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Abstract
Deriving emergent patterns from models of biological processes is a core concern of
mathematical biology. In the context of partial differential equations, these emergent
patterns sometimes appear as local minimisers of a corresponding energy functional.
Here we give methods for determining the qualitative structure of local minimum
energy states of a broad class of multi-species nonlocal advection–diffusion models,
recently proposed formodelling the spatial structure of ecosystems.We show thatwhen
each pair of species respond to one another in a symmetric fashion (i.e. via mutual
avoidance or mutual attraction, with equal strength), the system admits an energy
functional that decreases in time and is bounded below. This suggests that the system
will eventually reach a local minimum energy steady state, rather than fluctuating
in perpetuity. We leverage this energy functional to develop tools, including a novel
application of computational algebraic geometry, for making conjectures about the
number and qualitative structure of localminimumenergy solutions. These conjectures
give a guide as to where to look for numerical steady state solutions, which we verify
through numerical analysis. Our technique shows that even with two species, multi-
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stability with up to four classes of local minimum energy states can emerge. The
associated dynamics include spatial sorting via aggregation and repulsion both within
and between species. The emerging spatial patterns include a mixture of territory-like
segregation as well as narrow spike-type solutions. Overall, our study reveals a general
picture of rich multi-stability in systems of moving and interacting species.

Keywords Animal movement · Energy functional · Mathematical ecology · Nonlocal
advection · Partial differential equation · Stability

Mathematics Subject Classification 35B36 · 35B38 · 35Q92 · 92D25 · 92D40

1 Introduction

A central purpose of mathematical biology is to provide a way of linking biologi-
cal processes to emergent patterns (Levin 1992; Murray 2001). In cell biology, such
insights can illuminate the mechanisms behind the growth of cancerous tumours, and
inform the development of interventions to slow or halt that growth (Altrock et al.
2015; Byrne 2010; Painter and Hillen 2013). In ecology, the insights on mechanisms
behind animal space use can be valuable for species conservation (Bellis et al. 2004;
Macdonald andRushton 2003; Zeale et al. 2012), ensuringmaintenance of biodiversity
(Hirt et al. 2021; Jeltsch et al. 2013), and controlling biological invasions (Hastings
et al. 2005; Lewis et al. 2016; Shigesada and Kawasaki 1997).

For partial differential equation (PDE) models of biological systems, one useful
method to link process to pattern is to construct an energy functional for a system,
if it exists. Then the local minima of this energy functional give possible final con-
figurations of the system. Our focus here is to develop techniques for finding such
local energy minima in a particular system of PDEs describing symmetric nonlocal
multi-species interactions, with the parallel biological aim of being able to detect and
describe the possible long-term patterns that may emerge from underlying processes.

The PDE system we focus on is a multi-species system of nonlocal advection
diffusion equations recently introduced (Potts andLewis 2019) and slightly generalised
by Giunta et al. (2021a). This system models the spatial structure of ecosystems over
timescales where births and deaths are negligible and has the following functional
form

∂ui
∂t

= Di�ui + ∇ ·
⎛
⎝ui

N∑
j=1

γi j∇(K ∗ u j )

⎞
⎠ , (1)

for i ∈ {1, . . . , N }, where Di and γi j are constants, and ui (x, t) is the density of a
species of moving organisms in location x at time t . Individuals detect the presence of
others over a spatial neighborhood described by spatial averaging kernel K , which is
a symmetric, non-negative function with ‖K‖L1 = 1. The magnitude of γi j gives the
rate at which species i advects towards (resp. away) from species j if γi j < 0 (resp.
γi j > 0). Whilst the detection of individuals may be direct, e.g. through sight smell or
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sound, Potts and Lewis (2019) showed that the above formalism can also be used when
interactions are mediated by marks in the environment or memory of past interactions.
Note that, as well as modelling different species of organism, Eq. (1) can also be used
to model N different groups within a species, or to describe more complex situations
where organisms may be spatially delineated by something other than species, e.g.
mixed-species territorial flocks of birds (Mokross et al. 2018). However, we use the
term ‘species’ for simplicity.

Equation (1) generalises a variety of existing models. In the case N = 1 and
γ11 < 0, Eq. (1) is an aggregation–diffusion equation (Carrillo et al. 2018, 2019) and
also arises in model of animal home ranges (Briscoe et al. 2002). For N = 2 and
γ12, γ21 > 0, Eq. (1) can be related to models of territory formation (Ellison et al.
2020; Potts and Lewis 2016b; Rodríguez and Hu 2020) and cell sorting (Burger et al.
2018) (the latter also includes γ12, γ21 < 0). The case of arbitrary N with γi j = 1 has
also been recently studied in the context of territories (Ellefsen and Rodríguez 2021).
Finally, the N = 2 case with γ12 and γ21 having different signs has been studied in
the context of predator–prey dynamics (Di Francesco and Fagioli 2016). So there is a
wide range of possible applications arising from Eq. (1).

Whilst our approach is quite general in potential applicability, there are various
specific biological questions that might be addressed by classifying minimum energy
solutions. A simple example is that of animal territory formation. How much avoid-
ance is necessary for segregated territories to form? Is the emergence of territories
history dependent? Do symmetric avoidance mechanisms always lead to symmetric
territories? As another example, in the case of mutualistic species, we can ask similar
questions. How much attraction is necessary for aggregation? Is it history dependent?
All of these questions can benefit from the insight provided by classifying minimum
energy solutions to Eq. (1), as well as more complex questions regardingmulti-species
questions that may exhibit a mixture of attraction and avoidance mechanisms.

The model given by Eq. (1) has been shown to exhibit rich pattern formation
properties, including aggregation, segregation, oscillatory patterns and non-periodic
spatio-temporal solutions suggestive of strange attractors (Potts and Lewis 2019). In
Potts and Lewis (2019), for the simple case where N = 2, γi i = 0, and γ12 = γ21,
an energy functional was constructed that is decreasing in time, bounded below, and
becomes a steady state of Eq. (1) as t → ∞. Furthermore, numerical experiments
suggest that only stationary patterns emerge in this case (Potts and Lewis 2019). Here,
our first task is to generalise this N = 2 energy functional to arbitrary N , but where
γi j = γ j i for all i, j,∈ {1, . . . , N }. Related work by Jüngel et al. (2022) found two
more energy functionals which are based on the Shannon entropy on the one hand and
a Rao-like entropy on the other. However, our focus here is on the generalization of
the energy function from Potts and Lewis (2019).

Once this energy functional has been constructed, our second task is to minimise
it to ascertain the functional form of the local minimum energy solutions. For this,
we work in the local limit, i.e. where K tends towards a Dirac-δ function. We give
a numerical technique for showing that, if we start with a class of stable steady state
solutions for different K , then take the local limit, we return a piecewise constant
function. This technique makes use of the theory of Gröbner bases and associated
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methods from computational algebraic geometry. It is a generalisation of a method
first used in Potts and Lewis (2016b).

In situations where the local limit is piecewise constant, local minima of the energy
functional canbe foundby searching through the spaceof piecewise constant functions.
We show that this can sometimes be done analytically, using some basic examples
in one spatial dimension to illustrate the methods. Even in case N = 2, this process
reveals a range of situations where there are multiple local energyminima, all of which
we verify via numerics away from the local limit. Overall, the methods presented here
enable users to detect local minimum energy states of Eq. (1), including multiple
minima, in any situation where γi j = γ j i .

This paper is organized as follows.We beginwith linear stability analysis, in Sect. 2.
This sets the stage by showing that the γi j = γ j i case (for all i, j) leads to stationary
pattern formation at small times (from perturbations of the homogeneous steady state)
as long as the species have the same-sized populations. In Sect. 3, we construct an
energy functional associated with Eq. (1) in the case γi j = γ j i (for all i, j) and analyze
its properties, particularly that it decreases in time and is bounded below. Noteably,
unlike the linear analysis, this does not require the species to have the same-sized
populations. This section ends with a conjecture about the structure of the attractor,
which is somewhat stronger than what we are able to show in this paper, but for which
we have numerical evidence to suggest it might be true. In Sect. 4, we describe our
technique for finding stable steady states, assuming that the local limit of stable steady
states is piecewise constant, generalising a method used in Potts and Lewis (2016a).
In Sect. 5, we give a method for proving that this local limit is piecewise constant,
demonstrating our proof for N = 2 and arbitrary γi j , then for N = 3 with specific
examples of γi j .

1.1 Notation and assumptions

We use the following notation conventions throughout. Let S ⊂ R
n be a measurable

set. Then we denote the measure of S by |S|, so that

|S|=
∫
S
1(x) dx, (2)

where 1 : Rn → R is the constant function 1(x) = 1.
Let � ⊂ R

n and f : L p(�) → R. We use the following norms

• ‖ f ‖L p(�)= (
∫
�
| f |p)1/p, where 1 ≤ p < ∞,

• ‖ f ‖L∞(�)= inf{C ≥ 0 : | f (x)|≤ C, a.e. in �}.
Let M ∈ N and g = (g1, g2, . . . , gM ) : (L p(�))M → R. Then we define

• ‖g‖(L p(�))M=∑M
i=1‖gi‖L p(�), where 1 ≤ p < ∞,

• ‖g‖(L∞(�))M= maxi=1,2,...,M {‖gi‖L∞(�)}.
To ease notation, we usually write ‖g‖L p(�) instead of ‖g‖(L p(�))M , if the meaning is
clear from the context. We also may drop explicit dependence on �.
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WeanalyzeEq. (1) on the spatial domain� = [0, L1]×[0, L2]×· · ·×[0, Ln] ⊂ R
n ,

for n ≥ 1, with periodic boundary conditions

ui (x1, . . . , xN , t)|x j=0 = ui (x1, . . . , xN , t)|x j=L j ,

∂x j ui (x1, . . . , xN , t)|x j=0 = ∂x j ui (x1, . . . , xN , t)|x j=L j , (3)

for all i = 1, . . . , N , j = 1, . . . , n and t ≥ 0. A spatial domain with these periodic
boundary conditions is a torus and we denote it by T. For the kernel K we assume
that K ∈ Ls(T) with s = m

2 for m ≥ 2 and s = 1 for m = 1. For the non-local
terms in Sects. 3 and 4 (but not Sects. 2 and 5), we assume a detailed balance for all
i, j ∈ {1, . . . , N }, i.e. γi j = γ j i . Finally, in Sects. 4 and 5 we assume n = 1.

2 Linear stability analysis

Inhomogeneous solutions of PDEs can emerge when a change in a parameter causes
the loss of stability of a homogeneous steady state, leading to the formation of inho-
mogeneous solutions (sometimes referred to as Turing patterns after Turing (1952)),
which can be either stationary or periodically oscillating in time. In this section, we
will analyze the linear patterns supported by Eq. (1).

