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Assessing the predictive performance of creep models using absolute rather 
than squared prediction errors: an application to 2.25Cr-1Mo steel and 316H 
stainless steel
Mark Evans

Institute of Structural Materials, Swansea University, Swansea, UK

ABSTRACT
A reliable means of assessing the accuracy of a creep model’s predictions is fundamental to 
safe power plant operation. This paper introduces a method of decomposing the mean 
absolute prediction error for such a purpose to overcome the limitations that are inherent in 
the traditional approach of squaring prediction errors to prevent over and underestimates of 
life offsetting each other. When this method is applied to 2.25Cr-1Mo steel and 316 H stainless 
steel, it was found that squared errors leads to overestimates of the average prediction error 
associated with a particular creep model, and it also dramatically underestimates the propor-
tion of this error that is systematic in nature. These differences were more noticeable for 316 H 
stainless steel.
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Introduction

It is important to be able to predict the creep life and 
other creep properties of materials used in power 
plants and aero engines. When this can be done with 
a high degree of confidence, the results can potentially 
be used to justify the continued use of ageing power 
plants beyond their original design lives – as a short- 
term solution to potential energy gaps, for example – 
or increase operating temperatures to raise efficiency 
levels. 2.25Cr-1Mo is a main stay steel used for struc-
tural components operating at high temperature 
within such ageing power plants – where the usual 
service conditions for heater tubes are around 840 
K and 35 MPa. 316H stainless steel is used when 
higher operating temperatures are required. Yet it 
has proved very challenging to predict the service life 
of these materials at such conditions using just the 
results from accelerated tests (tests done at much 
higher stresses and temperatures).

Consequently, one of the aims of the European 
Creep Collaborative Committee (ECCC), established 
in 1992, was to develop techniques for assessing creep 
data in Europe. In particular, the Technical Working 
Group (WG1) of the ECCC developed methods and 
guidelines for the assessment of creep data [1b – e]. 
The first creep data assessment exercise undertaken by 
this working group examined a single-cast of 2.25Cr- 
1Mo steel [1,2]. This exercise involved the application 
of 16 creep models by nine analysts and this resulted in 
the development of the Z parameter (among other 

statistics) to provide a measure of how well a creep 
model performs in predicting creep properties such as 
strain, time to failure and time to various strains. To 
construct this Z parameter, Holdsworth et al. [2] first 
defined the residual log time as 

ei ¼ Ai � Pi (1a) 

where Ai = ln tFð Þi is the natural log of the time at 
which the ith test specimen fails (of which there are 
n such failure times in a data set) and Pi is a creep 
model’s prediction of Ai. Note that in what follows Ai 

could equally stand for any other creep property such 
as the minimum creep rate, time to various strains or 
even strain itself. The reason for working with natural 
logs is that this residual log time is then approximately 
equal to the percentage difference between the actual 
time to failure and a model’s prediction of it. This 
approximation is very good for percentages of around 
30% or less (the smaller the better). Consequently, in 
this paper ei will be referred to as the percentage 
prediction error. This percentage scaling enables com-
parisons to be made of different creep properties 
which have different units of measurement. Next, the 
authors compute the standard deviation in residual log 
time (labelled SA-RLT by Holdsworth et. al.) 

SA� RLT ¼ se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ei � �e½ �
2

n

s

(1b) 

where �e is the mean percentage error in predicting the 
log failure time associated with all tested specimens. 
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Note the denominator in Eq. (1b) is n, rather than the 
more usual n-1, and so if applied to a small sample of 
data would produce a biased estimate of the true or 
population standard deviation. The Z parameter is 
then defined as 

Z ¼ e2:58se (1c) 

Ideally, for single-cast assessments, Z should be less 
than or equal to 2, whereas Z ≥ 4 is unacceptable [1,2]. 
This was determined by looking at the Z values asso-
ciated with the best performing creep models. For 
multi-cast assessments, even the best performing 
creep models studied by Holdsworth et al. [2] could 
not achieve Z values below 6–7. These values can 
therefore be used for benchmarking purposes. If 
a creep model is assumed to predict the median time 
to failure at a given test condition, and that failure 
times at a given test condition follow a normal dis-
tribution, and if se is also independent of test condi-
tions, then 99% of all failure times will be within the 
range 

P
Z
! ZP (1d) 

no matter what the test condition is. Thus, a Z value of 
2 means the predictive accuracy of the creep model is 
such that there is only a 0.5% chance that failure times 
will be more than two times the model’s prediction 
and there is only a 0.5% chance of failure times being 
lower than half the model’s prediction. This is the 
recommended level of predictive accuracy according 
to Holdsworth under these assumptions (for single 
batches of material). However, this simple rule can 
be misleading as it is possible for a creep model to 
produce a Z value of 2 or less but produce predictions 
that are on average incorrect – i.e. produces systematic 
and biased percentage prediction errors, rather than 
random percentage prediction errors.

