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Abstract

A notion of heaps of modules as an affine version of modules over a ring or, more generally,
over a truss, is introduced and studied. Basic properties of heaps of modules are derived.
Examples arising from geometry (connections, affine spaces) and algebraic topology (chain
contractions) are presented. Relationships between heaps of modules, modules over a ring
and affine spaces are revealed and analysed.
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1 Introduction

Arecent attempt [3] to extend the Baer—Kaplansky theorem, relating isomorphisms of abelian
p-groups to isomorphisms of their endomorphism rings [21, Theorem 16.2.5], to all abelian
groups and to modules over rings led first to realise that the rings of group endomorphisms
should be replaced by the trusses of the corresponding heap endomorphisms [7], and then
that endomorphisms of modules should be replaced by endomorphisms of some more general
module-like structures. The aim of the present text is to introduce and study in a systematic
way such structures, which we term heaps of modules. In particular, we will enlarge upon
their unexpected geometric interpretation as affine spaces and modules.

We begin in Sect.2 by giving an overview of heaps [2, 27] and by carefully explaining
why they can be understood as affine versions of groups. Next, we recall the definition and
elementary properties of abelian heaps with an associative multiplication distributing over
the ternary heap operation, which are called trusses, and their modules, that are abelian
heaps on which the truss acts through a binary operation [6, 7]. In particular, we recall how
with every module M over a truss 7 and with every element e € M, one can associate the
induced T-module structure (M, >,) on M, which plays an important role in the paper. We
also introduce the notions of stabiliser and annihilator for a module over a truss 7 and we
study how these are related with the corresponding constructions for the induced 7 -module
structures. Finally, we describe abelian groups with a structure of module over a truss 7,
called T -groups, which will represent the linear core of affine spaces over trusses.

Section 3 is devoted to the definition of heaps of modules over a truss 7', Definition 3.1,
and their elementary properties. The key feature here is that a truss 7" acts on its (abelian) heap
of modules M not through a binary operation 7 x M — M (as is the case for a T-module)
but by a ternary operation A : T x M x M —> M instead. In Sect. 3.1, we study some
first properties of heaps of modules and, in particular, we show the mutual independence of
axioms. We introduce sub-heaps of modules and explain how the corresponding equivalence
relation is a congruence of heaps of modules and, conversely, how equivalence classes of a
congruence of heaps of modules are sub-heaps of modules. We show how fixing a middle
term in the action A of a heap of T-modules yields a 7-module (M,,) = A(—, e, —) (so
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Heaps of modules and affine spaces

we have a heap of modules indeed), exactly as fixing a middle entry in a heap produces a
group. Next, we prove that there is a correspondence between heaps of modules and induced
actions and how this provides a functor H from the category of 7-modules to the category
of heaps of T-modules. In Sect. 3.2, we consider stabilisers and annihilators for heaps of
modules over a truss 7', which play a key role in correctly identifying affine modules over a
ring among heaps of modules over a suitably related truss. They extend the corresponding
notions introduced for modules in Sect.2. Heaps of modules with non-empty stabilisers are
said to be isotropic, while those with non-empty annihilator are said to be contractible. We
end Sect. 3 with an explicit construction, extending [11, Theorem 4.2], that provides a cross-
product truss structure on the product M x T of a heap of T-modules M and T itself for
every element e of M.

Section 4 contains our main results showing how heaps of modules over a truss are
intimately related with affine geometry and how they provide an algebraic description of
affine modules over a ring or affine spaces over a field. We start Sect.4 by showing, in
Proposition 4.1, why homomorphisms of heaps of 7-modules f € T-HMod(M, N) are, in
fact, translations of homomorphism of T -groups from (M, ,) to (N, ), for an arbitrary choice
ofm € M andn € N,exactly as affine maps are translations of linear morphisms. In Sect. 4.2,
we fully describe the affine nature of heaps of modules. After realising that affine modules
over aring, as defined in [25, page 45], are isotropic and contractible heaps of T(R)-modules
(see Proposition 4.9), we present the definition of a T-affine space (Definition 4.12) as a
straightforward extension of the classical definition of affine space over a field by replacing
the free and transitive action of a vector space by a free and transitive action of a 7' -group. The
main result of this section is Theorem 4.21, which states that the categories of 7' -affine spaces
and of heaps of T-modules are equivalent. This result leads us to few immediate conclusions.
For example, Corollary 4.23 asserts that the category of isotropic x-affine spaces, where
denotes the singleton truss, is equivalent to the category of isotropic heaps of x-modules, that
is, abelian heaps. Thus, we deduce that the categories of inhabited abelian heaps and of torsors
over abelian groups are equivalent. We conclude this section by proving that the category of
affine spaces over a field F is equivalent to the full subcategory of heaps of T(F)-modules
consisting of inhabited isotropic contractible heaps of 7-modules (see Corollary 4.25). All
of that together wells up in a sentence: heaps of 7-modules are affine versions of T-groups,
that is, heaps of modules are the natural extension of affine spaces to modules over rings or
trusses.

Section 5 contains various examples and some applications of heaps of modules. In par-
ticular, Sect. 5.1 is devoted to prove a Baer—Kaplansky theorem for 7-groups by taking
advantage of the results from Sect.4. Section 5.2 studies the appearances of heaps of mod-
ules in algebraic systems related to the classification of knots, such as spindles and quandles.
For instance, we show how affine spindle structures on an abelian group can be organised
into a heap of modules (Example 5.10). More generally, to any element u of a truss 7 one
can assign a fully faithful functor from the category of heaps of T-modules to the category of
spindles. If, in addition the element u has a suitable companion, this functor has its image in
the category of (entropic) quandles; see Theorem 5.9. Since to every spindle (quandle) one
can associate a solution to the set-theoretic Yang—Baxter equation, we conclude that heaps of
modules yield such solutions. In Sect. 5.3, finally, we provide examples of heaps of modules
that arise from (non-commutative) geometry and homological algebra. We show that non-
commutative connections and hom-connections can be organised into heaps of modules, too.
Thus, as a consequence of Theorem 5.9, they give rise to spindles (or, if the element induc-
ing the spindle is a unit, quandles) and hence to solutions to the set-theoretic Yang—Baxter
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equation. Finally, we construct heaps of modules consisting of splittings and retractions of
short exact sequences, and—more generally—consisting of chain contractions.

We use the following categorical conventions and notation. The set of morphisms with
domain A and codomain B in a category C is denoted by C(A, B). In case of the same
domain and codomain A, the monoid of endomorphism of A is denoted simply by C(A). We
write C(A)* for the group of units in C(A), that is, automorphisms of A. In general, M *
denotes the group of units in a monoid M. The category of groups is denoted by Grp and
its full subcategory of abelian groups is denoted by Ab. We denote by End(A) = Ab(A, A)
the endomorphism ring of an abelian group A. In case of left (or right) modules M, N over
a ring R, the abelian groups of homomorphisms are denoted by Hom g (M, N), and the
endomorphism ring of, say M, by Endg(M). In anticipation of a possible confusion arising
from the wealth of notation employed in this text, and for the convenience of the reader, we
include the list of frequently used symbols in Appendix A.

2 Preliminaries and first results

In this section, we recall the notions of heap, truss, module over a truss and their morphisms,
which will be needed throughout the paper. We also introduce and discuss the notions of
isotropy and contracting paragons for a module and of abelian group with action of a truss,

which will have a role to play in relating affine modules over rings or trusses with heaps of
modules (see Sect. 4).

2.1 Heaps and their morphisms

We start with the definition of a heap, which can trace its roots back to [2] and [27].

Definition 2.1 A heap is a set H with a ternary operation [—, —, —]: H x H x H — H
such that for all a, b, ¢, d, e € H the following axioms hold:

[a,b,[c,d,el]l =[a,b,cl,d,e] (Associativity), 2.1)

la,b,b] =|[b,b,a]l =a (Mal’cev identities). 2.2)

Moreover, if [a, b, c] = [c, b, a] for all a, b, c € H, then H is called an abelian heap. o

For a heap H, it can be checked that also the following associativity holds
la,b,[c,d,ell =la,d,c,b], el, (2.3)

foralla, b, c,d,e € H (see [7, Lemma 2.3(2)]).

Definition 2.2 A homomorphism of heaps is a function f: H —> H’ between heaps H and
H'’ which preserves the ternary operation, that is, for all a, b, c € H we have f([a, b, c]) =
[f(a), f(b), f(c)]. We denote by Hp the category of heaps and their homomorphisms and
by Ah the full subcategory of Hp consisting of abelian heaps. 3

Among all homomorphisms of heaps, a special role is played by translation automor-
phisms, defined for all a, b € H by the formula

Té’: H— H, X —> [x,a,b]. 2.4
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The set of all translation automorphisms together with the identity on H is denoted by
Trans(H). Since the inverse of r‘f is given by 7}/, the set Trans(H) is closed under inverses.
Furthermore, one easily proves that, for all a, a’, b, b’ € H,

Ta

r 2. ' ap 2.3
bo tf, =) ri,b @b () T{;yb,ya,J. (2.5)
Therefore, Trans(H) is a subgroup of the automorphism group of H, which is called the
translation group of H. The translation group of H is abelian if H is abelian. In view of
(2.4), for any homomorphism of heaps f : H —> H’, the map

Trans(f): Trans(H) —> Trans(H'), rf — t}:((:)), (2.6)

is a homomorphism of groups. This gives a functor Trans: Hp — Grp that restricts to a
functor Ah — Ab, that we denote by Trans again.

A sub-heap of a heap H is a subset S closed under the ternary operation. Given a non-
empty sub-heap S of H, one can define the sub-heap equivalence relation by x ~g y provided
[x,y,s] € S,forall s € S. The quotient setis denoted by H/S. In case of an abelian heap, the
sub-heap relation is a congruence and consequently A /S is an abelian heap too. Furthermore,
each equivalence class is a sub-heap of H. Any congruence relation of abelian heaps is a
sub-heap relation.

With every group (G, -, ¢), we can associate a heap H(G) = (G, [—, —, —]) where
[x,y,2] = xyflz for all x, y, z € G. This assignment is functorial, thus yielding a functor
H: Grp — Hp. In the opposite direction, with every non-empty heap H and an element
e € H, we can associate a group G(H; e) = (H,[—, e, —]), where the binary operation is
acquired by fixing the middle variable in the ternary operation (e is the neutral element for this
operation). The group G(H; e) is called the e-retract of the heap H. Note that for all heaps
H and e € H, H(G(H; e)) = H, while for every group G and e € G, G(H(G);¢e)) = G
with the equality if e is the neutral element of G.

We note in passing that, for any non-empty heap H and foralle € H, we have G(H; e)
Trans(H) as groups. The isomorphism and its inverse are given by

~

¢: Trans(H) — G(H; e), rf — tlf(e) = e, b, al,
<p_1: G(H; e) —> Trans(H), a+— 1

(the reader might find equations (2.5) useful for proving this statement).

The subsequent results explore the relationship between morphisms of heaps and mor-
phisms of the associated retracts. In particular, they clarify why heaps can be understood as
affine versions of groups.

Proposition 2.3 Let H, H' be non-empty heaps, lete € H ande' € H',andlet f: H — H’
be a function. Then, [ € Grp(G(H; e), G(H'; e’)) if and only if f € Hp(H, H') and
fle)=¢"

Proof By definition f € Grp(G(H; e), G(H'; ¢)) if and only if
f(lx e, yl) =[fe), e, fF(»], forallx,y e H. Q.7

Clearly, if f € Hp(H, H') and f(e) = ¢’ then (2.7) is satisfied.
Conversely, if f € Grp(G(H; e), G(H'; e/)) then

f=H(f) e Hp(H(G(H: e)), H(G(H"; ¢'))) = Hp(H, H')
and f(e) =¢'. O
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Corollary 2.4 ([3, Lemma 2.1]) For non-empty heaps H, H', a function f: H — H'isa
morphism of heaps if and only if T3, o f € Grp(G(H;e),G(H'; ¢')), forall e € H and
¢’ € H'. Inparticular, f € Hp(H, H') if and only if f € Grp(G(H; e), G(H'; f(e))), for
alle € H.

Proof Recall that rJ‘Z/( o € Hp(H Y% and observe that (r]‘;’( oof )(e) = €. Therefore, in view of

/

Proposition 2.3, r;;/(e) o f € Grp(G(H; e), G(H'; ¢')) if and only if 6 of € Hp(H. H'),
if and only if f € Hp(H, H'). O

Remark 2.5 Let f: H —> H’ be a morphism of heaps. It follows from Corollary 2.4 that
for any group operation associated to H, there exists a group operation associated to H' such
that f is a morphism of groups with respect to these operations. A

Corollary 2.6 Let (G, -, 1) and (H, -, 1 i) be groups. Then,

f € Hp(H(G), H(H)) « T}-ﬁc) of =[x+ f(x)f(lg)""1 € Grp(G, H).
Proof Since G = G(H(G); 1) and H = G(H(H); 1p), the statement follows from Corol-
lary 2.4. O

Proposition 2.7 The category Grp is isomorphic to the under category x/Hp.

Proof By Corollary 2.6, the functor H: Grp —> Hp induces a fully faithful functor
H,: Grp — /Hp sending every group G to the object (H(G), 1g: x —> H(G)). In
view of Proposition 2.3, also the assignment (H, e: x — H) —— G(H; e) induces a fully
faithful functor, which is inverse to H,. O

Remark 2.8 The properties from Proposition 2.3, Corollary 2.4, Corollary 2.6 and Proposition
2.7 hold unchanged in the abelian case, that is, if we substitute Grp with Ab and Hp with
Ah. A

Example 2.9 Let us present a few elementary examples of heaps.

