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Abstract

In a recent paper [Hassager, J. Rheol. 64, 545–550 (2020)], Hassager performed an analysis of the start up of stress-controlled oscillatory
flow based on the general theory of linear viscoelasticity. The analysis provided a theoretical basis for exploring the establishment of a steady
strain offset that is inherent to stress controlled oscillatory rheometric protocols. However, the analysis neglected the impact of instrument
inertia on the establishment of the steady periodic response. The inclusion of the inertia term in the framework is important since it (i) gives
rise to inertio-elastic ringing and (ii) introduces an additional phase shift in the periodic part of the response. Herein, we modify the
expressions to include an appropriate inertial contribution and demonstrate that the presence of the additional terms can have a substantial
impact on the time scale required to attain the steady state periodic response. The analysis is then applied to an aqueous solution of wormlike
micelles. © 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1122/8.0000665

I. INTRODUCTION

One of the most common experimental protocols for
probing the linear viscoelastic properties of complex fluids
involves the use of small amplitude oscillatory shear flows to
determine the storage and loss moduli [G0(ω) and G00(ω),
respectively], as a function of angular frequency, ω. Such
experiments can be conducted under controlled stress or con-
trolled strain conditions. Historically, the choice of which
approach to employ was determined by the type of rheometer
available—those with separate motor and transducer (SMT,
also known as the dual head, i.e., DH rheometers) being
more suited to strain controlled experiments while those with
a combined motor and transducer (CMT, also known as the
single head, i.e., SH rheometers) were more suited to stress
controlled experiments. Modern rheometers have sophisti-
cated control schemes, and it is often possible to perform
either type of experiment on either type of instrument. Some
materials, especially those that display evolving rheological
properties are often more conveniently studied using stress
controlled experiments since changes in their linear visco-
elastic limit can, to some extent, be naturally accounted for
during the experiment. Under strain controlled conditions a
small amplitude oscillatory shear waveform with amplitude
γ0 [which is, by definition, selected such that both G0(ω) and
G00(ω) are independent of strain amplitude, i.e., γ0 is within
the linear viscoelastic region (the LVR) of the material] is
applied to the material such that γ(t) ¼ γ0sin(ωt), which, by

definition, oscillates around the zero strain condition. The
stress response to this waveform is also sinusoidal (provided
that the strain amplitude is within the LVR) and takes the
form

σ(t) ¼ γ0 G0sin(ωt)þ G00cos(ωt)ð Þ, (1)

thus allowing the parameters G0(ω) and G00(ω) to be deter-
mined via cross correlation or Fourier analysis.

Under stress controlled conditions (which is the focus of
the present work), the initial strain response to the applied
oscillatory stress consists of a periodic response, a transient
response, and a strain offset [1]. In a standard stress con-
trolled small amplitude oscillatory shear (SAOS) experiment,
the periodic response is isolated by (i) introducing a “condi-
tioning time” during which the transient part of the response
decays to a negligible magnitude and which is omitted from
data analysis and (ii) removing the strain offset as part of the
post-processing algorithms, either by Fourier transform
(where it would appear as the DC offset term) or by baseline
subtraction where cross correlation based algorithms are
used. Motivated by the recent work of Lee et al. [2] who
demonstrated the utility of the strain offset in probing the
zero shear viscosity, Hassager [1] derived expressions for the
offset, transient and periodic contributions to the total strain
for the generalized Maxwell fluid. However, this analysis
neglected the impact of instrument inertia on the strain wave-
forms. The impact of instrument inertia on stress controlled
experiments is perhaps most clearly seen in the context of a
creep experiment where the coupling of the material’s elastic-
ity and the rheometer inertia (i.e., the total system inertia
inclusive of the geometry inertia, which is often calibrated
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separately) gives rise to inertio-elastic ringing at short times,
i.e., free oscillations that appear superimposed upon the
expected creep curve. Useful information can be extracted
from such creep-ringing effects [3–7] but, in the context of
an oscillatory shear experiment performed on a combined
motor transducer (CMT) type rheometer, careful correction
of instrument inertia artifacts is required [7,8].

Expressions for the evolution of the strain following the
sudden imposition of steady stress (i.e., a creep experiment)
in the presence of instrument inertia for several models can
be found in the literature [3–6,9,10]. Baravian et al. [9] con-
sidered the onset of stress controlled flows (both creep and
forced oscillation) for the Jeffrey’s fluid (which can be repre-
sented as a Voigt element in series with a viscous “dashpot”)
in the presence of instrument inertia and found that, for both
flows, the inertial term gave rise to a transient contribution to
the total strain taking the form of a damped oscillation decay-
ing with e�t=λ2 , where λ2 denotes the retardation time of the
Voigt element [9]. The analysis of Baravian et al. [9] for
forced (stress controlled) oscillations results in an expression
for the strain evolution, γ(t), which only contains transient
and periodic contributions; the offset, which is often
observed in experimental data [2], and which appears in
Hassager’s analysis of the generalized Maxwell fluid [1], is
absent. Lauger and Stettin also considered the impact of both
sample and fluid inertia on steady state oscillatory shear in
rotational rheometers, demonstrating the dramatic influence
these phenomena can have on the experimental data [11].