Therefore, an approach taken by Evans [3] was to 
assess creep model adequacy using the approximate 
mean percentage squared error (MPSE) 

MPSE ffi
1
n

Xn

i¼1
ei½ �

2 (2) 

The advantage of this approach is that the MPSE can 
be decomposed along the lines suggested by Granger 
and Newbold [4] into a part that is systematic and 
another part that is random in nature – so overcoming 
the above problem with using Z. However, issues 
remain. First, an absolute value-based measure such 
as the mean percentage absolute error (MPAE) is 
much more interpretable. Whilst taking the square 
root of the MPSE (to give the RMPSE) helps with 
interpretation by converting the MPSE into the same 
units as e (i.e. to an average percentage error), this can 
still give very misleading assessments of a creep mod-
els adequacy. This is because the percentage prediction 

errors are squared and this makes the MPSE, and thus 
the RMPSE, very sensitive to the presence of a few 
outliers or poor predictions. Thus, there is the poten-
tial for the RMPSE to underestimate the predictive 
performance of a given creep model. This is not true 
of absolute percentage errors which are more robust to 
such outliers.

The aim of this paper is therefore to assess whether 
the use of the MPAE (and its decomposition into 
random and systematic error components) along 
with Z gives a better and more meaningful measure 
of creep model adequacy compared to using RMPSE 
and Z in predicting failure times using data on 2.25Cr- 
1Mo steel and 316 H stainless steel as test beds. To this 
end the paper is structured as follows. The next section 
summarises the data sets on these two steels. There 
then follows a section showing how to decompose the 
MPSE and the MPAE. In the results section these 
statistics are calculated using a parametric creep 
model to illustrate the misleading conclusions that 
can be drawn from the RMPSE. The paper concludes 
with recommendations for future work.

The data

This paper makes use of the information in Creep 
Data Sheets 3B, 50A and 14B, published by the 
Japanese National Institute for Materials Science 
(NIMS) [5–7]. These have extensive data on 12 
batches of 2.25Cr-1Mo (according to ASTM A 387, 
Grade 22) steel where each batch has a different 
chemical composition that underwent one of four 
different heat treatments – details of which are given 
in [5]. This paper makes use of just one of these 
batches, the MAF batch, which was in tube form 
that had an outside diameter of 50.8 mm, a wall 
thickness of 8 mm and a length of 5000 mm with 
a chemical composition of: Fe − 2.46 Cr − 0.94 Mo − 
0.1 C – 0.23 Si − 0.43 Mn − 0.011 P – 0.009 S – 0.008 
Ni − 0.07 Cu − 0.005 Al. Specimens for creep testing 
were taken longitudinally from this material. Each 
test specimen had a diameter of 6 mm with a gauge 
length of 30 mm. The creep tests were obtained over 
a wide range of conditions: 400 MPa − 22 MPa and 
723 K − 923 K. For the MAF batch (and only this 
batch) both minimum creep rates and time to failure 
measurements were recorded, together with the 
times to attain various strains −0.005, 0.01, 0.02 
and 0.05. Figure 1 plots the creep failure times 
obtained for this MAF batch at the different stresses 
and temperatures used. The relationship between 
time to failure and test conditions is quite compli-
cated for this batch – which has made it very diffi-
cult to model and predict such failure times using 
parametric creep models. In particular, the slope of 
a visually drawn curve changes dramatically at 
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different test temperatures, so that some of the iso-
thermal lines have more than one inflection point.

The second set of data used in this paper is on type 
316 H stainless steel (18Cr-12Ni-Mo with up to 0.08% 
C). This data set produced by NIMS [7] reported failure 

times for two batches of plate at 873 K through to 1123 
K and are shown in Figure 2. These batches were 
labelled by NIMS as AaA to AaB. These plate specimens 
were hot rolled and held at 1323 K for either 40 mins or 
80 mins before water quenching. More details of the 
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Figure 1. Relationship between stress, temperature, and time to failure for the MAF batch of 2.25Cr-1Mo steel contained within 
NIMS creep data sheets 3B &50A [5,6].
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Figure 2. Relationship between stress, temperature, and time to failure for 316H stainless steel plate contained within NIMS creep 
data sheets 14B [7].

MATERIALS AT HIGH TEMPERATURES 3



chemical composition and heat treatments for these 
two batches are contained in Reference [7]. 