In Eq. (1), the total mass of each species i is conserved in time, indeed on the
periodic domain T, on which conditions (3) hold, the following identities are satisfied

d

dt

∫
T

ui (x, t)dx = 0, for i = 1, . . . , N , (4)

where x = (x1, x2, . . . , xN ) ∈ T. Hence, for all i = 1, . . . , N ,

pi :=
∫
T

ui (x, t)dx =
∫
T

ui (x, 0)dx, for all t ≥ 0, (5)

where the constant pi is the population size of species i . Therefore, Eq. (1) has an
homogeneous steady state

ū = (ū1, ū2, . . . , ūN ), where ūi = pi
|T| , for i = 1, . . . , N , (6)

unique for each value of pi (determined by the initial condition). To study the stability
of ū, we introduce the vector

w = (u1 − ū1, . . . , uN − ūN ) = u(0)eλt+iκ ·x, (7)

where u(0) is a constant vector, λ ∈ R is the growth rate of the perturbation, x =
(x1, . . . , xn) ∈ T and κ = (κ1, . . . , κn) is the wave vector, whose components are the
wave numbers of the perturbation and must satisfy the boundary conditions (3). We
thus have
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κi = 2πqi
Li

, with qi ∈ N, for i = 1, . . . , n. (8)

Substituting Eq. (7) into Eq. (1) and neglecting nonlinear terms, we obtain the follow-
ing eigenvalue problem

λ(κ)w = |κ |2L(κ)w (9)

where

L(κ) =

⎡
⎢⎢⎢⎢⎢⎣

−D1 − γ11ū1 K̂ (κ) −γ12ū1 K̂ (κ) . . . −γ1N ū1 K̂ (κ)

−γ21ū2 K̂ (κ) −D2 − γ22ū2 K̂ (κ) . . . −γ2N ū2 K̂ (κ)
...

−γN1ūN K̂ (κ) −γN2ūN K̂ (κ) . . . −DN − γNN ūN K̂ (κ)

⎤
⎥⎥⎥⎥⎥⎦

,

(10)

and where

K̂ (κ) =
∫
T

K (x)e−iκ ·xdx.

For each κ , the eigenvalue with greatest real part (called the dominant eigenvalue)
determines whether or not non-constant perturbations of the constant steady state at
wavenumber κ will grow or shrink at short times. If the dominant eigenvalue has
positive real part and non-zero imaginary part, then these perturbations oscillate in
time as they emerge. If the dominant eigenvalue is real, such oscillations will not
occur at short times.

Now, if ūi = ū j and γi j = γ j i for all i, j = 1, 2, . . . , N then L is symmetric,
so all its eigenvalues are real (Artin 2011). Therefore non-constant perturbations of
the constant steady state will not oscillate at short times. In practice, situations where
the dominant eigenvalue is real and positive are often accompanied by non-constant
stable steady states. Although this does not follow by necessity (Giunta et al. 2021b),
this observation nonetheless suggests that this case provides a good starting point in
searching for non-constant stationary patterns.

In the following sections, we will study the γi j = γ j i case through an energy
functional analysis, showing how this can give us insights into the structure of non-
constant stable steady states. It turns out that for this analysis, we do not need the
additional assumption ūi = ū j .

We conclude this section by analysing the N = 2 case in detail, to provide some
results required in later sections. In this case, the characteristic polynomial of the
matrix L is

P(λ) = λ2 + ((γ11ū1 + γ22ū2)K̂ (κ) + (D1 + D2))λ

+ (γ11γ22 − γ12γ21)ū1ū2 K̂ (κ)2 (11)
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+ (D1γ22ū2 + D2γ11ū1)K̂ (κ) + D1D2, (12)

whose roots are

λ±(κ) = 1

2

[
−(γ11ū1 + γ22ū2)K̂ (κ) − (D1 + D2)

±
(
((γ11ū1 − γ22ū2)

2 + 4γ12γ21ū1ū2)K̂ (κ)2

+2(D1 − D2)(γ11ū1 − γ22ū2)K̂ (κ) + (D1 − D2)
2
)1/2]

, (13)

giving the eigenvalues of L. The condition γ12 = γ21 ensures that the argument of the
square root is always positive and therefore the eigenvalues λ± are real. As a concrete
example, if p1 = p2 = 1, L1 = · · · = LN = 1, D1 = D2, γ12 = γ21 and γ11 = γ22
then the system admits a linear instability if there exists at least one κ > 0 such that

− γ11 K̂ (κ) + |γ12 K̂ (κ)|> D1. (14)

3 Energy functional

In this section,wewill define an energy functional associated to Eq. (1)with γ12 = γ21,
and show that it is continuous, bounded below, decreases in time, and that its stationary
points coincide with those of Eq. (1). This gives evidence to suggest that Eq. (1) with
γ12 = γ21 will tend towards a steady state, which will be inhomogeneous in space if
the constant steady state ū is linearly unstable.

During this section, we will assume a positivity result, namely that ui (x, 0) > 0
implies ui (x, t) > 0, for all i = 1, . . . , N , for all t > 0. This result has been already
proved in one spatial dimension (Giunta et al. 2021a). This proof relies on a Sobolev
embedding theorem only valid in one dimension, so other tools will be needed to give
a proof in arbitrary dimensions. Indeed, at the time of writing, this positivity result
has not yet been established in arbitrary dimensions.

First, we re-write Eq. (1) as follows

∂ui
∂t

= ∇ ·
⎡
⎣ui∇

⎛
⎝Di ln(ui ) +

N∑
j=1

γi j K ∗ u j

⎞
⎠
⎤
⎦ , i = 1, . . . , N . (15)

Then we define the following energy functional

E[u1, . . . , uN ] =
∫
T

N∑
i=1

ui

⎛
⎝Di ln(ui ) + 1

2

N∑
j=1

γi j K ∗ u j

⎞
⎠ dx, (16)

where x = (x1, x2, . . . , xn).
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The first term
∑

Diui ln ui is the entropy of each of the populations on their own
and the second term

∑
γi j (K ∗ u j )ui denotes the interaction energy between the

populations (Carrillo et al. 2020). The factor 1
2 before the sum is required so that we

can leverage the γi j = γ j i symmetry later on.

Proposition 1 The energy functional E, defined in Eq. (16), is a continuous function
of the variables u1, u2, . . . , uN .

Proof Firstwe show that the following functions are continuous as long as ui is positive
across space and time

ui �−→ ui ln(ui ), (17)

(ui , u j ) �−→ ui K ∗ u j . (18)

Equation (17) is continuous since it is the product of continuous functions. ForEq. (18),
we first observe that if K ∈ L1 and u ∈ L p, with 1 ≤ p ≤ ∞, then

‖K ∗ u‖L p≤ ‖K‖L1‖u‖L p , (19)

by Young’s convolution inequality. Moreover, since K ∗ u − K ∗ v = K ∗ (u − v),
we have

‖K ∗ u − K ∗ v‖L p= ‖K ∗ (u − v)‖L p≤ ‖K‖L1‖u − v‖L p= ‖u − v‖L p , (20)

where the last equality uses ‖K‖L1= 1. Equation (20) shows that u �→ K ∗ u is a
Lipschitz function and thus a continuous function. Therefore Eq. (18) is continuous
because it is the product of continuous functions. This shows that the integrand in
Eq. (16) is continuous.

Now let 1 ≤ p ≤ ∞ and g : L p(�) → L p(�) be a continuous function. Define a
function G : L p(�) → R by

G(u) =
∫

�

g(u)dx . (21)

It remains to show that G is continuous. To this end, let ε > 0 and u ∈ L p(�).
Then since g is continuous, there exists δε > 0 such that for any v ∈ L p(�) with
‖v−u‖L p< δε , we have ‖g(v)−g(u)‖L p< ε. Since |G(u)−G(v)|≤ ‖g(u)−g(v)‖L p

for all u, v ∈ L p(�), we have |G(v) − G(u)|≤ ‖g(v) − g(u)‖L p< ε. �

Remark 1 Note that whilst we have used ‖K‖L1= 1, the previous proposition also
holds for any K ∈ L1.

Proposition 2 Suppose γi j = γ j i , for all i, j = 1, . . . , N. For any posi-
tive (for each component) initial data (u1,0, . . . , uN ,0), the energy functional
E[u1(x, t), u2(x, t), . . . , uN (x, t)] is non-increasingover time,where (u1, u2, . . . , uN )

is the trajectory of Eq. (1) starting from (u1,0, . . . , uN ,0). Moreover, if E is constant
then we are at a steady state of Eq. (1).
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Proof Examining the time-derivative of the energy functional in Eq. (16) gives

dE

dt
=
∫
T

N∑
i=1

⎡
⎣∂ui

∂t

⎛
⎝Di ln(ui ) + 1

2

N∑
j=1

γi j K ∗ u j

⎞
⎠

+ui

⎛
⎝Di

ui

∂ui
∂t

+ 1

2

N∑
j=1

γi j K ∗ ∂u j

∂t

⎞
⎠
⎤
⎦ dx

=
∫
T

N∑
i=1

⎡
⎣∂ui

∂t

⎛
⎝Di ln(ui ) + 1

2

N∑
j=1

γi j K ∗ u j + Di

⎞
⎠+ 1

2

N∑
j=1

γi j
∂u j

∂t
K ∗ ui

⎤
⎦ dx

=
∫
T

⎡
⎣

N∑
i=1

∂ui
∂t

⎛
⎝Di ln(ui ) + 1

2

N∑
j=1

γi j K ∗ u j + Di

⎞
⎠+ 1

2

N∑
i, j=1

γ j i
∂ui
∂t

K ∗ u j

⎤
⎦ dx

=
∫
T

⎡
⎣

N∑
i=1

∂ui
∂t

⎛
⎝Di ln(ui ) + 1

2

N∑
j=1

γi j K ∗ u j + Di

⎞
⎠+ 1

2

N∑
i, j=1

γi j
∂ui
∂t

K ∗ u j

⎤
⎦ dx

=
∫
T

⎡
⎣

N∑
i=1

∂ui
∂t

⎛
⎝Di ln(ui ) +

N∑
j=1

γi j K ∗ u j + Di

⎞
⎠
⎤
⎦ dx

=
∫
T

N∑
i=1

∇ ·
⎡
⎣ui∇

⎛
⎝Di ln(ui ) +

N∑
j=1

γi j K ∗ u j

⎞
⎠
⎤
⎦

⎡
⎣Di ln(ui ) +

N∑
j=1

γi j K ∗ u j + Di

⎤
⎦ dx . (22)

