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Abstract— The immediate feedback tracking control system 
design of heterogeneous robots with uncertainty is considered 
to be a significant i ssue i n r obotic r esearch. N ote t hat when 
the robot information is uncertain, the scale of computation 
would become increasingly large and the accuracy of tracking 
control would become exceptionally low. The realization of the 
immediate feedback control system of heterogeneous robots 
with uncertainty remains to be a challenging problem. Many 
conventional zeroing neural network (CZNN) models have been 
developed accordingly. However, most of them are supported 
by the hypothesis that the robot parameters are complete and 
accurate, and the associated models possess the exponential 
convergence property. To handle the robot uncertainty as well 
as to improve the convergence performance, a new zeroing 
neural network (ZNN) with super-exponential convergence (SEC) 
rate is put forward in this paper termed SEC-ZNN, to resolve 
the robust control issue of uncertain heterogeneous robots. 
The proposed SEC-ZNN takes full advantage of effector real-
time information, with robust controlling and super-exponential 
convergence performance so far as to the robot information 
is uncertain. Theoretically, the super-exponential convergence 
properties including lower error bound and faster convergence 
rate are rigorously proved. Moreover, circular path-tracking 
example, comparisons and tests via MATLAB, Coppeliasim and 
experiment via robot INNFOS substantiate the efficaciousness 
and preponderance of the SEC-ZNN for the immediate feedback 
control system for heterogeneous robots with uncertainty.

Note to Practitioners—This paper is motivated by the problem 
that most robots which need real-time tracking control in real 
applications come with uncertainty. It is important to note that 
traditional robot tracking control algorithms mostly require
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complete robot information or assume information complete,
which does not correspond to the actual situation of robot
control. Moreover, for practical applications in robotics, the
real-time tracking control problem is very attractive. Therefore,
an accurate, efficient and stable solution is of great significance
to practitioners in this area. In this paper, the SEC-ZNN
algorithm is proposed to solve the problem of real-time control
of heterogeneous robots with uncertainty in real applications
for practitioners. The proposed methos makes full use of the
real-time feedback infromation to solve the real-time tracking
control problem of heterogeneous robots with uncertainty at the
velocity level. The algorithmic steps and principle explanation
of the SEC-ZNN scheme are also presented for better under-
standing. Simulation studies and comparisons are performed on
a Stewart robot to confirm the effectiveness and superiority of
the proposed scheme. Furthermore, the simulation experiment
in Coppeliasim platform is performed to confirm the possibility
of portability of the SEC-ZNN to real robot operations. Finally,
applications on a real-world robot INNFOS verify the physical
relizability of the proposed SEC-ZNN for the engineering practice
via heterogeneous robots.

Index Terms— Zeroing neural network, super-exponential con-
vergence, heterogeneous robots, uncertainty, robust tracking
control.

I. INTRODUCTION

ADVANCED robots, including heterogeneous robot
manipulators, are expected to perform complicated tasks

in changing environments in real-time [1], [2], [3]. Since
the urgent requirement of the online solutions to advanced
robots, immediate feedback control system design of robots
is considered to be a fundamental and significant problem
in robotic research. Specifically, immediate feedback tracking
control system design focuses on the online computation
to calculate the control signal and steer the motion of the
end-effector equipped along with a user-preset path inside the
robot workspace [4]. The real-time control system of hetero-
geneous robots involves broad robot applications to complete
high-burden and precision-requirements operations, such as
handling, packing, and sorting of materials [5]. On account of
the fundamentality and universality, researchers and engineers
have raised various strategies and finished a number of works
in this field [4], [5]. For example, Zhang et al. [4] proposed
a novel virtual plane tactic to analyze the head motion and
generate the solution. The illustrative experiments in [4]
showed that the robot could use head motion to effectively
track itself and exterior targets in real-time. In addition,
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Mohammed and Li [5] developed and investigated a dynamic 
neural network to figure out the kinematic tracking control 
obstacle of Stewart platforms. The proposed dynamic neural 
network in [5] considered the issue in the dual space, can 
effectively disentangle the optimization problem recursively 
in real-time.

Recently, thanks to the benifits touching on parallelization, 
multithreaded architecture, adaptive learning and training abil-
ity, and feasible development via software and hardware, neu-
ral networks, especially adaptive neural networks [6], [7], have 
served as powerful solutions for solving various automation 
problems including the immediate feedback tracking control 
system design of robotic problems [8], [9]. For example, to the 
solve nonholonomic mobile robots (NMRs) trajectory tracking 
problem, the model predictive control (MPC) proposed by 
Li et al. [10] is schemed by amalgamating neural-dynamic 
optimization. For underactuated wheeled inverted pendulum 
(WIP) models control problem, by utilizing indirect control 
trajectory, Yang et al. [11] investigated a new neural network 
based motion control. Although the studies on neural networks 
for the immediate feedback tracking control system design 
of robots are feasible for both research and industry, there 
still exist some fundamental problems that remain unsolved. 
Specifically, some existing neural network based works for 
robot control are supported by the hypothesis that the robot 
parameters are complete and accurate [4], [5]. However, uncer-
tain robot systems due to unexpected impacts, e.g., external 
disturbances and parameter perturbations, usually occur during 
the robot tracking process, and may make the related neural 
network models suffer from an intensive computational burden 
and low tracking accuracy [12].

Recurrent neural network (RNN), as a representative neural 
networks, has been raised and investigated as an effec-
tive alternative to a majority of real-time research prob-
lems [13]. The first RNN is proposed by Hopfield and 
Tank [14] to slove quadratic optimization. After such a seminal 
effort, numerous RNNs have been came up with. Notably, 
zeroing neural network [or termed Zhang neural network 
(ZNN)], as a novel RNN, can handle multidimension prob-
lems [15], [16], [17]. Specifically, this kind of RNN zeroizes 
factors in the error function one by one using a neural-dynamic 
method [18]. So that it is considered a systematic and scientific 
strategy to solve diverse time-varying problems (especially 
time-varying tracking control problems) [19]. For example, 
Benchabane et al. [20] used the discrete Zhang neural network 
(DZNN) to derive out an application of an online algorithm 
to inverse the covariance matrix. To make the ZNN model 
converges in finite time, Xiao [21] designed a novel formula 
to make progress on the research of convergence performance 
of the ZNN. Based on discre the ZNN, Guo et al. [22] recently 
proposed a discrete-time ZNN (DTZNN) model to inverse 
the time-varying matrix and applicated it to the kinematic 
control of a two-link planar robot manipulator. Moreover, 
as a seminal research in the robustness research of ZNN, 
researchers proposed a new integration-enhanced zeroing neu-
ral network (IEZNN) model in [23] to inverse time-varying 
matrix under diffirent kinds of noises of the neural network 
model.