Evaluation statistics

Limitations of the Z parameter

As mentioned in the introduction section, Z should 
be less than or equal to 2 for an acceptable level of 
predictive accuracy to have been achieved for 
a single batch of material. However, this simple 
rule can be misleading as it is possible for a creep 
model to produce a Z value of 2 or less but pro-
duce predictions that are on average incorrect – i.e. 
produce systematic and biased percentage predic-
tion errors, rather than random percentage predic-
tion errors. This can be seen by applying the rules 
of expected values through Equation (1a) to give 

E A½ � ¼ E P½ � þ E e½ � (3a) 

where E stands for the expected value. An expected 
value is simply the population mean. There is no 
reason to suppose a creep model will produce 
values for P that yield an average or expected 
value for e that is zero. To see the conditions 
under which a creep model will produce E[e] = 0, 
i.e. will not produce systematic errors when Z ≤ 2, 
rewrite Equation (1a) as 

Ai ¼ αþ βPi þ εi (3b) 

where εi is a random disturbance term. If α and β are 
estimated using linear least squares, then 

β̂ ¼
sAP

s2
P
¼ r

sA

sAP
with α̂ ¼ �A � β̂�P (3c) 

where 

r ¼
Pn

i¼1 Ai � �A½ � Pi � �P½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Ai � �A½ �
2Pn

i¼1 Pi � �P½ �
2

q ;

s2
P ¼

Pn
i¼1 Pi � �P½ �

2

n
; s2

A ¼

Pn
i¼1 Ai � �A½ �

2

n
;

sAP ¼

Pn
i¼1 Ai � �A½ � Pi � �P½ �

n
(3d) 

and where �P is the sample average of all the log failure 
time predictions and �A is the sample average of all the 
log failure times. The hat above α and β denotes that 
Equation (3c) gives a sample estimate of the popula-
tion values for these parameters.

Then if α̂ = 0 and β̂ = 1, Ai � Pi ¼ εi, and so εi 
must equal ei for Equations (1a) and (3b) to be 
consistent with each other. Further, by least 
squares construction (i.e. given Equations (3c- 
3d)), the average value for εi will be zero and so 
E[ε] = 0 = E[e]. So only when α = 0 and β = 1 will 
a creep model produce predictions that are on 
average equal to the actual values and so have no 

systematic errors. Ideally then, an acceptable creep 
model should have Z ≤ 2 and also α = 0and β = 1.

The MPSE and its decomposition

Evans [3] has decomposed the percentage prediction 
error e along the lines suggested by Granger and 
Newbold [4] 

MPSE �
1
n

Xn

i¼1
ei½ �

2

¼ α̂þ β̂ � 1
� �

�P
� �2

þ sP � rsAð Þ
2

þ 1 � r2� �
s2

A (4a) 

The first bracketed term on the right-hand side in 
Equation (4a) is that part of the MPSE that is due to 
the average percentage prediction error and so is often 
termed the bias error. This is a systematic error pre-
sent in the predictions as a positive value implies that 
the creep model predicts incorrectly on the average. 
This follows from Equations 2 that implies 

α̂þ β̂ � 1
� �

�P
� �2

¼ �A � �Pð Þ
2. The second bracketed 

term on the right-hand side in Equation (4a) is due to 
the regression coefficient β̂ differing from one, or the 
regression error for short. This follows from the fact 
that sP � rsA ¼ sPð1 � β̂). This is also a type of sys-
tematic error that is present in the predictions, because 
β < 1 indicates that the creep model systematically 
underestimates the failure time below �A and overesti-
mates above �A (the opposite is true when β > 1). For 
this reason, it is also referred to as the proportionality 
error. The last term on the right-hand side of Equation 
(4a) is due to random prediction errors because 
1 � r2ð Þs2

A = 
Pn

i¼1 ε2
i =n and ε is pure random distur-

bance term. That is, the last term is just the variance in 
the random disturbance term (given the mean for ε is 
by construction zero). Dividing Equation (4a) 
throughout by the MPSE gives 

1 ¼
�A � �Pð Þ

2

MPSE
þ

sP � rsAð Þ
2

MPSE
þ

1 � r2ð Þs2
A

MPSE
¼ UM þ UR þ UD (4b) 

Consequently, UM+UR equals the proportion of the 
MPSE that is systematic in nature and UD is the 
proportion of the MPSE that is random in nature. 
An acceptable creep model therefore needs to have 
Z ≤ 2, with UD making up most of the mean squared 
percentage error.

Note that in this decomposition, the percentage 
errors are squared in the construction of the MPSE. 
Whilst this has the advantage of being easily modified 
into a test of statistical significance for any differences 
between competing creep model predictions using 
well-known distributions, it does create two major 
problems. The first is that an absolute-value-based 
measure such as the mean percentage absolute error 
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(MPAE) is much more interpretable. Whilst taking the 
square root of the MPSE (or RMPSE) helps with 
interpretation by converting the MPSE into the same 
units as e, this can still give very misleading assess-
ments of a creep model’s adequacy. This is because the 
percentage prediction errors are squared, and this 
makes the MPSE very sensitive to the presence of 
a few outliers or poor predictions. Thus, there is the 
potential for the MPSE to underestimate the predictive 
performance of a given creep model. This is not true of 
absolute percentage errors which are more robust to 
such outliers.