(1) The empty set & is a heap with the trivial ternary operation @ x @ x @ = & — J.

(2) Any singleton set » := {x} together with [, %, %] = s is a heap and it is the terminal
object in Hp.

(3) The set H := 2Z + 1 of odd numbers is an abelian heap with

2n+1,2m+1,2p+1]:=2n—m+ p) + 1
for all n, m, p € Z. Its retract at 1 is a group with respect to
Cm+1)-Q2n+1)=2(m+n)+1

for all m, n € Z and with neutral element 1. Obviously, the latter is isomorphic to Z via
the map 2m + 1 —— m.

(4) More generally, a subset S of a group G is a non-empty sub-heap of H(G) if and only if
it is a coset for some subgroup G’ of G (see [14, Theorem 1]) and any heap H can be
realised as a coset of a certain group G.

In fact, one may always consider the group G := Gr.(H) = G(H H *; x) from [28, §3]
obtained by adding a neutral element * to the non-empty heap H via the coproduct of
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heaps H. Then, the canonical injection ty: H — G into the coproduct allows one to
realise H as a subset of G. For any x € H, if we consider the restriction of

7: G — G, g+ g, x, %] = gx~ L,
to H and we set G’ := t(H) = Hx~!, then G’ is a subgroup of G. Indeed,
x=xxle Hx_l, yx_1 ~zx_1 = [y,x,z]x_1 e Hx™!
and
(yxil)il =[x, y,)c])f1 € Hxil,

forall y, z € H.Inthis setting, it is clear that H as a subset of G coincides with the coset
G'x.
It is noteworthy that for all y, z € H,

T (E0)  TE@) = [y, x. #] ., [z, x, %], %, x] = [y, x,2] = y -z € G(H; x).

Hence, the group structure on H obtained by transport of the group structure on G” along
7} is exactly the one of the retract of H at x.

2.2 Trusses and modules

Here, we recall briefly some notions from [7].

Definition 2.10 (Trusses and paragons) A fruss is an abelian heap T together with an asso-
ciative binary operation -: T x T — T, (a, b) —> ab such that, forall a, b,c,d € T,

(1) alb, c,d] = [ab, ac, ad] (left distributivity),
(2) [b,c,dla = [ba, ca, da] (right distributivity).

A truss T is called unital if there exists a neutral element for -, usually denoted by 17 or
simply 1. It is called commutative if the binary operation - is commutative. A sub-truss of T
is a sub-heap closed under multiplication.

A homomorphism of trusses is a heap homomorphism f: T —> T’ that preserves binary
operations, that is, f(ab) = f(a)f(b) foralla,b e T.

Given atruss T, aparagon in T is anon-empty sub-heap P C T such thatforall p,q € P
andallt € T,

[tp,tq,ql € P and [pt,qt,q]l € P.

Paragons are exactly equivalence classes of congruences in trusses, which in turn always
arise as sub-heap relations by paragons.

Given a truss T, a two-sided ideal in T is a non-empty sub-heap I C T such that for all
xelandallr e T,tx € [ andxt € I. 3

Remark 2.11 Observe that in the definitions of paragon and ideal, the word non-empty
appears. Since the empty relation is not an equivalence relation, we cannot connect empty
sub-heaps with congruences on heaps and trusses. Nevertheless, we still consider the empty
set as a sub-heap and sub-truss. A

Remark 2.12 For any morphism of trusses f : T —> T’ and ¢ € Im f, the inverse image
f~!(e) is a paragon in T In fact every paragon in T arises in this way. A
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Example 2.13 All the examples from Example 2.9 can be adapted to provide examples of
trusses. For instance, for any (unital) ring R, the abelian heap H(R) is a (unital) truss with
respect to the same product of R. We denote it by T(R).

Let us focus, in particular, on example (4). By summarising one of the main messages of
[1, Part 2], given a (unital) truss 7 one can always endow the abelian group G(7 H«; *) with
a unique (unital) ring structure - by declaring

st =st, *-%x =% and f-x =% =13%-f,

for all s, € T. Denote the resulting (unital) ring by R. Then, t7: T — R allows us to
identify 7 with a subset of R. Moreover, if 7' is non-empty then forany e € T, [ := t,(T)
is a two-sided ideal of R. Indeed, we already know it is a subgroup and moreover one may
check that the elements [r - ¢, 7 -e,e] and [t - r, e - r, e] of R are actually in T for all » € R,
e,t € T, whence

relt,e,x]=[r-t,r-e,x]=[[r-t,r-eele x| =1 (r t,r-ee]) and

[z,e,*]'r=[t~r,e~r,>|<]=[[t~r,e~r,e],e,>k]=1:e*([t~r,e~r,e]).

It is clear then that T = t{(/) = I + e C R. Therefore, a subset 7 of a ring R is an
equivalence class for some congruence on R if and only if it is a paragon in T(R) (whence,
in particular, a sub-truss) and any non-empty truss can be realised as a residue class modulo
I for an ideal I in a certain ring R.

Example 2.14 For all abelian heaps H, H', Ah(H, H') is an abelian heap with the pointwise
operation. Furthermore, the composition of morphisms distributes over this ternary operation.
Consequently, Ah(H) is a unital truss, called the endomorphism truss and denoted by E(H ).

Definition 2.15 A left module over atruss T or aleft T -module is an abelian heap M together
with an action -: T x M — M such that, forallz,¢',t” €e T andm,n,e € M,

1 t-@"-m)y= (@t -m,
Q) 5,0, m=[t-m,t' -m,t" m],
QB) t-[m,n,el=1[t-m,t n,t-el.

A left module M over a unital truss 7 is said to be unital if 17 -m = m forallm € M.
Analogously, one can define (unital) right T -modules. A morphism of T -modules f: M —>
N is a heap homomorphism which is also T -linear, in the sense that f(t - m) =t - f(m) for
allt e Tandm € M.

Modules over a truss 7' and their morphisms form the category 7-Mod. o

Remark 2.16 Given a truss 7', a T-module can be equivalently described as an abelian heap
M together with a truss homomorphism ¢: T — E(M). As in the case of modules over
rings, the correspondence is given by ¢ (¢)(m) =t - m. A

Example 2.17 Here are some elementary examples of modules.

(1) The empty heap & is a T-module with the unique operation 7 x & = @ — &.

(2) A singleton set x := {x} together with the heap operation from Example 2.9(2) and the
action of T given by ¢ - x = x for all # € T, is the terminal object in 7-Mod.

(3) Given aring R and the associated truss T(R), any R-module M can be seen as a T(R)-
module with respect to the H(M) heap structure and the same R-action. We will denote
the T(R)-module H(M) by T(M).
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(4) A truss T is a left module over itself by multiplication. We refer to this as the regular
action.

(5) For any abelian heaps H, H', Ah(H', H) is a left module over the endomorphism truss
E(H) and aright module over E(H"). The actions are by composition. Since Ah(x, H) =
H as heaps, H is a left E(H)-module by evaluation.

Definition 2.18 Let M be a left T-module. For e € M, the action>,: T x M —> M given
by

toe m:=|[t-m,t-e,el, forallme M,t €T,

is called the e-induced action or the e-induced module structure on M. We say that a subset
N € M is an induced submodule of M if N is a non-empty sub-heap of M andt >, n € N
forallt € T andn,e € N. o

Induced modules play a role similar to paragons in trusses. Every congruence class of a T -
module M is an induced submodule of M. A sub-heap relation corresponding to an induced
submodule of M is a congruence and every congruence arises in that way. Furthermore,
for any epimorphism (that is, surjective morphism, [12, Proposition 2.6]) of T-modules 7 :
M —s N,7~'(n) € M is an induced submodule of M, foralln € N,and N = M /z~(n).

Recall also from [7, Lemma 4.29] that the induction procedure of Definition 2.18 stabilises
after the first step. That is, if

ey, m:=[teym,teye,el, (2.8)

thent>y m=tv.mforallt € T,e, f,me M.

2.3 Isotropic and contractible modules

In this subsection, we introduce the notions of isotropy and contracting paragons for a module
over a truss. They are preliminary notions to the introduction of isotropy and contracting
paragons for heaps of modules Sect. 3.2 and their connection with affine modules over rings
and trusses Sect. 4.

Lemma 2.19 Let T be a truss. For any left T-module M, the set
Stab(M) :={ueT |u-m=m, forallm € M}

is a sub-truss and, if non-empty, a paragon of T, called the stabiliser or isotropy paragon of
M.

Proof The set Stab(M) is the inverse image of the identity endomorphism under the truss
homomorphism ¢ : T — E(M), ¢ (t)(m) = ¢t - m, and hence, if non-empty, a paragon in T
by Remark 2.12. Clearly, Stab(M) is closed under the multiplication (this can also be seen
from the fact that it is an inverse image of an idempotent element of E(M)). O

Definition 2.20 A T-module M is said to be isotropic if Stab(M) is non-empty. Isotropic
T -modules form the full subcategory T-Mod;s of 7-Mod. 3

Proposition 2.21 Let M be a T-module. Then:

(1) Foralle € M, Stab(M) C Stab(M, >,).
(2) If f: M — N is a morphism of T-modules, then Stab(M) C Stab(f(M)).
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(3) Foralle, f € M, Stab(M, >,) = Stab(M, > 7).

(4) Ifu € Stab(M, >,), then [u, ut, t] € Stab(M) forallt € T. Hence, if Stab(M, >,) # &,
then Stab(M) # @.

(5) If T is a truss with identity, then M is a unital module if and only if Stab(M,>,) is a
unital sub-truss of T.

Proof (1) Letu € Stab(M). Then,
usem = |u-m,u-e,e] =[m,e, el =m,

forall m € M. Thus, u € Stab(M, >,).
(2) For every u € Stab(M) and every m € M, we can compute

w- f(m)= f(u-m)= f(m).

(3) It follows from (2) after recalling that ‘L'ef : (M,>e) —> (M, >y) is an isomorphism
of T-modules (see [7, Proposition 4.28]).

(4) Consider the heap homomorphism E: T —> M,t +—— t-e.Forallu € Stab(M, >,)
andme M,m =uv,m = [u-m,u-e,e], and hence

u-m=[m,e, E(u)] =[E(u), e, ml. 2.9)

Therefore,

2.9)
[u, ut, t]-m = [u-m, ut-m, t-m] = [m, e, E(u), E(u), e, t-m, t-m] =m.

Thus, [u, ut, t] € Stab(M) as required.

(5) If T has a unit 17 and M is unital, then 17 € Stab(M) and by statement (1) 17 €
Stab(M, >,). In the opposite direction if 17 € Stab(M, >,), then by statement (4) we have
that 17 = [17, 12T, 17] € Stab(M) and hence M is a unital module. ]

Remark 2.22 Consider the restriction
Stab(M, >,) — M, ur—u-e. (2.10)

of the heap morphism E: T — M from the proof of Proposition 2.21(4). By (2.9), for all
up, up € Stab(M, >,),

E(uiuz) = (wiuz)-e = uy-E(uz) = [E(uy1), e, E(u2)],

and hence the map (2.10) is a truss homomorphism between Stab(M, . ) and the trivial brace
G(M; e) (any abelian group (G, +, 0) is a brace with m - n := m + n). A

Example 2.23 The reverse inclusion in Proposition 2.21(1) does not necessarily hold. For
example, take T = Z with multiplication m - n := m +n and M = T itself with the regular
action. Then Stab(M) = {0} and Stab(M, >,) = Z, for all ¢ € Z.

Recall that an absorber for a T-module structure (M, -) on an abelian heap M (or, simply,
an absorber) is an element e € M such that¢ - e = e forallt € T. By an absorber in 7', we
mean a (necessarily unique) two-sided absorber Or € T, thatis, t O = Or = O ¢ for all
teT.

Lemma 2.24 An element e € M is an absorber if and only if t > m = t - m, for all
t € T and m € M. In particular, a T-module (M, -) admits an absorber e if and only if
(M, ") = (M, ).
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Proof. Since e is always an absorber for the e-induced action, if # >, m = ¢ - m, then e is an
absorber in M. Conversely, if e is an absorber in M then

tbem=1[t-m,t-e,el=1[t-m,e,el=1t-m. O

The notion of a stabiliser is complemented by that of an annihilator. Unlike the former,
the latter is associated to an element and its nature depends on the nature of this element.

Lemma 2.25 Let T be a truss and let M be a non-empty T-module. For any e € M, if the
set

Amn, (M) :={z €T |z-m=e, forallme M}

is non-empty, then Ann,(M) is a paragon and a right ideal in T. If, moreover, e € M is an
absorber, then Ann,(M) is a two-sided ideal in T .

Proof For every e € M consider the constant mape: M —> M, m —> e, in E(M) and the
truss homomorphism ¢ : T —> E(M), ¢ (t)(m) =t - m. If Ann.(M) # @, thene € ¢(T),
Ann, (M) is the inverse image of e and hence it is a paragon by [7, Lemma 3.21]. Since
¢o f =e ie.¢isaleft absorber in E(M) in the terminology of [7, Remark 3.13], Ann, (M)
is also a right ideal (adapt [7, Lemma 3.27]). If e € M is also an absorber in M, then ¢ is an
absorber in ¢ (T') € E(M) and hence Ann, (M) is a two-sided ideal by [7, Lemma 3.27]. O

Definition 2.26 Let T be a truss and let M be a T-module. For any e € M, the set Ann, (M)
is called the e-annihilator or e-contracting paragon of M.
A T-module M is said to be e-contractible if Ann,(M) is non-empty. o

To conclude the subsection and in analogy with Examples 2.9 and 2.13, the subsequent
results are aimed at showing that modules over trusses can be understood as equivalence
classes of congruences on modules over rings.

