
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=unhb20

Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/unhb20

Hyperparameter selection for physics-informed
neural networks (PINNs) – Application to
discontinuous heat conduction problems

Prakhar Sharma, Llion Evans, Michelle Tindall & Perumal Nithiarasu

To cite this article: Prakhar Sharma, Llion Evans, Michelle Tindall & Perumal Nithiarasu (09 Oct
2023): Hyperparameter selection for physics-informed neural networks (PINNs) – Application
to discontinuous heat conduction problems, Numerical Heat Transfer, Part B: Fundamentals,
DOI: 10.1080/10407790.2023.2264489

To link to this article: https://doi.org/10.1080/10407790.2023.2264489

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 09 Oct 2023.

Submit your article to this journal

Article views: 121

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=unhb20
https://www.tandfonline.com/loi/unhb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10407790.2023.2264489
https://doi.org/10.1080/10407790.2023.2264489
https://www.tandfonline.com/action/authorSubmission?journalCode=unhb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=unhb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10407790.2023.2264489
https://www.tandfonline.com/doi/mlt/10.1080/10407790.2023.2264489
http://crossmark.crossref.org/dialog/?doi=10.1080/10407790.2023.2264489&domain=pdf&date_stamp=09 Oct 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/10407790.2023.2264489&domain=pdf&date_stamp=09 Oct 2023

Hyperparameter selection for physics-informed neural
networks (PINNs) – Application to discontinuous heat
conduction problems

Prakhar Sharmaa , Llion Evansa,b , Michelle Tindallb , and Perumal Nithiarasua

aZienkiewicz Institute for Modelling, Data and AI, Swansea University, UK; bCulham Science Center, United
Kingdom Atomic Energy Authority, Abingdon, UK

ABSTRACT
In recent years, physics-informed neural networks (PINNs) have emerged as
an alternative to conventional numerical techniques to solve forward and
inverse problems involving partial differential equations (PDEs). Despite its
success in problems with smooth solutions, implementing PINNs for prob-
lems with discontinuous boundary conditions (BCs) or discontinuous PDE
coefficients is a challenge. The accuracy of the predicted solution is contin-
gent upon the selection of appropriate hyperparameters. In this work, we
performed hyperparameter optimization of PINNs to find the optimal
neural network architecture, number of hidden layers, learning rate, and
activation function for heat conduction problems with a discontinuous
solution. Our aim was to obtain all the settings that achieve a relative L2
error of 10% or less across all the test cases. Results from five different
heat conduction problems show that the optimized hyperparameters pro-
duce a mean relative L2 error of 5.60%.

ARTICLE HISTORY
Received 5 May 2023
Revised 13 September 2023
Accepted 18 September 2023

KEYWORDS
Discontinuous boundaries
conditions; heat conduction;
hyperparameter tuning;
physics-informed neural
networks; stiff partial
differential equation

1. Introduction

Conventional numerical techniques have their limitations when it comes to solving problems
involving partial differential equations (PDEs). They include incorporating noisy experimental
data into existing algorithms, solving high-dimensional parametric PDEs in a reasonable time
frame, solution dependency on mesh quality, and the requirement of complicated algorithms for
inverse problems.

Recently, physics-informed neural networks (PINNs) [1] have gained popularity as an
approach to solve forward [2–6] and inverse problems [7–10] involving PDEs. Unlike conven-
tional machine learning techniques, PINNs are physics-based supervised machine learning techni-
ques and do not require true solutions or pre-trained models to solve PDEs [11]. Instead, PINNs
satisfy a well-posed PDE to obtain a unique solution in forward problems.

Despite its success in problems with smooth solutions [8,12,13], PINN and their variations
[14–17] still encounter fundamental issues. For instance, PINN is still lacking guaranteed conver-
gence criteria [18], and the correlation between the network hyperparameters and performance is
elusive [19]. Moreover, PINNs encounter significant issues solving stiff-PDEs, especially, problems
with discontinuous solutions [12,20]. We refer the reader to our survey on solving problems with

CONTACT Perumal Nithiarasu p.nithiarasu@swansea.ac.uk Zienkiewicz Institute for Modelling, Data and AI, Swansea
University, Bay Campus, Swansea SA1 8EN, UK.
� 2023 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/
4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS
https://doi.org/10.1080/10407790.2023.2264489

http://crossmark.crossref.org/dialog/?doi=10.1080/10407790.2023.2264489&domain=pdf&date_stamp=2023-10-06
http://orcid.org/0000-0002-7635-1857
http://orcid.org/0000-0002-4964-4187
http://orcid.org/0000-0003-3034-9636
http://orcid.org/0000-0002-4901-2980
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/10407790.2023.2264489

discontinuous BCs using PINNs [20]. Hence, there exists a necessity for studies that specifically
address convergence of PINNs for problems with discontinuous solutions.

Generally, PINNs will not converge unless we mitigate the effect of the discontinuities. A tech-
nique to accomplish this involves the use of a signed distance function (SDF) and requires a prior
understanding of the region of the discontinuity [21]. The SDF ensures that the points sampled
close to the region of discontinuity are assigned with minuscule weights, effectively reducing the
contribution of these regions toward the training loss. As a result, the use of SDF results in a
high relative L2 error near the discontinuity.

Similar to any neural network (NN), PINNs have a number of hyperparameters such as, the
learning rate, the activation function, the optimizer, the weights in the loss function, the width
and depth of the NN. The high-dimensional hyperparameter search space makes it difficult to
obtain optimized hyperparameters that are suitable for a broad range of problems. Therefore, it is
necessary to select fewer hyperparameters and focus on a specific set of problems.

In some early attempts, researchers treated the coefficients of loss terms as hyperparameters to
balance the contribution of each loss term [12,13,22–24]. The approach was computationally effi-
cient as the hyperparameter optimization did not involve a complicated algorithm instead it was
updated through the same optimizer used to train the PINN. However, this approach had limita-
tions regarding the range of hyperparameters that could be chosen. It did not allow choosing
hyperparameters such as the number of hidden layers or the NN architecture.