The MPAE and its decomposition

This paper therefore proposes assessing a creep 
model’s performance using Z and a decomposition 
of the MPAE into systematic and random components 
along the lines proposed by Robeson and Cort [8]. The 
MPAE is formally defined as 

MPAE �
1
n

Xn

i¼1
eij j (5) 

Robeson and Cort have recently put forward a method 
for decomposing this MPAE based on the same three 
components as those proposed by Granger and 
Newbold (although they use slightly different termi-
nology). To demonstrate this decomposition, consider 
the hypothetical data shown in Figure 3, where the 
black solid line is the regression line through the raw 
data (shown by the black filled circles). For these data, 
the MPSE = 5 and the RMPSE = 2.24. However, the 
MPAE = 2 and so the RMPSE tends to downplay the 

accuracy of the predictions, even when there are no 
obvious outliers as is the case for these hypothetical 
data.

Unlike the decomposition of the MPSE, if 
a prediction has a zero error associated with it, that 
data point will not contribute to the MPAE, which is 
a strong advantage over the MPSE. Because of this, it is 
also possible to decompose the absolute error for each 
data point individually and then add them up to get 
the decomposition of the MPAE. This is illustrated in 
Figure 3 for the first data point corresponding to an 
actual value of −2. The absolute prediction error asso-
ciated with this data point is |e1| = |-2 - −4| = 2 and is 
given by the vertical length of the longest arrowed line. 
This is then decomposed into three separate parts. The 
first component of |ei| is the absolute bias error 
BEj j ¼ �A � �Pð Þ ¼j j1:5 � 0:5j j = 1. Removing this com-

ponent by adding it onto the prediction of −4 takes us 
to the open circled data point alongside, Pu1 = P1 + BE  
= −4 + 1 = −3. The dashed line is the regression line 
through the open circled data where the other predic-
tions have had the bias error removed in the same way. 
The remaining absolute prediction error is then equal 
to the vertical distance from the open circled data 
point to the 45° line and equals a value of 1 (0.62 +  
0.38). This vertical distance is made up of two compo-
nents. The first component is random in nature and is 
made up of the vertical distance between the open 
circled data point and the dashed regression line, v1  

= 0.62. The second part is a systematic error and is 
made of the vertical distance between the dashed 
regression line and the 45° line, f1 = 0.38. This vertical 
distance only exists because the slope of the dashed 

Figure 3. Illustration of the decomposition of MPAE using a hypothetical data set.

MATERIALS AT HIGH TEMPERATURES 5



regression line is different from 1, i.e. the dashed 
regression line does not correspond to the 45° line. It 
is thus analogous to UR above. Robeson and Willmott 
call this component the proportionality error. Thus, 
adding up the absolute value for the bias error, the 
random error and the proportionality error gives the 
absolute error for this data point, |e1| = |BE|+|f1|+|v1|  
= 1 + 0.38 + 0.62 = 2. For this data point, |BE| make up 
50% of |ei|, the proportionality error a further 31% and 
the random error a further 19%.

This equivalence only works for data points above 
the dashed regression line and when the dashed 
regression line lies above the 45° line. For example, 
take the one but last data point corresponding to (Ai, 

Pi) = [1,4] which does not meet this condition. Here |ei 

| = 3, with |fi| = 0.127 and |vi| = 2.127 and so |BE|+|fi 

|+|vi| = 3.25 (which exceeds |ei|). The decomposition 
still makes sense, however, because fi = −0.127 and so 
|BE|+fi+|vi| = |ei| = 3. So, the equivalence in absolute 
terms breaks down sometimes, but negative values 
cannot be allowed to offset positive values in the 
calculation of the average error. The solution is to 
divide each component by |BE|+|fi|+|vi|, and then say 
this ratio represents the proportion of |ei| attributable 
to that component. Thus, for this data point the bias 
equals |ei||BE|/|BE|+|fi|+|vi| = 3 [9]/3.25 = 0.92. The 
proportionality error equals |ei||fi|/|BE|+|fi|+|vi| = 3 
(0.127)/3.25 = 0.12 and the random error, |ei||vi 

|/|BE|+|fi|+|vi| = 3(2.127)/3.25 = 1.96. These now add 
up to 3, i.e. to the absolute error. On this basis, the 
decomposition formulas are 

MPAEM ¼
1
n

Xn

i¼1

BEj j
BEj j þ f ij j þ vij j

Ai � Fij j (6a) 

MPAER ¼
Xn

i¼1

fij j

BEj j þ f ij j þ vij j
Ai � Fij j (6b) 

