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Hyperparameter selection for physics-informed neural 
networks (PINNs) – Application to discontinuous heat 
conduction problems

Prakhar Sharmaa , Llion Evansa,b , Michelle Tindallb , and Perumal Nithiarasua 

aZienkiewicz Institute for Modelling, Data and AI, Swansea University, UK; bCulham Science Center, United 
Kingdom Atomic Energy Authority, Abingdon, UK 

ABSTRACT 
In recent years, physics-informed neural networks (PINNs) have emerged as 
an alternative to conventional numerical techniques to solve forward and 
inverse problems involving partial differential equations (PDEs). Despite its 
success in problems with smooth solutions, implementing PINNs for prob-
lems with discontinuous boundary conditions (BCs) or discontinuous PDE 
coefficients is a challenge. The accuracy of the predicted solution is contin-
gent upon the selection of appropriate hyperparameters. In this work, we 
performed hyperparameter optimization of PINNs to find the optimal 
neural network architecture, number of hidden layers, learning rate, and 
activation function for heat conduction problems with a discontinuous 
solution. Our aim was to obtain all the settings that achieve a relative L2 
error of 10% or less across all the test cases. Results from five different 
heat conduction problems show that the optimized hyperparameters pro-
duce a mean relative L2 error of 5.60%.
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1. Introduction

Conventional numerical techniques have their limitations when it comes to solving problems 
involving partial differential equations (PDEs). They include incorporating noisy experimental 
data into existing algorithms, solving high-dimensional parametric PDEs in a reasonable time 
frame, solution dependency on mesh quality, and the requirement of complicated algorithms for 
inverse problems.

Recently, physics-informed neural networks (PINNs) [1] have gained popularity as an 
approach to solve forward [2–6] and inverse problems [7–10] involving PDEs. Unlike conven-
tional machine learning techniques, PINNs are physics-based supervised machine learning techni-
ques and do not require true solutions or pre-trained models to solve PDEs [11]. Instead, PINNs 
satisfy a well-posed PDE to obtain a unique solution in forward problems.

Despite its success in problems with smooth solutions [8,12,13], PINN and their variations 
[14–17] still encounter fundamental issues. For instance, PINN is still lacking guaranteed conver-
gence criteria [18], and the correlation between the network hyperparameters and performance is 
elusive [19]. Moreover, PINNs encounter significant issues solving stiff-PDEs, especially, problems 
with discontinuous solutions [12,20]. We refer the reader to our survey on solving problems with 
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discontinuous BCs using PINNs [20]. Hence, there exists a necessity for studies that specifically 
address convergence of PINNs for problems with discontinuous solutions.

Generally, PINNs will not converge unless we mitigate the effect of the discontinuities. A tech-
nique to accomplish this involves the use of a signed distance function (SDF) and requires a prior 
understanding of the region of the discontinuity [21]. The SDF ensures that the points sampled 
close to the region of discontinuity are assigned with minuscule weights, effectively reducing the 
contribution of these regions toward the training loss. As a result, the use of SDF results in a 
high relative L2 error near the discontinuity.

Similar to any neural network (NN), PINNs have a number of hyperparameters such as, the 
learning rate, the activation function, the optimizer, the weights in the loss function, the width 
and depth of the NN. The high-dimensional hyperparameter search space makes it difficult to 
obtain optimized hyperparameters that are suitable for a broad range of problems. Therefore, it is 
necessary to select fewer hyperparameters and focus on a specific set of problems.

In some early attempts, researchers treated the coefficients of loss terms as hyperparameters to 
balance the contribution of each loss term [12,13,22–24]. The approach was computationally effi-
cient as the hyperparameter optimization did not involve a complicated algorithm instead it was 
updated through the same optimizer used to train the PINN. However, this approach had limita-
tions regarding the range of hyperparameters that could be chosen. It did not allow choosing 
hyperparameters such as the number of hidden layers or the NN architecture.

Some researchers used grid search [25,26] and Bayesian optimization [27–29] to gain greater 
flexibility in selecting hyperparameters. However, with the increase of number of hyperparameters, 
the approach became computationally expensive due to the high-dimensional search space.

In this study, we have chosen to employ manual tuning. It offers several advantages, including, 
full control over the hyperparameter values, better interpretability and computational efficiency in 
comparison to grid search or Bayesian optimization methods, when only a few hyperparameters 
are studied.