Lemma 2.27 Let R be a ring and let T(R) be the associated truss. A subset S of an R-module
M is an equivalence class of a congruence modulo an R-submodule N if and only if it is an
induced T(R)-submodule of the T(R)-module T(M) as in [10, §4] or Example 2.17(3).

Proof If S = m + N for some m € M and some R-submodule N C M, then we already
know that S is a sub-heap of H(M) and moreover

r1>m(m+n):[r-(m+n),r-m,m]:r-m+r-n—r-m+m:m+r-nem+N,

forall n € N, whence R >, S C S and thus § is an induced submodule.
Conversely, if S € T(M) is an induced submodule, then for an arbitrary s € S we can
consider N := rSO(S) = 8§ — 5. We claim that N € M is an R-submodule. In fact,

r-(s'—s)=r-s'—r-s+s—s=roys —seS—s
forall r € R and hence r - N € N. The assertion follows by observing that S =s + N. O

Proposition 2.28 Givenatruss T, any non-empty T -module can be realised as an equivalence
class of a congruence modulo a submodule in a module over a ring.

Proof Let M be a non-empty 7T-module. We already know from Example 2.9(4) that
Gr,(M) = G(M H «; %) is an abelian group. Denote it by R(M). By [10, §3], M H x is
a T-module as follows. For every ¢t € T, we can consider morphisms of heaps

M— MHBx, m——t-m, and x— MHx*, %+ *.
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By the universal property of the coproduct, there exists a unique morphism of heaps A; : M H
* —> M Hx extending them. Furthermore, since for all r, s, t € T the morphisms of heaps
Alr.r.s] and [At, Ars )LS] coincide on M and on x, they coincide on M H x, and analogously
for the morphisms A;s and A; o As. Therefore, we constructed a morphism of trusses

T — Ah(M H~x),

which makes of M H x a T-module. Proceeding further, we can consider the obvious *-
modules structure

* —> Ah(M H ), * —> [x —> %],
and hence the heap (truss, in fact) homomorphism
T Hx — Ah(M B»), (2.11)

given by the universal property of the coproduct. Denote by R(T") the abelian group G (7" H«)
with the ring structure coming from Example 2.13. Since every endomorphism in the image
of (2.11) preserves the neutral element =, it follows from Corollary 2.6 that we constructed
a ring homomorphism

R(T) — AbR(M)),

so that R(M) is an R(T")-module. The canonical map M — M X « of the coproduct allows
us to realise M as a sub-heap of H(R(M)) and since

teem=[t-m,t-e elrm =[t-m,t-e,ely €M,
where subscripts indicate in which set the heap operations are taken, and
*>em = [*-m,*-e, elra =[x, % elry)y =eeM

forallm,e € M, t € T, it follows that M is an induced T(R(7))-submodule of R(M) and
hence an equivalence class of a congruence modulo a submodule ((—m) + M, in fact) in the
R(T)-module R(M). O

2.4 Abelian groups with a T-module structure

Let T-Abs denote the category whose objects are pairs, a T-module and a fixed absorber,
and morphisms are 7 -linear maps that preserve the absorbers. Note that all the modules in
T -Abs are inhabited (they are non-empty). Our aim is to interpret 7-Abs as the category of
abelian groups with T'-actions.

Proposition 2.29 The category T-Abs is (isomorphic to) the under category x/T-Mod.

Proof Recall that x = {x} is a T-module with [, %, x] = x and ¢ - x = x forallz € T. In
light of this, for every T-module M,

T-Mod(x, M) = Abs(M) :={m € M | t-m = m forall ¢ € T}.

Keeping in mind the foregoing observations, the property is almost tautological. To every
object (M, -, 0yr) in T-Abs, we assign the object ((M, N,k —> M: % —> OM) inx/T-Mod
and to every morphism f: M — N in T-Abs we assign the morphism f: M — N itself
in x/T-Mod, and conversely. This gives the desired isomorphism. |
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Definition 2.30 Let 7 be a truss. A T-group is an abelian group G together with an action
- T x G — G of the multiplicative semigroup of T on G such that for all ¢, ', t” € T and
g, heq,

(t,t/,t"-g=t-g—t'-g+t"-g and t-(g+h)=t-g+t-h. (2.12)

If additionally, there exists t € T such thatz - g = g, for all g € G, then we say that G is an
isotropic T -group.

A morphism of T-groups is by definition a group homomorphism f: G — G’ such that
f(-g)=t-f(g) forall g € Gandt € T. For the sake of brevity, we may often call them
T-linear group homomorphisms.

All T-groups together with 7 -linear group homomorphisms form the category T-Grp.
The full subcategory of isotropic T-groups is denoted by 7-Grpj. 3

Remark 2.31 An abelian group G is a T-group if and only if H(G) is a T-module and O is
an absorber. A

Example 2.32 Let us present two elementary examples which will be useful later on.

(1) Let R be aring. Then, any R-module M is a T(R)-group. In particular, all vector spaces
over a field [F are T(IF)-groups.
(2) Every group G is an isotropic x-group with action x - g = g forall g € G.

Theorem 2.33 The category T-Abs is (isomorphic to) the category T-Grp.

Proof We know from Remark 2.8 that the under category x/Ah is isomorphic to Ab. This
isomorphism restricts to an isomorphism between x/7T-Mod and 7-Grp. O

Henceforth, we will often omit the - symbol when denoting the action of a truss 7 on a
T-module M, that is, we will simply write tm instead of 7 - m.

3 Heaps of modules

In this section, we introduce and study heaps of 7-modules, where T is a truss.

3.1 Heaps of modules. First properties

Definition 3.1 (Heaps of modules) Let T be a truss. A heap of T-modules is an abelian heap
(M, [—, —, —]) together with a function

AT xMxM— M, (t,m,n) —> A(t,m,n),
such that
(1) A is a heap homomorphism in the first and the third entry separately, that is,
A([l, v, 1", m, n) = [A(t, m, n), A(t/, m, n), A(t//, m, n)] 3.1)

and
A(t, m, [n,n, n”]) = [A(t, m,n), A(t,m,n"), A(t, m, n”)], (3.2)

forallt,t',t" e Tandm,n,n’,n" e M
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(2) A is T-associative, that is to say
A(st,m, n) :A(s,m,A(t,m,n)), 3.3)

foralls,t €e T,m,n e M.
(3) A satisfies the base change property

A(tomon) = [AGe.m), A em),m], (3.4)

forallm,n,ee M,t €T.

A morphism of heaps of modules is a morphism f: M —> N of heaps such that

F(Awtemm) = An(r, fon), f), (3.5)
forallm,n € M, t € T. The category of heaps of T-modules and their morphisms will be
denoted by T-HMod. o

Example 3.2 Let T be a truss. Any abelian heap H is a heap of 7-modules with any of the
two trivial actions:

(@) A(t,h,h') =h,
(b) A, h, 0"y =1,

forallt € T and h, k' € H.1In fact, in both cases, conditions (3.1), (3.2), (3.4) follow by the
Mal’cev identities. The associativity (3.3) is obvious.

One may wonder if the base change property is independent or not of the other axioms.
The following example shows that it is.

Example 3.3 Let T = T(Z) and M = H(Z), then we can define

if
ATxMxM-—-M by (a, p,m)r— pl.peven
m if p odd

One can easily show that A fulfils all conditions from Definition 3.1 apart from the base
change property (3.4).

The following three lemmas explore the significance of the axioms presented in Defini-
tion 3.1, in particular they add significance to the base change property (3.4) and show how
it can be used to repair the seemingly asymmetric requirement for A to be a heap morphism
in the first and the third arguments, but not in the middle one.

Lemma 3.4 The base change property (3.4) is equivalent to
[A(t,m,e), e, A(t,e,n)] = A(t,m,n), (3.6)
forallt € T andm,n,e € M.
Proof In view of the Mal’cev identities and of the abelian property of the bracket,
At,m,n) =[A(t,e,n), A(t,e,m), m]
if and only if
[A(t, e,m),m, A(t,m, n)] = A(t, e, n),

that is to say, the base change property (3.4) is equivalent to (3.6). O
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Lemma3.5 Forfixedt € T andn € M, the map A(t, —,n): M — M is a heap homomor-
phism. Moreover,

At,m,m)=m, 3.7
A(t,m,n) =[n, A(t,n,m), m] (3.8)

and
A(r,[e,m, f1, [e.n, f1) = e, At,m,n), f], (3.9)

forallt € T,m,m',n,e, f € M.
Proof Observe that equation (3.4) entails that
A(t, [m, m',m"], n) = [A(t, e,n), At, e, [m,m',m"]), [m,m’, m”]]

= [AG esm, At em) A eom) A em”y mm! m ]
= [A(t, e,n), A(t,e,m),m, A(t,e,n), At,e,m’),
m', A(t, e, n), A(t, e, m"), m”]
= [A(t, m,n), A(t,m',n), A(t,m”, n)],

that is to say, that A is a heap map in the middle entry. Furthermore,

A(t,m,m) = [A(t,e,m), A(t,e,m), m] = m,

forallt € T, e,m € M, while equation (3.8) follows by replacing e on the right hand side
of (3.4) by n and using (3.7).

Finally, by using (3.6) (to derive the third and fifth equalities) as well as (3.7) (to derive
the second equality) and the fact that A is a heap morphism in all three arguments (to derive
the first equality), we can compute

A(t,[e,m, f1,[e.n, f]) :[A(t,e,e),A(z,e, n), A(t,e, f), A(t, m,e), A(t, m, n),
A m, ), A fo0), A fom), AL )]
=[e,A(t,e,n),A(t,e, . FOAGC foe), Atum, ), At m, n),
Am. ). f. A fon). f]
=[e,A(t,e,n),e,A(z,m,e),A(t,m,n),A(t,m,n), f]

:[e, A(z,m,n),f].

In addition to the above mentioned properties, we have also freely used the Mal’cev identities
and the reshuffling rules for abelian heaps. This proves (3.9). |

We note in passing that the property (3.9) implies that in G(M; ¢) we have
A(ta —m, _n) = _A(ta m, n)a

forallm,n € M andt € T, where we recall that —m = [e, m, e]. Furthermore, from (3.7) it
follows that all constant maps are morphisms of heaps of modules, as the following example
exhibits.
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Example 3.6 Let T be atruss and let M be a heap of T-modules. For any m € M, the constant
function

m:M— M, X —> m,

is a morphism of heaps of 7T-modules. In fact, it is clearly a morphism of heaps and the
compatibility with A follows from (3.7).

Lemma 3.7 Let M be a heap with a function A: T x M x M —> M that satisfies (3.1),
(3.2), (3.3) and (3.7). Then, for all e, f € M, the morphism of heaps

oM — M, m+—> [m,e, f1,

satisfies (3.5) (that is, ‘L'ef becomes a morphism of heaps of modules) if and only if the base
change property (3.4) holds (that is, M becomes a heap of modules).

Proof Let M satisfy (3.1), (3.2), (3.3) and (3.7). In one direction, if ‘L’ef satisfies (3.5) for all
e, f € M, then

35
Aa,e,m) =[Aa,e,m), e, £, fre] = [t (Aa,e,m)), f,e] (3:9) [AGa, 7 (@), 7 m)), £, €]
=[A(a, f.Im,e, f), f.e] =[A(a, f.m),Aa, f.e)., f. f.el
=[A(a, f,m), Aa, f,e), el,

foralle, f,m € M and a € T, and hence (3.4) holds. In the other direction, if (3.4) holds,
then

A(a, réf(m), ‘L'ef(n))=A(a, [m,e, f1,[n,e, f])

(3.4)
= [A(a,e, [n,e, f1), Ala, e, [m,e, f1),m,e, f]
=[A(a, e,n),e,Na,e, ), A(a,e,m),e, A(a, e, ), m,e, f]

34
:[A(a, e,n), A(a,e,m),m,e, f] ( = ) tef(A(a, m, n)),
foralle, f,m,n € M anda € T.Summing up: the translation isomorphisms are morphisms
of heaps of modules if and only if the base change property holds. |

Lemma 3.5 can be used to characterise congruences of heaps of modules. Let (M, A)
be a heap of T-modules. By a sub-heap of modules, we mean a sub-heap N of M that is
closed under the operation A, that is, a sub-heap such that, for all n,n’ € M andt € T,
A(t,n,n") € N.

Proposition 3.8 Let (M, A) be a heap of T-modules.

(1) For every non-empty sub-heap of modules N of M, the sub-heap relation ~y is a con-
gruence on M.

(2) If ~ is a congruence on the heap of T-modules M, then its equivalence classes are
sub-heaps of modules of T.

Proof (1) Let N be a non-empty sub-heap of modules and consider any m, m” € M such that
m ~px m”. This means that there exist n, n’ € N such thatm” = [n,n’,m]. Forallm’ e M,

At,m',m")y = A(t,m, [n,n', m])
=[A(@t, m',n), A(t,m',n), A(t,m’, m)]
=[[A(¢, m',n), A@t,m',n'),n'],n', A@t,m', m)]
=[A@t,n',n),n', At,m, m)],
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by (3.2) and the base change property (3.4) combined with the associativity of the heap
operation and the Mal’cev identity. Hence,

Ait,m',m") ~y A(t,m', m). (3.10)
Next, by using in addition equation (3.8) in Lemma 3.5 and (3.6), we can compute
A, m",m") =A@, n,m'), At,n',m"), At,m,m")]
=[AG, n,m),m' A, m' 0"y, n', A(t,m,m")]
= [A(z, n,n'),n’, A, m, m’)].

Therefore,
At,m”,m") ~y A(t,m, m). (3.11)

Finally, using (3.10) and (3.11) and the transitivity of equivalence relations we conclude that
in general, if m ~y m” and m’ ~y m"’, then A(t,m”,m"") ~y A(t, m, m’), as required
for a congruence.