MPAED ¼
Xn

i¼1

vij j

BEj j þ f ij j þ vij j
Ai � Fij j (6c) 

where MPAEM is the part of MPAE due to the bias – 
the bias error. MPAER is the part of MPAE due to the 
regression line – the proportionality error. MPAED is 
the part of MPAE due to the random error. The first 
two sum to the systematic error. One note of caution 
when using Equations (5,6) is that the denominator 
can very rarely equal zero. This can only occur when 
a creep model has no bias and the regression line 
passes through a predicted value that has no error 
(i.e. when BE = 0 and Pi = Ai = bAi, where bAi is the 
value given by the regression line for Ai). This is likely 
to be a rare event, but in the context of creep failure 
time data, it is almost impossible for a model’s predic-
tions to exactly equal the recorded failure times – that 
are usually quoted to one decimal place. So, this issue 

can be avoided by ensuring the model predictions are 
always expressed to more significant figures than the 
actual data. These equations of course give the same 
answer as straight addition when data points are above 
the dashed regression line and when the dashed 
regression line lies above the 45° line. So going back 
to the first data point 

BEj j
BEj j þ fij j þ vij j

Ai � Fij j ¼
1

1þ 0:38þ 0:62
� 2 � � 4j j

¼ 1 

fij j

BEj j þ f ij j þ vij j
Ai � Fij j ¼

0:38
1þ 0:38þ 0:62

� 2 � � 4j j

¼ 0:38 

vij j

BEj j þ f ij j þ vij j
Ai � Fij j ¼

0:62
1þ 0:38þ 0:62

� 2 � � 4j j

¼ 0:62 

which is the same as the result derived above. Like 
with the squared decomposition, these can be 
expressed as proportions of MPAE 

UMj j ¼ MPAEM=MPAE; 
URj j ¼ MPAER=MPAE; UDj j ¼ MPAED=MPAE

(7) 

So whilst the RMPSE was only slightly inflated relative 
to the MPAE, when it comes to decompositions a big 
difference is observed using this hypothetical data set. 
The decomposition of the MPSE suggests the model 
produces prediction errors that are almost 80% ran-
dom in nature. This seems at odds with the adjusted 
trend line (shown as the dashed line) that differs from 
the 45° line. This is better reflected in the decomposi-
tion of the MPAE that suggests the proportion of the 
model’s prediction errors that is random in nature is 
much lower at 58%. Thus, the decomposition based on 
squaring prediction errors can lead to various mislead-
ing conclusions about the systematic/random nature 
of the model’s errors in prediction. Hence, the advice 
is to use the MPAE, its decomposition and Z to decide 
which of a range of competing creep models produces 
the best predicted failure times.

Modelling time to failure

A selected creep model

The Orr-Sherby-Dorn (OSD) [10] parametric creep 
model is given by 

lnðtFÞ ¼ ln Bð Þ þ nln σð Þ þ
Qc

R
1
T

� �

(8) 

where T is the absolute temperature, R the universal 
gas constant, σ is stress and tF time to failure. Qc is the 
activation energy for creep, and B and n are further 
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model parameters. The model implies that there is 
a linear relationship between log failure time and log 
stress at a given temperature, and the role of tempera-
ture is then to shift this linear relationship in a parallel 
fashion.

When it comes to applying this model to differ-
ent materials, some modifications of this equation 
are often required. A study of 316 H by Whittaker 
et al. [11] revealed changes in creep mechanism 
with respect to stress. They found that dislocation 
processes are rate controlling, with no transition to 
diffusional mechanisms in low stress tests. However, 
they found that a change in the dominant disloca-
tion process occurs when σ falls from above to 
below the yield stress. Thus, when stress exceeded 
the yield stress, these authors stated that creep is 
controlled by the movement of dislocations newly 
generated during the plastic component of the 
initial strain, whereas the creep rate is determined 
only by grain boundary zone deformation when the 
stress falls below the yield stress – because no new 
dislocations are created during the elastic initial 
loading strain. It is to be expected that the activa-
tion energy for creep would be lower between grain 
boundaries compared to within the grains them-
selves. This suggested that Equation (8) requires 
modifying to 

lnðtFÞ ¼ ln Boð Þ þ n0ln σð Þ þ Qc;0
R

1
T

� �
when σ > σy

(9a) 

lnðtFÞ ¼ ln B1ð Þ þ n1ln σð Þ þ Qc;1
R

1
T

� �
when σ < σy

(9b) 

where σy is the yield stress, with the expectation being 
that Qc;1< Qc;0 and where n0 ≠ n1 and Bo ≠ B1.

A study of the MAF batch of 2.25Cr1-1Mo by Brear 
[12] observed that for this material the activation 
energy for creep was constant with respect to test 
conditions, and that below some critical stress (σ*) 
the resulting prolonged length of the creep tests lead 
to high amounts of oxidised material on the failed 
creep specimens that considerably weakened the 
creep strength of this material. This suggests that 
Equation (8) requires modifying to 

lnðtFÞ ¼ ln Boð Þ þ n0ln σð Þ þ Qc
R

1
T

� �
when σ > σ�

(10a) 

lnðtFÞ ¼ ln B1ð Þ þ n1ln σð Þ þ Qc
R

1
T

� �
when σ < σ�

(10b) 

and where again n0 ≠ n1 and Bo ≠ B1.