In the present work, we extend the analysis of Hassager
[1] to include the effects of instrument inertia and examine
its effect on the evolution of the strain waveform as it
approaches steady state conditions in stress controlled oscilla-
tory experiments. Finally, we demonstrate the use of the anal-
ysis in a wormlike micellular system of cetylpyridinium
chloride (CPyCl) and sodium salicylate (NaSal).

II. MODELING

A. Start up of oscillatory shear

Unlike dual head (DH) rheometers, in which the torque
sensing element of the geometry is separated from that which
is driven by the motor, torque sensing in single head (SH)
rheometers occurs at the moving element of the geometry
(which is undergoing continuous acceleration in oscillatory
flows). Hence, both the sample and instrument inertia con-
tribute to the total stress recorded by the instrument. Sample
inertia is deemed to be negligible in the limit of gap loading
[12], in which a constant velocity gradient is established
within the rheometer gap, which is often assumed in rheo-
metric experiments. The assumption of “gap loading” can be
confirmed by ensuring that the rheometer gap h is much
smaller than the wavelength of the propagating wave (l) with
h , l=10 usually being considered acceptable. The reader is
referred to Ewoldt et al. [7] (and references therein) and
Lauger and Stennin (2016) [11] for further information con-
cerning sample inertia. In the present study, we restrict atten-
tion to the gap loading condition for which the total stress
(σ t) can be expressed as the sum of the sample stress, σs and

the inertial stress as follows [13]:

σ t ¼ σs þ I€γ, (2)

where I is the calibrated system inertia constant (with units
Pa s2) and €γ denotes the second derivative of the strain (with
respect to time, t).

Noting that the Boltzmann superposition principle
expresses the sample stress, σs, as a convolution of the stress
relaxation modulus G(t) and the deformation history _γ,

σs ¼
ðt
�1

G(t � t0) _γ(t0) dt0, (3)

where the integral is performed over all previous times t0, we
can write

σ t ¼
ðt
�1

G(t � t0) _γ(t0) dt0 þ I€γ: (4)

Or, equivalently, we can express Eq. (4) in Laplace space
using the following transformations (where s denotes the
independent variable in Laplace space):

x(s) ¼
ð1
0

e�stσ t(t) dt, (5)

g(s) ¼
ð1
0

e�stG(t) dt, (6)

y(s) ¼
ð1
0

e�stγ(t) dt, (7)

_y(s) ¼ sy(s), (8)

€y(s) ¼ s2y(s), (9)

as

y(s) ¼ 1
s

x(s)
(g(s)þ Is)

: (10)

Note that Eqs. (8) and (9) make use of the initial condi-
tions γ(0) ¼ 0 and _γ(0) ¼ 0.

For a sinusoidal applied stress of amplitude σ0 and fre-
quency ω, which is initiated at time zero, we can write

σ t(t) ¼ σ0H(t)sin(ωt þ ψ), (11)

where H(t) denotes a Heaviside step function and ψ is the
initial phase of the perturbation waveform (ψ ¼ 0 for a sine
perturbation and ψ ¼ π=2 for a cosine perturbation). We
retain ψ for completeness but will later restrict our attention
to the case of ψ ¼ 0. Hence, via transformation (5), we can
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write

x(s) ¼ σ0

s2 þ ω2
(ω cosψ þ s sinψ), (12)

which, when substituted into Eq. (10), leads to the following
expressions for y(s):

y(s) ¼ σ0(ω cosψ þ s sinψ)
s(g(s)þ Is)(s2 þ ω2)

: (13)

The expression for the evolution of γ(t) following initia-
tion of the sinusoidal driving stress can hence be determined
via the inverse Laplace transform of Eq. (13). The inverse
Laplace transform may be obtained by considering the poles
of Eq. (13). The expression for γ(t) will contain three compo-
nents, (i) a strain offset, γoff , associated with the pole at
s ¼ 0; (ii) a periodic response, γp(t), associated with the pole
at s ¼ iω; and (iii) a transient component, γ t(t), associated
with the zeros of the function g(s)þ Is. We now treat each
component in turn.

First, the contribution to γ(t) from the pole at s ¼ 0 can
be determined by noting that g(0) ¼ η0 (where η0 denotes
the zero shear viscosity) and applying the final value
theorem [14],

lim
t!1 γ(t) ¼ lim

s!0
sy(s) (14)

such that

γoff ¼
σ0cos(ψ)

η0ω
, (15)

which is the same as the expression for γoff derived by
Hassager for the inertialess condition, confirming that the
strain offset is unaffected by the presence of instrument
inertia.