Here, the second equality uses that
∫
T
g(K ∗ h)dx = ∫

T
h(K ∗ g)dx as long as

K (x) = K (−x) for x ∈ R
n . The fourth equality uses γi j = γ j i and the sixth uses

Eq. (15).
Before continuing the computations in Eq. (22), we simplify notation by setting

fi = Di ln(ui ) +
N∑
j=1

γi j K ∗ u j + Di . (23)

Observing that

∇ · (ui∇ fi ) =
n∑

h=1

∂xh (ui∂xh fi ), (24)

we continue the previous computation to give
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dE

dt
=
∫
T

N∑
i=1

n∑
h=1

∂xh
(
ui∂xh fi

)
fi dx

=
∫
T

N∑
i=1

n∑
h=1

(
∂xh (ui fi∂xh fi ) − ui (∂xh fi )

2
)
dx

= −
∫
T

N∑
i=1

n∑
h=1

ui (∂xh fi )
2dx

= −
∫
T

N∑
i=1

ui |∇ fi |2dx

= −
∫
T

N∑
i=1

ui

∣∣∣∣∣∣
∇
⎛
⎝Di ln(ui ) +

N∑
j=1

γi j K ∗ u j

⎞
⎠
∣∣∣∣∣∣

2

dx ≤ 0. (25)

The final inequality uses the assumption that ui > 0. The second equality uses inte-
gration by parts. The third equality follows from the following equalities

∫
T

N∑
i=1

n∑
h=1

∂xh (ui fi∂xh fi )

=
∫ L1

0

∫ L2

0
· · ·
∫ Ln

0

N∑
i=1

n∑
h=1

∂xh (ui fi∂xh fi )dx1dx2 . . . dxn

=
∫ L2

0
dx2 · · ·

∫ Ln

0
dxn

[
N∑
i=1

(ui fi∂x1 fi )

]x1=L1

x1=0

+
∫ L1

0
dx1 · · ·

∫ Ln

0
dxn

[
N∑
i=1

(ui fi∂x2 fi )

]x2=L2

x2=0

+ · · · +
∫ L1

0
dx1 · · ·

∫ Ln−1

0
dxn−1

[
N∑
i=1

(ui fi∂xn fi )

]xn=Ln

xn=0

, (26)

and we observe that each term in Eq. (26) is equal to zero due to the periodic
boundary conditions in Eq. (3).

Equation (25) shows that E is decreasing over time unless

∇
⎛
⎝Di ln(ui ) +

N∑
j=1

γi j K ∗ u j

⎞
⎠ = 0, for all i = 1, . . . , N , (27)

which is a steady state of Eq. (15), or equivalently of Eq. (1). �


123



Detecting minimum energy states and multi-stability… Page 11 of 44 56

Remark 2 Proposition 2 rules out the existence of non-stationary, time-periodic solu-
tions. Indeed, as E is monotonic decreasing, if there exist t, τ > 0 such that
E[u1(x, t), . . . , uN (x, t)] = E[u1(x, t + τ), . . . , uN (x, t + τ)], then Ė(t) = 0, so
Eq. (27) holds and (u1(x, t), . . . , uN (x, t)) is a stationary solution.

Proposition 3 Let ‖K‖L∞< ∞ and let (u1,0, u2,0, . . . , uN ,0) ∈ L1(T)N be pos-
itive initial data and (u1, u2, . . . , uN ) be the trajectory of Eq. (1) starting from
(u1,0, u2,0, . . . , uN ,0). Then E[u1, u2, . . . , uN ] is bounded below by a constant.

Proof We first observe that for all γ ∈ R, the following inequalities hold

∫
T

γ ui K ∗ u jdx ≥ − |γ |
∫
T

∣∣ui K ∗ u j
∣∣ dx

≥ − |γ | ‖ui‖1‖K ∗ u j‖∞
≥ − |γ | ‖ui‖L1‖K‖L∞‖u j‖L1 . (28)

The first inequality uses the fact that γ ≥ − |γ |, for all γ ∈ R, the second usesHölder’s
inequality and the third uses Young’s convolution inequality. Moreover, since ui > 0,
condition (5) ensures that ‖ui (x, t)‖L1= pi for all t ≥ 0 and thus the right-hand side
of Eq. (28) is finite.

Finally, by observing that infui>0{ui ln(ui )} = −e−1 and also by using Inequality
(28), we obtain the following estimates

E[u1, u2, . . . , uN ] =
∫
T

N∑
i=1

ui Di ln(ui )dx + 1

2

∫
T

N∑
i, j=1

γi j ui K ∗ u jdx

≥ −e−1|T|
N∑
i=1

Di − 1

2
‖K‖L∞

N∑
i, j=1

|γi j |‖ui‖L1‖u j‖L1

= −e−1|T|
N∑
i=1

Di − 1

2
‖K‖L∞

N∑
i, j=1

|γi j |pi p j , (29)

where the last equality uses the integral condition (5). Thus E is bounded below. �

Proposition 4 Suppose ||K ||L∞< ∞ and γi j = γ j i , for all i, j = 1, . . . , N. For any
positive initial data (u1,0, . . . , uN ,0) ∈ L1(T)N , there exists a constant lu0 , depending
on u0, such that

lim
t→∞ E[u1(x, t), . . . , uN (x, t)] = lu0 , (30)

where (u1(x, t), . . . , uN (x, t)) is the trajectory ofEq. (1) starting from (u1,0, . . . , uN ,0).

Proof Since ‖K‖L∞< ∞ , Prop. 3 ensures that the following set

{E[u1(x, t), . . . , uN (x, t)] : t ∈ R
+} (31)
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is bounded below. Due to the Completeness Axiom of the real numbers, the set in
(31) has an infimum lu0 , which is determined by the initial condition u0. Moreover,
by Proposition 2, E is a non-increasing monotonic function of time, so tends to its
infimum lu0 as t → ∞. �


Proposition 4 shows that for any initial data u0 ∈ L1(T)N the trajectory starting
from u0 evolves over time towards a configuration that is a local minimiser of E ,
with energy E = lu0 . We also observe that if E reaches the minimum value lu0 at a
finite time T , then the trajectory becomes stationary. Indeed, if E(u(T )) = lu0 then
E(u(t)) ≡ lu0 for all t ≥ T . Hence, the minimum at E = lu0 corresponds to a steady
state that is Lyapunov stable (i.e. any solution that starts arbitrarily close to the steady
state will remain arbitrarily close). However, it does not guarantee asymptotic stability
(i.e. any solution that starts arbitrarily close to the steady state tend toward the steady
state).

In the next Section, we will propose a method to determine the structure of these
minimum energy states of Eq. (1).

Finally, we note that the convergence of E towards a finite minimum value does
not guarantee that every solution converges towards a steady state when γi j = γ j i ,
as opposed to fluctuating in perpetuity. Nevertheless, this is something we would like
to establish. Indeed, in all our numerical investigations, both here (in Sect. 4) and
in previous works (Potts and Lewis 2019; Giunta et al. 2021a), we have only every
observed (numerically) stable steady state solutions emerging, andhavenever observed
perpetually fluctuating solutions. Therefore, we conclude this section formulating the
following conjecture. This is left as an open problem, but one possible means of attack
might be the via the S1-equivariant theory of Buttenschön and Hillen (2021), applied
there to a single-species system with a similar (but not identical) non-local advection
term.

Conjecture 5 Let ‖K‖L∞< ∞ and γi j = γ j i , for all i, j = 1, . . . , N. For any
positive (for each component) initial datum u0 = (u1,0, . . . , uN ,0) ∈ L1(T)N , the
corresponding solution to Eq. (1) converges towards a steady state.

4 Amethod to findminimum energy states

In this section, we will propose a method to gain insight into the possible structures
of minimum energy to Eq. (1). We build on methods first proposed in Potts and Lewis
(2016a, Sect. 3.4) and recent existence results of Jüngel et al. (2022). We work in one
spatial dimension and assume the assumptions of Sect. 1.1.

As shown in the previous section, the energy will always tend towards a local
minimum, leading to a minimum energy state for the system, which is also a steady
state.

When solving Eq. (1) for the top-hat kernel

Kα(x) =
{

1
2α , x ∈ [−α, α],
0, otherwise,

(32)
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(a) (b)

(c) (d)

Fig. 1 Numerical steady solutions to Eq. (1), with N = 2, K = Kα(x) (Eq. (32)), for different values of α.
As α tends to zero, the solution appears to tend towards a piece-wise constant function (Panel a and c) or
the limit of arbitrarily narrow, arbitrarily high piece-wise constant functions (Panel b and d). The parameter
values used in the simulations are D1 = D2 = 1, p1 = p2 = 1, γ11 = γ22 = 0, γ12 = 1.05 in Panel a
and c, γ12 = −1.05 in Panel b and d

numerically, we find that for decreasing α, the asymptotic steady state solutions look
increasingly like piece-wise constant functions, or the limit of arbitrarily narrow,
arbitrarily high piece-wise constant functions, with single or multiple peaks. These
structures become more singular as α → 0. In Fig. 1, we see this for some simple
examples. Note that as α → 0, the top-hat kernel in Eq. (32) becomes a Dirac delta
measure, and the model (1) becomes a local cross-diffusion model. Hence we call this
limit α → 0 as the local limit.

Jüngel et al. (2022) derived a solution theory for non-smooth interaction kernels K ,
which includes the case of a top-hat kernel as in Eq. (32). They consider Eq. (1) for the
case where there are constants πi such that the matrix (πiγi j )i j is positive definite. For
that case they showed global existence of weak solutions in Sobolev spaces. They also
show a local-limit result. As α → 0 there exists a subsequence of solutions of Eq. (1),
with K as in Eq. (32), that converge to a solution of the local version of Eq. (1). The
norm of this convergence varies depending on the space dimension. In n = 1 we can
use any L p-norm and in dimensions n ≥ 2 we use the L

n
n−1 -norm. These limits are

piece-wise constant solutions, and spike solutions, depending on the sign of γi j . They
arise as minimizers of the local version of the energy functional (Eq. (16)), which is

Elocal[u1, . . . , uN ] =
∫
T

N∑
i=1

ui

⎛
⎝Di ln(ui ) + 1

2

N∑
j=1

γi j u j

⎞
⎠ dx, (33)
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where x = (x1, x2, . . . , xn).
Hence in the following we consider piece-wise constant energyminimizers, assum-

ing that they are close to the minimizers of the non-local problem and we confirm this
relation numerically.We also focus on the n = 1 case and write L = L1 for simplicity.