Some researchers used grid search [25,26] and Bayesian optimization [27–29] to gain greater
flexibility in selecting hyperparameters. However, with the increase of number of hyperparameters,
the approach became computationally expensive due to the high-dimensional search space.

In this study, we have chosen to employ manual tuning. It offers several advantages, including,
full control over the hyperparameter values, better interpretability and computational efficiency in
comparison to grid search or Bayesian optimization methods, when only a few hyperparameters
are studied.

Several studies conducted manual tuning with a wide range of hyperparameters [30,31]. The
outcomes were transferable to similar problems with minor variations, making them ideal starting
points for problems in the same domain of physics.

The present work aims to identify optimal hyperparameters for PINNs in order to improve
their accuracy and convergence when solving heat transfer problems with discontinuous BCs. We
performed hyperparameter optimization to identify all possible settings of NN architectures, num-
ber of hidden layers, activation functions, and learning rates that could achieve a relative L2 error
of 10% or less across all test cases. These optimal hyperparameters enable more accurate and effi-
cient solutions to similar problems.

We investigated 2-D and 3-D steady-state heat conduction problems with a discontinuous
solution. Additionally, we investigated the 2-D steady-state heat conduction problem with para-
metric conductivity and parametric geometry as separate test cases. The remainder of this paper
is organized as follows. In Section 2, we provide a brief overview of PINNs. In Section 3, we dis-
cuss additional tools that we used to enhance the accuracy of the predicted solution. In Section 4,
we discuss the network parameters and the hyperparameters used in this study. Sections 5 and 6
present the test cases and results of the hyperparameter optimization. In Section 7, we discuss the
outcome of our investigation.

2. Physics-informed neural networks

PINNs are deep neural networks (DNNs) that leverage the known physics, that is, PDEs or con-
stitutive equations to solve forward and inverse problems. In the case of forward problems, it
enforces the well-posedness of the problem to obtain a unique solution. This section provides a
brief overview of PINNs.

2 P. SHARMA ET AL.

In a PINN, the independent variables serve as input, and the dependent variables or the solu-
tion to the governing PDE are the outputs. A well-posed PDE can be defined as follows:

ut þN x½u� ¼ 0, x 2 X, t 2 0, T½ �

u x, 0ð Þ ¼ hðxÞ, x 2 X

u x, tð Þ ¼ g x, tð Þ, x 2 @X, t 2 0, T½ �

(1)

where N x½u� is a differential operator, x and t are the independent variables of the PDE, X and
@X denote the spatial domain and the boundary of the problem, hðxÞ denotes the prescribed BC
which is the solution to the PDE at all spatial points ðXÞ at the initial time ðt ¼ 0Þ, gðx, tÞ is the
prescribed BC at the boundary of the domain ð@XÞ:

2.1. Discrete loss terms

A well-posed PDE problem must have the PDE, BCs, and IC (if transient). Thus, a PINN must
satisfy these, resulting in a multitask loss function. The total loss (L) and the individual loss
terms (LPDE, LBC, LIC) are defined as follows:

L ¼ kPDELPDE þ kBCLBC þ kICLIC (2)

LPDE ¼
1

Nr

XNr

i¼1
jût xi, tið Þ þ N x û xi, tið Þ½ �j

2

LBC ¼
1

Nb

XNb

i¼1
jû xi, tið Þ − g xi, tið Þj

2

LIC ¼
1

N0

XN0

i¼1
û xi, 0ð Þ − h xi, 0ð Þj

2�
�

(3)

where û is the predicted solution, Nr, Nb, and N0 are the number of data points that are sampled
to satisfy the PDE, the BCs, and the IC in Eq. (2). The coefficients kPDE, kBC, and kIC in Eq. (2),
help in achieving convergence and better accuracy, and are an active field of research.

2.2. Integral formulation of loss

In recent work by Nabian et al. [32] and Hennigh et al. [33], an alternative approach to calculate
the loss was proposed. In this approach, a specific loss term is scaled proportional to its length,
area, or volume. This prevents the large number of interior points from dominating the training
loss, and ensures that both the LPDE and LBC contribute proportionally. This particular formula-
tion employs an integral form of the loss for each term as follows:

LPDE ¼
1

Nr

XNr

i¼1
jût xi, tið Þ þ N x û xi, tið Þ½ �j

2
ð

X

dX

LBC ¼
1

Nb

XNb

i¼1
û xi, tið Þ − g xi, tið Þj

2
ð

@X

d @Xð Þ

�
�
�
�

(4)

3. Additional tools

In this section, we provide a brief description of the methods that enhance the accuracy of the
predicted solution. In addition to the feedforward fully-connected neural network (FCNN), we
also included the modified Fourier neural network (MFNN) [34] and the deep Galerkin method
(DGM) architecture [35] to address the spectral bias in FCNN [13,36,37]. These architectures

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 3

project the low-dimensional training data to higher dimensions which enables learning the high-
frequency functions.

We also employed adaptive activation [38], SDF [21], importance sampling [39], and quasi-
random sampling [40]. A brief description of these tools has been given in this section and a
detailed survey of these tools is presented in [20].

The SDF plays an important role in solving PDEs with discontinuous BCs. It requires the prior
knowledge of the region of discontinuity. These functions are designed such that the points
sampled in these regions are given minuscule weights [21,41,42]. While the SDF can help con-
verging the training loss for problems with discontinuity, it is important to note that they may
not be able to capture the discontinuous BC, which can lead to a high relative L2 error, this error
is usually much lower than without the use of SDFs, providing a significant improvement in the
predicted solution.

Activation functions enable NNs to predict complex outputs by performing a nonlinear trans-
formation of the feature space. In adaptive activation, a trainable coefficient is multiplied with
each neuron in the NN. These trainable coefficients are updated iteratively, based on the total
loss L: The introduction of additional parameters facilitates faster convergence [38].

Importance sampling is used to re-sample the interior points iteratively. The sample is drawn
from an alternative sampling distribution proportional to the pointwise loss. This approach is
similar to mesh refinement and helps to capture the sharp changes in the gradient [32].