We now consider the periodic contribution to the signal
(s ¼ iω) by evaluating f (s) ¼ (ω2 þ s2)y(s) at the point s ¼ iω,

f (iω) ¼ σ0(ω cosψ þ iω sinψ)
iω(g(s)þ Iiω)

¼ σ0ω( cosψ þ i sinψ)
iωg(iω)� Iω2

:

(16)

Noting that the complex modulus G*(ω) is defined as

G*(ω) ¼ iω

ð1
0
G(t) e�iωt dt ¼ iωg(iω), (17)

we can write Eq. (16) as

f (iω) ¼ σ0ω( cosψ þ i sinψ)
G*(ω)� Iω2

: (18)

We can resolve G*(ω) into its real and imaginary parts
G0(ω) and G00(ω), the well-known storage and loss moduli,

respectively, to obtain

f (iω) ¼ σ0ω( cosψ þ i sinψ)
(G0(ω)� Iω2)þ iG00(ω)

: (19)

Multiplying top and bottom by the complex conjugate of
the denominator, we arrive at expressions for the real and
imaginary parts of f as follows:

fr ¼ σ0ω((G0 � Iω2) cosψ þ G00 sinψ)

(G0 � Iω2)2 þ G002 , (20)

fi ¼ σ0ω((G0 � Iω2) sinψ � G00 cosψ)

(G0 � Iω2)2 þ G002 : (21)

In Eqs. (20) and (21), we have dropped the notation G0(ω)
in favor of the simpler G0, however, G0(ω) is implied.

Hence, the contribution from the poles (s ¼ iω) can be
expressed as

γp(t) ¼
σ0 G

0 � Iω2
� �

sin (ψ þ ωt)� G
00
cos (ψ þ ωt)

� �
G0 � Iω2ð Þ2þG002

:

(22)

Noting that while the complex compliance and complex
moduli are related through the relation J* ¼ 1=G*, their real
and imaginary components are related through the expres-
sions [15]

J 0 ¼ G0

G02 þ G002 (23)

and

J 00 ¼ G00

G02 þ G002 : (24)

We see that for the inertia-less condition (I ¼ 0),
Eqs. (20) and (21) reduce to Eqs. (13) and (14) of Hassager’s
analysis [1], i.e.,

fr ¼ σ0ω(J
0 cosψ þ J 00 sinψ), (25)

fi ¼ σ0ω(J
0 sinψ � J 00 cosψ): (26)

We now turn our attention to the poles associated with the
roots of the term g(s)þ Is, which appears in the denominator
of Eq. (13). For the inertialess case, the function g(s) has sin-
gularities associated with each relaxation time τ i, (at s ¼ � 1

τ i
)

with one root [i.e., a pole of y(s) ] intermediate between these
singularities, which corresponds to the retardation times λj of
the multimode spectrum [1] (occurring at s ¼ � 1

λi
).

However, in the presence of inertia, for the two mode
Maxwell model, we will find that the single root is replaced
by three (potentially complex) roots, which we denote ρk,
where k ¼ 1, 2, 3. As for the inertia-less case, the numerical
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values of these (potentially complex valued) roots define the
timescale and nature of the transient response of the system
(complex conjugate roots giving rise to inertio-elastic
ringing). To determine the values of ρk, we begin by express-
ing the function g(s)þ Is as

η1
1þ sτ1

þ η2
1þ sτ2

þ Is, (27)

which we can equate to zero and re-write as

(η1)(1þ sτ2)þ (η2)(1þ sτ1)þ Is(1þ sτ2)(1þ sτ1) ¼ 0 :

(28)

Expanding Eq. (28), we find a 3rd order polynomial
(as3 þ bs2 þ csþ d ¼ 0) with coefficients

a ¼ Iτ1τ2,
b ¼ I(τ1 þ τ2),

c ¼ τ1η2 þ τ2η1 þ I,
d ¼ η1 þ η2,

(29)

the roots of which can easily be found numerically. In Fig. 1,
the behavior of the functions g(s) and g(s)þ Is between the
singularities are shown graphically (in which the two mode
Maxwell model has been parameterized such that the func-
tion g(s)þ Is has three real roots, for the ease of
presentation).

Having found the roots of the function p(s) ¼ g(s)þ Is,
which appears in the denominator of (13), we now expand
p(s) around the root to give

p(s) ¼ (s� ρk)p
0(ρk), (30)

where

p0(ρk) ¼ I �
X
i

ηiτ i
(1þ ρkτ i)

2 (31)

and hence, the contribution to y(s) corresponding to the three
poles can be determined by taking the sum of the residuals
of y(s)exp(st) evaluated at each pole,

yt(t) ¼
X
k

σ0 ω cosfþ ρk sinfð Þexp(ρkt)
ρk I �P

i
ηiτ i

(1þρkτ i)
2

� �
ρ2k þ ω2
� � : (32)

The strain profile can then be expressed as the sum of the
offset, transient, and periodic parts,

γ(t) ¼ γoff þ γ t(t)þ γp(t): (33)

B. Frequency dependency

Figures 2–4 show normalized strain profiles [normalized
by the peak periodic strain, σ0=G*(ω)] for the start-up of
stress controlled oscillatory shear in the presence and
absence of inertia for three frequency ranges denoted as

low, intermediate, and high, respectively. The designation
of a frequency as low, intermediate, or high is made based
on the transient part of the strain profile. Frequencies at
which the transient is negligible may be considered “low
frequency,” frequencies at which there is an observable
transient that decays to negligible magnitude within a
single period of the applied oscillation to be “mid-
frequency,” and frequencies for which the transient
response persists beyond a single period to be “high fre-
quency” waveforms. We also compute a viscosity
weighted average relaxation time (�τ ¼ [η1τ1 þ η2τ2]=η0)
and use this to define an appropriate Deborah number
(De ¼ �τω). In terms of this Deborah number, the high fre-
quency range corresponds approximately to frequencies for
which De . 10 while the low frequency range corresponds
approximately to De , 1.