We now explain our method in detail. First, Eq. (25) in one dimension tells us that
any minimum energy solution, ui (x), occurs when

0 = ui

⎡
⎣ ∂

∂x

⎛
⎝Di ln(ui ) +

N∑
j=1

γi j K ∗ u j

⎞
⎠
⎤
⎦
2

, (34)

for each i ∈ {1, . . . , N }. Next we take the local limit of Eq. (34), which in the case
K = Kα is the limit α → 0. In this limit, Eq. (34) becomes

0 = ui

⎡
⎣ ∂

∂x

⎛
⎝Di ln(ui ) +

N∑
j=1

γi j u j

⎞
⎠
⎤
⎦
2

. (35)

Therefore, either ui (x) = 0, or, for any subinterval on which ui (x) �= 0, there exists
a constant ci ∈ R such that

ci = Di ln(ui ) +
N∑
j=1

γi j u j , for i = 1, . . . , N . (36)

In principle, there might exist infinitely many subintervals on which ui (x) �= 0, and
ci may vary between these different subintervals. However, for each set of constants
c1, . . . , cN , Eq. (36) will typically have a finite number of common solutions (indeed,
Sect. 5 shows how to determine whether we are in this ‘typical’ situation).

Therefore, on each subinterval I in which ui (x) �= 0, there exists a finite set of
values uci1, . . . , u

c
ih , with h ∈ N, satisfying Eq. (36), such that

ui (x) =

⎧⎪⎪⎨
⎪⎪⎩

uci1, for x ∈ Ii1,
...

ucih, for x ∈ Iih,

(37)

where Iil , for i = 1, . . . , N and l = 1, . . . , h, are disjoint subsets of I such that
∪l Iil = I for each i . By considering all such subintervals I together, Eq. (37) defines
a class of piece-wise constant functions on [0, L]. The aim here is to examine which of
these functions is a local minimum of the energy and satisfies all model assumptions.

The general case is too complicated to deal with in one go, so we demonstrate our
method on some simple examples for the case of two species, N = 2. We start by
studying the case γ11 = γ22 = 0, so there is neither self-attraction nor self-repulsion.
We split this analysis further into the cases of mutual avoidance (γ12 > 0) and mutual
attraction (γ12 < 0). Then we analyze the case where γ11, γ22 �= 0.
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4.1 The case �11 = �22 = 0 withmutual avoidance, �12 = �21 > 0

4.1.1 Analytic results in the local limit

Minimising the energy over the full class of functions given by Eq. (37) turns out to be
too complicated. However, our numerics (see Fig. 1) suggest that the local limit (i.e.
α → 0 in the case K = Kα) of any solution to Eq. (1) is a function of the following
form

ui (x) =
{
uci , for x ∈ Si ,

0, for x ∈ [0, L]\Si , (38)

where uci ∈ R
+ and Si are subsets of [0, L], for i ∈ {1, 2}. Therefore we restrict our

search by looking for the minimisers of the energy (Eq. (16)) in the class of piece-wise
constant functions defined as in Eq. (38).

By Eq. (5), in Eq. (38) we require the following constraint

uci |Si | = pi , for i = 1, 2, (39)

recalling from Eq. (2) that |S| denotes the measure of a set S, not the cardinality, and
pi denotes the total population size of species i . We wish to find the solutions of the
form in Eq. (38), subject to Eq. (39), that are local minimisers of the energy, Eq. (16).
Placing Eq. (38) into Eq. (16), and taking the spatially-local limit (i.e. α → 0 in the
case K = Kα), gives

E[u1, u2] =
∫ L

0
(D1u1 ln(u1) + D2u2 ln(u2) + γ12u1u2) dx

= |S1|D1u
c
1ln(u

c
1) + |S2|D2u

c
2ln(u

c
2) + γ12u

c
1u

c
2|S1 ∩ S2|

= p1D1ln(u
c
1) + p2D2ln(u

c
2) + γ12u

c
1u

c
2|S1 ∩ S2|, (40)

where the first equality uses γ12 = γ21, the second equality uses Eq. (38) and the third
equality uses Eq. (39).

In Eq. (40), notice that if we keep |S1| and |S2| fixed whilst lowering |S1 ∩ S2| then
the energy decreases. Thus, if |S1|+|S2|≤ L , we can construct disjoint sets S1 and
S2, and these will correspond to lower energy solutions than any pair of non-disjoint
sets of equal measure. Furthermore, if |S1| + |S2| > L , we can construct sets S1 and
S2, such that |S1 ∩ S2| = |S1| + |S2| − L and these will correspond to lower energy
solutions than any other pair of sets of equal measure. Therefore henceforth, when
|S1| + |S2| ≤ L , we will assume that S1 ∩ S2 = ∅, and when |S1| + |S2| > L , we will
assume that |S1 ∩ S2| = |S1| + |S2| − L .

To search for the local minimizers of the energy in Eq. (40), we thus define
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E(uc1, u
c
2) =

{∑2
i=1 pi Di ln(u

c
i ), if |S1| + |S2| ≤ L,∑2

i=1 pi Di ln(u
c
i ) + γ12u

c
1u

c
2(|S1| + |S2| − L), if |S1| + |S2| > L.

(41)

To constrain our search, notice that Eq. (39) and |Si |≤ L imply that

uci = pi
|Si | ≥ pi

|L| , for i = 1, 2. (42)

The region of the (uc1, u
c
2)-plane defined by Eq. (42) is shown as white region in Fig. 2.

Our strategy will be as follows. First we will look for the local minima of Eq. (41),
subject to Eq. (42), in the case where |S1|+ |S2| ≤ L . Then we will look in the region
|S1| + |S2| > L . Combining these results will then give us a complete picture of the
local minima of E(uc1, u

c
2).

Starting with |S1| + |S2| ≤ L , Eq. (39) shows that this case is equivalent to the
following condition

p1
uc1

+ p2
uc2

= |S1| + |S2| ≤ L. (43)

By analysing the partial derivatives of E(uc1, u
c
2) in the region of the (uc1, u

c
2)-plane

defined by Eq. (43), we see that there are no critical points in this region. Furthermore,
E(uc1, u

c
2) → ∞ as either uc1 → ∞ or uc2 → ∞. Therefore minima in this region

must lie on the boundary, p1/uc1 + p2/uc2 = L , which is shown as solid black line
in Fig. 2. Analysis of the partial derivative of E(uc1, u

c
2) on this boundary shows that

E(uc1, u
c
2) has a unique minimum point, given by

MS = (uc1S, u
c
2S) :=

(
p1D1 + p2D2

D1L
,
p1D1 + p2D2

D2L

)
. (44)

This is also a local minimum of the region defined by Eq. (43). This can be shown by
performing a Taylor expansion of E(uc1, u

c
2) about the pointMS in the region given by

p1/uc1+p2/uc2 ≤ L . Since the slope of the tangent line to the curve p1/uc1+p2/uc2 = L

at the point MS is − D2
1 p1

D2
2 p2

, we choose two arbitrarily small constants, ε and δ, such

that D2
1 p1ε + D2

2 p2δ ≥ 0 and then perform a Taylor expansion of E(uc1, u
c
2) in a

neighbourhood of MS , which shows that

E (uc1S + ε, uc2S + δ
) ≈ E (uc1S, uc2S

)+ ∂uc1
E (uc1S, uc2S

)
ε + ∂uc2

E (uc1S, uc2S
)
δ

= E (uc1S, uc2S
)+ p1D1

uc1S
ε + p2D2

uc2S
δ

= E (uc1S, uc2S
)+ L

p1D1 + p2D2

(
D2
1 p1ε + D2

2 p2δ
)

≥ E (uc1S, uc2S
)
.
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Since MS lies on the boundary curve |S1|+|S2|= L (Fig. 2), we have so far only
established that it is a minimum of the region where |S1|+|S2|≤ L . We now need to
find out whether it is a minimum for the whole admissible region (the white region in
Fig. 2).

To this end, we perform a Taylor expansion of E(uc1, u
c
2) in a neighbourhood ofMS

within the region |S1|+|S2|≥ L , which is also the region where p1/uc1 + p2/uc2 ≥ L ,
by Eq. (39). Since the slope of the tangent line to the curve p1/uc1 + p2/uc2 = L

at the point MS is − D2
1 p1

D2
2 p2

, we choose two arbitrary constants, ε and δ, such that

D2
1 p1ε + D2

2 p2δ ≤ 0. Using Eq. (39), the function E(uc1, u
c
2) in Eq. (41) becomes

E(uc1, u
c
2) =

2∑
i=1

pi Di ln(u
c
i ) + γ12u

c
1u

c
2(|S1|+|S2|−L),

=
2∑

i=1

pi Di ln(u
c
i ) + γ12u

c
1u

c
2

(
p1
uc1

+ p2
uc2

− L

)
. (45)

Then the Taylor expansion of E(uc1, u
c
2) in a neighbourhood ofMS within the region

p1/uc1 + p2/uc2 ≥ L is

E(uc1S + ε, uc2S + δ) ≈ E(uc1S, u
c
2S) + ∂uc1

E(uc1S, u
c
2S)ε + ∂uc2

E(uc1S, u
c
2S)δ

= E(uc1S, u
c
2S)

+ p1D1

D2

D1D2L − γ12(p1D1 + p2D2)

p1D1 + p2D2
ε

+ p2D2

D1

D1D2L − γ12(p1D1 + p2D2)

p1D1 + p2D2
δ

= E(uc1S, u
c
2S)

+ p1D2
1

D1D2

D1D2L − γ12(p1D1 + p2D2)

p1D1 + p2D2
ε

+ p2D2
2

D1D2

D1D2L − γ12(p1D1 + p2D2)

p1D1 + p2D2
δ

= E(uc1S, u
c
2S)

+ D1D2L − γ12(p1D1 + p2D2)

(D1D2)(p1D1 + p2D2)
(D2

1 p1ε + D2
2 p2δ)

≥ E(uc1S, u
c
2S), (46)

if γ12 > D1D2L
p1D1+p2D2

, where the inequality uses D2
1 p1ε + D2

2 p2δ ≤ 0.
We now examine whether there are any other minima of E(uc1, u

c
2) in the region

where |S1|+|S2| > L . By Eq. (42), the condition |S1| + |S2| > L is equivalent to
p1/uc1 + p2/uc2 > L . Therefore we have the following constraints
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p1
uc1

+ p2
uc2

> L,

uci ≥ pi
|L| , for i = 1, 2. (47)

A direct calculation using partial derivatives shows that there are no local minima
of E(uc1, u

c
2) (Eq. (45)) in the interior of the region of the plane (uc1, u

c
2) defined by

Eq. (47). Therefore any local minimum must occur on the boundary. On the part of
the boundary given by uci = pi/L , for i = 1, 2, there is a unique minimum at

MH = (uc1H , uc2H ) :=
( p1
L

,
p2
L

)
. (48)

This is also a local minimum of the region defined by Eq. (47). This can be shown by
performing a Taylor expansion of E(uc1, u

c
2) about the point MH , to give

E(uc1H + ε, uc2H + δ) ≈ E(uc1H , uc2H ) + ∂uc1
E(uc1H , uc2H )ε + ∂uc2

E(uc1H , uc2H )δ

= E(uc1H , uc2H ) + LD1ε + LD2δ

≥ E(uc1H , uc2H ), (49)

where the inequality uses ε ≥ 0, δ ≥ 0, so that we remain in the ui ≥ pi/L region in
Fig. 2.