Several studies conducted manual tuning with a wide range of hyperparameters [30,31]. The 
outcomes were transferable to similar problems with minor variations, making them ideal starting 
points for problems in the same domain of physics.

The present work aims to identify optimal hyperparameters for PINNs in order to improve 
their accuracy and convergence when solving heat transfer problems with discontinuous BCs. We 
performed hyperparameter optimization to identify all possible settings of NN architectures, num-
ber of hidden layers, activation functions, and learning rates that could achieve a relative L2 error 
of 10% or less across all test cases. These optimal hyperparameters enable more accurate and effi-
cient solutions to similar problems.

We investigated 2-D and 3-D steady-state heat conduction problems with a discontinuous 
solution. Additionally, we investigated the 2-D steady-state heat conduction problem with para-
metric conductivity and parametric geometry as separate test cases. The remainder of this paper 
is organized as follows. In Section 2, we provide a brief overview of PINNs. In Section 3, we dis-
cuss additional tools that we used to enhance the accuracy of the predicted solution. In Section 4, 
we discuss the network parameters and the hyperparameters used in this study. Sections 5 and 6
present the test cases and results of the hyperparameter optimization. In Section 7, we discuss the 
outcome of our investigation.

2. Physics-informed neural networks

PINNs are deep neural networks (DNNs) that leverage the known physics, that is, PDEs or con-
stitutive equations to solve forward and inverse problems. In the case of forward problems, it 
enforces the well-posedness of the problem to obtain a unique solution. This section provides a 
brief overview of PINNs.
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In a PINN, the independent variables serve as input, and the dependent variables or the solu-
tion to the governing PDE are the outputs. A well-posed PDE can be defined as follows:

ut þN x½u� ¼ 0, x 2 X, t 2 0, T½ �

u x, 0ð Þ ¼ hðxÞ, x 2 X

u x, tð Þ ¼ g x, tð Þ, x 2 @X, t 2 0, T½ �

(1) 

where N x½u� is a differential operator, x and t are the independent variables of the PDE, X and 
@X denote the spatial domain and the boundary of the problem, hðxÞ denotes the prescribed BC 
which is the solution to the PDE at all spatial points ðXÞ at the initial time ðt ¼ 0Þ, gðx, tÞ is the 
prescribed BC at the boundary of the domain ð@XÞ:

2.1. Discrete loss terms

A well-posed PDE problem must have the PDE, BCs, and IC (if transient). Thus, a PINN must 
satisfy these, resulting in a multitask loss function. The total loss (L) and the individual loss 
terms (LPDE, LBC, LIC) are defined as follows:

L ¼ kPDELPDE þ kBCLBC þ kICLIC (2) 

LPDE ¼
1

Nr

XNr

i¼1
jût xi, tið Þ þ N x û xi, tið Þ½ �j

2

LBC ¼
1

Nb

XNb

i¼1
jû xi, tið Þ − g xi, tið Þj

2

LIC ¼
1

N0

XN0

i¼1
û xi, 0ð Þ − h xi, 0ð Þj

2�
�

(3) 

where û is the predicted solution, Nr, Nb, and N0 are the number of data points that are sampled 
to satisfy the PDE, the BCs, and the IC in Eq. (2). The coefficients kPDE, kBC, and kIC in Eq. (2), 
help in achieving convergence and better accuracy, and are an active field of research.

2.2. Integral formulation of loss

In recent work by Nabian et al. [32] and Hennigh et al. [33], an alternative approach to calculate 
the loss was proposed. In this approach, a specific loss term is scaled proportional to its length, 
area, or volume. This prevents the large number of interior points from dominating the training 
loss, and ensures that both the LPDE and LBC contribute proportionally. This particular formula-
tion employs an integral form of the loss for each term as follows:

LPDE ¼
1

Nr

XNr

i¼1
jût xi, tið Þ þ N x û xi, tið Þ½ �j

2
ð

X

dX

LBC ¼
1

Nb

XNb

i¼1
û xi, tið Þ − g xi, tið Þj

2
ð

@X

d @Xð Þ

�
�
�
�

(4) 

3. Additional tools

In this section, we provide a brief description of the methods that enhance the accuracy of the 
predicted solution. In addition to the feedforward fully-connected neural network (FCNN), we 
also included the modified Fourier neural network (MFNN) [34] and the deep Galerkin method 
(DGM) architecture [35] to address the spectral bias in FCNN [13,36,37]. These architectures 
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project the low-dimensional training data to higher dimensions which enables learning the high- 
frequency functions.