It is also interesting to note that the amplitude of the peri-
odic signal decreases in the high frequency range since most
of the applied torque is used to accelerate the geometry/
instrument; furthermore, a resonant frequency is observed as
noted by several authors [9,16] (see Fig. 5). In Figs. 2–4, a
spectrum with τ1 ¼ 0:01 s, τ2 ¼ 1:0 s, η1 ¼ 1:0 Pa s,
η2 ¼ 10:0 Pa s has been employed with I ¼ 0:1 Pa s2. For
this spectrum, the function p has one real and two complex
conjugate roots leading to a damped oscillatory transient
response.

C. Short time expansion and the zero frequency
case

Immediately following the start-up of the stress controlled
oscillatory shear, the system response will be dominated by
the inertial characteristics of the instrument as discussed by
Ewoldt et al. [4,7]. Consequently, Eq. (2) reduces to

σ t ¼ I€γ: (34)

Introducing the oscillatory driving stress as σ t(t) ¼ σ0sin(ωt)
and integrating results in the following expression for the initial
response of the system to the onset of stress controlled oscilla-
tions,

γ(t) ¼ σ0

ω2I
[ωt � sin(ωt)], (35)

while in the zero frequency case (i.e., a creep experiment),
where σ(t) ¼ σ0 for t . 0, integration of Eq. (34) yields a
quadratic response as observed by Ewoldt et al. [4,7],

γ(t) ¼ 1
2
σ0

I
t2: (36)

However, Eq. (33) contains the full solution for initiation of
a creep style experiment as the zero frequency case with
ψ ¼ π=2. Noting that the terminal behavior of G0 and G00 for
a two mode Maxwell model as ω ! 0 can be expressed as
η1τ1 þ η2τ2ð Þω2 and η1 þ η2ð Þω, respectively, we find that
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FIG. 1. (a) Comparison of the functions g(s) and g(s)þ Is [Eq. (30)] for a two mode Maxwell model with parameters σ0 ¼ 1 Pa, τ1 ¼ 0:011 s, τ2 ¼ 0:1 s,
η1 ¼ 10 Pa s, η2 ¼ 1 Pa s, and I ¼ 0:5 Pa s2, [�τ ¼ 0:019 s] for which the dynamic moduli are shown in (b) (these parameters were chosen such that the charac-
teristic polynomial of g(s)þ Is has three real roots). (c) shows the same data as (a) but the axis has been rescaled to show the behavior of the functions g(s) and
p(s)þ Is away from their singularities, the roots of each function are shown as filled symbols. (d) and (e) show γ(t) in the presence and absence of inertia for
ω ¼ 40 rad/s [De ¼ 0:76], respectively, with (thick) red denoting the total strain, (thin) solid black the periodic component, (dotted) blue the transient compo-
nent, and (dashed) black the strain offset component. The symbol T denotes the period of the oscillation (2π=ω).
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the limit of Eq. (33) as ω ! 0 is (see the Appendix)

γ(t) ¼ σ0
X � I

η20
þ t

η0
þ
X
k

exp(ρkt)

ρ2k I �P
i

ηiτ i
(1þρkτ i)

2

� �
2
4

3
5, (37)

where X ¼ η1τ1 þ η2τ2 and η0 ¼ η1 þ η2. Equation (37) is
plotted in Fig. 6 along with the inertialess case [1]. From
Fig. 6, it is clear that Eq. (37) includes (i) inertio-elastic
ringing and (ii) an initial quadratic dependence on time asso-
ciated with the acceleration of the moving geometry from
rest [see Eq. (36)].

D. Generalized Maxwell model

If we consider the function g(s) for a multimode Maxwell
model, we find that there are singularities associated with
each τ i between which the function crosses zero only once at
s ¼ 1=λj, where λj denotes n� 1 retardation times. However,
in the presence of inertia, we must consider the function
g(s)þ Is. The presence of the additional term (þIs) modifies
the roots such that they no longer correspond to the retarda-
tion times of the generalized Maxwell model; instead, a
triplet of roots is observed, two of which may form a
complex conjugate pair (thus giving rise to inertio-elastic
ringing). Each pair of relaxation times [τ i, τ iþ1] can be
treated independently when determining the transient
response with the discriminant of the cubic equation being
used to determine the nature of the roots in the region
�1=τ i � s � �1=τ iþ1. Consequently, for a multimode
system, we can write γ(t) as

γ(t) ¼ γoff þ γ t(t)þ γp(t), (38)

where

γoff ¼
σ0 cosf
ωη0

, (39)

γp(t)¼
σ0 G

0 � Iω2
� �

sin(ψþωt)�G
00
cos(ψþωt)

� �
G0 � Iω2ð Þ2þG002

, (40)

where

G
0
(ω) ¼

X
i

ηiτ
2
i ω

2

1þ τ2i ω
2
, (41)

G
00
(ω) ¼

X
i

ηiτ iω

1þ τ2i ω
2
, (42)

and

yt(t) ¼
XN�1

i¼1

X
k

σ0 ω cosfþ ρi,k sinf
� �

exp(ρi,kt)

ρi,k I � ηiτ i
(1þρi,kτ i)

2 � ηiþ1τ iþ1

(1þρi,kτ iþ1)2

� �
ρ2i,k þ ω2

� � :