A common practice in PINNs is to use a uniform random sampling strategy to sample the
boundary and interior points. Low-discrepancy quasi-random sequences are a suitable replace-
ment for uniformly distributed random points as they require less points [43]. This results in
faster convergence of the training loss. In this work, we used the Halton sequence to sample the
boundary and interior points in the domain [44].

4. Summary of methodology

In machine learning, hyperparameters are parameters that influence the overall performance of
the model. Hyperparameter optimization is a process of selecting the optimal combination of
hyperparameters that minimize or maximize an objective function such as the training loss or the
model accuracy.

In this work, we investigated the NN architecture, the number of hidden layers, the learning
rate, and the activation function over a wide range of settings, as detailed in Table 1.

Typically, hyperparameter optimization is implemented using automated optimization techni-
ques to obtain the optimal settings. However, in this work, we employed a manual tuning
approach [45] to obtain multiple settings that results in a relative L2 error (Eq. (5)) of 10% or
less across all five test cases.

Relative L2 Error ¼
kû − uk2
kuk2

(5)

The weights were initialized with the Xavier initialization [46] and the losses were calculated
using the integral formulation (Eq. (4)). Initially, we experimented with activation functions such
as rectified linear unit (RELU), scaled exponential linear unit (SELU), Sigmoid linear unit (SiLU),

Table 1. Range of hyperparameters explored.

Hyperparameters Range

Architecture FCNN, MFNN, DGM
No. of hidden layers 1, 5, 10, 15, 20
Activations ReLU, SELU, SiLU, GELU, Tanh, Sin
Learning rates 1e − 2, 7.5e − 3, 5e − 3, 2.5e − 3, 1e − 3, 7.5e − 4, 5e − 4,

2.5e − 4, 1e − 4, 7.5e − 5, 5e − 5, 2.5e − 5, 1e − 5

4 P. SHARMA ET AL.

Sine function (Sin), Gaussian error linear units (GELU), and hyperbolic tangent (Tanh) over a
range of learning rates starting from 1e − 5 to 1e − 2. The mathematical form of the activation
functions is listed below.

RELUðxÞ ¼ maxð0, xÞ

SELUðxÞ ¼ 1:0507
n x if x > 0

1:6733ðex − 1Þ if x � 0

SiLUðxÞ ¼ x �
1

1þ e−x

GELUðxÞ ¼ 0:5x 1þ Tanh
ffiffiffi
2
p

r

xþ 0:044715x3ð Þ

 ! !

TanhðxÞ ¼
ex − e−x

ex þ e−x

(6)

where x is the input value. It is important to note that the RELU and SELU are non-differenti-
able. Most machine learning libraries handle the non-differentiable activation functions using sub-
gradient optimization. Bertoin et al. [47] emphasized that the derivative of non-differentiable
activation functions can impact the backpropagation and the Adam optimizer can help minimize
this impact. Therefore, we used the Adam optimizer in all test cases.

The batch training was performed on a high-performance computing (HPC) cluster, Sunbird
at the Swansea University. The test cases were trained on 2 x AMD EPYC Rome 7452 processor
with 32-cores and a NVIDIA A100 tensor core with 40 GB of available GPU memory.

5. Test cases

In this section, we present the details of the five different test cases. The first two cases are 2-D
and 3-D steady-state heat conduction problems with discontinuous BCs. The next two cases are
simple extension of the 2-D problem, incorporating parametric conductivity and parametric
geometry. The final test case is a steady-state heat conduction problem with discontinuous
conductivity.

5.1. Problem 1: 2-D steady-state heat conduction

In Problem 1, we chose a 2-D steady-state heat conduction problem with discontinuous BCs at
the corners. The problem can be stated as follows:

uxx þ uyy ¼ 0, x 2 −0:5, 0:5½ �, y 2 0, 1½ �

uðx, 0Þ ¼ uðx, 1Þ ¼ 0 uð−0:5, yÞ ¼ uð0:5, yÞ ¼ 1 (7)

where u is the temperature, x and y are the independent variables of the PDE.

5.2. Problem 2: 3-D steady-state heat conduction

Our next focus is on extending Problem 1 into 3-D space. Problem 2 is constrained by discon-
tinuous BCs at the edges and the corners. The problem is outlined as follows:

uxx þ uyy þ uzz ¼ 0, x 2 −0:5, 0:5½ �, y 2 −0:5, 0:5½ �, z 2 0, 1½ �

u x, y, 0ð Þ ¼ uðx, y, 1Þ ¼ uð0:5, y, zÞ ¼ 0
uð−0:5, y, zÞ ¼ uðx, − 0:5, zÞ ¼ uðx, 0:5, zÞ ¼ 1

(8)

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 5

The reference solution for Problems 1 and 2 was generated through FEM implemented in
MATLAB Partial Differential Equation Toolbox, and is shown in Figure 1. Details of the mesh
statistics of the FEM solutions are shown in Table 2.

Raissi et al. [1] proposed the first PINN framework which is often referred as the baseline
PINN. It comprises a FCNN architecture with Tanh activation, trained using a learning rate of
1e − 3. It was known to have convergence issues with discontinuous BCs, as demonstrated in the
loss curve (Figure 2) of Problem 1, trained with a FCNN of 8 hidden layers and 20 units in each
layer. Since, the baseline PINNs are continuous functions they cannot represent discontinuities.
This is evident in Problem 1, where the pointwise BC loss (LBC) around the corners is relatively
high after training for 14k iterations (Figure 3).

Figure 1. FEM solution of Problem 1 (left) and Problem 2 (right).

Table 2. Mesh statistics of the FEM solution.

Problem 1 Problem 2

Element type Triangle Tetrahedral
Element order Quadratic Quadratic
No. of elements 2841 23424
Max. element size 0.0566 0.0693
Min. element size 0.0283 0.0346
Mesh growth rate 1.5 1.5

Figure 2. The loss curve (training loss) of Problem 1 trained with Tanh activation and baseline PINN for 14k iterations.