We also employed adaptive activation [38], SDF [21], importance sampling [39], and quasi- 
random sampling [40]. A brief description of these tools has been given in this section and a 
detailed survey of these tools is presented in [20].

The SDF plays an important role in solving PDEs with discontinuous BCs. It requires the prior 
knowledge of the region of discontinuity. These functions are designed such that the points 
sampled in these regions are given minuscule weights [21,41,42]. While the SDF can help con-
verging the training loss for problems with discontinuity, it is important to note that they may 
not be able to capture the discontinuous BC, which can lead to a high relative L2 error, this error 
is usually much lower than without the use of SDFs, providing a significant improvement in the 
predicted solution.

Activation functions enable NNs to predict complex outputs by performing a nonlinear trans-
formation of the feature space. In adaptive activation, a trainable coefficient is multiplied with 
each neuron in the NN. These trainable coefficients are updated iteratively, based on the total 
loss L: The introduction of additional parameters facilitates faster convergence [38].

Importance sampling is used to re-sample the interior points iteratively. The sample is drawn 
from an alternative sampling distribution proportional to the pointwise loss. This approach is 
similar to mesh refinement and helps to capture the sharp changes in the gradient [32].

A common practice in PINNs is to use a uniform random sampling strategy to sample the 
boundary and interior points. Low-discrepancy quasi-random sequences are a suitable replace-
ment for uniformly distributed random points as they require less points [43]. This results in 
faster convergence of the training loss. In this work, we used the Halton sequence to sample the 
boundary and interior points in the domain [44].

4. Summary of methodology

In machine learning, hyperparameters are parameters that influence the overall performance of 
the model. Hyperparameter optimization is a process of selecting the optimal combination of 
hyperparameters that minimize or maximize an objective function such as the training loss or the 
model accuracy.

In this work, we investigated the NN architecture, the number of hidden layers, the learning 
rate, and the activation function over a wide range of settings, as detailed in Table 1.

Typically, hyperparameter optimization is implemented using automated optimization techni-
ques to obtain the optimal settings. However, in this work, we employed a manual tuning 
approach [45] to obtain multiple settings that results in a relative L2 error (Eq. (5)) of 10% or 
less across all five test cases.

Relative L2 Error ¼
kû − uk2
kuk2

(5) 

The weights were initialized with the Xavier initialization [46] and the losses were calculated 
using the integral formulation (Eq. (4)). Initially, we experimented with activation functions such 
as rectified linear unit (RELU), scaled exponential linear unit (SELU), Sigmoid linear unit (SiLU), 

Table 1. Range of hyperparameters explored.

Hyperparameters Range

Architecture FCNN, MFNN, DGM
No. of hidden layers 1, 5, 10, 15, 20
Activations ReLU, SELU, SiLU, GELU, Tanh, Sin
Learning rates 1e − 2, 7.5e − 3, 5e − 3, 2.5e − 3, 1e − 3, 7.5e − 4, 5e − 4,

2.5e − 4, 1e − 4, 7.5e − 5, 5e − 5, 2.5e − 5, 1e − 5
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Sine function (Sin), Gaussian error linear units (GELU), and hyperbolic tangent (Tanh) over a 
range of learning rates starting from 1e − 5 to 1e − 2. The mathematical form of the activation 
functions is listed below.

RELUðxÞ ¼ maxð0, xÞ

SELUðxÞ ¼ 1:0507
n x if x > 0

1:6733ðex − 1Þ if x � 0

SiLUðxÞ ¼ x �
1

1þ e−x

GELUðxÞ ¼ 0:5x 1þ Tanh
ffiffiffi
2
p

r

xþ 0:044715x3ð Þ

 ! !

TanhðxÞ ¼
ex − e−x

ex þ e−x

(6) 

where x is the input value. It is important to note that the RELU and SELU are non-differenti-
able. Most machine learning libraries handle the non-differentiable activation functions using sub-
gradient optimization. Bertoin et al. [47] emphasized that the derivative of non-differentiable 
activation functions can impact the backpropagation and the Adam optimizer can help minimize 
this impact. Therefore, we used the Adam optimizer in all test cases.

The batch training was performed on a high-performance computing (HPC) cluster, Sunbird 
at the Swansea University. The test cases were trained on 2 x AMD EPYC Rome 7452 processor 
with 32-cores and a NVIDIA A100 tensor core with 40 GB of available GPU memory.