In summary, if 0 < γ12 < D1D2L
p1D1+p2D2

then E(uc1, u
c
2) (Eq. (41)) has a unique

minimum, given byMH . However, if γ12 > D1D2L
p1D1+p2D2

then E(uc1, u
c
2) has two local

minima, given by MH and MS (see Fig. 2).
Now, we recover the local minimizer ui (x) (Eq. (38)) of the energy (Eq. (33)). To

give a concrete example, we use the parameter values p1 = p2 = D1 = D2 = L = 1.
If (uc1, u

c
2) = MH then u1(x) = u2(x) = 1, the homogeneous steady state, which we

denote by SH . If (uc1, u
c
2) = MS then

ui (x) =
{
2, for x ∈ Si
0, for x ∈ [0, 1]\Si , (50)

with |Si |= 1/2, for i = 1, 2, and |S1 ∩ S2|= 0. This is a class of solutions we denote

by S2,2
S , where the subscript S stands for segregation and the superscript 2, 2 denotes

the finite positive value that functions u1(x) and u2(x) take, respectively. To avoid any
confusion, we want to stress that the points MH (Eq. (48)) and MS (Eq. (44)) are
local minima of E(uc1, u

c
2) (Eq. (41)), while the functions SH and S2,2

S are minimizers
of the energy E[u1, u2] (Eq. (40)).

In our example, if 0 < γ12 < 1/2, E(uc1, u
c
2) (Eq. (33)) has a unique minimum,

given by SH . If γ12 > 1/2 the energy has two local minima, given by SH and S2,2
S .

However, recall that SH and S2,2
S are derived by minimizing the energy (Eq. (33)) in

a particular class of piece-wise constant functions given by Eq. (38). Therefore, the
steady statesSH andS2,2

S may not beminima of the full function spacewhere solutions
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Fig. 2 The white region represents the admissible domain, in which we look for the local minima of the
function E(uc1, u

c
2) (Eq. (41)). The point MH , corresponding to the homogeneous steady state, is always

a local minimum. Whether the pointMS is a local minimum depends upon the value of γ12

might live. However, the linear stability analysis performed in Sect. 2, and particularly
Eq. (14), suggests that in the limit as α tends to zero, SH is stable if γ12 < 1. This
gives rise to the diagram of analytically-predicted steady states given by the red and
black lines in Fig. 3.

4.1.2 Numerical verification

The analysis of Sect. 4.1.1 suggests that for p1 = p2 = D1 = D2 = L = 1, when
1/2 < γ12 < 1 and the averaging kernel K is arbitrarity small, Eq. (1) should exhibit
bistability between the homogeneous solution, SH , and an inhomogeneous solution
arbitrarily close to S2,2

S . Here, we verify this numerically.
Figure 3 summarises our results. To produce this figure, we start with K = Kα

and γ12 = 1.2, so that the homogeneous steady state is unstable. The initial condition
is a small perturbation of the solution given in Eq. (50) which we run to numerical
steady state.We then reduce themagnitude of γ12 by�γ12 = 0.05 and solve the system
again using a small random perturbation of the previous simulation as initial condition.
We then repeat this process of reducing γ12 and re-running to steady state until the
system returns to the homogeneous steady state. This process of slowly changing one
parameter and re-running to steady state is a type of numerical bifurcation analysis
used in many previous studies, e.g. Painter and Hillen (2011). The numerical scheme
we use for solving our particular system is detailed in Giunta et al. (2021a).

We examine three different values of α in Fig. 3. For each of these, we observe
that the inhomogeneous solution persists below γ12 = 1 and above γ12 = 1/2 and, as
predicted by our calculations of Sect 4.1.1, the system shows bistabilty and hysteresis.

123



56 Page 20 of 44 V. Giunta et al.

Fig. 3 Numerically computed
bifurcation diagram of Eq. (1),
with K = Kα (Eq. (32)), for
different values of α. The other
parameter values are
p1 = p2 = D1 = D2 = L = 1.
The red solid line shows the
minimum energy branch
computed analytically using the
techniques in Sect. 4.1.1,
pertaining to the limit α → 0.
The numerical simulations show
that the system admits bistability
for 0.5 < γ12 < 1, in agreement
with our analytic predictions
(colour figure online)

Fig. 4 Comparison between numerically computed stationary S2,2
S solutions to Eq. (1), with K = Kα

(Eq. (32)), for different values of γ12 > 0 and α. The parameter values used in the simulations are
D1 = D2 = 1, p1 = p2 = 1

Furthermore, as α decreases (towards the local limit), the numerical branches appear
to tend towards the branch calculated in Sect. 4.1.1.

Finally, in Fig. 4, we show some numerical stationary solutions for different values
of α, as γ12 varies in the range [0.55, 1.05]. We observe that, as α decreases, the
numerical solution appears to tend to a piece-wise constant function of the class given
in Eq. (50) and predicted by the analysis of Sect. 4.1.1.
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4.2 The case �11 = �22 = 0 withmutual attraction, �12 = �21 < 0

4.2.1 Analytic results in the local limit

As in Sect. 4.1.1, here we will look for the minimizers of the local version of the
energy (Eq. (33)) in the class of piece-wise constant functions defined as

ui (x) =
{
uci , for x ∈ Si ,

0, for x ∈ [0, L]\Si , (51)

where uci ∈ R
+ and Si are subsets of [0, L], for i ∈ {1, 2}.

Placing Eq. (51) into Eq. (33), and repeating the same argument of Sect. 4.1.1, we
obtain

E[u1, u2] =
2∑

i=1

pi Di ln(u
c
i ) + γ12u

c
1u

c
2|S1 ∩ S2|. (52)

In this case, tominimize Eq. (52)we note that, since γ12 < 0, E[u1, u2] can be lowered
by increasing |S1 ∩ S2|, whilst keeping everything else the same. Therefore if we keep
|S1| and |S2| unchanged, then |S1 ∩ S2| is maximised when either S1 ⊆ S2 or S2 ⊆ S1,
so that |S1 ∩ S2|= mini |Si |. Thus

argminu1,u2E[u1, u2] = argminu1,u2

[
2∑

i=1

pi Di ln[uci ] + γ12 min{p1uc2, p2uc1}
]

,

(53)

and therefore we have that E[u1, u2] → −∞ as min{p1uc2, p2uc1} → ∞. As we
approach this limit, uc1, u

c
2 become arbitrarily large, so u1 and u2 (Eq. (51)) become

arbitrarily high, arbitrarily narrow functions with overlapping support. We will denote
the limit of this solution by S∞

A , in which the subscript A stands for aggregation and
the∞ superscript denotes that the solution becomes unbounded in the local limit. Thus
E[u1, u2] is minimized by S∞

A whenever γ12 is negative, regardless of its magnitude.
One can also show, using a very similar argument to Sect. 4.1.1 (details omitted),

that the homogeneous steady state, SH , is the only other possible local minimiser
of the energy that satisfies Eq. (42), and this is only a local minimum when γ12 >

−L(p1D1 + p2D2)/(p1 p2). However, linear stability analysis (Eq. (13)) suggests
that, in the limit as α tends to zero, the homogeneous steady state is linearly stable
only if γ12 > −L

√
D1D2/(p1 p2). Since Young’s inequality for products implies

that L
√
D1D2/(p1 p2) < L(p1D1 + p2D2)/(p1 p2), any time SH is linearly stable

it is also a local energy minimiser within the set of functions given by Eq. (51). The
red and black lines in Fig. 5a are the conclusion from combining all the results from
Sect. 4.2.1, both energy functional and linear stability analysis, in the case where
p1 = p2 = D1 = D2 = L = 1.
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(a) (b)

Fig. 5 Numerical investigation of Eq. (1), with K = Kα (Equation (32)) for γ12 < 0. The parameter
values are p1 = p2 = D1 = D2 = 1, L = 1. Panel a gives a numerical bifurcation diagram showing the
bistability between the homogeneous steady state (in black) and the inhomogeneous steady states S∞

A , for
different values of α. Panel b shows the corresponding numerical stationary solutions whan γ12 = −1.05,
for different values of α. As α decreases, the solutions appear to tend towards the S∞

A solution

4.2.2 Numerical verification

The analysis of Sect. 4.2.1 suggests that when γ12 > −L
√
D1D2/(p1 p2), γ12 < 0,

and α is arbitrarily small, Eq. (1) should display bistability between the homogeneous
solution and an inhomogeneous solution, whose structure tends towardsS∞

A asα → 0.
Here we verify this conjecture numerically, with results shown in Fig. 5a and b.

To construct these figures, we perform a similar analysis to Sect. 4.1.2.We simulate
Eq. (1) with K = Kα (Eq. (32)) for small values of α. We use the parameter values
p1 = p2 = D1 = D2 = L = 1, as in Sect. 4.1.1. For these values, the constant steady-
state is stable to perturbations at all wavenumbers for −1 < γ12 < 0. Therefore, we
begin our analysis by setting γ12 = −1.2, reducing the magnitude of γ12 by a small
amount (�γ12 = 0.05) at each iteration of the analysis, as in Sect. 4.1.2.

Our results show that patterns persist beyond γ12 = −1, and the extent of this
persistence depends on α (Fig. 5a). As α is decreased, the numerical stationary states
become higher, narrower functions with qualitatively similar shapes, as predicted by
the previous analysis (Fig. 5b).

4.3 The case �11, �22 �= 0

The case γ11, γ22 �= 0 uses similar arguments to those in Sect. 4.1. We therefore just
summarise the results here, leaving details of the calculations for “Appendix A”.