6 P. SHARMA ET AL.

5.3. Problem 3: Problem 1 with parametric geometry

In Problem 3, the upper boundary of the domain is varying from 1 to 1.05.

uxx þ uyy ¼ 0, x 2 −0:5, 0:5½ �, y 2 0, L½ �, L 2 1, 1:05½ �

uðx, 0Þ ¼ uðx, LÞ ¼ 0 uð−0:5, yÞ ¼ uð0:5, yÞ ¼ 1 (9)

Parametric PDEs can be solved with a simple extension of the PINN by adding the parametric
terms as additional features in the training dataset. Since the upper boundary is not fixed, care
should be taken to ensure the y-coordinate for each sample in the training dataset resides inside
the domain.

5.4. Problem 4: Problem 1 with parametric conductivity

Similar to Problem 3, we can parameterize the conductivity. We formulate Problem 1 with para-
metric conductivity j as follows:

uxx þ j uyy ¼ 0, x 2 −0:5, 0:5½ �, y 2 0, 1½ �, j 2 0, 1½ �

uðx, 0Þ ¼ uðx, 1Þ ¼ 0 uð−0:5, yÞ ¼ uð0:5, yÞ ¼ 1 (10)

5.5. Problem 5: 2-D steady-state heat conduction with discontinuous conductivity

In Problem 5, we have a 2-D steady-state heat conduction problem with discontinuous conductiv-
ity j and Robin BCs. The problem can be stated as follows:

@

@x
ðjðxÞ � uxÞ þ

@

@y
ðjðxÞ � uyÞ ¼ 0, x 2 0, 1½ �, y 2 0, 1½ �

ux ¼
u

2jðxÞ
when x ¼ 0, ux ¼

1 − u
2jðxÞ

when x ¼ 1

jðxÞ ¼ j1 if x � 0:5
j2 if x > 0:5

�
(11)

where j1 ¼ 1=30 and j2 ¼ 1=15: Here, the pointwise conductivity varies as a piecewise function
of the x-coordinates. The problem has an analytical solution given as a piecewise function of j1
and j2 (Eq. (12)) [48].

Figure 3. The pointwise BC loss (left) and pointwise PDE loss (right) of Problem 1 trained with Tanh activation and baseline
PINN for 14k iterations.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 7

u ¼

j2xþ 2j1j2

0:5ðj1 þ j2Þ þ 4j1j2
if x � 0:5

j1xþ 2j1j2 þ 0:5ðj2 − j1Þ

0:5ðj1 þ j2Þ þ 4j1j2
if x > 0:5

8
>>><

>>>:

(12)

6. Results and discussion

In this section, we present the results of hyperparameter optimization across all the test cases. We
leverage bar charts to discuss the relationship between the hyperparameters and the mean relative
L2 error for all possible settings. These bar charts illustrate the mean relative L2 error for each
hyperparameter to identify the problematic hyperparameter values.

SELU is known for fast and stable training, however, based on the initial investigation, we
observed that the SELU activation function is causing convergence issues in all the test cases.
This is due to the fact that SELU is prone to exploding gradients in deep networks [49].

Unlike SELU, RELU suffers from vanishing gradients. So even though the training loss is con-
verged, it exhibits a relative L2 error that is several magnitudes higher compared to other activa-
tion functions across most test cases. This is due to the fact that, for negative inputs, the gradient
of RELU is zero. During backpropagation, a large negative gradient multiplied with zero effect-
ively vanishes the gradient. So, the corresponding neurons will not be updated properly, resulting
in a high relative L2 error. Thus, we decided to exclude SELU and RELU activation from further
studies and continued further investigation with GELU, SiLU, Sin, and Tanh.

Figure 4 shows the mean relative L2 error for each activation across all the test cases. We
observed some anomalies, for example, in Problem 3 with Tanh activation, the mean relative L2
error reaches to the order of 1e5. Again, in Problem 3, with Sin activation the mean relative L2

Figure 4. Comparison of activation function for five different test cases. The horizontal axis shows the activation function while
the vertical axis shows the mean relative L2 error.

8 P. SHARMA ET AL.

error is more than 100 or 100%. These anomalies are attributed to all the settings with a large
learning rate (1e − 2).

Figure 5 illustrates the relationship between the mean relative L2 error with number of hidden
layers. As anticipated, the mean relative L2 error decreases with the increase in the number of
hidden layers. With the addition of layers, the network gains the ability to learn more complex
patterns. Similar to activations, in Problem 3, with five hidden layers, the mean relative L2 error
reaches to the order of 1e5. This anomaly is attributed to all the settings with large learning
rate (1e − 2).

In Figure 6, we present the variation of mean relative L2 error with NN architectures. Similar
to the activations and the number of hidden layers, in Problem 3, the mean relative L2 error has
been skewed by an anomaly attributed to the DGM architecture and the use of a large learning
rate. It becomes evident that large learning rates may lead to anomalies or unexpected behavior
and must be avoided while solving stiff-PDEs.

Although, we used SDF in all the settings, it is worth noting that FCNN has a lower mean
relative L2 error than MFNN in all the test cases. The SDF excludes the regions with high-fre-
quency function in the domain, thus FCNN is less susceptible to spectral bias. On the other
hand, MFNN projects the low-dimensional input dataset to higher dimensions thus increasing
the complexity of the model. Thus, MFNN may need more iterations to converge, potentially
affecting the performance compared to FCNN.

Figure 7 shows the variation of mean relative L2 error with learning rate. In Problem 3, all the
anomalies discussed earlier were caused by the learning rate of 1e − 2. This is due to the paramet-
ric nature of Problem 3, where the moving discontinuity around the upper boundary results in a
highly complex loss landscape. Consequently, the optimizer fails to find the global minima, result-
ing in a mean relative L2 error of the order of 1e6.

Figure 5. Comparison of number of hidden layers for five different test cases. The horizontal axis shows the number of hidden
layers while the vertical axis shows the mean relative L2 error. For each specific number of hidden layers, the mean relative L2
error includes data from all architectures with that specific number of hidden layers.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 9

Figure 6. Comparison of neural network architectures for five different test cases. The horizontal axis shows the individual neural
network architectures while the vertical axis shows the mean relative L2 error.

Figure 7. Comparison of learning rates for five different test cases. The horizontal axis shows the learning rates while the vertical
axis shows the mean relative L2 error.