5. Test cases

In this section, we present the details of the five different test cases. The first two cases are 2-D 
and 3-D steady-state heat conduction problems with discontinuous BCs. The next two cases are 
simple extension of the 2-D problem, incorporating parametric conductivity and parametric 
geometry. The final test case is a steady-state heat conduction problem with discontinuous 
conductivity.

5.1. Problem 1: 2-D steady-state heat conduction

In Problem 1, we chose a 2-D steady-state heat conduction problem with discontinuous BCs at 
the corners. The problem can be stated as follows:

uxx þ uyy ¼ 0, x 2 −0:5, 0:5½ �, y 2 0, 1½ �

uðx, 0Þ ¼ uðx, 1Þ ¼ 0 uð−0:5, yÞ ¼ uð0:5, yÞ ¼ 1 (7) 

where u is the temperature, x and y are the independent variables of the PDE.

5.2. Problem 2: 3-D steady-state heat conduction

Our next focus is on extending Problem 1 into 3-D space. Problem 2 is constrained by discon-
tinuous BCs at the edges and the corners. The problem is outlined as follows:

uxx þ uyy þ uzz ¼ 0, x 2 −0:5, 0:5½ �, y 2 −0:5, 0:5½ �, z 2 0, 1½ �

u x, y, 0ð Þ ¼ uðx, y, 1Þ ¼ uð0:5, y, zÞ ¼ 0
uð−0:5, y, zÞ ¼ uðx, − 0:5, zÞ ¼ uðx, 0:5, zÞ ¼ 1

(8) 
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The reference solution for Problems 1 and 2 was generated through FEM implemented in 
MATLAB Partial Differential Equation Toolbox, and is shown in Figure 1. Details of the mesh 
statistics of the FEM solutions are shown in Table 2.

Raissi et al. [1] proposed the first PINN framework which is often referred as the baseline 
PINN. It comprises a FCNN architecture with Tanh activation, trained using a learning rate of 
1e − 3. It was known to have convergence issues with discontinuous BCs, as demonstrated in the 
loss curve (Figure 2) of Problem 1, trained with a FCNN of 8 hidden layers and 20 units in each 
layer. Since, the baseline PINNs are continuous functions they cannot represent discontinuities. 
This is evident in Problem 1, where the pointwise BC loss (LBC) around the corners is relatively 
high after training for 14k iterations (Figure 3).

Figure 1. FEM solution of Problem 1 (left) and Problem 2 (right).

Table 2. Mesh statistics of the FEM solution.

Problem 1 Problem 2

Element type Triangle Tetrahedral
Element order Quadratic Quadratic
No. of elements 2841 23424
Max. element size 0.0566 0.0693
Min. element size 0.0283 0.0346
Mesh growth rate 1.5 1.5

Figure 2. The loss curve (training loss) of Problem 1 trained with Tanh activation and baseline PINN for 14k iterations.
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5.3. Problem 3: Problem 1 with parametric geometry

In Problem 3, the upper boundary of the domain is varying from 1 to 1.05.

uxx þ uyy ¼ 0, x 2 −0:5, 0:5½ �, y 2 0, L½ �, L 2 1, 1:05½ �

uðx, 0Þ ¼ uðx, LÞ ¼ 0 uð−0:5, yÞ ¼ uð0:5, yÞ ¼ 1 (9) 

Parametric PDEs can be solved with a simple extension of the PINN by adding the parametric 
terms as additional features in the training dataset. Since the upper boundary is not fixed, care 
should be taken to ensure the y-coordinate for each sample in the training dataset resides inside 
the domain.

5.4. Problem 4: Problem 1 with parametric conductivity

Similar to Problem 3, we can parameterize the conductivity. We formulate Problem 1 with para-
metric conductivity j as follows:

uxx þ j uyy ¼ 0, x 2 −0:5, 0:5½ �, y 2 0, 1½ �, j 2 0, 1½ �

uðx, 0Þ ¼ uðx, 1Þ ¼ 0 uð−0:5, yÞ ¼ uð0:5, yÞ ¼ 1 (10) 

5.5. Problem 5: 2-D steady-state heat conduction with discontinuous conductivity

In Problem 5, we have a 2-D steady-state heat conduction problem with discontinuous conductiv-
ity j and Robin BCs. The problem can be stated as follows:

@

@x
ðjðxÞ � uxÞ þ

@

@y
ðjðxÞ � uyÞ ¼ 0, x 2 0, 1½ �, y 2 0, 1½ �

ux ¼
u

2jðxÞ
when x ¼ 0, ux ¼

1 − u
2jðxÞ

when x ¼ 1

jðxÞ ¼ j1 if x � 0:5
j2 if x > 0:5

�
(11) 

where j1 ¼ 1=30 and j2 ¼ 1=15: Here, the pointwise conductivity varies as a piecewise function 
of the x-coordinates. The problem has an analytical solution given as a piecewise function of j1 
and j2 (Eq. (12)) [48].