Althouth researchers have made great process on the real-
time control problems by using ZNNs, existing works based
on ZNN based are designed and developed on the basis
of the full and accurate system information of the involved
robots [21], [22]. The system uncertainty remains to be a
difficult and strenuous subject in the field of using the ZNN to
control the robots. Because the system with uncertainty is uni-
versal, this kind of robust ZNN (RZNN) which can control the
uncertain heterogeneous robots in real-time is in urgently need.
At the same time, when the robot uncertainty issue is taken
into account in complex applications, the scale of computation
would become increasingly large and the accuracy of tracking
control would become exceptionally low. Also, considering
the shortcomings of traditional control algorithms, such as
PID algorithms, although they have a simple structure and can
get good control results, but they rely heavily on the actual
engineering experience of engineers. For engineers without
relevant engineering experience, the selection of parameters
would become a big problem (see Remarks). To solve the
problems discussed above, in this paper, we make a more
in-depth study on the real-time tracking control problem of
uncertain heterogeneous robot along the direction of ZNN
research. A new neural network model is designed with
the following characteristics: 1) handling the robot uncer-
tainty to improve the system robustness; 2) converging with
super-exponential rate; 3) tracking with a high accuracy. For
better illustration, Table I lists a comprehensive comparison
between the proposed neural network model and existing
strategies [24], [25], [26]. Combined with the results observed
in the table and our knowledge, it can be concluded that there
is no control algorithm for the real-time tracking of uncertain
robots with the excellent characteristics as the proposed one.

The rest of this paper is described in the following five
chapters. The whole problem about tracking control heteroge-
neous robots in real-time with immediate feedback is described
via Section II. Section III introduces the process of designing
the SEC-ZNN model design, proposal, discretization and the-
oretical analysis. To further verify the proposed model, the
simulation studies including tests and comparisons are carried
out in Section IV via MATLAB. Section V introduces the
result of the simulation test via Coopeliasiom by controlling a
real Stewart platform using the SEC-ZNN. To further demon-
strate the effectiveness of the proposed algorithm, Section VI
shows the experiment based on a real serial robot INN-
FOS with 6 degree-of-freedom (6-DOF). In Section VII, the
research content of this paper is summarized. This paper makes
contributions in the following points:

• This is the first work that simultaneously improves both
the robustness and convergence performance of the ZNN
model to control heterogeneous robots in real-time with
immediate feedback from the case with full and accurate
robot information to the case with uncertain information.
The proposed SEC-ZNN model in this paper fully uti-
lized the feedback information of effector showing robust
tracking and super-exponential convergence performance
simultaneously.

• Theoretical analysis prove the super-exponential conver-
gence properties including lower error bound and faster



TABLE I
ANALYSIS OF VARIOUS NEURAL NETWORK MODELS ABOUT CONTROL RESULTS OF ROBOTS

convergence rate of the proposed SEC-ZNN model when
tracking control the heterogeneous robots in real-time
with the absence of certain robot information. Meanwhile,
a Lyapunov function is designed to prove the stability of
the SEC-ZNN system.

• Circular path-tracking example, comparisons, and exten-
sive tests via both MATLAB and Coppeliasim, in addition
to the applications on serial robot INNFOS sufficiently
illuminate the efficaciousness and preponderance of the
proposed SEC-ZNN for the immediate feedback control
system for heterogeneous robots with uncertainty.

II. PRELIMINARIES AND PROBLEM DESCRIPTIONS

In this section, we firstly introduce the kinematic modeling
and equation about the parallel robot manipulator as the
research preliminaries. Then, the problem about real-time
tracking control together with the convergence issue for the
uncertain parallel robots investigated is described.

A. Preliminaries

Due to the special pyhsical properties, parallel robot manip-
ulators always have the characteristics of high stiffness and
high load, which makes them are widely applied in many
engineering applications. Stewart robot is a typical six degree
of freedom parallel robot, which is driven by six independent
motion joints set in parallel connected the mobile platform and
the fixed platform. The motion of the mobile platform in any
degree of freedom will cause different motions of six motion
joints. Besides, on the top and center of the mobile platform,
there is an effector set to complete the task. That means that we
can make the end-effector fixed on the mobile platform move
along the specific trajectory by controlling the changes of
each moving joint respectively. In this paper, we consider the
tracking control problem of the end-effector in three dimension
about the position information to complete the specific task
without generality. For more details about the mechanical
structure of Stewart platform, the model of such kind of
parallel robot manipulator can be referred to [5]. In addition,
the corresponding specific meanings of the symbols appearing
in this paper are as follows:

fi : coordinates of the connection point of the i th motion leg
on the fixed platform in the global coordinate {O}.

mi : coordinates of the connection point of the i th motion
leg on the mobile platform in the platform coordinate {O2}.

p: coordinates of the origin of the platform coordinate in
the global coordinate, that is, the translational transformation.

Q: rotation matrix of the initial position of the platform
coordinate defined by the Euler angle relative to the global
coordinate.

li : length of the i th motion leg of the parallel robot manip-
ulator with l = [l1, l2, · · · , l6]

T.
l̇ i ; velocity of the i th motion leg of the parallel robot

manipulator with l̇ = [l̇1, l̇2, · · · , l̇6]
T.

ra: actual coordinates of the effector on the mobile platform.
ṙa: actual velocity of the effector on the mobile platform.
The kinematic equation of the Stewart platform at velocity

level can be depicted in the following compact matrix form
on the basis of the robot kinematic modeling [5]:

l̇ = C(l, d)ṙa, (1)

where C(l, d) ∈ Rn×m (with n = 6 for the 6 legs parallel
robot manipulator and m = 3 for the 3D position tracking)
represents the coefficient matrix depended on the position
infromation of the effector and the length of legs that are
relative to the robot system. It can be defined as

C(l, d) =

[
1
l1

d1
1
l2

d2
1
l3

d3
1
l4

d4
1
l5

d5
1
l6

d6

]T

with di ∈ Rm denoting the i th leg parameter vector which is
expressed as

di = p + Qmi − fi ,

where i = 1, 2, · · · , 6 refers to the index of the leg.
Considering a specified task for the effector fixed on the

parallel robot manipulator to complete [that is, a preset path
rd(t) ∈ Rm for the effector fixed on the parallel robot
manipulator to track] in real time t , we have

ϒ(l(t), d(t), t) = ra(t) → rd(t), (2)

where rd(t) is known, bounded, and piecewise continuous and
ϒ(·, ·, ·) : Rn

→ Rm describes a real-time continuous non-
linear forward-kinematics mapping according to the parallel
robot system with complete physical structure information of
the model. By analyzing (2) with taking time t into account,
we have

P(l(t), d(t), t)l̇(t) = ṙa(t) → ṙd(t), (3)

where matrix P(l(t), d(t), t) ∈ Rm×n equals ∂ϒ/∂l, which is
exactly the pseudo-inverse of parallel robot coefficient matrix
C(l(t), d(t), t), and ṙd(t) ∈ Rm is the derivative of time t of
the preset path rd(t).