(43)

In Eq. (43), ρi,k refers to the kth root of as3 þ bs2 þ cs
þd ¼ 0 for the pair of modes appearing at [τ i, τ iþ1]. There
are three roots (and hence, k ¼ 1, 2, 3) if the discriminant of
this polynomial (i.e., Δ ¼ 18abcd � 4b3d þ b2c2 � 4ac3

�27a2d2) for the pair of modes is positive (three real roots)
or negative (one real and two complex conjugate roots). If
the determinant evaluates to 0 the polynomial has a repeated
root; a single repeated root if 3ac ¼ b2 resulting in k ¼ 1,
otherwise, there are two roots and k ¼ 1, 2. It is interesting
to note that if I ¼ 0 then a ¼ b ¼ 0 and the conditions for a
single repeated root are satisfied. Hence, the roots of the
polynomial return to the retardation times of the model as
per Hassager’s analysis [1].

E. Newtonian solvent

The inclusion of a Newtonian solvent (with viscosity ηs)
such that the sample stress is expressed as

σsample ¼
ðt
�1

G(t � t0) _γ(t0) dt0 þ I€γ þ ηs _γ (44)

FIG. 2. Low frequency (ω ¼ 0:1 rad/s) response of a two mode Maxwell model (τ1 ¼ 0:01 s, τ2 ¼ 1:0 s, η1 ¼ 1:0 Pa s, η2 ¼ 10:0 Pa s, I ¼ 0:1 Pa s2,
[�τ ¼ 0:91 s]) in the presence of instrument inertia (a) and in the inertialess [1] case (b). In both subfigures, the (thick) red line shows the complete solution, the
dashed black line shows the offset (γoff ), the (thin) black line shows the steady state periodic response (γp), and the (dotted) blue line shows the transient
response (γ t). At low frequencies, including inertia in the model has negligible effect as the transient response is insignificant in comparison to the periodic and
offset terms. The symbol T denotes the period of the oscillation (2π=ω).
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modifies Eq. (10) to

y(s) ¼ 1
s

x(s)
(g(s)þ Isþ ηs)

, (45)

the solution of which also consists of offset, periodic, and
transient components. Using a similar procedure to that
reported above, the offset component of the strain profile can

be expressed as

γoff (t) ¼
σ0cos(ψ)
(η0 þ ηs)ω

, (46)

while the periodic part can be expressed as

γp(t)¼
σ0 G

02� Iω2
� �

sin(ψþωt)� (G
00 þηsω)cos(ψþωt)

� �
G0 � Iω2ð Þ2þ(G00 þηsω)

2 :

(47)

FIG. 3. Intermediate frequency (1:0 rad/s � ω � 10 rad/s) response of a two mode Maxwell model (τ1 ¼ 0:01 s, τ2 ¼ 1:0 s, η1 ¼ 1:0 Pa s, η2 ¼ 10:0 Pa s,
I ¼ 0:1 Pa s2, [�τ ¼ 0:91 s]) in the presence of instrument inertia (a)–(c) and in the inertialess [1] case (d)–(f ). In both subfigures, the (thick) red line shows the
complete solution, the dashed black line shows the offset (γoff ), the (thin) black line shows the steady state periodic response (γp), and the (dotted) blue line
shows the transient response (γ t). As frequency increases, the effect of the transient terms becomes more important in the initial response. At these frequencies,
the inclusion of inertia introduces a damped oscillatory behavior to the transient response, which decays within the period of one oscillation. The symbol T
denotes the period of the oscillation (2π=ω).
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FIG. 4. High frequency (ω . 10 rad/s) response of a two mode Maxwell model (τ1 ¼ 0:01 s, τ2 ¼ 1:0 s, η1 ¼ 1:0 Pa s, η2 ¼ 10:0 Pa s, I ¼ 0:1 Pa s2,
[�τ ¼ 0:91 s]) in the presence of instrument inertia [(a) and (b)] and in the inertialess [1] case [(c) and (d)]. In both subfigures, the (thick) red line shows the
complete solution, the dashed black line shows the offset (γoff ), the (thin) black line shows the steady state periodic response (γp), and the (dotted) blue line
shows the transient response (γ t). At these frequencies, including inertia in the model has a dramatic effect on the response, which displays damped oscillatory
behavior. Here, the transient response takes longer than one period to decay to a negligible magnitude, and hence, we consider them to be “high frequencies,”
special care must be taken when undertaking experiments at high frequencies with regard to (i) inertia correction and (ii) allowing a sufficient conditioning time
for the transients to decay prior to data acquisition.

FIG. 5. Amplitude of the periodic stress component as a function of fre-
quency for a two mode Maxwell model (τ1 ¼ 0:01 s, τ2 ¼ 1:0 s,
η1 ¼ 1:0 Pa s, η2 ¼ 10:0 Pa s, I ¼ 0:1 Pa s2 , [�τ ¼ 0:91 s]). The inset shows
high frequency asymptotic behavior [i.e., jG=(G� Iω2)j, where
G ¼ η1=τ1 þ η2=τ2].