Figure 3. The pointwise BC loss (left) and pointwise PDE loss (right) of Problem 1 trained with Tanh activation and baseline 
PINN for 14k iterations.
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u ¼

j2xþ 2j1j2

0:5ðj1 þ j2Þ þ 4j1j2
if x � 0:5

j1xþ 2j1j2 þ 0:5ðj2 − j1Þ

0:5ðj1 þ j2Þ þ 4j1j2
if x > 0:5

8
>>><

>>>:

(12) 

6. Results and discussion

In this section, we present the results of hyperparameter optimization across all the test cases. We 
leverage bar charts to discuss the relationship between the hyperparameters and the mean relative 
L2 error for all possible settings. These bar charts illustrate the mean relative L2 error for each 
hyperparameter to identify the problematic hyperparameter values.

SELU is known for fast and stable training, however, based on the initial investigation, we 
observed that the SELU activation function is causing convergence issues in all the test cases. 
This is due to the fact that SELU is prone to exploding gradients in deep networks [49].

Unlike SELU, RELU suffers from vanishing gradients. So even though the training loss is con-
verged, it exhibits a relative L2 error that is several magnitudes higher compared to other activa-
tion functions across most test cases. This is due to the fact that, for negative inputs, the gradient 
of RELU is zero. During backpropagation, a large negative gradient multiplied with zero effect-
ively vanishes the gradient. So, the corresponding neurons will not be updated properly, resulting 
in a high relative L2 error. Thus, we decided to exclude SELU and RELU activation from further 
studies and continued further investigation with GELU, SiLU, Sin, and Tanh.

Figure 4 shows the mean relative L2 error for each activation across all the test cases. We 
observed some anomalies, for example, in Problem 3 with Tanh activation, the mean relative L2 
error reaches to the order of 1e5. Again, in Problem 3, with Sin activation the mean relative L2 

Figure 4. Comparison of activation function for five different test cases. The horizontal axis shows the activation function while 
the vertical axis shows the mean relative L2 error.
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error is more than 100 or 100%. These anomalies are attributed to all the settings with a large 
learning rate (1e − 2).

Figure 5 illustrates the relationship between the mean relative L2 error with number of hidden 
layers. As anticipated, the mean relative L2 error decreases with the increase in the number of 
hidden layers. With the addition of layers, the network gains the ability to learn more complex 
patterns. Similar to activations, in Problem 3, with five hidden layers, the mean relative L2 error 
reaches to the order of 1e5. This anomaly is attributed to all the settings with large learning 
rate (1e − 2).

In Figure 6, we present the variation of mean relative L2 error with NN architectures. Similar 
to the activations and the number of hidden layers, in Problem 3, the mean relative L2 error has 
been skewed by an anomaly attributed to the DGM architecture and the use of a large learning 
rate. It becomes evident that large learning rates may lead to anomalies or unexpected behavior 
and must be avoided while solving stiff-PDEs.

Although, we used SDF in all the settings, it is worth noting that FCNN has a lower mean 
relative L2 error than MFNN in all the test cases. The SDF excludes the regions with high-fre-
quency function in the domain, thus FCNN is less susceptible to spectral bias. On the other 
hand, MFNN projects the low-dimensional input dataset to higher dimensions thus increasing 
the complexity of the model. Thus, MFNN may need more iterations to converge, potentially 
affecting the performance compared to FCNN.

Figure 7 shows the variation of mean relative L2 error with learning rate. In Problem 3, all the 
anomalies discussed earlier were caused by the learning rate of 1e − 2. This is due to the paramet-
ric nature of Problem 3, where the moving discontinuity around the upper boundary results in a 
highly complex loss landscape. Consequently, the optimizer fails to find the global minima, result-
ing in a mean relative L2 error of the order of 1e6.