(2) Let [m] be a congruence class of m € M. Then, [m] is a sub-heap of M by the Mal’cev
identities (idempotency of the heap operation). Similarly, (3.7) in Lemma 3.5 implies that if
m’ ~m and m” ~ m, then, forallt € T,

A, m',m"y ~ A, m,m) =m,
and hence [m] is a sub-heap of modules. ]

The next two results justify the claim that heaps of modules can be understood as a different
point of view on induced (sub)modules.

Proposition 3.9 Let T be atruss, let M be a T-module, and let N be an induced T -submodule
of M. Then, (N, ) is a heap of T-modules, where >: T x N x N — N is a map which
assigns to every triple (t,e,n) € T x N x N, the induced e-action t >, n. Furthermore, the
assignment

H:T-Mod — T-HMod, (M,[—,—, —],") — (M,[—,—,—],>)
is functorial.

Proof Observe that since N with the induced action >, is a T-module, for all e € N, it is
enough to check that the base change property holds. Let m,n € N,t € T, then

[toen,tsem,m|=|[t-n,t-e,e,t-m,t-e,e,m|=[t-n,t-m,m| =1tuv, n.

Thus, (N,) is a heap of T-modules. Moreover, if f: M —> M’ is a morphism of T-
modules then

foem)=f(lt-m, t-e e]) =[t-f(m).t-fe), f(e)] =1efe) f(m).
Hence, f is a morphism of heaps of 7-modules as well. |
Example 3.10 Since an abelian heap H is an E(H)-module by evaluation (see Example 2.17),

themap A : E(H) x Hx H — H, (f,a,b) —> [f(b), f(a), a], makes H into a heap
of E(H)-modules.

Example3.11 Let T be a truss. The endomorphism truss E(7) of T as an abelian heap
is a T-module with (¢ - f)(t') := tf (') for all 1,/ € T and f € E(T). Therefore, it
also enjoys a structure of heap of T-modules as in Proposition 3.9, explicitly given by

A(Lf?f/):[t'f/’t'f’f]-
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Example 3.12 Let T be a truss. By Proposition 3.9, the regular action on T gives rise to the
heap of T-modules with A(¢,r,s) = [ts, tr,r], forallt,r,s € T.

Lemma3.13 Let (M, A) be a heap of T-modules over a truss T. For any e € M define the
operation

e TXM— M, t-.m:=A(t,e,m).
Then:

(1) The pair (M, -g) is a T-module with absorber e such that H(M, -e) = (M, A).

(2) Foralle, f € M, the translation map ref : M — M is an isomorphism from (M, -e)

to (M., ).
(3) Forevery T-module (M, "), (H(M, "), ©) = (M, ).

Proof (1) Observe that since A is a heap homomorphism on the first and third entries and it
is T-associative, A(—, e, —) is a T-action on M. Moreover, A(t, e, e) = e, forallt € T, by
(3.7). Thus, e is an absorber for A(—, e, —). If we consider>: T'x M x M — M associated
with, = A(—, e, —) as in Proposition 3.9, then

(3.4

topn= [t'en, t-em,m] = [A(t,e, n), A(t,e, m), m] A(t,m,n),

forany t € T and m,n € M. Therefore, > = A and H(M, A(—, e, —)) =(M,AN).
(2) This follows from Lemma 3.7, since

o/ (1-em) = oS (MG, e;m)) = A(t, £, 7 (m)) = 1- 2 (m),

foralle, f,me Mandr e T.
(3) Finally, in (H(M, ~),-E), forallm e Mandt €T,

tem=rv(t,e,m)=te,m
and hence (H(M, -); e) = (M, >). O
Put together, Proposition 3.9 and Lemma 3.13 immediately yield

Corollary 3.14 Every heap of T-modules (M, A) is the heap of T-modules H(M, l>e) asso-
ciated with an induced action >, on some T-module M (with absorber).

Remark 3.15 1t is worth to mention here that two different 7-modules can have the same
induced module structure. Consider a 7-module (M, -) without an absorber and its induced
T-module (M, >,), for some e € M. Then, (M, -),>,) = (M, >,), but (M, >,) is not even
isomorphic with (M, -) as there is no 7-module homomorphism from (M, >,) to (M, -). A

The correspondence of Corollary 3.14 can be used to prove the following entropic or
interchange property of heaps of modules.

Lemma3.16 Let (M, A) be a heap of T-modules. Let t,t" € T be such that for some e € T
and allm € M,
At e,m) = A(t't, e, m). (3.12)

Then, forallm,m’',m" . n € M,

A(t, A (t/, m, m/) LA (t/, m”, n)) = A(t/, A (t, m, m”) , A (t, m, n) )
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Proof With no loss of generality, we may assume that A is given by an induced action on a
T-module M (with an absorber, say, a), that is,

At,m,n)=t>,n=I[tn,t-m,ml.

Furthermore, the base change property implies that if the equality (3.12) holds forone e € M,
then it does so for all e € M. Thus, in particular,

tt'-m = [tt'-m,tt"-a,al = A@t' ,a,m) = A{'t,a,m) = [t't-m,t't-a,a]l =t't-m, (3.13)

for all m € M. Therefore, using the distributive laws of the 7 -action to derive the first and
third equalities and the fact that M is an abelian heap and (3.13) to derive the middle one,
we can compute,

A(t, At m, m’) , A (t/, m”, n))
= [[tt’-n, tt'-m” t-m"], [t -m! t m, t-m), [t -m, t m, m]]
= I:[t/t'n, ttm' ¢ om' L, [He-m” U tom, fom], [tem”, tom, m]]
= A(z’, A(t,m,m”),A(t,m’,n)),
as required. |

Remark 3.17 Recall that if M, N are abelian heaps, then we may perform the tensor product
M ® N of abelian heaps and this satisfies properties similar to those of the tensor product
of modules. With this convention and in view of Lemma 3.13, a heap of T-modules is an
abelian heap (M, [—, —, —]) together with a heap homomorphism

ANTOIMROIM — M, tmMOPOn+—to, n
which is 7 -associative,
tSopn =ty (s >m n),
and satisfies the base change property
topn=[teen teem, m,

forallm,n,e e M andt,s € T. A

3.2 Isotropy and contractibility for heaps of modules

Recall from Lemma 3.13 that if M is aheap of T-modules, then (M, -.) denotes the associated
T-module with t -, m = A(t,e,m),forallt € T,e,m € M.

As modules over trusses do not need to be isotropic or contractible in general, the same
happens for heaps of modules. Therefore, we are led to the following lemmata and definitions.

Lemma 3.18 Let T be a truss. For any heap of T-modules M, the set
Stab(M) :=={u €T | Alu,m,n) =n, forallm,n € M}
is a sub-truss and, if non-empty, it is a paragon of T. In all cases, if M is non-empty, then

forall e € M, Stab(M) = Stab(M, +).
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Proof First of all, notice that if M = &, then Stab(M) = T and the statement is true. If
M # o, then for any e € M, Stab(M) = Stab(M,+), by the base change property (3.4),
where

Stab(M,,) ={u €T | A(u,e,n) =n, foralln € M},

(see Lemma 2.19). The inclusion Stab(M) C Stab(M,) holds trivially, while, for every
u € Stab(M, ),

2.2
[A(u, e,n), A(u, e,m),m] =[n,m, m] (:) n

(3.4

for all n € M and hence Stab(M,,) C Stab(M), too. Therefore, the statement follows by
Lemma 2.19. ]

A(u,m,n)

Definition 3.19 For a heap of T-modules M, Stab(M) is called the stabiliser or isotropy
paragon of M. A heap of T-modules M is said to be isotropic if Stab(M) is non-empty.
The category of isotropic heaps of T-modules T-HModjs is the full subcategory of heaps of
T-modules whose objects are isotropic heaps of T-modules. o

Remark 3.20 Tt follows from the proof of Lemma 3.18 that a (non-empty) heap of 7-modules
M is isotropic if and only if (M ,-e) is an isotropic 7-module for all ¢ € M, if and only if
there exists e € M such that (M ,~e) is isotropic. A

Lemma 3.21 Let T be a truss. For any heap of T-modules M, the set

AmM) :={z €T | A(z,m,n) =m, forallm,n € M},
is either empty or a two-sided ideal of T. Furthermore, if M is non-empty, then foralle € M,
Ann(M) = Ann.(M,).

Proof Analogously to the proof of Lemma 3.18, if M = &, then Ann(M) = T and the
statement is trivially true. If M # &, then for every e € M we have that Ann(M) =
Ann,(M,) by the base change property (3.4), where

Amn,(M,) ={z €T |z:em=eforallm e M}.

The latter is a two-sided ideal by Lemma 2.25. O

Definition 3.22 For a heap of T-modules M, Ann(M) is called the annihilator or contracting
ideal of M. A heap of T-modules M is said to be contractible it Ann(M) is non-empty. The
category of contractible heaps of T-modules T-HMod" is the full subcategory of heaps of
T-modules whose objects are contractible heaps of T-modules. o

Proposition 3.23 Let T be a non-empty truss and let M be a non-empty heap of T -modules.
The following statements are equivalent:

(1) M is contractible.
(2) Forevery e € M, the T-module (M,-e) with absorber e € M is e-contractible.
(3) There exists e € M such that (M) is e-contractible.

Proof The chain of implications (1) =(2) = (3) is clear, while to prove that (3) = (1) it is
enough to note that Ann(M) = Ann,(M,,) # &, by Lemma 3.21. m]

Theorem 3.24 Let T be a truss and let M be a heap of T-modules.
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(1) If M is an isotropic heap of T-modules then, by considering T as a module over itself,
Stab(T') C Stab(M). In particular, if T is a unital truss with unit 17, then 17 € Stab(M).
(2) If M is an isotropic heap of T-modules and T is a unital truss, then the set

Stab(M)* := Stab(M)NT* = {t eT* | A(t,m,n) =nforallm,n € M}

is a group with respect to the product in T.
(3) If M is a contractible heap of T-modules and the truss T admits an absorber Or, then
07 € Ann(M).

Proof (1)Ifuy € Tissuchthatuy r = tforallt € T anduy, € T issuchthat A(uy, m,n) =
nforall m,n € M, then

3.3
AQur,m,n) = A(ug,m, Ay, m,n)) "~ =" Auruy, m,n) = Ay, m,n) =n

for all m, n € M and hence ur € Stab(M).
(2) In view of Lemma 3.18, we know that Stab(M)* is closed under the multiplication in
T. In view of (1), we know that 17 € Stab(M)*. Finally, if ¢t € Stab(M)* then

(3.3)
forall m,n € M, whence t~! € Stab(M)* too.

(3) Suppose that z); € T satisfies A(zp, m,n) = m, forallm,n € M. Then

(3.7) (33
m = A(OT,m,m)=A(0T,m,A(zM,m,n)) =" AQOrzy,m,n) = AQOr,m, n),

A mon) =A™ m, A, m, n)) A 't m,n) = Ay, m, n) = n,

forallm,n € M. Thus, Oy € Ann(M). O

3.3 Crossed products by heaps of modules

The following proposition extends the construction of [11, Theorem 4.2] to heaps of modules.

Proposition 3.25 Let T be a non-empty truss and (M, A) be a non-empty heap of T -modules.
Then, for all e € M, the Cartesian product of heaps M x T is a truss with multiplication

(m,s)(n,t) = ([A(s, e, n), e, m], st),

forall (m,s), (n,t) € M x T. We denote this truss by M >E<1 T and call it a cross-product of
T with M.

Proof By Lemma 3.13, if (M, A) is a heap of T-modules and a € M, then (M,y) is a
T-module, where t-;m = A(t,a,m) forallt € T, m € M. Therefore, by [11, Theorem 4.2],
forany e € M,

(m,s)(n,t) = ([m, Sqe,S-qnl, st) = ([A(s, a,n), A(s,a,e), m], st)

(3-4)

=([A(s,a,n),A(s,a,e),e,e,m],st) = ([A(s,e,n),e,m],st),

and M x T is a truss with the Cartesian product heap structure. O

The cross-product by a heap of modules has similar properties to those of an extension of
a truss by a module listed in [11, Theorem 4.4].
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Lemma 3.26 Let T be a non-empty truss and (M, A) be a non-empty heap of T-modules.
(1) M isaleft M >e<1 T-module by the action
(m,t)-n=[A(s,e,n), e, ml.
In particular (m, t) -e =m, forallm ¢ M andt € T.

(2) The trusses M >e<1 T and M SI; T are isomorphic forall e, f € M.

(3) Forallu e T, M, = M x {u} is a paragon in M >e<1 T,and T =M >e<1 T/M,.

(4) The heap T, = {e} x T is a sub-truss and a left paragon of M >e< T,and M =M ; T/T,
as left M st T-modules.

Proof As in the proof of Proposition 3.25, apply [11, Theorem 4.4] to T and the T-module
(M, ) fora e M. O

4 Heaps of modules and affine spaces

In this section, we will focus on a geometric interpretation of heaps of modules over a truss.
In particular, we will highlight the relationship between heaps of T(R)-modules and affine
modules over a ring R. We will show that the straightforward extension of the notion of an
affine module over aring R to that of an affine space over a truss 7' by changing an R-module
to a T-group (and it will be clear soon why this is the natural choice) provides for us a
category which turns out to be equivalent to the category of heaps of T-modules. Thus, affine
spaces over a ring R or over a field F are special cases of heaps of T(R) or T(IF)-modules,
respectively.

4.1 Morphisms of heaps of modules as translations

The first observation to be made is that all morphisms of heaps of 7-modules are translations
of T-module morphisms, for a particular choice of 7-modules.