In our computations, we consider the case γ22 = γ11 and fix the other parameter
values as p1 = p2 = D1 = D2 = L = 1. The analysis of this case reveals five distinct
classes of qualitatively-different stable solutions (Fig. 6a), each of which we have
verified through numerical analysis (where throughout this section we use ‘stable’
to mean ‘Lyapunov stable’). These are (i) territory-like segregation patterns, S2,2

S ,
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(a)

(b)

Fig. 6 Panel a shows the five qualitatively-different local minimum energy states revealed by the analysis
in “Appendix A”. Note that the S1,∞

S solution also allows for u1 and u2 to be swapped. These plots were
produced by setting K = Kα , α = 0.025 and by fixing the following parameter values: p1 = p2 =
D1 = D2 = L = 1. For each graph of Panel a, we fixed different values of the parameters γ11 and γ12,
in particular we used: γ11 = 0.2 and γ12 = 1.05, for S2,2S ; γ11 = −0.15 and γ12 = 0.4, for S∞,∞

S

and S1,∞
S ; γ11 = 0.2 and γ12 = −1.05, for S∞

A ; γ11 = 0.2 and γ12 = 0.2, for SH . Panel b shows the
minimum energy solutions to Eq. (1) in different subregions of the plane (γ12, γ11), for N = 2, γ22 = γ11
and γ12 = γ21, predicted by the analysis in “Appendix A”. This graph is obtained by fixing the following
parameter values: p1 = p2 = D1 = D2 = L = 1

the height of which remains finite as K becomes arbitrarily narrow, (ii) segregation
patterns where the height of both species becomes arbitrarily high as K becomes
arbitrarily narrow, denoted by S∞,∞

S , (iii) segregation patterns where the height of
just one species becomes arbitrarily high as K becomes arbitrarily narrow but the
other remains at finite height, denoted by S1,∞

S , (iv) aggregation patterns, S∞
A , where

the height of both species becomes arbitrarily high as K becomes arbitrarily narrow,
and (v) the spatially homogeneous solution SH .

Figure 6b shows the parameter regions in which the analysis from “Appendix A”
predicts we should see these various solutions. Notice that there are regions in which
we have two-, three-, and even four-fold stability. These calculations are verified
numerically in Figs. 7 and 8. In particular, Figs. 7 and 8 show that, as α becomes
smaller, so the numerical results become closer to our analytic predictions.
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As shown in Fig. 6b, when species exhibit mutual attraction (γ12 < 0), our analysis
predicts two stationary states: the homogeneous distribution SH and the aggregation
pattern S∞

A . In particular, if γ12 < 0 and species show mutual avoidance, i.e. γ11 > 0,
there always exists a region in the parameter space in which both stationary states,
SH and S∞

A , are stable. However, if the magnitude of self-avoidance γ11 is relatively
weaker than the rate of mutual-attraction γ12, aggregation is more favored than the
homogeneous distribution. In this case, S∞

A is the only stable steady state, while the
SH solution is unstable.

On the other hand, in the mutual- and self-attraction case (γ12 < 0, γ11 < 0),
bistability between the homogeneous distribution SH and the aggregation pattern S∞

A
is observed as long as the magnitudes of γ12 and γ11 are sufficiently small. However,
if the rates of mutual and self-attraction become stronger, aggregation is favoured
over the homogeneous distribution. Consequently, as the magnitudes of γ11 and γ12
increase, the homogeneous solution SH loses stability.

The scenario becomes even richer when γ12 > 0. In particular, if the species exhibit
mutual avoidance (γ12 > 0) and self-avoidance (γ11 > 0), the stable steady states
predicted by our analysis are the homogeneous solution SH and segregation pattern
S2,2S . When the strength of self-repulsion (γ11) is relatively stronger than the tendency
to avoid individuals from the other species (γ12), the homogeneous distribution is
favoured over aggregation with conspecifics, so that SH is the only stable steady
state. However, if the rate of mutual avoidance γ12 increases, the tendency to avoid
individuals from the foreign species promotes the formation of spatial distributions in
which the two species are segregated into distinct sub-regions of space. Indeed, Fig. 6b
shows that as γ12 increases, the segregation pattern S2,2S acquires stability. However,
as long as the magnitude of self-avoidance is sufficiently strong, the homogeneous
distribution remains stable. Indeed, we observe that there is a parameter region in
which the system shows bistability between SH and S2,2S . Finally, if the strength
of mutual avoidance γ12 becomes sufficiently stronger than the propensity to avoid
conspecifics, segregation becomes more favored over the homogeneous distribution.
Indeed, as γ12 increases, SH loses its stability.

In the mutual avoidance (γ12 > 0) and self-attraction (γ11 < 0) scenario, the stable
states predicted by our analysis include SH (homogeneous) and S2,2S (territory-like
segregation) as before, but also S∞,∞

S (self-aggregated species that are segregated

from one another) and S1,∞
S (segregated species where only one population is self-

aggregated). If the magnitudes of self-attraction γ11 and mutual avoidance γ12 are
sufficiently small, the homogeneous distribution, SH , is also stable. However, for
small values of γ11, as the rate of mutual avoidance γ12 increases, we observe the
same scenario discussed above: S2,2S gains stability and there exists a region in the

parameter space in which both S2,2S and SH are stable. Finally SH loses stability as
γ12 increases further. We also observe that high rates of self-attraction γ11 favour
the formation of sub-regions with high densities of individuals. Therefore, when the
magnitude of γ11 is strong, S∞

S and S∞
H solutions are favored over the homogeneous

distribution SH and the inhomogeneous distribution S2,2S , which become unstable.
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(a) (b) (c)

Fig. 7 Bifurcation diagrams of Eq. (1), with K = Kα (Eq. (32)), for different values of γ11, as α is
decreased. The other parameter values are p1 = p2 = D1 = D2 = 1, L = 1. Panel a shows hysteresis
between the homogeneous steady state SH (in black) and the stationary solution S2,2

S for different values
of α. As α decreases, the numerical branches tend towards the analytically-predicted branch (in red). Panels
b and c show hysteresis between the homogeneous steady state SH (in black) and the stationary solution
S∞
A for different values of α. As α decreases, the height of the numerical branches tends towards∞ (colour

figure online)

Fig. 8 Bifurcation diagrams of Eq. (1), with K = Kα (Eq. (32)), for γ11 = −0.15 and different values of
α. The other parameter values are p1 = p2 = D1 = D2 = 1, L = 1. The graphs show the coexistence
between the homogeneous steady state SH (in black), computed analytically, and the stationary solutions
S2,2
S (in blue), S∞

S (in green) and S∞
H (in violet), computed numerically. As α decreases, the numerical

branches tend towards the analytical branches (in red) (colour figure online)

Finally, we verify this multi-stability numerically for small α, with results shown
in Figs. 7 and 8. As in the γ11 = γ22 = 0 cases, the numerics follow our analytic
predictions well, giving better approximations for smaller α.

In the following Lemma, we summarize the results shown in Fig. 6, which are
derived in “Appendix A”.

Lemma 6 Let γ22 = γ11, γ21 = γ12 and p1 = p2 = D1 = D2 = L = 1, and use
‘minimum energy’ to mean ‘local minimum energy’.
Case A: self avoidance (γ11 > 0) and mutual avoidance (γ12 > 0).

1. If γ11 > 2γ12 − 1 then the minimum energy state is SH .
2. If 0 < γ11 < 2γ12 − 1 then SH and S2,2

S are both minimum energy states.

Case B: Mutual attraction (γ12 < 0).

1. If γ11 > −γ12 − 1 then SH and S∞
A are minimum energy states.
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2. If γ11 < −γ12 − 1 then the minimum energy state is S∞
A .

Case C: Self attraction (γ11 < 0) and mutual avoidance (γ12 > 0).

1. If γ11 > 2γ12 − 1 then SH , S∞,∞
S and S1,∞

S are minimum energy states.

2. If γ12 −1 < γ11 < 2γ12 −1 then SH , S∞,∞
S , S1,∞

S , and S2,2
S are minimum energy

states.
3. If −1 < γ11 < γ12 − 1 then S∞,∞

S , S1,∞
S , and S2,2

S are minimum energy states.

4. If γ11 < −1 then S∞,∞
S and S1,∞

S are minimum energy states.

5 The steady states in the local limit

In the previous section, we found piecewise constant energy minimisers of the local
limit of Eq. (1). These can attain only a discrete set of values. Here, we confirm this
observation by showing that, on each subinterval where the solution is differentiable,
it must be constant.

For N = 2 we prove that the image of any minimum energy solution must lie in a
finite set. This proof works for any parameter values Di and γi j .Wewere not, however,
able to prove this result in full generality for arbitrary N . Nonetheless, we do provide
a method for constructing a proof for any particular set of parameter values, and put
these ideas into practice in some example cases where N = 3.

5.1 The general setup

Let K (x) = δ(x), the Dirac delta function with mass concentrated at x = 0. Then in
one spatial dimension Eq. (1) becomes

∂ui
∂t

= Di
∂2ui
∂x2

+ ∂

∂x

⎛
⎝ui

N∑
j=1

γi j
∂u j

∂x

⎞
⎠ , i = 1, . . . , N . (54)

Any local minimum energy solution to Eq. (54) is given by a set of functions
u1(x), . . . , uN (x) that solve Eq. (27) for each i ∈ {1, . . . , N } with K (x) = δ(x).
We therefore require that, on any subinterval where ui (x) �= 0,

0 = d

dx

⎛
⎝Di ln(ui ) +

N∑
j=1

γi j u j

⎞
⎠ = Di

ui

dui
dx

+
N∑
j=1

γi j
du j

dx
, (55)

which implies that

0 = Di
dui
dx

+ ui

N∑
j=1

γi j
du j

dx
. (56)

Equation (56) can be written in matrix form as
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0 = A1
du
dx

,

where A1 :=

⎛
⎜⎜⎜⎝

D1 + γ11u1 γ12u1 . . . γ1Nu1
γ21u2 D2 + γ22u2 . . . γ2Nu2

...
...

. . .
...

γN1uN γN2uN . . . DN + γNNuN

⎞
⎟⎟⎟⎠ , (57)

and u = (u1, . . . , uN )T . Equation (57) holds on each subinterval where ui (x) �= 0.
We wish to show that differentiable solutions are necessarily constant. Equation (57)
only has a nontrivial solution if either det(A1) = 0 or ∂u

∂x = 0. The latter means that
u is constant, so we need to investigate the condition det(A1) = 0.

5.2 The case N = 2

To make things simple, we begin by focusing on the case N = 2. We use the notation
A(2)
1 to mean the matrix A1 (Eq. (57)) for N = 2, so that

A1 = A(2)
1 :=

(
D1 + γ11u1 γ12u1

γ21u2 D2 + γ22u2

)
. (58)

The condition det(A(2)
1 ) = 0 then implies

(D1 + γ11u1)(D2 + γ22u2) − γ12γ21u1u2 = 0. (59)

If u is differentiable then we can differentiate Eq. (59) with respect to x , leading to
the following

[γ11(D2 + γ22u2) − γ12γ21u2]du1
dx

+ [γ22(D1 + γ11u1) − γ12γ21u1]du2
dx

= 0.