Parameter estimation

As the yield stress is not published by NIMS, it must be 
estimated from Equations (9) and this can be achieved 
using a dummy variable D1 

ln tF½ � ¼ ln Bo½ � þ noln σ½ � þ λ1D1 þ λ2D1ln σ½ � þ
Qc;0

RT
þ D1

λ3

RT
(11a) 

where D1 equals zero when σ > σy and unity other-
wise. Thus when σ > σy, D1 = 0 and Equation (11a) 
collapsed to Equation (9a) and when σ <σy, D1 = 1 
and Equation (11a) collapsed to Equation (9b) with 
B1 = B0 + λ1, n1 = n0 +λ2 and Qc,1 = Qc,o + λ3.

Similarly, σ* can be estimated using 

ln tF½ � ¼ ln Bo½ � þ noln σ½ � þ λ1D1 þ λ2D1ln σ½ � þ
Qc;0

RT
(11b) 

with B1 = B0 + λ1, and n1 = n0 +λ2

To estimate values for all the parameters in 
Equations (11), the following procedure can be 
used. First σy or σ* is set equal to some starting 
value allowing D1 to be quantified. Then all variables 
on the right-hand side of Equations (11) are fully 
defined so that ln(tF) can be regressed on these 
right-hand side variables to obtain least squares esti-
mates for B0, n0, λ1 to λ3 and Qc,0. These regression 
equations have a residual sum of squares (RSS) 
associated with them – that of course is minimised 
by the linear least squares procedure. Then 
a generalised reduced gradient non-linear search 
technique that uses centralised numerical derivatives 
is used to search for values of σy and/or σ* that 
minimise the RSS associated with the regression 
lines given by Equations (11). This non-linear search 
is carried out using Excel’s Solver [13] subroutine.

Results

2.25Cr-1Mo steel

The results of estimating Equation (11b) are shown in 
Figure 4(a). The model’s predictions are shown by the 
solid segmented line, and the fit to the short-term data 
(failure times less than 10,000 h) is good – with an R2 

value of 99.57%. The model yields an activation energy 
of 382 kJmol−1, which is again quite close to that for 
lattice self-diffusion in this material. A break in the 
relationship seen in Figure 4(a) appears to occur at 
a stress of 62 MPa and the stress exponent n is much 
higher in the high-stress range (~-8.13), compared to  
~ −2.22 in the low-stress regime. Brear [12] suggested 
that this difference may be due to the high amounts of 
oxidised material seen on the failed creep specimens at 
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the very lowest stresses – the result of prolonged test-
ing. Such oxidation would make the life of the material 
much more sensitive to a change in stress, such that 
a heavily oxidised specimen would not see such a big 
increase in life at a lower stress compared to a non- 
oxidised specimen.

The extrapolative performance is summarised in 
Figure 4(b) and in the first half of Tables 1, 2. The 
best fit line deviates only marginally from the ideal 1:1 
line – the power term on predicted tF is below unity 
(~0.86). The Z parameter equals 2.72, so that there is 
99% certainty that the actual failure time at any test 
condition will be within 1/2.72 (= 0.37) and 2.72 times 
the models predicted time. So, whilst the dashed lines 
in Figure 4(b) are inside the solid lines, the model 
meets the intent of the ECCC recommendations.

The results in Figure 4(b) correspond to those in 
the first half of Table 1. Given the trend line has an 
exponent below 1 we would expect |UR| to be quite 
large, and Table 1 reveals that 17.27% of the MPAE is 
due to the best fit line in Figure 4(b) being 
slightly flatter than the 1:1 line. As the absolute bias 
error BEj j = 0.056 we would expect |UM| to be rela-
tively small, and the first half of Table 1 reveals that 
11.65% of the MPAE is due to the average predicted 
and average actual failure times being different. Thus, 
over all temperatures, this OSD model has a systematic 
prediction error of nearly 29% that is in the form of 
under predictions at low failure times and over pre-
dictions at higher failure times – which means the 
model produces slightly conservative life estimates 
closer to the operating conditions for this material. 
Consequently, most of the prediction errors made by 
this model are random in nature – some 71.08%. The 
rest of the first half of Table 1 shows the distortion in 
these conclusions that stem from using squared per-
centage prediction errors (rather than absolute per-
centage errors). The RMPSE of 38.48% overestimates 
the inaccuracy of the model’s predictions as its nearly 
6 percentage points above the average absolute error. 
More misleading is the decomposition of the MPSE. 
This decomposition suggested that nearly 89% of the 
percentage prediction errors are random in nature, 
which is a substantial overestimate compared to the 
71% value for |UD|.

The above comments relate to the model’s perfor-
mance over all stresses and temperatures that induce 
a failure time beyond 10,000 h. The first half of Table 2 

Figure 4. Showing (a) the OSD representation of failure times for 2.25Cr-1Mo steel, where the model is estimated using tF < 10,000 
h and, (b) actual v predicted tF values beyond 10,000 h.