To this aim, recall from Sect. 2.4 how the category of T-groups is isomorphic to the
category of 7-modules with a chosen absorber and morphisms preserving the absorbers.

Proposition 4.1 Let T be a truss and let M, N be two non-empty heaps of T-modules. Let
m € M and n € N. Then, a function f: M —> N is a morphism of T-groups from
(G(M; m),m) to (G(N; n),n) if and only if f is a morphism of heaps of T-modules such
that f(m) = n.

Proof If f € T-HMod(M, N) and f(m) = n, then f € Hp(M, N) and
f(t‘mm/) = f(AM(ts m, m/)) = AN(L n, f(m/)) = t'ﬂf(m/)

for all m" € M, that is, it is a morphism of T-modules from (M,,) to (N,y). Moreover,
it preserves the chosen absorbers m € M and n € N, whence it is a morphism of 7-
groups. Conversely, if f is a morphism of T-groups from (G(M;m),m) to (G(N;n),y),
then f = H(f) is a morphism of heaps of T-modules from H(H(G(M;m)),m) = M to
H(H(G(N; n)),n) = N and it clearly satisfies f(m) = n. ]

The following corollaries of Proposition 4.1 highlight how heaps of modules behave as
affine versions of T'-groups.
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Corollary 4.2 Let T be atruss, M, N be non-empty heaps of T-modules and let f : M —> N
be a function. Then,

feT-HMod(M.N) = T, 0 f € T-Grp((GM; m).m), (GIV: m).)),

Sfor some (and hence for all) m € M andn € N. In particular, f: M — N is a morphism
of heaps of T-modules if and only if f(—) = F(—) +, f (m) for some morphism of T -groups
F: (GWM;m),m) — (G(N;n),y).

Proof. Let us recall from Lemma 3.7 that 'L”;(m) € T-HMod (N, N)* and notice that (r? ) ©
f) (m) = n. Thus, by Proposition 4.1,

iy © f € T-Grp((GM: m). ). (GN: m).1))
if and only if r?(m) o f € T-HMod(M, N), if and only if f € T-HMod(M, N).

To conclude, observe that by setting F' := r?(m) o f we find

F = (5™ 0 Ty 0 1) (5) = [F(=)n, fm)] = F(=) + fm). ©

Corollary 4.3 Let (G, +,0¢, ) and (H, +, 0y, -) be T-groups, for some truss T. Then
0
f € T-HMod(H(H(G)), H(H(H))) <= t4{, ° f € T-Grp(G, H).
In particular, for all T-modules M, N, and allm € M,n € N,

f € T-HMod(H(M), H(N)) <= T}, 0 f € T- Grp((G(M; m), ), (G(N; n), >4)).

Proof Recall from Lemma 3.13 that (H(H(G, +, 06). ), -0;) = (H(G, +,0¢),>0,;) and
the latter is the T-group (G, +, Og, -) again by Lemma 2.24 and Theorem 2.33. Hence, the
first claim follows from Corollary 4.2. The second claim is a particular instance of the first
one. O

Now, by the following example we can observe that, in general, the analogue of Corollary
4.3 for T-modules does not hold.

Example 4.4 Let us consider a non-empty 7-module (M, -) without an absorber. For instance,
M = 7 as a module over itself with the truss structure given by

m-n=2mn+m-+n,

(see [7, Corollary 3.53]). Consider also the induced submodule (M, ), for an arbitrary
element ¢ € M. Since the identity morphism and the constant mape: M — M, m — e,
are elements of

T-Grp(((M, 5), ), (M, ), ) ) = T-Grp((M, &), (M, ),

we know from Corollary 4.3 that the identity morphism and all the constant maps
m: M — M,n +—> m, form € M are elements of T-HMod(H(M,>.), H(M,-)).
However, T-Mod((M ,Be), (M, -)) = o, and so no translation of any morphism in
T-HMod(H(M,>,), H(M, -)) can be therein.
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Even though the T-modules (M, -) and (M, ,) are not necessarily isomorphic, unex-
pectedly, every induced submodule of (M, -) is an induced submodule of (M, >.) and vice
versa (see the paragraphs preceding (2.8)). Thus, we have an equality of heaps of T-modules
H(M,>.,) = H(M, -). On the other hand, such an equality always yields an isomorphism of
modules in case the truss is a ring or the modules are T -groups. This points out how unique
and different modules over trusses are from 7'-groups and modules over rings. Recall that
we proved in Theorem 2.33 and Proposition 2.29 that the category of T-groups is equivalent
to the category */7T-Mod. In fact, we can recover T-groups as heaps of modules under the
singleton heap of modules.

Proposition 4.5 The category x/T-HMod is isomorphic to the category T-Grp.

Proof In view of Corollary 4.2, the assignment sending every * i> M in x/T-HMod
to (G(M 3 f (), -f(*)) gives rise to a well-defined, fully faithful functor. In the opposite
direction, by Corollary 4.3, the assignment sending every (G, +,0, -) in T-Grp to x —
H(H(G), ~), * +—> 0, is a well-defined, fully faithful functor, which is the inverse of the
previous one. O

Given aring R, with every R-module M one can associate a heap of R-modules by taking
Ar,m,m) =r-m' —r-m+mand [m,m',m"] = m —m' + m”, where r € R and
m, m’,m” € M. Choosing these operations is the same as taking H(T(M)) as in Example
2.17(3) and Proposition 3.9. By Proposition 3.9 and Lemma 3.13, all heaps of T(R)-modules
arise from T(R)-modules, but not necessarily from R-modules. Thus, we are led to consider
also the full subcategory R-HMod of T(R)-HMod in which all objects are coming from
R-modules, that is, T(R)-modules with exactly one absorber (see [10, Lemma 4.6 (2)(ii)]).

Proposition 4.6 The category R-HMod is the category (T(R)-HModics“)in of inhabited
isotropic contractible heaps of T(R)-modules.

Proof First of all, let us show that the category R-HMod is closed under isomorphisms,
whence it is the essential image of the composite functor

R-Mod — = T(R)-Mod —*~ T(R)-HMod .

Let (M, [—, —, —], A) be a heap of T(R)-modules for which there exist an R-module P
and isomorphism of heaps of T(R)-modules ¢: H(T(P)) —> M. Then, M is non-empty,
as e := ¢(0p) € M, and 1g € Stab(M) and O € Ann (M), so that it is isotropic and
contractible. Thus, we may consider the abelian group G(M; e¢) = (M, +., ¢) and the R-
action R x M — M, (r,m) +—— r-,m, which makes M an R-module. In this setting,
T((M, +e. €),2) = (M, [—, =, =]).e) and H((M, [—, =, —]).) = (M, [—, =, =], A) by
Lemma 3.13, which shows that M is an object in R-HMod.

Now, if M is an R-module, then H(T(M)) is an inhabited heap of T(R)-modules with 1z €
Stab(H(T(M))) and Og € Ann (H(T(M))). Whence any object of R-HMod is an object in
(T(R)-HMod{™)", too. Conversely, for any object (M, [—, —, —], A) in (T(R)-HMod{")"
we have that M is non-empty, so there exists ¢ € M, and that 1 € Stab(M) and Og €
Ann (M) by Theorem 3.24. Thus, as above we may consider the abelian group G(M; e) =
(M, +.,e) and the R-action R x M — M, (r,m) +—— r-,m, which makes of M an
R-module. Again, it turns out that (M, [—, —, —], A) = H(T(G(M; e))) and hence it is an
object in R-HMod. O

The following is a particular instance of Corollary 4.3 (see also [3, Lemma 3.1]).
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Proposition 4.7 Let R be a ring and M, N be R-modules. Then,
f € R-HMod(H(T(M)), H(T(N))) <= [f(-), f(Om),0n] € R-Mod(M, N),

where 0y is the neutral element of the additive group M and Oy is the neutral element of N. In
particular, f: M —> N is a morphism of heaps of R-modules if and only if f = F + f(0p)
for some morphism of R-modules F: M —> N.

4.2 Heaps of modules as affine spaces

In Sect. 4.1, we have shown that every homomorphism of heaps of 7-modules f : H(M) —>
H(N) is a homomorphism of some particular choice of T-modules up to a translation t.
Moreover, in the case of rings, or in more general setting of 7-modules with absorbers, we
can find a homomorphism of native 7-modules M and N which up to a particular choice
of translation 7 is equal to f. In fact, this suggests a deep connection between heaps of
modules and affine spaces. The aim of this section is to reveal this connection. To motivate
this discussion, we adapt [25, page 45] to recall the following notion.

Definition 4.8 An affine module over a ring R is a set M together with maps [—, —, —]: M x
MxM— Mand A: R x M x M — M such that

Pl. [b,a,c] = |[c,a, b],

P2. [b,a,a] = b,

P3. [[b,a,c],c,e] =[b,a,e],

V1. [A(r,a,b),a,c] = A(r,c, [b,a,c])

V2. [A(r,a,b),a, A(r, a, c)} = A(r, a,lb,a, c]),

V3. |A(r,a,b),a, A(s,a,b)| = A(r +5,a,b),

V4. A(rs,a,b) = A(r,a, A(s, a, b)),

V5. A(l,a,b) = b,

foralla,b,c,e € M andr,s € R. o

Proposition 4.9 An affine R-module is exactly an isotropic and contractible heap of T(R)-
modules.

Proof Clearly, any abelian heap satisfies P1-P3. By Theorem 3.24 (1) and (3), any isotropic
contractible heap of T(R)-modules satisfies V5 and A(0, a,b) = a forall a, b € M. Thus,
the only non-trivial check of V1-V4 consists in observing that

32

( = ) [A(r, ¢, b), A(r,c,a), A(r, c, c)]

(3.7)
=

(34)

Thus, an isotropic and contractible heap of T(R)-modules is an affine R-module.

A(r,c, [b,a,c])
A(r,c,b), A(r,c,a),a,a, c]

[A(r,a,b),a,c].

Conversely, assume that (M, [—, —, —], A) satisfies P1-P3 and V1-V5. If M is empty,
then trivially M is also a heap of T(R)-modules and Stab(M) = R = Ann(M). If M
is non-empty, then the fact that (M, [—, —, —], A) is a heap of T(R)-modules such that

A(l,a,b) = b = A0, b,a) for all a,b € M is a simple check. In fact, one may take
advantage of the fact that for any chosena € M, allb,c € M andr € R,

b+,c:=1b,a,c] and r-,b:=A(r,a,b),

@ Springer



S.Breazet al.

define an R-module structure on M (see [25, Satz 1]). ]

As a consequence, it is natural to define morphisms of affine R-modules as morphisms
of the corresponding heap of T(R)-module structure and Proposition 4.7 confirms that they
coincide with the intuitive idea of maps which are linear up to a constant.

Corollary 4.10 If R is a ring, then the category of affine R-modules is (isomorphic to) the
full subcategory T(R)-HModsY of T(R)-HMod consisting of isotropic contractible heaps of
T(R)-modules. Moreover, the category of non-empty affine R-modules is (isomorphic to) the
category R-HMod.

Proof This follows from Proposition 4.6 and Proposition 4.9. O

Remark 4.11 By Proposition 4.7, all morphisms of inhabited isotropic contractible heaps of
T(R)-modules (that is, of affine R-modules) are translations of R-module homomorphisms.
In both cases of affine R-modules and heaps of modules, the empty set is the initial object.

A

Inspired by the fact that, by Proposition 4.1, morphisms of heaps of 7-modules are essen-
tially morphisms of 7'-groups up to fixing an origin, and since considering affine R-modules
amounts to considering (isotropic and contractible) heaps of T(R)-modules, let us consider
the following extension of the well-known definition of an affine space as a free transitive
action of the additive group of a vector space on a set (see [24, Appendix §2]).

Definition 4.12 Let T be a truss. A T-affine space is a triple (A, G, 04), where A is a set, G
. 04 . L .

isa T-group and o4 : G —> &4 is a group monomorphism into the symmetric group of A,
such that the shear map

Gx AT Ax A (g,a) — (0a(2)(@), @)

is bijective. <

Example 4.13 Let A be a non-empty set. Then, (A, G, 04) is a T-affine space if and only if
G acts freely and transitively on A by p4. For the empty set, there exists a unique T-affine
space (&, C1, C1 — {id}), where C is the trivial group.

Remark 4.14 Affine spaces over a truss T are pseudo-torsors over the topological space {x}
in the sense of [22, 16.5.15]. A

Example 4.15 Recall that an affine space over a field IF is a triple (A, V, o), where A is a set,
V is a vector space over Fando: V x A —> A is a free and transitive action of the additive
group of V on A. If G is a vector space over IF and A is a non-empty set, then (A, G, o) is
an affine space if and only if (A, G, 04) is T(IF)-affine space with p4(g)(a) = g o a.

Definition 4.16 A homomorphism of T -affine spaces (A, G, 04) and (B, H, op) is a pair
(F, f) € Set(A, B) x T-Grp(G, H) such that f is equivariant, that is, the diagram

A 04(8) A
Fl lF
A oB(f(8) B

commutes for all g € G. The T-affine spaces and their homomorphisms form a category,
which we denote by Aff7. o

@ Springer



Heaps of modules and affine spaces

Remark 4.17 The empty T -affine space of Example 4.13 is the initial object in Aff7. This
follows by the fact that & and C; are initial objects in the categories of sets and groups,
respectively. A

Remark 4.18 Let us denote by Affy the category of affine spaces over a field F. Recall that
a homomorphism between two affine spaces (A, V, o) and (B, W,e)isamap F: A — B
such that for alla € Aand v € V, Flvoa) = f(v) e F(a), where f: V — W is
a homomorphism of vector spaces. Since every affine space over F is a T(F)-affine space
and F(voa) = f(v) e F(a) is the equivariant condition in the sense of Definition 4.16,
we conclude that (F, f) is a homomorphism of T(F)-affine spaces. Hence, Affy is a full
subcategory of Afft(w). A

Example 4.19 The truss * = {x} acts on any group G by * - g = g as in Example 2.32(2)
and any group homomorphism is equivariant with respect to the unital action of . Thus, the
category of abelian groups is isomorphic to the category »-Grp;.