B. Problem Descriptions

The general real-time tracking control issue of a parallel
robot is defined as given the preset path rd(t) and velocity
ṙd(t) of the parallel robot’s effector, we should calculate the
correct leg length l(t) and appropriate leg velocity l̇(t) in real-
time t . The following formula express the robot kinematics
equation (1) at the speed level in real-time:

l̇(t) = C(l(t), d(t), t)ṙa(t). (4)

By observing and analyzing the real-time kinematics
equation (4), we can draw the conclusion that before the
process of tracking control, we need to know the precise
physical parameters (e.g., the vector of leg length l) and the
robot infromation (e.g., the position vector of leg-platform
connection points f and m) for the calculation of coefficient
matrix C(l(t), d(t), t). The traditional strategy of real-time
tracking control issue mostly depends on the complete prior
information of robot system to calculate the coefficient matrix
C(l(t), d(t), t). However, such complete prior information of
robot system may not be accessibly and accurately attainable
in real time with various unexpected influences. For better
understanding, the concept of the immediate feedback (real-
time tracking) control of uncertain parallel manipulators is
presented as follows.

The uncertain robot systems due to unexpected impacts,
e.g., external disturbances and parameter perturbations, usu-
ally appear for the duration of tracking the robot motion.
In practical application, with the passage of time, the parallel
manipulator will appear fatigue and wear influenced by some
factors, which makes the difference between the information of
the real manipulator and the marked information. Such cases
can be all deemed as the robot with uncertain information.
In this work, the complete robot information is denoted by
C(l(t), d(t), t), where l(t) represents the length of the legs
and d(t) denotes the leg parameter vector. Due to the presence
of uncertainty metioned above within the robot, the informa-
tion l(t) and d(t) related to the outriggers is not accurate.
Therefore, the robot parameters with uncertainty are noted as
C̃(l̃(t), d̃(t), t), where l̃(t) and d̃(t) are approximate outrigger
information. That is, in this work, we use an inaccurate coeffi-
cient matrix C̃(l(t), d(t), t) with assumptions and disturbances
are considered in the real-time kinematics resolution for (4) of
robot system to simulate the problem of parallel manipulator
with uncertainty, which is termed the immediate feedback
control of uncertain heterogeneous robot manipulators.

The computational scale would become intensively large
when the robot uncertainty issue needs to be handled in
complex applications. This means that it will cost additional
time to obtain desirable result with sufficient high accuracy
or not at all when the computational scale becomes larger.
This may lead to troubles in time-critical (or to say, real-time)
applications in practice. Therefore, higher convergence speed
together with ignorable error bound for real-time control of
uncertain robot in complex environment is needed urgently.
To achieve such a request, unlike the existing CZNN with
exponential convergence rate, a novel type of RNN model with
super-exponential convergence rate, termed SEC-ZNN model
is designed in this paper. Such a time-efficient convergence

property will make the proposed SEC-ZNN model much
more applicable and wide spread. For better understanding,
the definition of the super-exponential convergence [33] is
presented as follows.

Definition 1: Suppose that a given vector-valued function
f(t) converges to zero with respect to time t starting from
a random initial state. We say that this function converges to
zero super-exponentially with respective to time t if it satisfies

∥f(t)∥E ≤ α∥f(0)∥E exp(−β exp(t)), ∀t > 0,

where constants α and β exist and β exp(t)/t is termed as the
super-exponential convergence rate of function ∥f(t)∥E.

That means with the same coefficients, the super-
exponential convergent neural network has a better conver-
gence performance compared to the exponential convergent
neural network. Note that solving a tracking control problem
directly relying on the uncertain knowledge of a robot system
would be time-consuming and of low accuracy. Even severely,
because of the absence of prior knowledge of the robot
system in some situations, the results of tracking control
may be influenced deeply by the uncertain robot systems.
Therefore, it is needed for an effective solution to work without
knowing the exact physical parameters. At the same time,
the requirements of faster convergence speed and lower error
bound occur during the immediate feedback tracking control of
uncertain parallel robots. These facts motivate us to investigate
the immediate feedback tracking control of uncertain parallel
robot manipulators by exploiting a novel SEC-ZNN in this
paper.

III. MODEL DESIGN AND THEORETICAL ANALYSES

In this section, we firstly present the design process of the
SEC-ZNN model. Moreover, theoretical analyses rigorously
prove convergence properties including lower error bound and
faster convergence rate of such an SEC-ZNN compared with
CZNN for the immediate feedback tracking control of parallel
robots with uncertainty.

A. SEC-ZNN Model

Firstly, along with the neural dynamic design frame-
work [34], [35], the vector-valued error function (for the
measurement of the gap between the time-varying preset path
and the time-varying actual trajectory of the end-effector) is
described by following formula:

e(t) = rd(t) − ra(t). (5)

Traditionally, utilize the zeroing neurodynamic design for-
mula [34], [35] to zeroize each factor ei (t) (with i =

1, 2, · · · , m) in the vector-valued error function (5):

ė(t) = −γ9(e(t)), (6)

where γ ∈ R+ is a parameter designed for scaling the conver-
gence rate of the tracking process, and operator 9(·) [13] is
the activation-function for array mapping, where each element
is a monotonically increasing odd function. Note that design
parameter γ is a fixed parameter and thus the neural network
model designed by the above formula (6) would have the



exponential convergence rate during the problem solving.
Inspired by (6), to obtain a superior convergence property, i.e.,
the super-exponential convergence rate, during the tracking
process, the following novel design formula can be applied:

ė(t) = −γ exp(t)9(e(t)). (7)

To achieve the super-exponential convergence rate during the
tracking control process, we thus employ (7), which yields

ṙd(t) − ṙa(t) = −γ exp(t)9(rd(t) − ra(t)). (8)

The specific form control equation of the SEC-ZNN model
can be obtained as following by replacing real-time kinematics
equation (4) with above dynamical equation (8):

l̇(t) = C(l(t), d(t), t)
(
ṙd(t)+γ exp(t)9(rd(t)−ra(t))

)
. (9)

Equation (9) is for the immediate feedback tracking control of
uncertain parallel robots of the SEC-ZNN model with super-
exponential convergence property. It can be observed from
equation (9) that the real-time information ra(t) feedback from
the primary task execution collected by the sensors fixed on
the effector makes the control system a closed-loop.