FIG. 6. Zero frequency response (i.e., start up of creep) for a two mode
Maxwell model (τ1 ¼ 0:1 s, τ2 ¼ 1:0 s, η1 ¼ 1:0 Pa s, η2 ¼ 10:0 Pa s,
I ¼ 0:1 Pa s2, [�τ ¼ 0:92 s]).
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Finally, the transient part is determined by considering
the zeros of the function g(s)þ Isþ ηs. For a two mode
Maxwell model (with Newtonian solvent), this can be
expressed as

η1
1þ sτ1

þ η2
1þ sτ2

þ Isþ ηs, (48)

which we can equate to zero and re-write as

η1(1þ sτ2)þη2(1þ sτ1)þ Is(1þ sτ2)(1þ sτ1)

þηs(1þ sτ1)(1þ sτ2)þη1(1þ sτ2)þη2(1þ sτ1)

þ (Isþηs)(1þ sτ1þ sτ2þ s2τ1τ2)¼ 0: (49)

Expanding Eq. (49) as before, we find a third order poly-
nomial (as3 þ bs2 þ csþ d ¼ 0) with coefficients

a ¼ Iτ1τ2,

b ¼ I(τ1 þ τ2)þ ηsτ1τ2,

c ¼ τ1η2 þ τ2η1 þ I þ ηsτ1 þ ηsτ2,

d ¼ η1 þ η2 þ ηs:

(50)

As before, the roots of the polynomial, ρk, can be found
numerically. Expansion of the function p(s) ¼ g(s)þ Isþ ηs
results in the expression

yt(t) ¼
X
k

σ0 ω cosfþ ρk sinfð Þexp(ρkt)
ρk I �P

i
ηiτ i

(1þρkτ i)
2

� �
ρ2k þ ω2
� � , (51)

which is identical to Eq. (32). As previously, the strain
profile can then be expressed as the sum of the offset, tran-
sient, and periodic parts.

F. Effect of inertia on “conditioning time”

When designing stress controlled oscillatory experiments,
it is important to recognize that a conditioning time (the time
which is allowed to elapse between the initiation of the per-
turbation waveform and the collection of “periodic” data)
based on an arbitrary criterion such as “the period of a single
cycle” may not be sufficient. Indeed, for the inertialess case,
Hassager demonstrated that the transient response decays
with exp (� t=λk). A conditioning time of � 4λk allows the
transient to decay to � 2% of its initial magnitude. However,
in Figs. 3 and 4, the transient term persists for longer in the
presence of inertia than in the inertialess case for all frequen-
cies. Plotting the three poles associated with the transient
response (see Fig. 7), it can be seen that in the presence of
inertia the pair of complex conjugate poles are (i) dominant
over the single real pole (i.e., they appear significantly closer
to the imaginary axis) and (ii) the real part of the complex
conjugate pair lies to the right of the single pole of the iner-
tialess case. The rate of decay of the transient response is pre-
dominantly determined by an effective retardation time
λ* ¼ �1=Re[ρþk ] (where ρþk refers to the dominant pole).
Consequently, selection of an appropriate “conditioning
time” should involve an assessment of inertio-elastic effects

with tc � 4λ*, allowing the transient to decay to � 2% of its
initial magnitude. For certain relaxation spectra, the presence
of inertia may accelerate the decay of the transient compo-
nent. Experimentally, where the relaxation spectrum is
unlikely to be known a priori, direct observation/analysis of
the transient response may be the quickest way to determine
the appropriate conditioning time.

III. EXPERIMENTS

A. Materials and methods

1. Sample preparation

Cetylpyridinium chloride (CPyCl) and sodium salicylate
(NaSal) (Sigma-Aldrich) were dissolved at a molar ratio of

FIG. 7. Pole plot for the “inertialess” and “including inertia” cases for a two
mode Maxwell model (τ1 ¼ 0:01 s, τ2 ¼ 1:0 s, η1 ¼ 1:0 Pa s, η2 ¼ 10:0 Pa s,
I ¼ 0:1 Pa s2). While the inertialess transient is characterized by a single real
pole at s ¼ �1=λk , inertia introduces a pair of complex conjugate poles,
which dominate the transient response and generate a dominant effective
retardation time λ*.

FIG. 8. G0(ω) (blue circles) and G00(ω) (red squares) data for a 4.1 wt. % sol-
ution of CPyCl and NaCl. Lines show a two mode Maxwell model fit to the
experimental data with τ1 ¼ 0:251 s, τ2 ¼ 0:013 s, η1 ¼ 10:37 Pa s,
η2 ¼ 0:08 Pa s, [�τ ¼ 0:25 s].
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2:1 in 0.5M sodium chloride (NaCl) solutions prepared using
de-ionized water. Appropriate quantities of dry NaCl, NaSal,
and CPyCl, in powdered form, were added to de-ionized
water to generate a 4.1 wt. % solution of CpyCl in a fume
hood. This concentration has previously been shown to
display shear thinning (rather than shear banding) characteris-
tics [17,18]. The mixtures were stirred for 24 h at 40 �C (in a
sealed beaker atop a heated plate) to completely disperse the
powder before measurements were performed. All chemicals
were used as received without further purification.