The main aim of this section is to relate 7 -affine spaces to heaps of 7T-modules. We start
by extending the translation group functor (2.6) to a functor between heaps of T-modules
and T'-groups.

Lemma 4.20 Let (M, A) be aheap of T-modules. Then, Trans(M) is a T -group with T -action

t- ,ab = A0 s [m,a, AL, a, b)]. 4.1)

Moreover, if f: (M, Ay) —> (N, An) is a morphism of heaps of T-modules, then the
group homomorphism Trans(f) is T-linear. In particular, the functor Trans: Hp — Grp
induces a functor T-HMod — T- Grp which we denote by Trans again.

Proof Let (M, A ) be a heap of T-modules. We already know from Sect. 2.1 that Trans(M)
is an abelian group. The associativity of the action (4.1) follows by the associative law (3.3)
for A. The distributivity of the heap operation of 7" over the action (4.1), that is, the first
of the properties (2.12), follows by the fact that A is a heap morphism in the first argument
(3.1) and by equation (2.5) combined with the commutativity of the group operation o on
Trans(M). Finally,

3.2
A(t,a,[b,d, b’]) ( = ) [A(t, a, b), At a,d"), A(t, a, b’)]

[ (t, a, b), a,d, A(t, a, a’), A(t, a, b’)]

A
[A(t.a.b).a A(r.a.b). A aa)).a]

(14) [

At.a,b).d, At d, b’)],

forallt € T and a,b,a’,b’ € M. Combining this equality with (2.5), one obtains the
distributivity of the T -action over the group operation, i.e. the second of properties (2.12).

Concerning the morphisms, it is clear that if f: M — N is a morphism of heaps of
T -modules, then

Trans( f) (z-ré’) — Trans(f)(fa/\(””’b)) _ T;»((a[)\(t,a,b)) _ T;\(gt),f»(a),f(b)) — ¢ Trans(f) (r},’) ’

and hence Trans( f) is morphism of 7'-groups. O
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The following theorem gives a geometric interpretation of heaps of T-modules.
Theorem 4.21 The categories Affp and T-HMod are equivalent.

Proof Let us begin by defining a functor from Affr to T-HMod. The empty T -affine space
is sent to the unique empty heap of 7-modules. Let (A, G, 04) be a non-empty T -affine

space and let us define the ternary operations [—, —, —] and A as follows. Foralla, b, c € A,
there exists a unique u € (G, +) such that o4 (u)(b) = a, and then we set
[a,b,c] = o0a(u)(c). 4.2)

Let us prove that this makes of A a (non-empty) abelian heap. First of all, if v € G is the
unique element such that g4 (v)(b) = ¢, then

oau)(c) = 0aw)(0a(v)(b)) = (0a(u) 0 0a(v))(D) = 0a(u + v)(D)
=04 +u)(b) = 0a()(0a(u)(b)) = 0a(v)(a),
whence
[a,b,c] =0a)(c) = 0a(v)(a) = [c, b, a].

Furthermore, it is clear that [b, b, a] = 04(0)(a) = a. Finally, leta, b, c,d, e € A and let
u,v € (G,+) be such that o4 (u)(b) = a and 04 (v)(d) = c. In particular, 04 (u)(c) =
04(u 4+ v)(d). Then we have

la,b,[c,d,e]] = 0a(u)(0a(v)(e)) = 0a(u +v)(e) = [0a(u)(c),d, e] = [la, b, c],d, e].

Givena,b € A, let u € G be the unique element such that b = o4 («)(a). Then, we can
define

A(t,a,b) ;= oa(t-u)(a).
Let us check that A makes (A, [—, —, —]) a heap of T-modules. First,
[A(t,a,b), A(t',a,b), A(t", a,b)|=[0a(t-u)(a), 0a(t"-u)(a), 0 (" -u)(a)]
=oA((t-u) — (t"u)) (0a(t"-u)(a))
=oa(t-u—t'-u+t"-u)a

(2.12)

=" oa(lt. 1, "1 -u)(a) = A([1,1',1"], a, ).

Second, for a,b,c,d € A, letu,v,w € G be such that b = p4(u)(a), c = o04(v)(a),
d = pa(w)(a). Then,

[b,c,d] = oa(u —v)(d) = 0alu —v+w)(a),
and so
[A(t7 a, b)’ A(t7 a, C)v A(t7 a, d)] = [QA(tM)(Cl), QA(t’U)(a)v QA(tU))(Cl)]

(2.12

= QA(t~u — t'v)(QA(ﬁw)(a)) = ) QA(t~(u —v+ w))(a) = A(t,a, [b, c,d)).

Summing up, A is a heap homomorphism in the first and third entries. Furthermore, with the
same assumptions as above,

A(t,a, A(t',a,b)) = A1, a, 04(t"-u)(@)) = 0a(t-(t"-u))(a)
= 0a((tt)-u)(a) = A(tt', a, b).
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Finally,
[A(t,a,b), A(t,a,c),c] = [oa(t-u)(a), 0a(t-v)(@), 0a(v)(@)] = 0a(t-u —1-v 4 v)(a)
= 0a(t-(u — v))(ea(W)(@) = 0a(t-(u — v))(c) = Az, ¢, b).

Therefore, the assignment (A, G, 04) —> (A, [—, —, =], A) from Aff7 to T-HMod is
well-defined on objects.

Now, recall that a morphism of affine spaces (A, G, 04) —> (B, G’, op) is given by a
function F: A —> B and a T-group homomorphism f: G —> G’ such that

F(ea(w)(@) = 0p(f(v)(F(a)),
foralla € A, v € G. Therefore, if c = 04 (v)(b) then F(c) = op(f(v))(F (b)), and hence

[F(a). F(b), F(c)] = 0B(f()(F(a)) = F(0a(v)(a)) = F(la. b. c]).
forall a, b, ¢ € A. Moreover, if b = 04 (u)(a) then F(b) = op(f (u))(F(a)), and hence
A(t, F(a), F(b)) = 0p(t- f(u)(F(a)) = op(f(t-u))(F(a))
= F(oa(t-u)(a)) = F(A(t,a, b)).
Therefore, the assignment (F, f) —> F gives a well-defined function
Affr((A, G, 04), (B,G', 0p)) — T-HMod((A, [—, —, =], Aa), (B, [—, —, =], AB)).
Summing up, we have constructed a functor

(A7 G7 QA) [ (A, [_v R} _]a A) )

® : Affy — T-HMod, { (F. f) —> F

In the opposite direction, let (M, [—, —, —], A) be aheap of T-modules and let us consider
the T-group Trans(M) with the action gps: Trans(M) —> Gy, given by the canonical
inclusion. The shear map

Trans(M) x M — M x M, (rab,m) — (Tf(m),m),

has the inverse M x M — Trans(M) x M, (m, n) — (T,Z”, n) Thus, (M, Trans(M), o)
is a T -affine space

Moreover, if F: (M, Ayp) —> (N, Ay) is a morphism of heaps of T-modules, then the
pair (F, Trans(F)) is a morphism of T -affine spaces directly from the definition of Trans(F’)
and the actions o7 and g . Summing up, we have constructed a functor

M, [—, —, =], Ay) —> (M, Trans(M), o) '

Y : T-HMod — Affp, { F —> (F. Trans(F))

To show that W is the quasi-inverse of @, notice first of all that the heap operation and the
action on ®W¥ (M, A) turn out to be

au (e2)m) = [m.a. b] and @ur(r-72)(@) = aaa (72" ) @) = At @, b).
Hence, ®W is the identity on objects.

On the other hand, W ® (A, G, 04) = (A, Trans(A), 04). The definition (4.2) of the heap
operation on A gives that Té’ = 04(g), for all a, b € M, where g is the unique element in
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G such that p4(g)(a) = b. Hence, Trans(A) = {04(g) | g € G}. In view of this and the
arguments used to prove the associative law for the heap operation on A the assignment

€G: Trans(A) — G, 0+ g, with 04(g)(a) = b,

is an isomorphism of abelian groups. It commutes with 7"-actions since, for g € G such that

0a(g)(a) =D,

GG(;.ff) =¢q (.L,A(t,a,b)) — GG(tgA(t-g)(a)) —tg= t-eG(tf).

a

Therefore, we can consider the pair (id4, €G) : (A, Trans(A), 04) — (A, G, 04), which
is an isomorphism of T -affine spaces since

ida (27(20) M) = 0a(@)(m) = ida(m) o €6(z),

foralla, b,m € A, where g € G is the unique element such that p4(g)(a) = b. We leave to
the reader checking the naturality of (id4, €g). O

Corollary 4.22 For a truss T, the categories Affi; and T-HModjs are equivalent.

Proof 1If (A, G, 04) is an object in AffiTS andifu € T issuchthatu - g = g forevery g € G,
then for any a, b € A and g € G such that p4(g)(a) = b, we obtain

A(u,a,b) = 0a(u-g)(a) =0a(g)(@) =b.

Thus, u € Stab(A) and (A, [—, —, —], A) is an isotropic heap of 7-modules. Conversely, if
(M, [—, —, —], A) is an isotropic heap of T-modules and u € Stab(M), then Trans(M) is an
isotropic T-group as, foralla, b € M, u - ‘L'(f = tf("’“’b) = ‘L’ub. Therefore, (M, Trans, 05r)
is an object in Affi;. Moreover, since Affi; and T-HMod;s are full subcategories of Affr
and 7T-HMod, respectively, the restrictions P| Affis and V|7_HMog;, are well-defined, fully

faithful, adjoint functors. Hence, they form an equivalence. i

Consider further the category Aff' of affine spaces over the truss 7 = * whose objects
are triples (A, G, 04), where G is an isotropic *-group.

Corollary 4.23 The categories Afl f and »-HModjs are equivalent.

Remark 4.24 Since x-HModis is isomorphic to Ah and the category of inhabited isotropic
*-affine spaces is isomorphic to the category of torsors over abelian groups, Corollary 4.23
recovers the equivalence between inhabited abelian heaps and abelian torsors. A

Corollary 4.25 The category Affy of affine spaces over a field F is equivalent to the category
(T(IF‘)-HModiCS“)ln of inhabited isotropic contractible heaps of T(IF)-modules.

Proof We keep the notation introduced in Remark 4.18. By definition, an affine space
(A, V,o) over F is a non-empty T(IF)-affine space, whence the functor ® sends it to the
inhabited heap of modules (A, [—, —, —], A) with

la,b,c]=voc and A(k,a,b) =kvoa,
where v € V is the unique vector such that v o @ = b. It is clear that

A(l,a,b) =voa=>b and A0,a,b) =00a =a,

@ Springer



Heaps of modules and affine spaces

for all a, b € A. Therefore, ® restricts to
@' : Affy —> (T(F)-HMod™)™ .

In the opposite direction, the functor W assigns every non-empty object (M, [—, —, —], A)
in T(F)-HMod;}' to the T(IF)-affine space (M, Trans(M), 0ar), where Trans(M) is a T(IF)-
group with action
k-t! =ghkmm v eF,mneM,
and 0y : Trans(M) —> Aut(M) induces a free and transitive action
Trans(M) x M — M, (r,’fl, p) > [p,m, n].

In this case, and in view of Theorem 3.24, Trans(M) becomes a F-vector space because

4 K-zt = o MEOKI) _iaaban@a) _ (.cb) o (K1)
and 1- rfl’ = rf(l’“’b) = Té’. Thus, (M, Trans(M), o) is an affine space over [F and W restricts
to
W': (T(F)-HMod")™ —> Affy.
The pair of functors (&', U') gives the stated equivalence. O

In this way, we may also recover the following fact.

Corollary 4.26 The category of affine spaces over a field F described in terms of a binary
operation V. x A —> A of a vector space on a set is equivalent to the category of affine
spaces over [ described in terms of two ternary operations on a single non-empty set A as
in Definition 4.8.

in

Proof Both are equivalent to the category (T(F)-HMod{!")

5 Examples and applications

We conclude by providing examples and applications of heaps of modules which are coming
from the study of the set-theoretic solutions of the Yang—Baxter equation, non-commutative
geometry and classical ring theory.

5.1 The Baer-Kaplansky Theorem for T-groups

This first subsection is entirely devoted to an application of the theory developed in this paper,
which represents the natural extension of the results from [3] in view of what we proved in
Sect. 4.

Let S, T be trusses, let M be a T-group, let N be an S-group, and let us denote by E7 (M)
the truss 7T-HMod(H (M)) of endomorphisms of the heap of 7-modules H(M).

Theorem 5.1 The trusses Er (M) and Eg(N) are isomorphic if and only if there exists an
isomorphism ¢: M —> N of abelian groups and an isomorphism ¢: T-Grp(M) —
S-Grp(N) of trusses such that

¢(F(m)) = ¢(F)(p(m)) G.D
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forallm € M and F € T-Grp(M).

Proof The proof follows closely that of [3, Theorem 3.3], whence we just sketch it and we
leave the details to the inquisitive reader.

Suppose that there exists an isomorphism ¢ : M — N of abelian groups and an isomor-
phism ¢ : T-Grp(M) —> S-Grp(N) of trusses such that (5.1) is satisfied. By Corollary 4.3,
f € Er(M)ifandonly if F := 1:}9(0) o f € T-Grp(M) and hence f = F + f(0). Thus, we
may define

®:Er(M) — Es(N), = ¢(F)+o(f(0).