According to formula (9), in order to accurately calculate
the real-time coefficient matrix C(l(t), d(t), t), we need to
know the complete physical parameters and model details of
the robot system in advance. However, due to the existence
of external disturbances, we can only obtain the approxi-
mate matrix C̃(l(t), d(t), t) with the exact coefficient matrix
C(l(t), d(t), t) at time t . However, in the case of incomplete
system information (e.g. inaccurate leg length information due
to wear and tear, measurement errors, etc.), modeling different
robots with traditional methods will consume additional time.
Even in some practical application scenarios, this motion
control method using uncertain system information directly
may cause serious damage to the tracking control process.
Taking the above facts into account, we proposed a novel
strategy, i.e. the zeroing neurodynamic approach, to adapt the
coefficient matrix in real-time t in this paper to solve the robot
uncertainty problem to improve the control system robostness.
Thus, equation (9) without knowing the system information is
written as

˙̂l(t) = Ĉ(t)
(
ṙd(t) + γ exp(t)9(rd(t) − ra(t))

)
, (10)

where ˙̂l(t) is the approximate velocity vector of the leg and
Ĉ(t) ∈ R6×m is the approximate coefficient matrix which is
set to adapt the SEC-ZNN model as follows.

A vector-valued error function is given as

ε(t) =
˙̂l(t) − Ĉ(t)ṙa(t) (11)

with vector ε(t) ∈ Rm . After that, for simplicity, we can
applying the following zeroing neurodynamic design for-
mula [34], [35] for the real-time adaption of approximate
matrix Ĉ(t):

ε̇(t) = −ν9(ε(t)), (12)

where ν ∈ R+ is a design parameter to scale the convergence
rate of the adaption process, we have the dynamical equation

Algorithm 1 SEC-ZNN Model Design
1 Initialize: The initial leg length l̂(0) and initial coefficient matrix

Ĉ(0) of the uncertain parallel robot;
2 Set: The motion task duration Td, the design parameters γ and ν;
3 while t ≤ Td do
4 Input: The preset rd(t) and the velocity ṙd(t);
5 Read: The real-time actual coordinate, velocity of the effector

ra(t), ṙa(t);
6 Calculate: The real-time actual acceleration via

r̈a(t) = (ṙa(t) − ṙa(t − △t))/△t and the real-time actual leg
acceleration vector via ¨̂l(t) = (˙̂l(t) − l̇(t − △t))/△t with △t
being sufficiently

7 Calculate: The real-time control signal via dynamical equation
˙̂l(t) = Ĉ(t)(ṙd(t) + γ exp(t)9(rd(t) − ra(t)));

8 Calculate: The time derivative of real-time approximate matrix
via ˙̂C(t) =

(
¨̂l(t) − Ĉ(t)r̈a(t) + ν(l̇(t) − Ĉ(t)ṙa(t))

)
ṙ†

a(t)
9 Update: The real-time coefficient matrix in the next moment

via Ĉ(t + △t) = Ĉ(t) + △t ˙̂C(t)
small;

10 Update: The real-time leg length in the next moment via
l̂(t + △t) = l̂(t) + △t ˙̂l(t);

11 Output: The robot leg length l̂(t + △t) in next moment;
12 end while

as follow for the adaption of the approximate matrix of the
robot system with uncertainty in time t :

¨̂l(t) −
˙̂C(t)ṙa(t) − Ĉ(t)r̈a(t) = −ν9

(
˙̂l(t)−Ĉ(t)ṙa(t)

)
. (13)

Dynamical equation (13) can be clearly reformed as

˙̂C(t) =
(
¨̂l(t)−Ĉ(t)r̈a(t)+ν9

(
˙̂l(t) − Ĉ(t)ṙa(t)

))
ṙ†

a(t), (14)

where superscript † represents the pseudo-inverse of a vector
or matrix. Equation (14) describes the real-time adaption of
coefficient matrix Ĉ(t) of the SEC-ZNN model. Consequently,
the whole SEC-ZNN model is accomplished as follows:{

˙̂l(t) = Ĉ(t)
(
ṙd(t) + γ exp(t)9(rd(t) − ra(t))

)
,

˙̂C(t) =
(
¨̂l(t) − Ĉ(t)r̈a(t) + ν9

(
˙̂l(t) − Ĉ(t)ṙa(t)

))
ṙ†

a(t).

(15)

where ˙̂l(t) is the control signal of the SEC-ZNN model.
For better comparison and investigation the convergence
properties of SEC-ZNN model (15), the whole CZNN
model [15], [16], [17] reads as follows:{

˙̂l(t) = Ĉ(t)
(
ṙd(t) + γ9(rd(t) − ra(t))

)
,

˙̂C(t) =
(
¨̂l(t) − Ĉ(t)r̈a(t) + ν9

(
˙̂l(t) − Ĉ(t)ṙa(t)

))
ṙ†

a(t).

(16)

For clearer apprehension, the correlative algorithm descrip-
tion about the SEC-ZNN model is presented in Algorithm 1.
It is deserved to be mentioned here that the immediate
feedback control problem solving with super-exponential con-
vergence rate can be achieve by utilizing the formula (7) for
the control equation (9). For purpose of simplicity, we can
still apply the CZNN design formula to adapt the approximate
matrix (14) in real-time of the SEC-ZNN model.



B. Theoretical Analyses

To verify the convergence performance of the proposed
SEC-ZNN model (15) for the immediate feedback tracking
control of uncertain parallel robot manipulators, theoretical
analyses are presented accordingly.

Definition 2 (Convergence of Dynamic Neural Network):
For handling a immediate feedback tracking control
problem (4) of a parallel robot, if the effector trajectory ra(t)
in Cartesian space synthesized by a neural network model
starting from any initial position ra(0) satisfies

limt→∞(rd(t) − ra(t)) = 0,

it could said to be globally convergent to the desired path rd(t)
Theorem 1 (Global Convergence of SEC-ZNN): Consider

the real-time tracking control problem (4) of an uncertain
parallel robot manipulator. If a linear activation-function
processing-array 9(·) is utilized, starting from any initial
position ra(0), the trajectory ra(t) of the end-effector of
closed-loop SEC-ZNN model (15) globally converges to the
preset path rd(t) in the sense of Lyapunov.

Proof: To solve the immediate feedback tracking control
problem (4) of an uncertain parallel robot, the dynamical
equations of the closed-loop SEC-ZNN model (15) can be
expanded into the following two equations:

ė(t) = −γ exp(t)9(e(t)), (17)

ε̇(t) = −ν9(ε(t)), (18)

where e(t) = rd(t) − ra(t) and ε(t) = l̇(t) − Ĉ(t)ṙa(t).
Considering the linear activation-function 9(·) into account
(that is 9(e(t)) = ke(t) and in this paper k is set to be 1),
equations (17) and (18) can be updated as

ė(t) = −γ exp(t)e(t),
ε̇(t) = −νε(t).

A Lyapunov function candidate is defined by the following
equation:

L(t) =
∥e(t)∥2

E

2
+

∥ε(t)∥2
E

2
=

eT(t)e(t)
2

+
εT(t)ε(t)

2
.