2. Rheometry

Small amplitude oscillatory shear (SAOS) and start-up of
stress controlled oscillations with ψ ¼ 0 (referred to as “tran-
sient” experiments herein) were performed using a TA
Instruments HR-30 rheometer fitted with a 60.0 mm 2� alu-
minum cone. The sample was loaded to the temperature con-
trolled (Peltier) plate of the rheometer and a thin layer of low
viscosity silicone oil was added to prevent evaporation. All
experiments were performed at 25 �C. For transient data

FIG. 9. Transient data for start up of stress controlled oscillatory shear for a 4.1 wt. % solution of CPyCl and NaCl at frequencies of (a) 0.1, (b) 1.0, (c) 10, and
(d) 100 rad s�1. Gray (light) lines show experimental data as the mean and standard deviation of three experiments. In the left hand column, the red (dark) line
shows the full solution (see Sec. II A) for a two mode Maxwell model in the presence of inertia. The model has been parameterized by fitting SAOS data for the
same material (see Fig. 8) with no additional free parameters involved in generating the data presented in this figure. The blue dashed lines in the 10 and 100 rad/s
figures show the short time expansion result corresponding to Eq. (36). The vertical dashed lines at t � 4λ* � 1:14 s denote the point at which the transient com-
ponent of the response (with inertia) has decayed to 2% of its initial magnitude (see Sec. II F). In the right hand column, the same experimental data are shown but
the red (dark) line shows the inertialess solution of Hassager [1].

FIG. 10. Flow curve for a 4.1 wt. % Solution of CPyCl and NaCl. Gray
(open) circles show experimental data. The dashed red line shows the
expected zero shear viscosity predicted from the two model Maxwell model
(i.e., η1 þ η2, from the fit shown in Fig. 8). Red (closed) circles show the
zero shear viscosity determined from the measured strain offset following
Eq. (15) plotted at γmaxω for each frequency.
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collected at the two lowest frequencies (0.1 and 1.0 rad s�1),
it was necessary to correct the strain waveforms for strain
drift. This was achieved by fitting a straight line
(y ¼ mxþ c) to the final few peaks of the strain waveform in
order to identify the drift rate (m) before subtracting the
product mt from the measured strain signal. This correction
was unnecessary for the higher frequencies due to the far
shorter duration of data acquisition.

The moment of inertia of the instrument and geometry
were determined prior to experiments using standard calibra-
tion procedures. The instrument moment of inertia constant
was Mi ¼ 21:02 μNms2 and the geometry moment of inertia
constant was Mg ¼ 8:80 μNms2. The total moment of inertia
was then converted to I [as it appears in Eq. (4), with units
of Pa s2 ] using the appropriate geometry factors [4,9]
(Fσ ¼ 3=2πR3 and Fγ ¼ 1= tan α, where R denotes the
cone radius and α the cone angle) such that
I ¼ (Mi þMg)� Fσ=Fγ ¼ 0:0185 Pa s2.

B. Results and discussion

Figure 8 shows SAOS data along with a two mode Maxwell
model fit (with τ1 ¼ 0:251 s, τ2 ¼ 0:013 s, η1 ¼ 10:37 Pa s,
η2 ¼ 0:08 Pa s, [�τ ¼ 0:25 s]) which shows excellent agreement
over the entire frequency range. The 2 mode model was then
used to “predict” the strain profiles occurring in response to
the start up of oscillatory stress controlled oscillations
(at ω ¼ [0:1 rad=s, 1:0 rad=s, 10:0 rad=s, 100:0 rad=s]) in the
presence and absence of inertia using Eq. (33) with
I ¼ 0:0185 Pa s2 and I ¼ 0 Pa s2, respectively. Corresponding
experimental data were also obtained at the same angular fre-
quencies using the transient acquisition mode of the HR-30.
Figure 9 shows excellent agreement between the predictions
(thin red line) and experimental data (thick gray lines) at
all frequencies when inertia is included within the model
(left hand column). Where inertia is omitted (as per the solu-
tion of Hassager [1]), the model captures the dynamics of the
strain waveform only at low frequencies, as would be

FIG. 11. Strain offset evolution. Mean strain over each cycle (dashed red line) for the experimental strain waveforms at 0.1, 1.0, 10.0, and 100.0 rad/s. In the
limit of long times, the mean value across each cycle tends to a constant strain offset, which can be used to determine the zero shear viscosity via Eq. (52).
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expected. At higher frequencies, the effects of (i) inertial-
ringing, (ii) reduced strain amplitude due to resonance
effects, and (iii) the inertial phase shift are missing.
Consequently, the inertialess model is insufficient at 10 and
100 rad/s. Comparison of the measured and predicted strain
waveforms in this manner establishes confidence in the data
and in the discrete relaxation spectrum (DRS) fitted to the
SAOS data since small errors in the dynamic moduli [G0(ω)
and G00(ω)] are well known to generate large deviations in the
DRS.