10 P. SHARMA ET AL.

In contrast, for all other test cases, we observed an improvement in the mean relative L2 error
with an increase in learning rate. This is a well-known trend with the Adam optimizer where the
learning rate determines the step size taken in each iteration. However, due to inherent highly
non-convex nature of PINNs, the optimizer may get trapped in a local minima when using small
learning rates.

After analyzing the data, we have identified optimal hyperparameter settings, these are shown
in Table 3. With these settings, we obtained a mean relative L2 error of 5.60%, a maximum rela-
tive L2 error of 13.9% with a standard deviation of 1.08% across all the test cases. While our opti-
mal number of hidden layers was 20, it should be noted that more hidden layers can be used.
However, in such cases, the number of iterations should be enough to allow for convergence.
Furthermore, Figure 8 shows the distribution of relative L2 error across these test cases. It dem-
onstrates that in majority of the test cases the relative L2 error remains below 10%.

Alternatively, if we restrict the list of optimal activations to SiLU, we achieved a mean relative
L2 error of 5.32%, a maximum relative L2 error of 9.55% with a standard deviation of 0.7048%
across all the test cases. This is in agreement with the objective of the work, that is, the optimal
settings should achieve a relative L2 error of 10% or less across all the test cases. However, we
observed that, on case-by-case basis, other activations performed better than SiLU. Therefore, we
include other activations in the list of optimal activations, allowing the reader to choose the most
suitable activation function for specific scenarios.

7. Conclusions

In this study, we conducted a comprehensive hyperparameter optimization of PINNs to deter-
mine the optimal NN architectures, number of hidden layers, activation functions, and learning
rates for heat conduction problems with discontinuous solutions. We aimed to identify all

Table 3. Optimal hyperparameter settings.

Hyperparameters Range

Architecture FCNN, DGM
No. of hidden layers 20
Activations SiLU, GELU, Tanh, Sin
Learning rates 7.5e − 3, 5e − 3, 2.5e − 3, 1e − 3, 7.5e − 4, 5e − 4

Figure 8. The distribution of relative L2 error with optimized settings across all the test cases.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 11

possible settings of these hyperparameters that could achieve a relative L2 error of 10% or less
across all test cases.

These test cases include a 2-D and a 3-D steady-state heat conduction problem with discon-
tinuous BCs. Additionally, we extended the 2-D steady-state heat conduction problem with
parametric conductivity and parametric geometry. Finally, the last test case involved a 2-D
steady-state heat conduction problem with discontinuous conductivity and Robin BCs.

Throughout the investigation, we employed a range of tools, such as, adaptive activation, SDF,
importance sampling, and quasi-random sampling. These methods accelerate the convergence of
the training loss, resulting in much lower relative L2 error compared to not using them.
Specifically, the SDFs have limited ability to accurately capture discontinuities in the solution. As
a result, models with a relative L2 error within 10% are generally considered to be good models.

The range of hyperparameters investigated has been summarized in Table 1. In Section 6, we
discussed the relationship between each hyperparameter and the mean relative L2 error. Finally,
we presented a list of optimal hyperparameter settings in Table 3.

In general, hyperparameters that are found to be effective for a specific class of problems can
often be used for similar problems. Therefore, these optimal hyperparameters can be used directly
to obtain a satisfactory solution, that is, a relative L2 error less than 10% and as a starting point
for obtaining optimal hyperparameters for other heat conduction problems that exhibit similar
discontinuities. Examples of variations may include changes in the geometry, different boundary
temperatures, and the introduction of source terms in the PDE. However, the effectiveness of
these optimal hyperparameters must be validated on a case-by-case basis.

The hyperparameter optimization of PINNs is an effective approach to obtain accurate solu-
tions for heat transfer problems with discontinuous solution. This work also demonstrates the
potential of hyperparameter optimization to enhance the predictive capability of PINNs for solv-
ing stiff-PDEs.

Disclosure statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Funding

This work is part-funded by the United Kingdom Atomic Energy Authority (UKAEA) and the Engineering and
Physical Sciences Research Council (EPSRC) under the Grant Agreement Numbers EP/W006839/1, EP/T517987/1,
and EP/R012091/1. We acknowledge the support of Supercomputing Wales and AccelerateAI projects, which is
part-funded by the European Regional Development Fund (ERDF) via the Welsh Government for giving us access
to NVIDIA A100 40 GB GPUs for batch training. We also acknowledge the support of NVIDIA academic hard-
ware grant for donating us NVIDIA RTX A5000 24 GB for local testing.

ORCID

Prakhar Sharma http://orcid.org/0000-0002-7635-1857
Llion Evans http://orcid.org/0000-0002-4964-4187
Michelle Tindall http://orcid.org/0000-0003-3034-9636
Perumal Nithiarasu http://orcid.org/0000-0002-4901-2980

References

0[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations,” J.
Comput. Phys., vol. 378, pp. 686–707, Feb. 2019. Available: https://www.sciencedirect.com/science/article/
pii/S0021999118307125. DOI: 10.1016/j.jcp.2018.10.045.

12 P. SHARMA ET AL.

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1016/j.jcp.2018.10.045

0[2] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine
learning,” Nat. Rev. Phys., vol. 3, no. 6, pp. 422–440, Jun. 2021. Available: https://www.nature.com/articles/
s42254-021-00314-5. DOI: 10.1038/s42254-021-00314-5.

0[3] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural networks (PINNs) for
fluid mechanics: a review,” Acta Mech. Sin., vol. 37, no. 12, pp. 1727–1738, Jan. 2021. DOI: 10.1007/
s10409-021-01148-1.

0[4] J. Yu, L. Lu, X. Meng, and G. E. Karniadakis, “Gradient-enhanced physics-informed neural networks for
forward and inverse PDE problems,” arXiv:2111.02801 [physics], Nov. 2021. arXiv: 2111.02801. [Online].
Available: http://arxiv.org/abs/2111.02801

0[5] X. Meng and G. E. Karniadakis, “A composite neural network that learns from multi-fidelity data: applica-
tion to function approximation and inverse PDE problems,” J. Comput. Phys., vol. 401, pp. 109020, Jan.
2020. Available: https://www.sciencedirect.com/science/article/pii/S0021999119307260. DOI: 10.1016/j.jcp.
2019.109020.