We can draw the conclusion that L(t) is positive-definite in
view of L(t) > 0 for e(t) ̸= 0 or ε(t) ̸= 0, and L(t) = 0 for
both e(t) = 0 and ε(t) = 0 only. Again, we can get the
time-derivative of L(t) as follows:

L̇(t) =
dL(t)

dt
= eT(t)

de(t)
dt

+ εT(t)
dε(t)

dt
= −γ exp(t)eT(t)e(t) − νεT(t)ε(t).

Therefore, we judge the conclusion that L̇(t) is
negative-definite for time t ∈ [0,+∞) with design
parameters γ > 0 and ν > 0. Based on the Lyapunov
theory [36], according to Definition 2, the trajectory ra(t)
of the end-effector of the closed-loop SEC-ZNN model (15)
globally converges to the desired path rd(t), i.e., rd(t) − ra(t)
globally converges to 0. The above is the whole content of
proof. □

Theorem 2 (Convergence Bound of the SEC-ZNN): Consi-
der the immediate feedback control problem (4) of an

uncertain parallel robot manipulator. Supposed that under the
condition of using a linear activation-function processing-array
9(·) and starting from any initial states e(t) at time instance
t = 0, the upper bound of residual error ∥eSEC-ZNN(t)∥E
of the SEC-ZNN model (15) is lower than residual error
∥eCZNN(t)∥E of CZNN model (16) at the same instance
t∗

∈ (0, +∞), i.e., ∥eSEC-ZNN(t∗)∥E < ∥eCZNN(t∗)∥E, with the
same parameters.

Proof: According to residual errors of SEC-ZNN
model (15) and CZNN model (16), define two function can-
didates to measure the residual errors respectively as follows:

LSEC-ZNN(t) =
∥eSEC-ZNN(t)∥2

E

2
,

LCZNN(t) =
∥eCZNN(t)∥2

E

2
.

Noticed that both LSEC-ZNN(t) and LCZNN(t) are positive-
definite because of LSEC-ZNN(t) > 0 and LCZNN(t) > 0 for
eSEC-ZNN(t) ̸= 0 and eCZNN(t) ̸= 0, and LSEC-ZNN(t) = 0 and
LCZNN(t) = 0 for both eSEC-ZNN(t) = 0 and eCZNN(t) = 0 only.
Again, we can get the time-derivatives of LSEC-ZNN(t) and
LCZNN(t) respectively as follows:

L̇SEC-ZNN(t) = −γ exp(t)eT
SEC-ZNN(t)eSEC-ZNN(t), (19)

L̇CZNN(t) = −γ eT
CZNN(t)eCZNN(t). (20)

Compared (19) with (20), with the same parameter γ and the
same initial states eSEC-ZNN(tini) = eCZNN(tini) at time tini ∈

[0, +∞), we have

L̇SEC-ZNN(tini) < L̇CZNN(tini). (21)

For the next moment, i.e., t∗
= tini + △t with △t → 0, for

t∗
∈ (0, +∞), we can obtain

LSEC-ZNN(tini+△t)=LSEC-ZNN(tini)+△tL̇SEC-ZNN(tini), (22)

and

LCZNN(tini + △t) = LCZNN(tini) + △tL̇CZNN(tini). (23)

In view of (21), with the same initial states, i.e.,
eSEC-ZNN(tini) = eCZNN(tini) ̸= 0, there is

LSEC-ZNN(tini + △t) < LCZNN(tini + △t).

Therefore, we have the conclusion that

∥eSEC-ZNN(tini + △t)∥E < ∥eSEC-ZNN(tini + △t)∥E, (24)

where t∗
= tini + △t ∈ (0, +∞). Equation (24) indicates that

the upper bound of residual error of the SEC-ZNN model
(15) is lower than that of CZNN model (16) at instance t∗

∈

(0, +∞) with the same parameters. The above is the whole
content of the proof. □

Theorem 3 (Convergence Rate of SEC-ZNN): Consider the
immediate feedback tracking control problem (4) of an uncer-
tain parallel robot. Supposed that under the condition of using
a linear activation-function processing-array 9(·) and starting
from any initial position ra(0), the trajectory ra(t) of the
end-effector of the SEC-ZNN model (15) converges to the
preset path rd(t) with super-exponential convergence rate.



Proof: Supposed using a linear activation-function
processing-array 9(·), the i th dynamical subsystem relative to
error function e(t) in SEC-ZNN model (15) can be presented
as

ėi (t) = −γ exp(t)ei (t), with i = 1, 2, · · · m. (25)

According to the differential equation theory [37], the solution
of (25) is

ei (t) =
ei (0)

exp(−γ )
exp(−γ exp(t)). (26)

The vectorization of equation (26) is expressed as follow

e(t) =
e(0)

exp(−γ )
exp(−γ exp(t)). (27)

Consequently, we have the residue error as

∥e(t)∥E =

√√√√ m∑
i=1

e2
i (0)

exp(−2γ )
exp(−γ exp(t)). (28)

Equation (28) shows that the residue error of SEC-ZNN
model (15) globally converges to 0 with a super-exponential
convergence rate as γ exp(t)/t . Thus, the trajectory ra(t)
of the end-effector of the SEC-ZNN model (15) converges
to the preset path rd(t) super-exponential convergence rate
γ exp(t)/t . The above is the whole content of the proof. □

IV. SIMULATIONS, COMPARISONS AND TESTS

In this section, we conduct simulations embed in the 3D
position tracking control of the Stewart platform, a popular
parallel manipulators, in real time t . Thus, in this paper,
the Stewart platform is used in the form of redundant
manipulator. Note that more details of establishment of
kinematics model of Stewart platform can be referred to [5].
Simulations studies on the real-time tracking control problem
via circular path-tracking example is conducted to show the
effectiveness of the proposed SEC-ZNN model (15). Then,
comparisons with two conventional RNN models, i.e., the
CZNN model as well as the gradient neural network (GNN)
model, are presented to illustrate that the proposed SEC-ZNN
model with super-exponential convergence rate is superior for
the immediate feedback control problem solving under the
condition of complex environments and uncertainty of robot.
Moreover, to further study the convergence property of the
proposed SEC-ZNN model, we carry out several extensive
tests. Without losing generality, we set the duration of the
task as Td = 4 s. In addition, when initialize the model
setting, the length vector and the velocity vector of the leg
are set as l(t) = [1.184, 1.184, 1.184, 1.184, 1.184, 1.184]

T m
and l̇(0) = [0, 0, 0, 0, 0, 0]

T m/s respectively. According
to engineering experience, the initial approximate
coefficient matrix for the real-time adaption is set as
Ĉ(0) = [0.307,−0.438, 0.844; 0.307, 0.438, 0.844; 0.226,

0.485, 0.844; −0.533, 0.046, 0.844; −0.533, −0.046, 0.844;

0.226, −0.485, 0.844]. In the tracking examples, the design
parameters for the control equation and the coefficient matrix
adaption is predesigned to be γ = 10 and ν = 10 respectively.