Table 1. Extrapolative performance of the OSD models over all 
temperatures for each steel.

Statistics 2.25Cr-1Mo steel 316H stainless steel

MPSE 14.81 14.68
RMPSE (%) 38.48 38.30
Z 2.72 2.74
UM (%) 2.14 0.32
UR (%) 9.17 29.21
UD (%) 88.69 70.77
MPAE (%) 32.95 31.46
BE 0.056 0.006
|UM| (%) 11.65 1.43
|UR| (%) 17.27 43.14
|UD| (%) 71.08 55.43

The OSD model by Equations (9,10). MPSE defined by Equation (4a). 
Z defined by Equation (1c). UM, UR and UD defined by Equation (4b). 
MPAE defined by Equation (5). |UM|,|UR| and |UD| defined by Equation (7).
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breaks this analysis down by temperature. The MPAE is 
smallest at 748 K (13.13%) and largest at 723 
K (52.33%). On average the model overestimates at 
773 K and 873 K but on average underestimates at the 
other temperatures (as revealed by the sign on BE). The 
RMPSE is slightly pessimistic about the model’s extra-
polative capability at all temperatures (as shown by 
RMPSE > MPAE and especially so at the highest two 
temperatures). Apart from at 748 K, the random com-
ponent of the model’s absolute prediction errors is 
always about 65% or higher. However, at 748 K the 
model has a large systematic prediction error compo-
nent, but thankfully the MPAE is the smallest of all the 
temperatures at 13.13%. Again, the decomposition of 
the MPSE is highly misleading. It suggests that the 
random component of the squared prediction errors is 
between 6% and 7%. But the values for |UD| are between 
65% and 77% and so UM and UR vastly overestimate the 

size of the systematic error made by this model. For the 
lowest two temperatures, the value for UD cannot be 
quantified due to too few data points (which in turn 
leads to the over estimation of the systematic error 
using squared prediction errors).

316 H stainless steel

The results of estimating Equation (11a) are shown in 
Figure 5(a). The model’s predictions are shown by the 
solid segmented line, and the fit to the short-term data 
(failure times less than 10,000 h) is good – with an R2 

value of 99.98%. The estimated value for the yield 
strength σY is 142 MPa. Above this yield strength, the 
model yields an activation energy of 549 kJmol−1, whilst 
below this stress the activation energy is much lower at 
376 kJmol−1. Whilst it is expected that the activation 
energy would be lower below the yield stress, the values 

Table 2. Extrapolative performance of the OSD models broken down by temperature.
2.25Cr-1Mo steel 316H stainless steel

723K 748K 773K 823K 873K 873K 898K 923K 973K 1023K 1073K 1123K

MPSE 27.62 1.75 3.56 20.85 18.02 6.24 19.64 4.45 8.51 21.64 26.47 7.17

RMPSE (%) 52.55 13.22 18.88 45.66 42.44 24.97 44.32 21.10 29.18 46.52 51.45 26.78
Z 1.19 1.06 1.68 1.39 2.03 1.62 - 1.40 2.23 3.51 3.77 -
UM (%) 99.17 98.67 6.21 93.28 63.62 100 100 100 0.74 8.92 25.03 100
UR (%) 0.83 1.33 87.74 0.38 29.63 - - - 45.18 6.67 6.26 -
UD (%) - - 6.05 6.34 6.75 - - - 54.08 84.41 68.71 -
MPAE (%) 52.33 13.13 17.37 44.10 35.00 21.20 44.32 19.00 24.95 39.22 42.16 26.78
BE 0.52 0.13 −0.05 0.44 −0.33 0.21 0.44 0.19 0.03 0.14 0.26 0.27
|UM| %) 10.23 33.01 14.60 11.42 9.32 1.96 1.35 2.27 1.82 1.08 1.05 2.20
|UR| (%) 13.09 46.25 19.77 15.48 17.17 45.33 73.61 58.95 53.27 36.13 23.69 75.46
|UD| %) 76.68 20.74 65.64 73.10 73.51 52.70 25.04 38.78 44.92 62.79 75.26 22.34

The OSD model by Equations (9,10). MPSE defined by Equation (4a). Z defined by Equation (1c). UM, UR and UD defined by Equation (4b). MPAE defined by 
Equation (5). |UM|,|UR| and |UD| defined by Equation (7).

Figure 5. Showing (a) the OSD representation of failure times for 316H stainless steel, where the model is estimated using tF < 
10,000 h and, (b) actual v predicted tF values beyond 10,000 h.
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are a lot higher than those quoted by Wilshire et al. 
[11]. – probably the result of not using the Wilshire 
model that normalises the stress using the high tempera-
ture tensile strengths. The stress exponent n is much 
higher above the estimated yield stress (~ −12.29), com-
pared to ~ −8.29 below this stress.