0[6] Z. Mao, L. Lu, O. Marxen, T. A. Zaki, and G. E. Karniadakis, “DeepM&Mnet for hypersonics: predicting
the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of
operators,” J. Comput. Phys., vol. 447, pp. 110698, Dec. 2021. Available: https://www.sciencedirect.com/sci-
ence/article/pii/S0021999121005933. DOI: 10.1016/j.jcp.2021.110698.

0[7] L. Lu, M. Dao, P. Kumar, U. Ramamurty, G. E. Karniadakis, and S. Suresh, “Extraction of mechanical
properties of materials through deep learning from instrumented indentation,” Proc. Natl. Acad. Sci. USA,
vol. 117, no. 13, pp. 7052–7062, Mar. 2020. Available: DOI: 10.1073/pnas.1922210117.

0[8] S. Wang, H. Wang, and P. Perdikaris, “On the eigenvector bias of Fourier feature networks: from regres-
sion to solving multi-scale PDEs with physics-informed neural networks,” Comput. Methods Appl. Mech.
Eng., vol. 384, pp. 113938, Oct. 2021. Available: https://www.sciencedirect.com/science/article/pii/
S0045782521002759. DOI: 10.1016/j.cma.2021.113938.

0[9] C. Bard and J. Dorelli, “Neural network reconstruction of plasma space–time,” Front. Astron. Space Sci.,
vol. 8, 2021. Available: DOI: 10.3389/fspas.2021.732275.

[10] C. Xu, B. T. Cao, Y. Yuan, and G. Meschke, “Transfer learning based physics-informed neural networks for
solving inverse problems in tunneling,” arXiv, Tech. Rep. arXiv:2205.07731 [cs] type: article, May 2022.
arXiv:2205.07731. [Online]. Available: http://arxiv.org/abs/2205.07731.

[11] V. Gopakumar, S. Pamela, and D. Samaddar, “Loss landscape engineering via data regulation on PINNs,”
arXiv, Tech. Rep. arXiv:2205.07843 [physics] type: article, May 2022. arXiv:2205.07843. [Online]. Available:
http://arxiv.org/abs/2205.07843.

[12] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient flow pathologies in physics-
informed neural networks,” SIAM J. Sci. Comput., vol. 43, no. 5, pp. A3055–A3081, Jan. 2021. Available:
DOI: 10.1137/20M1318043.

[13] S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: a neural tangent kernel
perspective,” J. Comput. Phys., vol. 449, pp. 110768, Jan. 2022. Available: DOI: 10.1016/j.jcp.2021.110768.

[14] Z. Hu, A. D. Jagtap, G. E. Karniadakis, and K. Kawaguchi, “When do extended physics-informed neural
networks (XPINNs) improve generalization?” arXiv:2109.09444 [cs, math, stat], Dec. 2021. arXiv:
2109.09444. [Online]. Available: http://arxiv.org/abs/2109.09444.

[15] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson, “Physics-informed neural networks
with hard constraints for inverse design,” SIAM J. Sci. Comput., vol. 43, no. 6, pp. B1105–B1132, Jan. 2021.
Available: DOI: 10.1137/21M1397908.

[16] H. Gao, M. J. Zahr, and J.-X. Wang, “Physics-informed graph neural Galerkin networks: a unified frame-
work for solving PDE-governed forward and inverse problems,” Comput. Methods Appl. Mech. Eng., vol.
390, pp. 114502, Feb. 2022. Available: https://www.sciencedirect.com/science/article/pii/S0045782521007076.
DOI: 10.1016/j.cma.2021.114502.

[17] E. Kharazmi, Z. Zhang, and G. E. M. Karniadakis, “hp-VPINNs: variational physics-informed neural net-
works with domain decomposition,” Comput. Methods Appl. Mech. Eng., vol. 374, pp. 113547, Feb. 2021.
Available: https://www.sciencedirect.com/science/article/pii/S0045782520307325. DOI: 10.1016/j.cma.2020.
113547.

[18] Y. Shin, “On the convergence of physics informed neural networks for linear second-order elliptic and
parabolic type PDEs,” CiCP, vol. 28, no. 5, pp. 2042–2074, Jun. 2020. Available: http://global-sci.org/intro/
article_detail/cicp/18404.html. DOI: 10.4208/cicp.OA-2020-0193.

[19] S. Cuomo, V. S. di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine learning
through physics-informed neural networks: where we are and what’s next,” arXiv:2201.05624 [physics], Feb.
2022. arXiv: 2201.05624. [Online]. Available: http://arxiv.org/abs/2201.05624.

[20] P. Sharma, L. Evans, M. Tindall, and P. Nithiarasu, “Stiff-PDEs and physics-informed neural networks,”
Arch. Comput. Methods Eng., vol. 30, no. 5, pp. 2929–2958, Feb. 2023. DOI: 10.1007/s11831-023-09890-4.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 13

https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
http://arxiv.org/abs/2111.02801
https://www.sciencedirect.com/science/article/pii/S0021999119307260
https://doi.org/10.1016/j.jcp.2019.109020
https://doi.org/10.1016/j.jcp.2019.109020
https://www.sciencedirect.com/science/article/pii/S0021999121005933
https://www.sciencedirect.com/science/article/pii/S0021999121005933
https://doi.org/10.1016/j.jcp.2021.110698
https://doi.org/10.1073/pnas.1922210117
https://www.sciencedirect.com/science/article/pii/S0045782521002759
https://www.sciencedirect.com/science/article/pii/S0045782521002759
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.3389/fspas.2021.732275
http://arxiv.org/abs/2205.07731
http://arxiv.org/abs/2205.07843
https://doi.org/10.1137/20M1318043
https://doi.org/10.1016/j.jcp.2021.110768
http://arxiv.org/abs/2109.09444
https://doi.org/10.1137/21M1397908
https://www.sciencedirect.com/science/article/pii/S0045782521007076
https://doi.org/10.1016/j.cma.2021.114502
https://www.sciencedirect.com/science/article/pii/S0045782520307325
https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.1016/j.cma.2020.113547
http://global-sci.org/intro/article_detail/cicp/18404.html
http://global-sci.org/intro/article_detail/cicp/18404.html
https://doi.org/10.4208/cicp.OA-2020-0193
http://arxiv.org/abs/2201.05624
https://doi.org/10.1007/s11831-023-09890-4

[21] Z. Xiang, W. Peng, W. Zhou, and W. Yao, “Hybrid finite difference with the physics-informed neural net-
work for solving PDE in complex geometries,” arXiv:2202.07926 [physics], Feb. 2022. arXiv: 2202.07926.
[Online]. Available: http://arxiv.org/abs/2202.07926.