Fig. 1. The integrated the results when the effector fixed on the Stewart
platform tracking the circular path by the proposed SEC-ZNN model (15).
(a) Robot configuration and its trajectory. (b) Result curves of actual trajectory
and preset path. (c) Result curves of position error. (d) Result curves of
residual error. (e) Result curves of leg length. (f) Result curves of leg velocity.

Remarks: We provide the guidelines of parameter selection
as follows. Firstly, we can set the initial value of approximation
coefficient matrix Ĉ(t) for the adaption according to engi-
neering experience and background knowledge. Note that the
real-time adaptive updating approximate matrix Ĉ(t) can make
the actual effector trajectory converge to the desired path.

Secondly, there are two important parameters for the pro-
posed SEC-ZNN model. Theoretically, any value satisfying
γ > 0 and ν > 0 can be predefined as the parameters γ

and ν for the SEC-ZNN model. In practice, the parameters
γ and ν can be set to an appropriate large value allowed by
the hardware to achieve rapid convergence without the need of
engineering experience [38]. This is more practical value of the
proposed SEC-ZNN for engineers without relevant engineer-
ing experience, with wide applicability and high generality.

A. Illustrative Example

Simulation verifications via circular path-tracking exam-
ple is conducted to show the effectiveness of the proposed
SEC-ZNN model (15) for the immediate feedback control
problem of uncertain parallel robots.

In this example, the experiment is to make the end-effector
of the Stewart platform track a circular path. Figs. 1 shows the
corresponding simulation results of the Stewart platfrom fol-
lowing the circular path generated by the proposed SEC-ZNN
model (15). Specifically, Fig. 1(a) depicts the motion of
the entire parallel robot manipulator in a 3D plane during
the tracking procedure. The effector’s actual trajectory and the
targeted path are both exact circles. Starting from an initial



location, the actual trajectory of the parallel robot manipula-
tor’s effector quickly tracks the planned circular path, as shown 
in Fig. 1(b). After that, the effector’s real trajectory conver-
gences to the desired circular path in a short amount of time. 
The position error of the end-effector e = [eX, eY, eZ]

T (i.e., the 
gap between the anticipated path and the actual trajectory in the 
X-, Y-, and Z-axes) possesses an obvious convergence tendency 
with its steady-state absolute value being less than 3 × 10−4 m, 
as shown in Fig. 1(c) (in the workspace with a diameter of 0.8 
m). Furthermore, during the real-time tracking process, the 
residual error presented in Fig. 1(d) exhibits the super-
exponential convergence property with high speed and 
precision. Such results indicate that path-tracking task of the 
end-effector has been successfully completed. In addition, Fig. 
1(e) and Fig. 1(f) show the profiles of the parallel robot 
manipulator’s corresponding length l and velocity l̇ of the 
motion leg. Throughout the tracking process, all states are 
smooth and stable.

B. Comparisons

To further investigate the tracking performance of the pro-
posed SEC-ZNN model (15), robustness tests and comprehen-
sive comparisons influenced by uncertain system information
are carried out in this subsection. The robustness tests and
comparisons are designed and conducted by using the pro-
posed SEC-ZNN model (15) and two conventional models,
i.e., the CZNN model and the GNN model. We undertake
the tracking process without sacrificing generality by using
an approximate coefficient matrix C̃(l(t), d(t), t) having unex-
pected impacts with assumptions and disturbances, which can
be regarded as the deviation of physical parameters of the robot
system in practical applications. In addition, in robustness
testing, the step size is adjusted to h = 0.8 (with the sampling
period ς set as 0.001 s and the design parameter γ set as 800).

1) Comparison With CZNN Model [15], [16], [17]: Accor-
ding to Zhang et al., the CZNN model is a common
type of RNN that can tackle time-varying issues (including
robotic challenges) efficiently by exploiting time-derivative
information. It’s worth noting that the corresponding CZNN
models created using the fixed-parameter dynamical formula
frequently have exponential convergence. The corresponding
CZNN model is illustrated as (16) for handling the identical
immediate feedback control problem of uncertain parallel
robots, where the parameter γ is designed the same as in
the SEC-ZNN model (15). Other simulation conditions are
also identical to those in Section IV-A. Fig. 2 shows the
comparing findings of CZNN model (16) for the uncertain
parallel manipulator tracking the circular path mentioned
above. In contrast, Fig. 2(a) illustrates that the parallel robot
manipulator’s effector is unable to correctly track the desired
routes (or to say, with a relatively big error) without know-
ing the robot information. The corresponding residual errors
illustrated in Fig. 2(b) shows that they converge with the
exponential property and then with a relatively big (or termed
non-ignorable) error bound within the motion task duration
Td = 4 s. That is, in terms of convergence speed and error
bound, the suggested SEC-ZNN model (15) outperforms the
CZNN model (16).

Fig. 2. The integrated the results when the effector fixed on the Stewart
platform tracking the circular path by CZNN model (16).Synthesized motion
results by CZNN model (16) when the effector of a parallel robot manipulator
tracks circular path. (a) Result curves of actual trajectory and preset path.
(b) Result curves of residual error.

Fig. 3. The integrated the results when the effector fixed on the Stewart
platform tracking the circular path by GNN model (29). (a) Result curves of
actual trajectory and preset path. (b) Result curves of residual error.

2) Comparison With GNN Model [39], [40]: The GNN
model, which is a type of traditional RNN model, has
demonstrated its efficacy in engineering problem solving and
optimization [39], [40]. It is known that the energy function
of GNN model decreases monotonically when the dynamic
system approaches the equilibrium point. The scalar-valued
norm-based energy function according to GNN model for
the immediate feedback tracking control problem of uncertain
parallel robots is defined as follows:

ϵ(t) =
∥rd(t) − ra(t)∥2

2

2
.

Than, we can establish the following connection using the
kinematics equation (4) of the robot system without the certain
robot system information:

∂ϵ

∂l
= −

(
C̃†(l(t), d(t), t)

)T
(rd(t) − ra(t)).

