the windshield. The
thickness of the water film is considered in [19], where other
factors are also investigated, such as the generation of sprays,
the distribution of raindrop size, and the spray-raindrop
coupling particle, which were separately introduced together
with the process of multiple scattering of light photons.
These factors are all used in the proposed visibility esti-
mation method. The study also relates visibility with speed.
However, a limitation of the empirical approach is that the
time of day is never considered to estimate visibility. The
same can be said for the frequency of the wiper, which is also
a factor that would affect the results of the spray on the
windshield.

Table 6 shows a comparison of the simulation techniques
discussed concerning their control and visualisation
components.

6. Conclusion

We offer a comprehensive review of visibility estimation
approaches in rain condensation on the windshield, in-
cluding milestone works and the most modern approaches
forming the state-of-the-art. Both data-driven and model-
driven approaches are analysed. The current state-of-
the-art solutions in rain visibility estimation used to
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reconstruct the driver’s view for object detection-based
autonomous driving are too surveyed and categorised
into (1) real-time frame-based methods, (2) deep learning
methods, and (3) simulation methods. For each category,
we highlight key aspects relating to their perception
components, their control components, and their visual-
isation components of the ADAS/AD function. In this
light, this work is unique and makes it possible for re-
searchers and practitioners in the field to easily compare
different methods and find pros and cons, thus providing
future research and/or the selection of the best approach
for a given situation. On the basis of this work, we can draw
the following conclusions:

(1) Camera sensor-based solutions do not suffer from
deterioration due to scattering effects or due to
precipitation under atmospheric conditions. They
are not limited in their detection range from the ToF
operational principle and are inexpensive, offering
an overall more reliable and cost-effective solution
for developing a rain visibility estimation system. In
contrast to LIDAR, lithium systems have a limited
effective range because the backscattered optical
signal weakens with the target range, so returns from
very distant targets are too weak for the photo-
receiver to detect.

(2) Interpretation and reconstruction of scenes are keys
to robust ADAS/AD vehicle functions. From the
scene interpretation and reconstruction, the
extracted objects list can be generated. However, that
object list can be affected by adverse weather con-
ditions. The object list is passed from the perception
component into the control component and is also
read by the visualisation component.

(3) Real-time frame-based methods and models that
combine vehicle speed data and associated weather
and visibility data seem to be the most effective to
implement by the perception component of the
ADAS/AD functions. Such models would be used in
the generation of the object list to be incorporated
into the control component for vehicle breakdown
and steering functions.

(4) Deep learning approaches seem to have the greatest
impact when they can provide a visibility predictor
under various conditions of rain and adverse con-
ditions. Such predictors are used as a parameter in
the perception component of the ADAS/AD func-
tions. They can adjust and improve the accuracy of
the depth estimates of detected road objects while
generating the object list.

(5) Simulation-based techniques and models play
mainly a role in the visualisation component of the
ADAS/AD functions. They can be used to generate
warnings and other visual indications that can assist
the driver in making decisions and navigating the
vehicle. Less could be used in the control component,
where, for example, the visibility distance D
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extracted from the simulation models is used to
improve vehicle braking behaviour under heavy rain
conditions.

7. Future Work

In all types of weather and road conditions, visibility is an
essential element of driving activity. As described previously,
the generation of an appropriate objects list is necessary and
key for any ADAS/AD function. Camera sensors are used by
most ADAS/AD autonomous vehicles for this purpose.
Therefore, scene interpretation and reconstruction have
a significant impact on the performance of these ADAS/AD
vehicle functions and can be affected by rain conditions.
Therefore, it becomes clear that camera sensors-based rain
visibility estimation solutions are the most promising to
focus future research efforts.

Additionally, real-time frame-based solutions for scene
interpretation and reconstruction that combine vehicle
speed data and associated weather and visibility data appear
to be most effective when implemented by the perception
component of the ADAS/AD vehicle functions.

Deep learning approaches to understanding the scene
can have the greatest impact when providing a visibility
predictor in various adverse conditions of rain. Rain
visibility estimation with inexpensive camera sensors
implemented in the perception component of the ADAS/
AD functions is expected to become increasingly popular
in commercially available autonomous vehicles in the
automotive industry. Adding modern deep learning
models to improve performance is surely a promising
approach that should be further investigated in the future.
Moreover, by utilising the perception component of
ADAS, we can determine the quality of visibility, which
can be measured using the aforementioned inputs in the
tables, and these factors contributing to reduced visibility
can be sought out from camera sensors to determine
a threshold for dangerous driving under multiple rain
intensities which can, in turn, pass the controls to the
control component, and then, visualisation for the driver
can also be an optional addition for safety systems to help
assist the driver when these conditions are met.

By combining this local drivers’ visibility information
with the intelligent vehicle’s internal sensors and navigation
systems, intelligent vehicles can make informed decisions
and adapt their behaviour accordingly. For example, if the
local visibility is significantly reduced due to rain, the vehicle
can automatically adjust its speed, activate specific lighting
systems, or even communicate with nearby vehicles to en-
sure safe driving.

Finally, integrating local drivers’ visibility information
with broader transportation infrastructure, such as
weather monitoring systems and traffic management
centres, can enable intelligent vehicles to send real-time
updates about visibility conditions along their routes and
pass them on to other drivers in the area. This integration
can enhance the vehicle’s ability to proactively respond to
changing visibility conditions and improve overall safety
on the road.
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