[22] L. McClenny and U. Braga-Neto, “Self-adaptive physics-informed neural networks using a soft attention
mechanism,” AAAI-MLPS, Tech. Rep. 68, Feb. 2019. [Online]. Available: http://ceur-ws.org/Vol-2964/art-
icle_68.pdf.

[23] S. Shi, D. Liu, and Z. Zhao, “Non-Fourier heat conduction based on self-adaptive weight physics-informed
neural networks,” in 2021 40th Chin. Control Conf. (CCC), Jul. 2021, pp. 8451–8456. iSSN: 1934–1768.

[24] X.-K. Wen, G.-Z. Wu, W. Liu, and C.-Q. Dai, “Dynamics of diverse data-driven solitons for the three-com-
ponent coupled nonlinear Schr€odinger model by the MPS-PINN method,” Nonlinear Dyn., vol. 109, no. 4,
pp. 3041–3050, Sep. 2022. Available: DOI: 10.1007/s11071-022-07583-4.

[25] C. Wei and R. Ooka, “Indoor airflow field reconstruction using physics-informed neural network,” Build.
Environ., vol. 242, pp. 110563, Aug. 2023. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0360132323005905. DOI: 10.1016/j.buildenv.2023.110563.

[26] P. Ren, C. Rao, Y. Liu, J.-X. Wang, and H. Sun, “PhyCRNet: physics-informed convolutional-recurrent net-
work for solving spatiotemporal PDEs,” Comput. Methods Appl. Mech. Eng., vol. 389, pp. 114399, Feb.
2022. Available: https://www.sciencedirect.com/science/article/pii/S0045782521006514. DOI: 10.1016/j.cma.
2021.114399.

[27] S. Markidis, “The old and the new: can physics-informed deep-learning replace traditional linear solvers?,”
Front. Big Data, vol. 4, pp. 669097, Nov. 2021. Available: 10.3389/fdata.2021.669097/full.

[28] P. Escapil-Inchausp�e and G. A. Ruz, “Hyper-parameter tuning of physics-informed neural networks: appli-
cation to helmholtz problems,” ArXiv preprint 2022. publisher: arXiv Version Number: 2. [Online].
Available: https://arxiv.org/abs/2205.06704.

[29] Y. Wang, X. Han, C.-Y. Chang, D. Zha, U. Braga-Neto, and X. Hu, “Auto-PINN: understanding and opti-
mizing physics-informed neural architecture,” ArXiv preprint 2022. publisher: arXiv Version Number: 1.
[Online]. Available: https://arxiv.org/abs/2205.13748.

[30] P. Pantidis, H. Eldababy, C. M. Tagle, and M. E. Mobasher, “Error convergence and engineering-guided
hyperparameter search of PINNs: towards optimized I-FENN performance,” Comput. Methods Appl. Mech.
Eng., vol. 414, pp. 116160, Sep. 2023. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0045782523002840. DOI: 10.1016/j.cma.2023.116160.

[31] G. Cho, D. Zhu, J. J. Campbell, and M. Wang, “An LSTM–PINN hybrid method to estimate lithium-ion
battery pack temperature,” IEEE Access, vol. 10, pp. 100594–100604, 2022. Available: https://ieeexplore.ieee.
org/document/9895422/. DOI: 10.1109/ACCESS.2022.3208103.

[32] M. A. Nabian, R. J. Gladstone, and H. Meidani, “Efficient training of physics-informed neural networks via
importance sampling,” Comput. Aid. Civil Eng., vol. 36, no. 8, pp. 962–977, 2021. Available: DOI: 10.1111/
mice.12685.

[33] O. Hennigh et al., “NVIDIA SimNetTM: an AI-accelerated multi-physics simulation framework,” in ICCS,
Ser. Lecture Notes in Computer Science, M. Paszynski, D. Kranzlm€uller, V. V. Krzhizhanovskaya, J. J.
Dongarra, and P. M. Sloot, Eds. Cham: Springer Int. Pub., 2021, pp. 447–461.

[34] “Modulus user guide,” Nov. 2021. release v21.06. [Online]. Available: https://developer.nvidia.com/modu-
lus-user-guide-v2106.

[35] J. Sirignano and K. Spiliopoulos, “DGM: a deep learning algorithm for solving partial differential equa-
tions,” J. Comput. Phys., vol. 375, pp. 1339–1364, Dec. 2018. Available: https://www.sciencedirect.com/sci-
ence/article/pii/S0021999118305527. DOI: 10.1016/j.jcp.2018.08.029.

[36] M. Tancik et al., “Fourier features let networks learn high frequency functions in low dimensional
domains,” in Adv. Neural Inf. Process. Syst., vol. 33. Curran Assoc., Inc. 2020, pp. 7537–7547. Available:
https://proceedings.neurips.cc/paper/2020/hash/55053683268957697aa39fba6f231c68-Abstract.html.

[37] N. Rahaman, et al., “On the spectral bias of neural networks,” in Proc. 36th Int. Conf. Mach. Learn, PMLR.
May 2019, pp. 5301–5310, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v97/raha-
man19a.html.

[38] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis, “Adaptive activation functions accelerate convergence
in deep and physics-informed neural networks,” J. Comput. Phys., vol. 404, pp. 109136, Mar. 2020.
Available: https://www.sciencedirect.com/science/article/pii/S0021999119308411. DOI: 10.1016/j.jcp.2019.
109136.