(60)

Combining Eq. (60) with the first row of the vector equation A(2)
1

du
dx = 0 gives

0 = A(2)
2

du
dx

, where

A(2)
2 :=

(
γ11(D2 + γ22u2) − γ12γ21u2 γ22(D1 + γ11u1) − γ12γ21u1

D1 + γ11u1 γ12u1

)
. (61)

Then
{
det(A(2)

1 ) = 0, det(A(2)
2 ) = 0

}
is a system of two simultaneous equations in

two unknowns. These have at most three solutions, as we show in “Appendix B”.
The exact form of these solutions is rather cumbersome, so we omit writing them

down explicitly. However, it is instructive to give a simple example, which we do in the

case γ11 = γ22 = 0. Here, there is a single solution to
{
det(A(2)

1 ) = 0, det(A(2)
2 ) = 0

}

of the following form
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u1 = D2

γ21
, u2 = D1

γ12
. (62)

Regardless of whether or not we impose the condition γ11 = γ22 = 0, the solution set
of (u1, u2) is a finite set. Therefore each differentiable part of a solution of Eq. (56) is
constant.

5.3 The case N = 3

We now show how to extend the arguments of Sect. 5.2 to the N = 3 case. The
expressions become too complicated in N = 3 to give a complete analysis, so we
instead give some examples to demonstrate how one can ascertain whether or not
image of u(x) is contained in a finite set. Similar to the strategy for N = 2, the
aim is to construct a system of equations that constrain the possible solutions for
u(x). For N = 3, this involves constructing three equations, which each take the
form det(A(3)

i ) = 0 for some matrix A(3)
i (i ∈ {1, 2, 3}), and showing that this set of

simultaneous equations has a finite number of solutions. Whilst for N = 2, we were
able to calculate the number of solutions exactly by solving polynomial equations, this
is not possible for N = 3 as the polynomials are usually of order 5 or more (Stewart
2015). Instead, we use the theory of Gröbner bases to prove the solution set is finite.

5.3.1 Example 1

For this example, we let Di = 1, γi i = 0, γ12 = γ21 = γ23 = γ32 = 2, and
γ13 = γ31 = 1. Then

A1 = A(3)
1 :=

⎛
⎝

1 2u1 u1
2u2 1 2u2
u3 2u3 1

⎞
⎠ . (63)

Since det(A(3)
1 ) = 0, we have

0 = 1 + 8u1u2u3 − 4u1u2 − 4u2u3 − u1u3. (64)

Again, assuming u is differentiable, we can differentiate Eq. (64) with respect to x
which leads to the following

0 = du1
dx

(8u2u3 − 4u2 − u3) + du2
dx

(8u1u3 − 4u1 − 4u3)

+ du3
dx

(8u1u2 − u1 − 4u2). (65)

Combining Eq. (65) with the first two rows of A(3)
1

du
dx = 0 gives
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0 = A(3)
2

du
dx

,

where A(3)
2 :=

⎛
⎝
8u2u3 − 4u2 − u3 8u1u3 − 4u1 − 4u3 8u1u2 − u1 − 4u2

1 2u1 u1
2u2 1 2u2

⎞
⎠ .

(66)

Once again, we have that det(A(3)
2 ) = 0, leading to the following polynomial equation

0 = −u1 − 4u2 + 20u1u2 − 4(u1)
2u2 − 32(u1)

2(u2)
2 + u1u3 + 8u2u3

− 36u1u2u3 + 16(u1)
2u2u3 + 32u1(u2)

2u3. (67)

Differentiating Eq. (67) with respect to x gives

0 = du1
dx

B1(u1, u2, u3) + du2
dx

B2(u1, u2, u3) + du3
dx

B3(u1, u2, u3), (68)

where

B1(u1, u2, u3) = − 1 + 20u2 − 8u1u2 − 64u1(u2)
2 + u3 − 36u2u3

+ 32u1u2u3 + 32(u2)
2u3 (69)

B2(u1, u2, u3) = − 4 + 20u1 − 4(u1)
2 − 64(u1)

2u2 + 8u3 − 36u1u3

+ 16(u1)
2u3 + 64u1u2u3 (70)

B3(u1, u2, u3) =u1 − 36u1u2 + 16(u1)
2 + 32u1(u2)

2. (71)

Combining Eq. (68) with the first two rows of A(3)
2

du
dx = 0 gives

0 = A(3)
3

du
dx

, where

A(3)
3 :=

⎛
⎝

B1(u1, u2, u3) B2(u1, u2, u3) B3(u1, u2, u3)
8u2u3 − 4u2 − u3 8u1u3 − 4u1 − 4u3 8u1u2 − u1 − 4u2

1 2u1 u1

⎞
⎠ . (72)

We now have a set of three polynomials

S =
{
det(A(3)

1 ), det(A(3)
2 ), det(A(3)

3 )
}

(73)

such that the image of u(x)must lie on the common zeros of this set. In the N = 2 case
(Sect. 5.2), we had just two polynomials, both of which were cubics, thus it is possible
to find formulae for the common zeros. Here, however, we have a polynomial of degree
six (det(A(3)

3 )). Since there is no general solution to a sixth degree polynomial (Stewart
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2015), we cannot solve the system det(A(3)
1 ) = 0, det(A(3)

2 ) = 0, det(A(3)
3 ) = 0

directly.
Instead, we use a classical result from algebraic geometry, which says that the

number of common zeros of S is finite iff for each i ∈ {1, 2, 3}, the Gröbner basis
of the ideal I (S) generated by S contains a polynomial whose leading monomial is a
power of ui (Adams and Loustaunau 1994). Computation of the Gröbner basis of an
ideal generated by a set of polynomials is an algorithmic procedure that is encoded
into various mathematical packages, such as Mathematica (Wolfram et al. 1999) or
Macauley2 (Eisenbud et al. 2013).

We useMathematica to calculate theGröbner basis of I (S). The result is a set of five
polynomials whose leading monomials are β1u193 , β2u2u23, β3u22u3, β4u42 and β5u1,
where β1, . . . , β5 are constants (some of which are of the order 1026 so we refrain
from writing down their exact numerical values). For each i , there is a polynomial in
the Gröbner basis whose leading monomial is a power of ui . Therefore, the common
zeros of S are finite and the image of u(x) is contained in a finite set. Since we have
assumed u(x) is differentiable, it must also be constant.

5.3.2 Example 2

In the previous example, we were able to show that the image of u(x) is contained
in a finite set by showing it lies on the intersection of three polynomials, which is
the minimum number of polynomials required in the case N = 3. However, some-
times three polynomials is not enough. Here, we detail an example which requires the
construction of five polynomials to ensure the intersection of their zeros is a finite set.

Suppose Di = 1, γi i = 0, and γi j = 2 for all i, j ∈ {1, 2, 3} where i �= j . Then

A1 = A(3)
1 :=

⎛
⎝

1 2u1 2u1
2u2 1 2u2
2u3 2u3 1

⎞
⎠ . (74)

Since det(A(3)
1 ) = 0, we have

0 = 1 + 16u1u2u3 − 4u1u2 − 4u1u3 − 4u2u3. (75)

Differentiating Eq. (75) with respect to x leads to the following

0 = du1
dx

(4u2u3 − u2 − u3) + du2
dx

(4u1u3 − u1 − u3) + du3
dx

(4u1u2 − u1 − u2)

(76)

Combining Eq. (76) with the first two rows of A(3)
1

du
dx = 0 gives
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0 = A(3)
2

du
dx

, where

A(3)
2 :=

⎛
⎝
4u2u3 − u2 − u3 4u1u3 − u1 − u3 4u1u2 − u1 − u2

1 2u1 2u1
2u2 1 2u2

⎞
⎠ . (77)

Once again, we have that det(A(3)
2 ) = 0, leading to the following polynomial equation

0 = (4u2u3 − u2 − u3)(4u1u2 − 2u1) + (4u1u3 − u1 − u3)(4u1u2 − 2u2)

+ (4u1u2 − u1 − u2)(1 − 4u1u2). (78)

Differentiating Eq. (78) with respect to x gives

0 = du1
dx

B1(u1, u2, u3) + du2
dx

B2(u1, u2, u3) + du3
dx

B3(u1, u2, u3), (79)

where

B1(u1, u2, u3) = (4u2u3 − u2 − u3)(4u2 − 2) + (4u3 − 1)(4u1u2 − 2u2)

+ (4u1u3 − u1 − u3)4u2 + (4u2 − 1)(1 − 4u1u2)

− (4u1u2 − u1 − u2)4u2 (80)

B2(u1, u2, u3) = (4u3 − 1)(4u1u2 − 2u1) + (4u2u3 − u2 − u3)4u1
+ (4u1u3 − u1 − u3)(4u1 − 2) + (4u1 − 1)(1 − 4u1u2)

− (4u1u2 − u1 − u2)4u1 (81)

B3(u1, u2, u3) = (4u2 − 1)(4u1u2 − 2u1) + (4u1 − 1)(4u1u2 − 2u2) (82)

Combining Eq. (79) with the first two rows of A(3)
2

du
dx = 0 gives

0 = A(3)
3

du
dx

, where

A(3)
3 :=

⎛
⎝

B1(u1, u2, u3) B2(u1, u2, u3) B3(u1, u2, u3)
4u2u3 − u2 − u3 4u1u3 − u1 − u3 4u1u2 − u1 − u2

1 2u1 2u1

⎞
⎠ . (83)

We now have a set of three polynomials S =
{
det(A(3)

1 ), det(A(3)
2 ), det(A(3)

3 )
}
, such

that the image of u(x) must lie on the common zeros of this set. The Gröbner basis of
I (S) contains eight polynomials whose leading terms are β1u2u93, β2u2u83, β3u2u83,
β4u2u83, β5u2u83, β6u2u83, β7u2u83, β8u2u83 for constants β1, . . . , β8. Here, the Gröbner
basis of I (S) does not contain a polynomial a with leading monomial that is a power
of ui for any i = 1, 2, 3, so the common zeros of S do not necessarily form a finite
set. Therefore we need to search for further polynomials on which the solution lies,
to see if we can constrain the solutions into a finite set.
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To this end, we combine Eq. (76) with the first and the third row of A(3)
1

du
dx = 0 to

give

0 = A(3)
22

du
dx

, where

A(3)
22 :=

⎛
⎝
4u2u3 − u2 − u3 4u1u3 − u1 − u3 4u1u2 − u1 − u2

1 2u1 2u1
2u3 2u3 1

⎞
⎠ . (84)

Since det(A(3)
22 ) = 0, we have

0 = u1 − 2u1u2 + u3 − 8u1u3 − 2u2u3 + 24u1u2u3

− 16u21u2u3 − 16u21u
2
3 − 16u1u2u

2
3. (85)