Since ©(f)(0) = ¢(f(0)) because ¢ (F)(0) = 0, it follows that rg(f)(o) o ®(f) = ¢(F)
and hence @ is well defined by Corollary 4.3 again. The proof that it is an isomorphism of
trusses is identical to the first part of the proof of [3, Theorem 3.3].

Conversely, suppose that we have an isomorphism of trusses ®: Er (M) — Egs(N). By
Example 3.6, we know that the constant map 7 is in E7 (M) and one can show, as in the
proof of [3, Theorem 2.2], that for every m € M, there exists a unique ¥ (m) € N such
that ®(m) = W This induces an isomorphism of abelian heaps y: M — N which,
by setting ¢ := ¥ — 1(0), induces an isomorphism ¢: M — N of abelian groups (see
Corollary 2.4). Furthermore, by Corollary 4.3, the assignment

¢: T-Grp(M) —> S-Grp(N), F —> fg(m) o ®(F),

is a well-defined function. As in the second part of the proof of [3, Theorem 3.3], one may
show that ¢ is an isomorphism of trusses satisfying (5.1), ending the proof. |

Remark 5.2 The core of the reason for which Theorem 5.1 holds may be expressed as follows.
Any T-group M is a module over its endomorphism truss 7-Grp(M). By [11, Theorem 4.2],

0
we may consider the crossed product M x T-Grp(M). Then, Corollary 4.3 entails that the
assignment

Er(M) — M 34 T-Grp(M), [+ (f(0), F),

is an isomorphism of trusses with inverse

M v T-Grp(M) —> Er(M),  (m', F) —> [m +— F(m) +m'].
A

We conclude this subsection with a somehow finer result that can be obtained in the
commutative framework. Notice that, for 7 a commutative truss and M a T'-group, the truss
Er (M) gains a T-module structure given by (¢t - f)(m) =t - f(m) forallt € T, f €
Er (M) and m € M, making of it a T-group (the distinguished absorber being the constant
function 6;1). In this setting, E7 (M) can be seen as a heap of 7-modules H(H(ET (M))) asin
Proposition 3.9, and the binary composition law o: Er (M) x Er (M) — Er (M) (granting
the truss structure) is a morphism of heap of 7-modules in both entries separately. That is to
say, E7 (M) is what we may call a heap of modules truss over T.

Theorem 5.3 Let T be a commutative truss and let M and N be T-groups. Then M = N as
T-groups if and only if E7 (M) = Er (N) as heap of modules trusses over T. Furthermore,
for every isomorphism WV : Er (M) —> Er (N) of trusses which is also T -linear there exists
a unique isomorphism : M —> N of T-modules such that W(f) = ¥ o f o ¥~ for all
f € Er(M).
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Proof If ¢: M — N is an isomorphism of T'-groups, then
®: Er(M) — Er(N), fr—gofog !,

is an isomorphism of trusses and of (heap of) T-modules as well, whence it is of heap of
modules trusses over T (observe that ® is the morphisminduced by ¢ and ¢ : T-Grp(M) —
T-Grp(N), F+—— ¢@o Fo (p_] , as in Theorem 5.1). Conversely, if ®: Ex (M) — E7(N)
is an isomorphism of heap of modules trusses over T, then ¢: M —> N from the proof of
Theorem 5.1 is an isomorphism of T -groups. Concerning the last statement, it follows by
the same argument as that of the proof of [3, Theorem 2.2]. O

5.2 Shelves, spindles, racks, quandles and the Yang-Baxter equation

Heaps of modules give rise to examples of spindles and quandles that play an important role
in the algebraic approach to knot theory and that also lead to solutions of the set-theoretic
Yang—Baxter equation. We begin by recalling the necessary notions.

Definition 5.4 (Shelves, spindles, racks and quandles) A left shelf is a set X together with a
left self-distributive binary operation ¢: X x X — X, thatis, forall x, y,z € X,

xo(yoz)=(@xoy)o(xoz). 5.2)

A left shelf (X, ©) is called a left spindle provided that the operation ¢ is idempotent, that
is, forall x € X,
XOX =X. (5.3)

A left shelf (X, ¢) (respectively spindle) is called a left rack (respectively left quandle) if
© admits left division, that is, for all x, y € X, there exists unique x\y € X such that

xo(x\y)=y. 5.4)

A shelf, spindle, rack or quandle (X, ¢) is said to be entropic (or medial or abelian), if,
forall x, y,z, w € X,
(xoy)o(zow)=(xoz)o(yow). (5.5

Morphisms of shelves, spindles, racks, quandles, are naturally defined. We denote by Spin
and Qndl the categories of left spindles and quandles, respectively. o

Remark 5.5 Note that the conditions (5.3) and (5.5) imply the left self-distributivity (5.2) as
well as the right self-distributivity of ¢. So, an entropic left spindle can be safely referred to
simply as an entropic spindle. A

Remark 5.6 Self-distributive operations that form a shelf have appeared already in logic in
the works of C.S. Peirce [26], but their possibly first systematic study is presented in [13].

The notion of a quandle was introduced by D. Joyce [23] as an algebraic system that
encodes the Reidemeister moves of knot theory. In this context a spindle describes the first
and the third Reidemeister moves. The term rack was coined by Fenn and Rourke in [20].
They attribute this notion to J.C. Conway and G.C. Wraith who, in their unpublished corre-
spondence, refer to it as a wrack.

A comprehensive review of theory and applications of racks and quandles can be found in
a seminal paper [4] (racks are called automorphic sets and quandles idempotent automorphic
sets there). A
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Example 5.7 Let (A, +) be an abelian group. For every endomorphism f of A, define the
operation x ¢y y = x + f(y — x). Then, (A, ¢) is an entropic spindle that will be called
the affine spindle induced by f. It enjoys the interesting property x ¢ ¢ y =y ¢jd— s X.
More generally, if (H, [—, —, —]) is an abelian heap and f is an endomorphism of H,
thenx o7 y :=[f(y), f(x), x] defines the structure of an entropic left spindle over H.

Recall from [18] that a function 7: X x X —> X x X is said to be a solution to the
set-theoretic Yang—Baxter equation provided that the equality

(rxid)o(idxr)o(rxid)=(@Gd xr)o (r xid) o (id x r)

holds in X x X x X. We do not ask for  to be invertible, in general. We say that r(x, y) =
(ri(x.y), ra(x, y)) is non-degenerate [19, Definition 1.1] if r is invertible and

X > r(x,y) and  x+—— ri(y,x)

are invertible as functions X — X for any fixed y € X.

Bearing in mind the role that the Yang—Baxter equation plays in the knot theory [29] and
that both self-distributivity and the Yang—Baxter equation correspond to the third Reidemeis-
ter move, the following lemma is not surprising.

Lemma 5.8 ( [18, §9, Example 2], see also [16, Lemma 61]) Let X be a set with a binary
operation ¢: X x X —> X. Then, (X, ©) is a left shelf if and only if the function

r: X xX — X xX, x,y) — (x oy, x),
is a solution to the set-theoretic Yang—Baxter equation.

The key for unlocking the connection between heaps of modules and spindles and quandles
can be found in the following result.

Theorem 5.9 Let (M, A) be a heap of modules over a truss T and let u, v € T be such that
for some (equivalently, all) m € M and for alln € M, A(uv, m,n) = A(vu, m, n). Then,
the operations

Su, Qv M x M — M, moyn:=Au,m,n), moyn:=AWw,m,n),
are idempotent and satisfy the entropic law, forall x,y, z, w € M:
(X 0y ¥) Op (204 W) = (X Oy 2) Oy (¥ Op ).

In particular, for any u € T, (M, ©,) is an entropic left spindle and the assignment
(M, A) —> (M, o) induces afully faithful functor F,,: T-HMod — Spin. Consequently,
foranyu € T, the function

ru:MxM— M x M, (m,n) —> (A(u, m,n), m),

is a solution to the set-theoretic Yang—Baxter equation.
If, in addition, there exists u € T such that, for all m, n,

A(wu,m,n) =n, (5.6)

then (M, <) is an entropic left quandle and the functor F,: T-HMod — Spin induces
a fully faithful functor F,: T-HMod — Qndl. Consequently, for such an u € T, the
function

ru: M xM— Mx M, (m,n) — (A(u,m,n), m),
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is a non-degenerate solution to the set-theoretic Yang—Baxter equation with inverse
—1 . -
r,  MxM-— MxM, (m,n) — (n, A(u, n, m)).

Proof The idempotent property of ¢, follows from (3.7), the entropic property (5.5) follows
by Lemma 3.16 and thus the self-distributivity holds by Remark 5.5.
Furthermore, if f: (M, Ay) —> (N, Ay) is a morphism of heaps of T-modules, then

3.5
fmoyn)=f(Apy(u,m,n)) (=) An(u, f(m), f(n) = f(m) o, f(n)

for all m,n € M, whence it is a morphism of left spindles. The fact that r, is a solution of
the set-theoretic Yang—Baxter equation follows by Lemma 5.8.

If there exists u such that (5.6) holds, then, for all m,n € M, we can define m\n =
A(u, m, n). The associativity of A (3.3) together with (5.6) imply (5.4). |

Example 5.10 Let (A, 4) be an abelian group. Then, the set of all affine spindles defined on
A as in Example 5.7 is induced by the structure of heap of T(End(A))-modules on A coming
from Proposition 3.9, as in Theorem 5.9. In fact, since A(f, a, b) = [ f(b), f(a), a] for all
a,b € Aand f € End(A), wearriveexactly at A(f, a, b) = a¢ yb. This allows us to organise
the set of all the affine spindle structures on an abelian group A into a heap of T(End(A))-
modules structure on A itself. It follows from Proposition 4.7 that an endomorphism « of
the induced abelian heap (A, [—, —, —]) is an endomorphism of this heap of T(End(A))-
modules structure if and only if there exists a central endomorphism & of (A, +) such that
a(a) = a(a) + a(0) foralla € A.

A similar conclusion holds, more generally, for A an abelian heap, considered as a heap
of E(H)-modules as in Proposition 3.9.

Moreover, if A is a left module over a ring R, the same construction induces a heap of
Endg (A)-modules. We observe that all multiplications #,: A — A, t,(a) = r - a, are
morphisms of heaps of End g (A)-modules.

5.3 Connections, splittings and contractions

We now proceed to give some examples of heaps of modules which arise in a classical ring
theory, starting with an example motivated by (non-commutative) geometry.

Let (2 = P,,cn 2", d) be a (unital) differential graded algebra over a commutative ring
k. Denote by O = Q0. the zero degree subalgebra of Q2. Recall, for instance from [15], that
a connection on a left O-module M is a k-linear degree-one map

ViQQo M — Qo M,

such that
Viw®m) =dw) @m+ (=) oV @ m), (5.7

for all w € QF and m € M. We denote the k-th component of V by V. That is,
vE ok @o M — @ @0 M.

Thanks to the connection Leibniz rule (5.7), V is fully determined by its zeroth component
VO (of which we can think as of a map VO M — Qoo M).

In part dually, a hom-connection on aright O-module M is defined as follows [5]. Starting
with a differential graded algebra as before, we set Ex(M) = Homp (Qk, M), k € N and
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form the N-graded right ©2-module,

EM) =P aM). (¢ 0)@)=Ew), £eBiuM), veQ, o e
keN

A hom-connection on M is then a degree minus one k-linear endomorphism A of E(M)
such that, for all w € Q¥ and £ € B4 (M),

AE) (@) = AE - ) + (-Dedw).

The k-th component of A, i.e. A |g,,, is denoted by Ay.

Lemma and Example 5.11 (Heap of connections) Let (2 = @,y ", d) be a differential
graded algebra over a commutative ring k, A be an algebra over K, and M be an O-A-
bimodule. Consider Endg (2 ® 0 M) as a left A-module with the dual action

(ay)(w®@m)=y(w®m-a),

foralla e A, y € Endx(Q®o M), w € Qandm € M.

Let T*(M) C Homg (2F @0 M, Q¥ @ M) denote the k-module of all k-components
of connections on M. Then, TK(M) is an induced T(A)-submodule of Endg (2 ® o M), and
hence a heap of T(A)-modules with the action

Aa, VE, VY = VE — 4.V 40V (5.8)
Furthermore, for allu € A, T¥(M) is a left spindle with the operation
VE o, VE = VF —u.vF 4 u vk
Consequently, the function
ru: TR(M) x TK (M) — TH(M) x T¥ (M),  (VE, VE) — (VE —u-VE 4 u-VE, V),

is a solution to the set-theoretic Yang—Baxter equation.
If u is a unit in A, then (TK(M), o) is an entropic quandle.

Proof 1t is clear that if V{‘ s V’z‘, Vé‘ are the k-th components of connections Vi, V,, V3 on
M, respectively, then so is their heap bracket % Vf, Vé‘ 1= V{‘ — V§ + V§. Thus we only
need to check if the map A(a, vk, V§ ) in (5.8) is the k-th component of a connection on M.
Set A(a, Vi, V2):=Vi—a-V|+a- V. Forallw € Qf and m € M we observe that

Aa, Vi, V) (w®@m) = Vi(w®m) — Vi(w®@m-a) + Va(w @ m-a)
=d(@) @m+ (~D'oVi(l ®@m) —d(@) @m-a
+ (=D"*oVi(1 @m-a) + d(@) @ m-a + (=) oVa(l @ m-a)
=d(w)®m + (—1)kw<V1(1 ®@m) —Vi(1®m-a) + Va(l ®m-a)>
= d(®) @ m + (—DfwA(a, Vi, V2)(1 @ m).