[39] L. Martino, V. Elvira, and F. Louzada, “Effective sample size for importance sampling based on discrepancy
measures,” Signal Process., vol. 131, pp. 386–401, Feb. 2017. Available: https://www.sciencedirect.com/sci-
ence/article/pii/S0165168416302110. DOI: 10.1016/j.sigpro.2016.08.025.

[40] W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” J. Comput. Phys., vol. 122, no. 2, pp.
218–230, Dec. 1995. Available: https://www.sciencedirect.com/science/article/pii/S0021999185712090. DOI:
10.1006/jcph.1995.1209.

14 P. SHARMA ET AL.

http://arxiv.org/abs/2202.07926
http://ceur-ws.org/Vol-2964/article_68.pdf
http://ceur-ws.org/Vol-2964/article_68.pdf
https://doi.org/10.1007/s11071-022-07583-4
https://linkinghub.elsevier.com/retrieve/pii/S0360132323005905
https://linkinghub.elsevier.com/retrieve/pii/S0360132323005905
https://doi.org/10.1016/j.buildenv.2023.110563
https://www.sciencedirect.com/science/article/pii/S0045782521006514
https://doi.org/10.1016/j.cma.2021.114399
https://doi.org/10.1016/j.cma.2021.114399
https://doi.org/10.3389/fdata.2021.669097/full
https://arxiv.org/abs/2205.06704
https://arxiv.org/abs/2205.13748
https://linkinghub.elsevier.com/retrieve/pii/S0045782523002840
https://linkinghub.elsevier.com/retrieve/pii/S0045782523002840
https://doi.org/10.1016/j.cma.2023.116160
https://ieeexplore.ieee.org/document/9895422/
https://ieeexplore.ieee.org/document/9895422/
https://doi.org/10.1109/ACCESS.2022.3208103
https://doi.org/10.1111/mice.12685
https://doi.org/10.1111/mice.12685
https://developer.nvidia.com/modulus-user-guide-v2106
https://developer.nvidia.com/modulus-user-guide-v2106
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://doi.org/10.1016/j.jcp.2018.08.029
https://proceedings.neurips.cc/paper/2020/hash/55053683268957697aa39fba6f231c68-Abstract.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://www.sciencedirect.com/science/article/pii/S0021999119308411
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.109136
https://www.sciencedirect.com/science/article/pii/S0165168416302110
https://www.sciencedirect.com/science/article/pii/S0165168416302110
https://doi.org/10.1016/j.sigpro.2016.08.025
https://www.sciencedirect.com/science/article/pii/S0021999185712090
https://doi.org/10.1006/jcph.1995.1209

[41] N. Sukumar and A. Srivastava, “Exact imposition of boundary conditions with distance functions in phys-
ics-informed deep neural networks,” Comput. Methods Appl. Mech. Eng., vol. 389, pp. 114333, Feb. 2022.
Available: https://www.sciencedirect.com/science/article/pii/S0045782521006186. DOI: 10.1016/j.cma.2021.
114333.

[42] T. Chan and W. Zhu, “Level set based shape prior segmentation,” in CVPR, vol. 2, Jun. 2005, pp. 1164–
1170, iSSN: 1063–6919.

[43] J. E. H. Shaw, “A quasirandom approach to integration in Bayesian statistics,” Ann. Stat., vol. 16, no. 2, pp.
895–914, 1988. Available: https://www.jstor.org/stable/2241763.

[44] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multi-dimen-
sional integrals,” Numer. Math., vol. 2, no. 1, pp. 84–90, Dec. 1960. Available: . DOI: 10.1007/BF01386213.

[45] N. Hasebrook, F. Morsbach, N. Kannengießer, J. Franke, F. Hutter, and A. Sunyaev, “Why do machine
learning practitioners still use manual tuning? A qualitative study,” Mar. 2022. arXiv:2203.01717 [cs].
[Online]. Available: http://arxiv.org/abs/2203.01717.

[46] R.-Y. Sun, “Optimization for deep learning: an overview,” J. Oper. Res. Soc. China, vol. 8, no. 2, pp. 249–
294, Jun. 2020. [Online]. Available DOI: 10.1007/s40305-020-00309-6.

[47] D. Bertoin, J. Bolte, S. Gerchinovitz, and E. Pauwels, “Numerical influence of ReLU’(0) on back-
propagation,” in Adv. Neural Inf. Process. Syst., M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and
J. W. Vaughan, Eds., vol. 34. New York: Curran Assoc., Inc., 2021, pp. 468–479. Available: https://proceed-
ings.neurips.cc/paper_files/paper/2021/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf.

[48] H. Nishikawa, “On hyperbolic method for diffusion with discontinuous coefficients,” J. Comput. Phys., vol.
367, pp. 102–108, Aug. 2018. Available: https://linkinghub.elsevier.com/retrieve/pii/S0021999118302444.
DOI: 10.1016/j.jcp.2018.04.027.

[49] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,” Sep. 2017.
arXiv:1706.02515 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1706.02515

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 15

https://www.sciencedirect.com/science/article/pii/S0045782521006186
https://doi.org/10.1016/j.cma.2021.114333
https://doi.org/10.1016/j.cma.2021.114333
https://www.jstor.org/stable/2241763
https://doi.org/10.1007/BF01386213
http://arxiv.org/abs/2203.01717
https://doi.org/10.1007/s40305-020-00309-6
https://proceedings.neurips.cc/paper_files/paper/2021/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0021999118302444
https://doi.org/10.1016/j.jcp.2018.04.027
http://arxiv.org/abs/1706.02515

	Hyperparameter selection for physics-informed neural networks (PINNs) – Application to discontinuous heat conduction problems
	Abstract
	Introduction
	Physics-informed neural networks
	Discrete loss terms
	Integral formulation of loss

	Additional tools
	Summary of methodology
	Test cases
	Problem 1: 2-D steady-state heat conduction
	Problem 2: 3-D steady-state heat conduction
	Problem 3: Problem 1 with parametric geometry
	Problem 4: Problem 1 with parametric conductivity
	Problem 5: 2-D steady-state heat conduction with discontinuous conductivity

	Results and discussion
	Conclusions
	Disclosure statement
	Funding
	Orcid
	References