By exploiting the GNN design formula l̇(t) = −ρ ◦ (∂ϵ/∂l)
where ◦ refers to the Hadamard product operator and ρ =

[ρ1, ρ2, · · · , ρn]
T

∈ Rn with ρi denoting the user-defined GNN
parameter, the following continuous-time GNN model can be
described as:

l̇(t) = ρ ◦
(
C̃†(l(t), d(t), t)

)T
(rd(t) − ra(t)). (29)

Comparatively, the corresponding test results synthesized by
the conventional GNN model (29) for the parallel robot
to track the intended path is shown in Fig. 3. We can
draw the same conclusion that the effector of the paral-
lel robot manipulator will not be able to trace the desired
path accurately without the concrete robot system informa-
tion [41], [42], [43], [44], [45]. The corresponding residual
errors illustrate that they converge with the exponential prop-
erty and then with a relatively big error bound within the
motion task duration Td = 4 s, which are also comparatively



Fig. 4. Synthesized residual errors when the effector fixed on the Stewart platform tracking the circular path. (a) Result curves of residual errors by the
proposed SEC-ZNN model (15) and CZNN model (16). (b) Result curves of residual errors by the proposed SEC-ZNN model (15) with different design
parameter γ . (c) Result curves of residual errors by the proposed SEC-ZNN model (15) with randomly generated initial positions.

shown in Fig. 3(b). To put it another way, the proposed
SEC-ZNN model (15) outperforms the traditional GNN model
(29) on the convergence property.

C. Extensive Tests

To learn more about the convergency of the proposed
SEC-ZND model (15), we conducted the extensive tests in
respect of residual error utilizing different synthesized models,
i.e., SEC-ZNN model (15) and CZNN model (16) by setting
different design of parameter γ and starting from different
position ra(0) respectively. Fig. 4 depicts the test findings.
In particular, Fig. 4(a) illustrates that residual errors gener-
ated by distinct neural network models, i.e., the SEC-ZNN
model (15) and the CZNN model (16), preforms differently
on the convergency, i.e., super-exponential and exponential
convergence. In comparison to the residual error synthesized
by the CZNN model (16), the residual error synthesized by
the SEC-ZNN model (15) has a quicker convergence velocity
in the transient state and a smaller error bound in the steady
state, as demonstrated in this figure.

Then, the influence of the design parameter γ selection
on convergence performance is investigated. When illustrated
in Fig. 4(b), the residual errors exhibit a quicker tendency
as the design parameter gamma increases from 5 to 20 by
the step of 5 starting from the same position. That is, the
convergence performance of residual errors of the proposed
SEC-ZNN model (15) can be further improved by raising the
design parameter properly. These graphical conclusions are
also compatible with theoretical results in Theorem 3. In other
words, the proposed SEC-ZNN (15) has a super-exponential
convergence feature, with a γ exp(t)/t convergence rate. Thus,
the suggested SEC-ZNN model (15) achieves achieves optimal
computing speed and tracking accuracy by selecting suitable
values for the design parameter γ .

Besides, we look at how the beginning position ra(0) affects
convergence performance. As shown in Fig. 4(c), the residual
errors of the proposed SEC-ZNN (15) have cosmparable
convergence properties, i.e., similar convergence perfromance
throughout the transient state and similar error bound through-
out the steady state, based on randomly generated beginning
locations. These graphical conclusions are also compatible
with Theorem 1’s theoretical results. The residual errors
synthesized of the proposed SEC-ZNN (15), in other words,
converge to zero globally.

Another kind of important uncertainties, i.e., the external
disturbance which are caused by varying load and unex-
pected impacts, is meaningfully to be investigated [46],
[47], [48], [49], [50]. The white noise η(t) existing in the
process of leg control signal l(t) transmission of the robot
tracing control as the external uncertainty is tested. The
external uncertainty η(t) is a kind of additive white noise
with mean amplitude and covariance as η(t) ∼ η(µ, σ 2) being
µ = 2 × 10−4 and σ = 1. A preliminary exploration of this
external uncertainty problem is considered and investigated
in the proposed SEC-ZNN model. We added white noise to
the robot kinematic model and observed the control results.
From the experimental results in Fig. 8, it can be seen that the
additive white noise η(t) does not bring a large impact during
the process of leg control signal l(t) transmission of the robot
tracing control as the external uncertainty. This shows that the
proposed algorithm has some suppression effect on external
noise as well.

V. APPLICATIONS ON COPPELIASIM

In this section, we use Coppeliasim to carry out the simu-
lation experiment of Stewart platform, while the comtrol part
using SEC-ZNN model (15) will be completed in MATLAB.
Coppeliasim is a new open source robot simulation platform,
which can well simulate the robot movement environment with
rich details. By connecting with MATLAB, it can provide the
most realistic robot simulation process with complex control.
So that we use MATLAB to carry out SEC-ZNN model (15)
control algorithm and use Coppeliasim to do the simulation.
We pick the cicular route to test the performance of the
proposed model on the robot without sacrificing generality. For
better understanding, the Figs. 5 describes the whole workflow
during the simulation. Firstly, we establish the communication
between MATLAB and Coppeliasim. Secondly, MATLAB
will read the data about the Stewart platfrom based on real
drawings in Coppeliasim and generate a simplified model for
further calculation. The real model is presented on the left and
the simplified is on the right. Thirdly, MATLAB will use the
SEC-ZNN model (15) to calculate the control signal using the
data reading from Coppeliasim and return the results of calcu-
lation back. Finally, the Stewart platform in Coppeliasim will
move according to control signals and visualize the movement
process.



Fig. 5. Described the whole process of application tests via MATLAB and Coppeliasim.

Fig. 6. Described the main communicate process of application tests between
Coppeliasim and MATLAB.

A. Coppeliasim Communicate

CoppeliaSim is a robot simulator that uses a distributed
control architecture and a common development environment.
Embedded scripts, remote API clients, and other methods may
be used to manipulate each object or model independently.
This makes CoppeliaSim very versatile and ideal for multi-
robot applications. MATLAB is a widely used advanced
technical computing language and interactive environment for
algorithm creation and execution. According to their respec-
tive advantages, the real robot automation control process is
simulated by combining them together. The details of the
communication between MATLAB and Coppeliasim is pre-
sented in the Figs. 6. There are four modes of communication
we can choose from in Coppeliasim. In this experiment, the
main mode we used is synchronous operation with blocking
function calls and data streaming as an aid. That means, the
data transfer between MATLAB and Coppeliasim is real-time
so that the SEC-ZNN model (15) can use these data to
further computation. As descriped in the Figs. 6, after estab-
lished the connection between MATLAB and Coppeliasim
and start the simulation, we use blocking function calls to
get the initial parameters about the Stewart platform. Then a
simplified model is established according to the data return
from Coppeliasim. After that, MATLAB will give the first
GetJointConfig signal to start the data streaming. At this
time, the main data communicate and the computation mode
in MATLAB is activated. Every time MATLAB give the
SynchronousTrigger to Coppeliasim, the latter will perform

Fig. 7. The integrated the results when the effector fixed on the Stewart
platform tracking the circular path by the proposed SEC-ZNN model (15).
(a) Robot configuration and its trajectory. (b) Result curves of actual trajectory
and preset path. (c) Result curves of position error. (d) Result curves of
residual error. (e) Result curves of leg control error. (f) Result curves of
leg velocity.