The extrapolative performance is summarised in 
Figure 5(b) and in the second half of Tables 1, 2. The 
best fit line deviates from the ideal 1:1 line – the power 
term on predicted tF is below unity (~0.77). The 
Z parameter equals 2.74, so that there is 99% certainty 
that the actual failure time at any test condition will be 
within 1/2.74 (= 0.36) and 2.74 times the model’s pre-
dicted time. So, whilst the dashed lines in Figure 5(b) 
are inside the solid lines, the model meets the intent of 
the ECCC recommendations.

The results in Figure 5(b) correspond to those in 
the second half of Table 1. Given the trend line has an 
exponent below 1 we would expect |UR| to be quite large, 
and Table 1 reveals that 43.14% of the MPAE is due to 
the best fit line in Figure 5(b) being flatter than the 1:1 
line. As the absolute bias error BEj j = 0.006 is very small, 
we would expect |UM| to be small as well, and the second 
half of Table 1 reveals that 1.43 of the MPAE is due to the 
average predicted and average actual failure times being 
different. Thus, over all temperatures, this OSD model 
has a systematic prediction error of nearly 45% that is in 
the form of under predictions at low failure times and 
over predictions at higher failure times – which means 
the model produces slightly conservative life estimates 

closer to the operating conditions for this material. 
Consequently, just over half of the prediction errors 
made by this model are random in nature – some 
55.43%. The rest of the second half of Table 1 shows 
the distortion in these conclusions that stem from using 
squared prediction errors (rather than absolute errors). 
The RMPSE of 38.3% overestimates the inaccuracy of the 
model’s predictions as its nearly 7 percentage points 
above the average absolute error. More misleading is 
the decomposition of the MPSE. This decomposition 
suggested that nearly 71% of the prediction errors are 
random in nature, which is a substantial overestimate 
compared to the 55.43% value for |UD|.

The above comments relate to the model’s perfor-
mance over all stresses and temperatures that induce 
a failure time beyond 10,000 h. The second half of 
Table 2 breaks this analysis down by temperature. The 
MPAE is smallest at 923 K (19.00%) and largest at 898 
K (44.32%). On average the model underestimates at all 
temperatures (as revealed by the sign on BE). The 
RMPSE is slightly pessimistic about the model’s extra-
polative capability at all temperatures (as shown by 
RMPSE > MPAE and especially at the highest tempera-
tures). Depending on the temperature, the random 
component of the model’s prediction errors varies 
between 25% and 75%. Again, the decomposition of 
the MPSE is highly misleading. For example, at 1023 
K the random component of the squared prediction 
errors is 84.41%, but the value for |UD| is only 62.79%. 
So, UM and UR vastly overestimate the size of the 

Figure 6. Showing predictions of tF at various stresses and temperatures relative to the actual failure times (predictions based on 
data with tF < 10000h) for 2.25Cr-1Mo steel.
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systematic error made by this model. For the lower 
temperatures and the highest temperature, the values 
for UR and UD cannot be quantified due to too few data 
points (which in turn leads to the over estimation of the 
systematic error using squared prediction errors).

Material comparison

Whilst the OSD model produced very similar values 
for Z and the MPAE over all temperatures when 
applied to each material, the model clearly works 
better when applied to 2.25Cr-1Mo – because it has 
a much higher |UD| value. For 2.25Cr-1Mo steel, some 
71.08% of the MPAE is random in nature compared to 
just 55.43% for 316 H steel. Irrespective of the tem-
perature, the value for |UM| is between 9% and 15% for 
2.25Cr-1Mo steel (except at 748 K where it is 33%). 
But for 316 H, |UM| never exceed 3% no matter what 
the temperature is, and so for this material the differ-
ence between the average failure time and the average 
prediction is much smaller. But for 316 H, a much 
bigger proportion of the MPAE is due to |UR| and so 
for this material there is a stronger tendency to under-
predict with increasing failure times. These trends are 
seen in Figures 6 and 7 that show the predictions made 
by the OSD model in the more familiar stress-time 
space.

Conclusions

This article has proposed that the assessment of 
a creep model's predictive capability should be 

based on absolute rather than squared errors to 
avoid distortions arising from the squaring of pre-
diction errors associated with outlying data points. 
It also presented a way of decomposing the average 
absolute error into random and systematic compo-
nents to further quantify a model’s performance – 
a procedure not used so far in creep model evalua-
tion. When applied to 2.25Cr-1Mo and 316 H fail-
ure time data, it was found that the MPSE tended 
to underestimate the predictive capability of the 
OSD creep model. It also tended to dramatically 
overestimate the component of the prediction error 
that was random in nature in these two materials. 
Areas for future work include the application of 
these assessment statistics to other materials – 
especially data sets that have more heat-treated 
batches (so as to study the role of batch-to-batch 
variation) and to develop statistical tests to see 
whether one creep model has a better MPAE com-
pared to another.
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