It follows then that A (a, Vi, V) is still a connection on M whose k-th component is exactly
Al(a, V{‘, Vé), as required.
The second part of example follows by Theorem 5.9. |
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Remark 5.12 For the sake of notation, write @ € Q as ), w, with oy € Q. Notice that
f € Endx (2 ®» M) is the k-component of a connection on M if and only if there exists a
k-linear map f: M — Q! ®» M such that

flw®om) =dw) @0 m+ (—Dkw fO(m).

Since I'*(M) is an induced T(A)-submodule of Endy (Q ®» M), there exists a congruence
for which ¥ (M) isa congruence class. The submodule of Endg (2 ® 0 M) for which k(M)
is a congruence class is the submodule
3 % € Hom (M, Q' ®p M)
S(k) :={ f € Endx(Q ®o M) | and f(w ®o m) = (—)*awr fO(m),
VoeQandm e M
Also the k-submodule I'(M) C Endg(2 ® o M) of all the connections on M is a heap

of T (A)-modules with the same structure and it is a congruence class with respect to the
submodule

fle®m) =Y (=Dfwr f(1 ®m)

S = € Endg( o M
! KQ@B0M) | G o andm e M

A

Example 5.13 (Truss of connections) As in Example 5.11, let (Q = P,y 2", d) be a
differential graded algebra over a commutative ring k, A be an algebra of k, M be an O-A-
bimodule that is finitely generated and projective as a left O-module. It is well known (see,
e.g. [17, Section 8]) that the set of connections I'! (M) is not empty. In particular, for any finite
dual basis ¢; € M, ' € Homp (M, ©), there is the associated Grassmannian connection,

ViM— Q'@ M, mr— Y d((m)®e;.
i

Using the heap of A-modules structure of I'' (M) described in Example 5.11, we can construct

v
the cross-product truss 7 (V) := I''(M) x T(A) as in Proposition 3.25 with the product:
(Vi,a)(Va, b) = <V1 +a- <V2 — Zd o0& ®ei),ab> .
i

In view of Lemma 3.26, I’ (M) is a left 7 (V)-module with the action

(Vi,a)-Va=Vi+a-(Va—) dos ®ep),
i
that is, for allm € M,

(V1@ V2)0m) = Viom) + Vam-a) = Y d(e' m-a) @ e;.

L

Example 5.14 (Heap of hom-connections) Let (2 = @,y 2", d) be a differential graded
algebra over a commutative ring I, A be an algebra of k, M be an A-O-bimodule. Using the
left A-action on M we consider Endg (E(M)) as a left A-module in the standard way. Then,
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the k-module of all k-components of hom-connections on M, is an induced T(A)-submodule
of Endg (E(M)), and hence a heap of T(A)-modules with the action

Aa, A, Ay) = A —a-Ap +a-A.
By Theorem 5.9, I'x (M) is a left spindle with the operation
Ag oy Ay = A —u-Dg +u-Ay,
for all u € A (an entropic quandle if  is a unit in A). Consequently, the function
ru: Te(M) x T (M) —> Ti(M) x T (M), (A, Ap) —> (Ag —u-Ag +u-Ay, Ap),
is a solution to the set-theoretic Yang—Baxter equation.

Example 5.15 (Heap of splittings of short exact sequences) Let B be a k-algebra over a
commutative ring k and let P, Q, R be left B-modules. Assume that

O—)P—[>QL>R—>O,

is a short exact sequence of left B-modules, that is to say, an extension of R by P in B-Mod.
If R is a B-A bimodule for an (unital) algebra A, then the k-module Hom 5 (R, Q) is a left
A-module via

(a-P)(x) =9¢(x-a).

Consider the k-submodule X () :={6c: R — Q |t oo =idg} C Hom (R, Q). Itisa
sub-heap of the heap H(Hom (R, Q)) because

Tolp,0,T|l=mop—moo +mot =idg,

and it becomes a heap of T(A)-modules over the truss T(A) associated with A with the
ternary operation defined as follows

A:T(A) x () x () — (), (a,t,0)—a-0+ (1 —a)-T =:a>;o0.
Furthermore, by Theorem 5.9, for all u € A, X () is a spindle with the operation
to,0=u-0+(—u)-r, r— o(u)+t(r(l —u)).
Consequently, the function
ry: 2(m) x 2(r) — X(r) x X(m), (t,o)— u-oc+ (1 —u)- 7,1),

is a solution to the set-theoretic Yang—Baxter equation.

Whenever u is a unit in A, (X (), ©,) is an entropic quandle.

Observe that X (;r) is not a 7 (A)-submodule since, in general,

mo(a-o)(r)=r-a#r.
In this case, the submodule for which X (77) is a congruence class is the submodule
S(m): ={f € Hom4(R, Q) [ Im(f) < ker(7)}

of Hom 4 (R, Q).

There is some overlap of this example with Example 5.11. Recall for instance from [15]
that a universal differential envelope of an algebra B is a tensor algebra of the B-bimodule
Q! :=kermp,wheremp: BB —> Bisthe multiplication map of B, with the differential
givenon Bbyd(b) = 1 ® b — b ® 1, and extended to the whole of Q2 by the graded Leibniz
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rule. It has been observed in [17] that the degree-zero components of connections on a left
B-module M with respect to the universal envelope €2 are in bijective correspondence with
the splittings of the short exact sequence

0—>QI®BM—L>B®|{M$M—>O,

where
I (Zbi®b£)®m|—>2bi®b;~m, T:b®m+— b-m.
i i

Thus, T(M) = ().
Example 5.16 (Truss of splittings) In the setup of Example 5.15 consider a split exact sequence
of left B-modules

0—>P—>0=—">R—>0.

If R is a B-A-bimodule, then denote by X () the heap of A-modules of all splittings of .
Then, by Proposition 3.25, X () 54 T(A) is a truss on the heap X (1) x T(A) with the product
(o1,a)(02,b) = (01 +a- (02 — 0), ab).
Example 5.17 (Heap of retractions) Let B be a k-algebra and let
0—P—> Q- R—0,

be a short exact sequence of right B-modules. If P is an A-B-bimodule for an (unital) algebra
A, then the k-module Hom 5 (Q, P) is a left A-module via (a - ¢)(x) = a - ¢ (x). Consider
the k-submodule

R :={p: Q — P € Hompg(Q, P) | pot=idp} € Hom p(Q, P).
It is a sub-heap of the heap H(Hom 5(0, P)) because
[p,o0,T]ot=pot—0cot+T0t=1idp,
and it becomes a heap of T(A)-modules through
A:T(A) X R(t) x R(t) — R(1), (a,t,0)—>a-0c+ (1 —a) -t =:a>;o0.

There is also an overlap between this and Example 5.14. As shown in [5, Section 3.9] and
[9, Theorem 2.2], in the case of the universal differential graded algebra, there is a bijective
correspondence between hom-connections on a right B-module M and retractions of the map
t: M — Homg (B, M), given by t(m)(b) = m-b.

Example 5.18 (Heap of chain contractions) Let A, B be two k-algebras. Let (C,, c,) be a
chain complex of B-A-bimodules and (D,, d,) be a chain complex of B-modules. Let also
fo: Co —> D, be a chain map of the underlying chain complexes of left B-modules, that
is, for every n € Z the function f,,: C,, —> D, is a morphism of left B-modules and all the
squares in the following diagram of left B-modules are commutative

Cn+1 Cn
Cn+1 . Cy Cn-1
Snt1 J/ J/fn lfﬁl
Dn—H dor Dn 4 Dn—l
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Denote by X (f) the set of all chain contractions of f (see [30, Definition 1.4.3]),
£(f) = {{sn: Cu —> Dus1 of B-modules | n € 7) ‘ dys1 00+ 51060 = fi.

It is a sub-heap of the heap H (Hom %r (@n Cn, D, D+ 1)) of degree-one morphisms of left
B-modules, because (dropping the subscripts for the sake of clarity)
dols,s',s"]+[s,5,s"loc=(dos+soc)—(dos' +s5' oc)+(dos”" +5"0c)=f.
In addition, X (f) is a heap of T(A)-modules via

A:T(A) x Z(f) x Z(f) — 2(f), (@ s,s)—a-s'+1—a)-s.
In fact, for every s € X(f) and a € A, the function a - s defined by

(a-s)y: Cp —> Dy, X > s,(x - a),

is still left B-linear and it satisfies

(dng10(a-$)p~+(@-$)n-10¢cp) (x) = duyi(sn(x - @) + snp1(cn(x) - a)
=dpi1(sn(x - @) + suy1(ca(x - @) = fulx -a) = (a- f)(x),

for all x € C,, and all n € Z. Therefore,

do(a-s"+(1—a)-s)+(a-s'+(1—a)-s)oc
=(do( s+ (a-s)oc)+(do((l—a)-s)+((1—a)-s)oc)
=a- f+(-a)-f=f.
In the same way, one may prove that if (C,, ce) is a chain complex of right A-modules,
(D, d,) is a chain complex of B-A-bimodules and f,: C, —> D, is a chain map of the
underlying chain complexes of right A-modules, then the set 2 ( f) of all chain contractions of

f is still a sub-heap of the heap H(Hom ir (@D, Cn, D, Dn+ti1 )) and a heap of T(B)-modules
with respect to the ternary operation

A:T(B) x 2(f) x 2(f) — Z(f), (b,s,s)Y+—>b-s'+ (1 —b)-s.

Notice that Examples 5.15 and 5.17 are particular cases of the present example. Regarding
Example 5.15, if we consider the chain morphism

0 0 0 R 0
L //7‘[
0 P 0 R 0

then chain contractions (..., 0, 0,0, ...) are in bijective correspondence with splittings o
of the short exact sequence of left B-modules 0 — P S 05R—0. Concerning
Example 5.17 instead, if we consider the chain morphism (now in the category of right
B-modules)
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then chain contractions (..., 0, p, 0, ...) are in bijective correspondence with retractions p
of ¢ in the short exact sequence of right B-modules 0 — P 505 R—0.

Lemma and Example 5.19 (Heap of derivations) Let T be a truss. A derivation of T is defined
in [8] as a heap endomorphism D : T —> T, such that, forall s,t € T,

D(st) = [D(s)t, st,sD(t)]. 5.9)

As observed in [8] the set of all derivations of T, Der(T), is a sub-heap of E(T). If T is
commutative, then Der(T) is a heap of T-modules with the action

A(t, D1, Dy) =[Dy,t-Dy,t-D3] i s —> [D(s),tD1(s), tDa(s)],
forall D1, Dy € Der(T) ands,t € T.

Proof Since A is the restriction of the heap of modules action of 7' on its endomorphism
truss E(T') as in Example 3.11, we only need to check that A (¢, Dy, D») is a derivation of
T. Since both D; and D, satisfy (5.9) and T is a commutative truss, for all s, s’ € T,

A(t, Dy, D3)(ss") = [D1(ss"), tD1(ss"), t D2 (ss")]
= [D;(s)s’, ss’,sDi(s"), tD1(s)s’, tss’, tsDi(s"), tDr(s)s’, tss’, ts Dr(s")]
= [Dy(s)s’, tD1(s)s", t D> (s)s’, ss', sD1(s"), st D1 (s"), st Dy (s")]
= [A(z, D1, D2)(s)s', s, s Az, D1, D2)(s))],

where, in addition, we have also used the distributive laws of trusses (to derive the second
and fourth equalities), and rules of reshuffling and cancellation stemming from the definition
of an abelian heap. Hence, the operation A is well defined on Der(T'). i
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Appendix A: Index of frequently used notation

A.1: Categories
Ab abelian groups; 3
Affy affine spaces over a field IF; 26
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AffS affine spaces over the truss  with isotropic x-groups actions;
30

Affr T -affine spaces; 26

Ah abelian heaps; 4

Grp groups; 3

Hp heaps; 4

Qndl quandles; 33

Set sets;

Spin spindles; 33

T-Abs T-modules with a fixed absorber; 12

T-Grp T-groups; 12

T-Grp; isotropic T-groups; 12

T-HMod heaps of T-modules; 13

T-HMod" contractible heaps of 7-modules; 20

T-HMod;" contractible isotropic heaps of T-modules; 25

T-HMod; isotropic heaps of T-modules; 20

T-Mod T-modules; 7

T-Modjs . isotropic T-modules; 9

(T (IF)—HModics“)ln inhabited isotropic and contractible heaps of T (IF)-modules; 30

A.2: Functors

H, H(G) functor assigning a heap to a group, heap associated with G; 4
H functor assigning a heap of 7-modules to a 7-module via induced actions; 4
T, T(R) functor assigning a truss to a ring, truss associated with R; 7

A.3: Special objects

* singleton heap, singleton truss, singleton module, singleton heap of modules; 5

Ann(M) annihilator or contracting paragon of a heap of T-modules; Lemma 3.21

Ann,(M) e-annihilator or e-contracting paragon of a T-module; Lemma 2.25

E(H) endomorphism truss of an abelian heap H; 7

Er(M)  endomorphism truss of an heap of 7-modules M; 31

G(H;e) retractofaheap H ate € H; 4

R(T) ring associated with a truss 7' by extension 7" H » through the singleton truss; 11

R(M) module over the ring R(T") associated with the T-module M; 11

Stab(M) stabiliser or isotropy paragon of a T-module M (see Lemma 2.19), stabiliser or
isotropy paragon of a heap of 7-modules M (see Lemma 3.18);

Trans(H) translation group of H; 4

A.4: Other notation

~s sub-heap equivalence relation; 4
Té’ translation automorphism; 4
D e-induced action; 8
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(M
Gy

,-3) associated T-module; Lemma 3.13
the symmetric group on a set X; 26
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