Fig. 8. The integrated the results when the effector fixed on the Stewart
platform tracking the circular path by SEC-ZNN model with additive white
noise. (a) Result curves of actual trajectory and preset path. (b) Result curves
of residual error.

a simulation and send real-time data to the former and the
former will use the SEC-ZNN (15) to compute the control
signal for the next simulation and transmit the results back.



Fig. 9. Described the whole process of application tests on Coppeliasim.

B. Results and Discussions

To test the practicability and applicability of the algorithm,
we establish a robot based on a drawing of an actual
Stewart platform and use MATLAB to apply the SEC-ZNN
model (15) to control it. Considering the workspace of the
robot, we set the specified path to a circle with a radius
of 0.5m. Without losing generality, we set the duration of the
task as Td = 2 s. In addition, the motion control of the Stewart
platfrom begins at rest, so that the initial velocity of the
motion leg is set as l̇(0) = [0, 0, 0, 0, 0, 0]

T m/s. According
to engineering experience, a rough initial value of the
approximate coefficient matrix of the real-time adaption can be
predefined as Ĉ(0) = [0.52099760, 0.01772071, 0.85337417;

0.11722871, 0.49529754, 0.86077742; −0.35778270, 0.43259
082, 0.82756070; −0.20123115, 0.01002559, 0.97949247;

0.03785805, −0.40073872, 0.91540987; 0.16261162, −0.615
14496, 0.77146233]. In the tracking examples, the design
parameters for the control equation and the coefficient matrix
adaption is predesigned to be γ = 8 and ν = 10 respectively.

Figs. 7 shows the corresponding simulation results of the
Stewart platfrom following the circular path generated by the
proposed SEC-ZNN model (15). Specifically, Fig. 7(a) depicts
the motion of the entire parallel robot manipulator in a 3D
plane during the tracking procedure. The effector’s actual
trajectory and the targeted path are both exact circles. Starting
from an initial location, the actual trajectory of the parallel
robot manipulator’s effector quickly tracks the planned circular
path, as detailedly shown in Fig. 7(b). After that, the effector’s
real trajectory convergences to the desired circular path in a
short amount of time. The position error of the end-effector
e = [eX, eY, eZ]

T (i.e., the gap between the anticipated path
and the actual trajectory in the X-, Y-, and Z-axes) floating
around zero, as shown in Fig. 7(c) (in the workspace with a
diameter of 1.0 m). Furthermore, during the real-time tracking
process, the residual error presented in Fig. 7(d) exhibits
the super-exponential convergence property with high speed
and precision. Such results indicate that path-tracking task of
the end-effector has been successfully completed. In addition,
Fig. 7(e) and Fig. 1(f) show the profiles of the parallel robot

Fig. 10. Experiment environment with serial robot manipulator INNFOS.

manipulator’s corresponding leg’s control error and velocity l̇.
Throughout the tracking process, although there are some
shocks due to the PID controller, all states are smooth and
stableon the whole.

To show the result obviously, in Fig. 9 we captured some
sence to illustrate the process of the experiment. The figure
shows the applicability of SEC-ZNN (15) in real robot, and
it can be seen that the whole motion trajectory is smooth and
convergent. Then, we can conclude that the proposed SEC-
ZNN (15) is effective and robust on the immediate feedback
control problem of the real parallel robots.

VI. APPLICATIONS ON ROBOT MANIPULATOR INNFOS

In this section, we use a serial robot manipulator INNFOS
with 6 degree-of-freedom (6)-DOF) in forms of both real robot
and computer virtual 3D module to carry out the proposed
SEC-ZNN.

A. Experiment Environment

INNFOS Gluon is a lightweight and low cost robot manip-
ulator that can perform more complex movements. INNFOS
has created a new actuator by highly integrating servo motors,
drivers, encoders and reducers, and built the INNFOS Gluon
series robotic arm with it. The serial robot manipulator INN-
FOS has a wide range of work, and it can be equipped with



Fig. 11. Whole tracking process of applications in forms of both real robot and computer virtual 3D module with 6-DOF serial robot manipulator INNFOS
by employing the proposed SEC-ZNN.

different auxiliary tools at the end, such as 3D printing heads,
laser engraving heads, suction cups, clamps, jaws, welding
heads, etc. By changing the auxiliary tools at the end, the
INNFOS can perform a variety of functions. INNFOS is a
multi-functional arm, which can be equipped with different
auxiliary tools, which also has the problem of uncertainty
appearing in the Jacobian matrix calculation [51], [52], [53].
In this work, we use Innfos Gluon to further validate the
applicability of the proposed SEC-ZNN algorithm for physical
robots. Fig. 10 shows our experimental environment, which
mainly consists of a Windows laptop, a controller and a serial
robot Innfos Gluon.

B. Results and Discussions

To test the practicability and applicability of the proposed
SEC-ZNN, a serial robot manipulator Innfos with 6 degree-
of-freedom (6)-DOF) is used and applied the SEC-ZNN
model (15) to control it. Considering the workspace of the
robot, we set the specified path to a circle with a radius of
0.08m. In the tracking examples, the design parameters for
the control equation and the coefficient matrix adaption is
predesigned to be γ = 100 and ν = 100 respectively.

Figs. 11 shows the whole process of experiment (top row)
and relative simulation (bottom row) 3D circle tracking con-
trol. The diagram in the first row shows the motion process of
the physical robot manipulator INNFOS, and the diagram in
the second row shows the motion process of the corresponding
robot manipulator INNFOS 3D module via virtual simulation
in computer. The two correspond one to another, and the
results of the control of path tracking are described completely.
It can be seen from the plots that the proposed SEC-ZNN
algorithm is accurate and effective in controlling serial robot
Innfos with 6 degree-of-freedom (6)-DOF), which proves the
applicability of the proposed algorithm to the physical robot.

VII. CONCLUSION

Through further research and exploration in the direction of
ZNN, a new SEC-ZNN (15) has been proposed for real-time
tracking control problems solving of uncertain parallel robots
to handle the robot uncertainty as well as to improve the
convergence performance. The proposed SEC-ZNN (15) has

emphasized the full exploitation of the feedback information
from the end-effector, and has shown a robust tracking and
super-exponential convergence performance even with uncer-
tain robot information. The super-exponential convergence
properties including error bound and convergence rate have
been rigorously proved by theoretical analyses. Moreover,
circular path-tracking example, comparison and tests via MAT-
LAB and Coppeliasim have illuminated the efficaciousness
and preponderance of the SEC-ZNN model (15) for the
immediate feedback control problem for uncertain parallel
robots. Finally, the applications on the real-world serial robot
manipulator INNFOS have further verified the physical realiz-
ability for heterogeneous robots in engineering practice. As a
final note, this is the first work in the field of ZNN that is able
to address the immediate feedback tracking control problem of
uncertain heterogeneous robots with theoretically guaranteed
super-exponential convergence performance.
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