Figure 10 shows the flow curve (gray open circles) for the
WLM sample for 0:01 � _γ � 100 s�1, which clearly shows a
zero-shear plateau viscosity of around 10.5 Pa s. Also shown
in Fig. 10 is the zero shear viscosity calculated from the two
mode Maxwell model fit of Fig. 8, which shows excellent
agreement with the measured flow curve data, again, estab-
lishing confidence in the ability of the two mode Maxwell
model to capture the linear viscoelastic behavior of the spe-
cific WLM system studied herein. The zero shear viscosity
can also be obtained from the strain offset observed in the
strain profile following start up of stress controlled oscilla-
tions. As shown in Sec. II A the strain offset is unaffected by
instrument inertia and hence (following Lee et al. [2]), the
zero shear viscosity can be determined by measuring the
strain offset (determined herein as the mean value of strain in
the long time limit, see Fig. 11) through a simple rearrange-
ment of Eq. (15) to

η0 ¼
σ0cos(ψ)
γoff (ω)ω

: (52)

Figure 10 shows values of η0 determined from the strain
offset at each frequency as red (filled) circles (for ease of
visualization, these are plotted at γmaxω for each frequency,
where γmax denotes the maximum strain observed in the
waveforms). Excellent agreement is observed between values
of η0 obtained from (i) the flow curve, (ii) the two mode
Maxwell model fit, and (iii) strain offsets.

IV. CONCLUSIONS

Herein, we have demonstrated how rheometer inertia (includ-
ing instrument and geometry contributions) influences the estab-
lishment of the steady state periodic response to a stress
controlled oscillatory perturbation in the context of the general
theory of linear viscoelasticity. In contrast to the inertialess case,
in which the transient terms decay exponentially with time con-
stants set by the retardation times of the discrete spectrum [1],
the presence of inertia modifies this response to include
inertio-elastic ringing reminiscent of that seen in creep experi-
ments [3–6,9,10] (which is included in the present analysis as
the zero frequency case). Consequently, the timescale for the
establishment of the steady state periodic response is dramati-
cally affected by the presence of rheometer inertia. In practice,
this highlights the importance of selecting an appropriate “condi-
tioning time” when designing experimental procedures that rely
on the steady state response either for direct determination of the
dynamic moduli or probing the zero shear viscosity via the
strain offset. Direct observation/analysis of the transient response

during preliminary experiments may be the most robust way to
determine the appropriate conditioning time.

The effect of instrument inertia on experiments involving
more complex waveforms, for example, stress-controlled
optimally windowed chirps (σ � OWCh) [19,20] is antici-
pated to be more complicated and we leave the analysis of
this problem to a later paper.
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APPENDIX: DERIVATION OF ZERO FREQUENCY
RESPONSE

The zero frequency response has been derived as follows.
For ψ ¼ π=2, the offset term reduces to zero independently
of ω, it hence makes no contribution to the creep response.
The periodic response can be derived by firstly substituting
the expressions for the terminal response of a two mode
Maxwell model for G0(ω) and G00(ω), i.e., G0(ω)
¼ η1τ1 þ η2τ2ð Þω2 and G0(ω) ¼ η1 þ η2ð Þω. To simplify the
notation, let X ¼ η1τ1 þ η2τ2ð Þ and η0 ¼ η1 þ η2, hence, we
have

γp(t) ¼
σ0 Xω2 � Iω2ð Þ sin (ψ þ ωt)� η0ω cos (ψ þ ωt)½ �

Gω2 � Iω2ð Þ2þη20ω
2

,

(A1)

now let A ¼ X � I such that

γp(t) ¼
σ0 Aω2 sin (ψ þ ωt)� η0ω cos (ψ þ ωt)½ �

A2ω4 þ η20ω
2

, (A2)

which simplifies further to

γp(t) ¼
σ0 Aω2 sin (ψ þ ωt)� η0ω cos (ψ þ ωt)½ �

ω2(A2ω2 þ η20)
: (A3)

We can now separate out the terms such that

γp(t) ¼
σ0A sin (ψ þ ωt)

A2ω2 þ η20
� σ0η0 cos (ψ þ ωt)

ω(A2ω2 þ η20)
, (A4)
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which by noting that cos(Bþ C) ¼ cosB cosC � sinB sinC,
we can expand further to be

γp(t) ¼
σ0A sin (ψ þ ωt)

A2ω2 þ η20
� σ0η0 cos (ψ) cos (ωt)

ω(A2ω2 þ η20)

þ σ0η0 sin (ψ) sin (ωt)
ω(A2ω2 þ η20)

: (A5)

By setting ψ ¼ π=2, the second term is removed and the
expression reduces to

γp(t) ¼
σ0A sin (π=2þ ωt)

A2ω2 þ η20
þ σ0η0 sin (ωt)

(A2ω2 þ η20)ω
: (A6)

Finally, noting that the limit of sin (ωt)=ω as ω ! 0 is t
and setting ω ¼ 0, we find

γp(t) ¼
σ0A

η20
þ σ0t

η0
(A7)

or, in its full form

γp(t) ¼ σ0
X � Ið Þ
η20

þ σ0t

η0

� 	
: (A8)

The contribution from the transient parts can be deter-
mined directly by setting ψ ¼ π=2 and substituting ω ¼ 0 in
Eq. (32),

yt(t) ¼
X
k

σ0exp(ρkt)

ρ2k I �P
i

ηiτ i
(1þρkτ i)

2

� � , (A9)

summing Eqs. (A8) and (A9) leads to the expression for start
up of steady stress [i.e., Eq. (37), reproduced below for con-
venience],

γ(t) ¼ σ0
X � I

η20
þ t

η0
þ
X
k

exp(ρkt)

ρ2k I �P
i

ηiτ i
(1þρkτ i)

2

� �
2
4

3
5: (A10)
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