Figure 5. Comparison of number of hidden layers for five different test cases. The horizontal axis shows the number of hidden 
layers while the vertical axis shows the mean relative L2 error. For each specific number of hidden layers, the mean relative L2 
error includes data from all architectures with that specific number of hidden layers.
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Figure 6. Comparison of neural network architectures for five different test cases. The horizontal axis shows the individual neural 
network architectures while the vertical axis shows the mean relative L2 error.

Figure 7. Comparison of learning rates for five different test cases. The horizontal axis shows the learning rates while the vertical 
axis shows the mean relative L2 error.
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In contrast, for all other test cases, we observed an improvement in the mean relative L2 error 
with an increase in learning rate. This is a well-known trend with the Adam optimizer where the 
learning rate determines the step size taken in each iteration. However, due to inherent highly 
non-convex nature of PINNs, the optimizer may get trapped in a local minima when using small 
learning rates.

After analyzing the data, we have identified optimal hyperparameter settings, these are shown 
in Table 3. With these settings, we obtained a mean relative L2 error of 5.60%, a maximum rela-
tive L2 error of 13.9% with a standard deviation of 1.08% across all the test cases. While our opti-
mal number of hidden layers was 20, it should be noted that more hidden layers can be used. 
However, in such cases, the number of iterations should be enough to allow for convergence. 
Furthermore, Figure 8 shows the distribution of relative L2 error across these test cases. It dem-
onstrates that in majority of the test cases the relative L2 error remains below 10%.

Alternatively, if we restrict the list of optimal activations to SiLU, we achieved a mean relative 
L2 error of 5.32%, a maximum relative L2 error of 9.55% with a standard deviation of 0.7048% 
across all the test cases. This is in agreement with the objective of the work, that is, the optimal 
settings should achieve a relative L2 error of 10% or less across all the test cases. However, we 
observed that, on case-by-case basis, other activations performed better than SiLU. Therefore, we 
include other activations in the list of optimal activations, allowing the reader to choose the most 
suitable activation function for specific scenarios.

7. Conclusions

In this study, we conducted a comprehensive hyperparameter optimization of PINNs to deter-
mine the optimal NN architectures, number of hidden layers, activation functions, and learning 
rates for heat conduction problems with discontinuous solutions. We aimed to identify all 

Table 3. Optimal hyperparameter settings.

Hyperparameters Range

Architecture FCNN, DGM
No. of hidden layers 20
Activations SiLU, GELU, Tanh, Sin
Learning rates 7.5e − 3, 5e − 3, 2.5e − 3, 1e − 3, 7.5e − 4, 5e − 4

Figure 8. The distribution of relative L2 error with optimized settings across all the test cases.
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possible settings of these hyperparameters that could achieve a relative L2 error of 10% or less 
across all test cases.

These test cases include a 2-D and a 3-D steady-state heat conduction problem with discon-
tinuous BCs. Additionally, we extended the 2-D steady-state heat conduction problem with 
parametric conductivity and parametric geometry. Finally, the last test case involved a 2-D 
steady-state heat conduction problem with discontinuous conductivity and Robin BCs.

Throughout the investigation, we employed a range of tools, such as, adaptive activation, SDF, 
importance sampling, and quasi-random sampling. These methods accelerate the convergence of 
the training loss, resulting in much lower relative L2 error compared to not using them. 
Specifically, the SDFs have limited ability to accurately capture discontinuities in the solution. As 
a result, models with a relative L2 error within 10% are generally considered to be good models.

The range of hyperparameters investigated has been summarized in Table 1. In Section 6, we 
discussed the relationship between each hyperparameter and the mean relative L2 error. Finally, 
we presented a list of optimal hyperparameter settings in Table 3.

In general, hyperparameters that are found to be effective for a specific class of problems can 
often be used for similar problems. Therefore, these optimal hyperparameters can be used directly 
to obtain a satisfactory solution, that is, a relative L2 error less than 10% and as a starting point 
for obtaining optimal hyperparameters for other heat conduction problems that exhibit similar 
discontinuities. Examples of variations may include changes in the geometry, different boundary 
temperatures, and the introduction of source terms in the PDE. However, the effectiveness of 
these optimal hyperparameters must be validated on a case-by-case basis.

The hyperparameter optimization of PINNs is an effective approach to obtain accurate solu-
tions for heat transfer problems with discontinuous solution. This work also demonstrates the 
potential of hyperparameter optimization to enhance the predictive capability of PINNs for solv-
ing stiff-PDEs.
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