Differentiating Eq. (85) with respect to x gives

0 = du1
dx

B12(u1, u2, u3) + du2
dx

B22(u1, u2, u3) + du3
dx

B32(u1, u2, u3), (86)

where

B12(u1, u2, u3) = 1 − 2u2 − 8u3 + 24u2u3 − 32u1u2u3 + 32u1u
2
3 − 16u2u

2
3,

(87)

B22(u1, u2, u3) = −2u2 − 2u3 + 24u1u3 − 16u21u3 − 16u1u
2
3, (88)

B32(u1, u2, u3) = 1 − 2u2 − 8u1 + 24u1u2 − 32u1u2u3 + 32u21u3 − 16u21u2.
(89)

Combining Eq. (86) with the second and third row of A(3)
22

du
dx = 0 gives

0 = A(3)
32

du
dx

, where

A(3)
32 :=

⎛
⎝

B12(u1, u2, u3) B22(u1, u2, u3) B32(u1, u2, u3)
1 2u1 2u1
2u3 2u3 1

⎞
⎠ . (90)

We now have a set of five polynomials S =
{
det(A(3)

1 ), det(A(3)
2 ), det(A(3)

3 ),

det(A(3)
22 ), det(A(3)

32 )
}
, such that the image of u(x) must lie on the common zeros

of this set. The Gröbner basis of I (S) consists of seven polynomials whose leading
monomials are 32768u93, 12u2u

2
3, 6u

2
2u3, 96u

3
2, −18u1, 18u1u2, 12u21. Since, for each

i ∈ {1, 2, 3}, this set contains a power of ui , the common zeros of S are finite, and
therefore the image of u(x) is contained in a finite set. Hence if u(x) is differentiable,
it must be constant.
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6 Discussion

A central aim of mathematical biology is to predict emergent features of biological
systems, using dynamical systems models. Stable steady states provide an important
class of emergent features, so identification of these is a key task of mathematical
biology. However, for nonlinear PDEs, this is not usually an easy task (Robinson and
Pierre 2003). Indeed, often this is replaced by the more tractable task of examining a
system’s behaviour close to the constant steady state, which enables linear or weakly
nonlinear approximations. But it is the behaviour far away from the constant solution
that is interesting biologically, as that is where the patterns exist that we perceive in
biological systems.

Here, we have detailed a novel method to help find local minimum energy states,
which are Lyapunov stable, in a system of nonlocal advection–diffusion equations for
modelling N species (or groups) of mobile organisms, each of whichmove in response
to the presence of others. Our study system is closely related to (and often directly
generalises) a wide variety of previous models, including those for cell aggregation
(Carrillo et al. 2018) and sorting (Burger et al. 2018), animal territoriality (Potts and
Lewis 2016a) and home ranges (Briscoe et al. 2002), the co-movements of predators
and prey (Di Francesco and Fagioli 2016), and the spatial arrangement of human crim-
inal gangs (Alsenafi and Barbaro 2018). Therefore our results have wide applicability
across various areas of the biological sciences.

Whilst analytic determination of stable steady states in PDEs remains a difficult
task in general, numerical analysis always leaves the question open of whether one
has found all possible steady states or whether there are more that the researcher has
simply not stumbledupon.Tohelp guide numerical investigations,wehave constructed
a method, combining heuristic and analytic features, that gives clues as to where stable
steady states might be found in multi-species nonlocal advection–diffusion systems.
We have demonstrated in a few examples that numerical investigations agree with the
predictions of our method. Whilst our method does not give an analytic solution, it
should be a valuable tool for finding stable steady states in biological models that can
be modelled by nonlocal advection–diffusion systems.

Our method relies on constructing an energy functional for the PDE system. We
were only able to do this in the case γi j = γ j i for all i, j ∈ {1, . . . , N } and assuming
that the kernel K is identical for all species. These constraints mean that each pair
of species (or populations or groups) respond to one another in a symmetric fashion,
either mutually avoiding or mutually attracting with identical strengths of avoidance
or attraction, respectively. This generalises a recent result of Ellefsen and Rodríguez
(2021) who construct an energy functional for the case where γi j = 1 for all i, j ∈
{1, . . . , N }. We conjecture that this energy functional could be used to prove that the
attractor of our study system is an unstable manifold of fixed points. However, we
were unable to prove this here, so encourage readers to take on this challenge.

Whilst itmay be possible to construct energy functionals in some example situations
where γi j �= γ j i for some i, j , or where the kernel is not identical for all species (we
leave this as an open question), we expect that it is not possible in general, since there
are situations where the numerical analysis suggests the attractors do not consist of
stable steady states, but patterns that fluctuate in perpetuity (Potts and Lewis 2019).
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Perhaps the simplest situationwhere this has been observed is for N = 2, γ11, γ22 < 0,
and γ12 < 0 < γ21 (Giunta et al. 2021a), whereby both populations aggregate and
one ‘chases’ the other across the terrain without either ever settling to a fixed location.
Furthermore, to keep our analysis as simple as possible, we only applied the techniques
of Sect. 4 to some concrete examples in n = 1 spatial dimension. Nonetheless, there
is no a priori reason why the techniques in Sect. 4 could not be extended to higher
dimensions in the future.

Whilst our method is designed for application to models of nonlocal advection,
for which there are existence and regularity results (Giunta et al. 2021a), it works
by examining the local limit of stable solutions. The reason for this is that these
solutions are piecewise constant, so we can constrain our search for the minimum
energy, enabling minimisers to be found analytically. The disadvantage is that the
local limit of stable solutions is not itself the steady state solution of a well-posed
system of PDEs: in the local limit, Eq. (1) becomes ill-posed. More precisely, it is
unstable to arbitrarily high wavenumbers whenever the pattern formation matrix has
eigenvalues with positive real part. Nonetheless, we have shown that the local limit of
minimum energy solutions to the nonlocal problem is a useful object to study, even if
it may not itself be the steady state solution of a system of PDEs.

It would be cleaner, however, if we were able to develop theory that did not require
taking this local limit. For N = 1, Potts and Painter (2021) developed techniques that
are analogous to the ones proposed here but in discrete space. In this case, the actual
stable steady states of the discrete space system become amenable to analysis via an
energy functional approach similar to the one proposed here. However, generalisations
of this technique to N > 1 do not appear to be trivial from our initial investigations.

Another possible way forward is to use perturbation analysis, starting with the
minimum energy solutions from the local limit, studied here, and perturbing them to
give solutions to the full nonlocal system. One could then minimise the energy across
this class of perturbed solutions (which would no longer be piecewise constant) to find
stable steady states of the nonlocal system inEq. (1). This is quite a nontrivial extension
of the present methods, which we hope to pursue in future work. One possible avenue
might be to use a kernel that allows the non-local model to be transformed into a
higher-order local model (Bennett and Sherratt 2019; Ellefsen and Rodríguez 2021).

Figures 3, 5, 7 and 8 show numerical bifurcation analysis of our system in certain
examples. This naturally leads to questions about the nature of these bifurcations. In
particular, the discontinuity in amplitude that occurs as the constant steady state loses
stability is something that is also seen with subcritical pitchfork bifurcations. In this
case, the stable branches may be joined to one another by an unstable branch, or some
more complicated structure. It would be valuable to investigate analytically whether
this is the case. Standard tools include weakly non-linear analysis and Crandall–
Rabinowitz bifurcation theory, both of which have been used successfully for nonlocal
advection–diffusion equations (Buttenschön and Hillen 2021; Eftimie et al. 2009).

The systemwe study assumes that species advect in response to the population den-
sity of other species. However, it is agnostic as to the precise mechanisms underlying
this advection. Previous studies show that Eq. (1) can be framed as a quasi-equilibrium
limit of various biologically-relevant processes, such as scent marking or memory
(Potts and Lewis 2016a, b, 2019). This quasi-equilibrium assumption says, in effect,
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that the scent marks or memorymap stabilise quickly compared to the probability den-
sity of animal locations. However, it would be valuable to examine the extent to which
these processes might affect the emergent patterns away from this quasi-equilibrium
limit. Along similar lines, it would also be valuable to examine the extent to which our
results translate to the situation where wemodel each individual as a separate entity, as
in an individual based model (IBM), rather than using a population density function,
which is a continuum approximation of an IBM. We have recently begun developing
tools for translating PDE analysis to the situation of individual based models, which
could be useful for such analysis (Potts et al. 2022).

In summary, we have developed novel methods for finding nontrivial steady states
in a class of nonlinear, nonlocal PDEs with a range of biological applications. As well
as revealing complex multi-stable structures in examples of these systems, our study
opens the door to various questions regarding the bifurcation structure, the effect of
nonlocality, and the structure of the attractor. We believe these will lead to yet more
significant, but highly fruitful, future work.
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Appendix A: Calculations for Figure 6

Here, we give details of the calculations performed to produce the plots in Fig. 6 from
Sect. 4.3. The analysis is similar to that in Sects. 4.1 and 4.2, but unlike Sects. 4.1
and 4.2 we drop the assumption that γ11 = γ22 = 0 and we keep the assumption
γ12 = γ21.
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We will look for the local minimizers of the following energy functional, where
K = δ,

E[u1, u2] =
∫
T

2∑
i=1

ui

⎛
⎝Di ln(ui ) + 1

2

2∑
j=1

γi j u j

⎞
⎠ dx (A1)

in the class of piece-wise constant functions defined as

ui (x) =
{
uci , for x ∈ Si ,

0, for x ∈ [0, L]\Si , (A2)

where uci ∈ R
+ and Si are subsets of [0, L], for i ∈ {1, 2}.

Recall that, by Eq. (5), in Eq. (A2) we require the following constraint

uci |Si |= pi , for i = 1, 2. (A3)

Placing Eq. (A2) into Eq. (A1) gives

E[u1, u2] =
∫ L

0

[
2∑

i=1

(
Diui ln(ui ) + 1

2
γi i u

2
i

)
+ γ12u1u2

]
dx

=
2∑

i=1

|Si |
(
Diu

c
i ln(u

c
i ) + 1

2
γi i (u

c
i )

2
)

+ γ12u
c
1u

c
2|S1 ∩ S2|

=
2∑

i=1

pi

(
Di ln(u

c
i ) + 1

2
γi i u

c
i

)
+ γ12u

c
1u

c
2|S1 ∩ S2|, (A4)

where the first equality uses γ12 = γ21 and the third equality uses Eq. (A3).
Since the general analysis of this case is not straightforward, we instead set γ11 =

γ22 and fix the other parameter values as p1 = p2 = D1 = D2 = L = 1. Therefore
Eq. (A4) becomes

E[u1, u2] = ln(uc1) + ln(uc2) + 1

2
γ11(u

c
1 + uc2) + γ12u

c
1u

c
2|S1 ∩ S2|. (A5)

In the following, we will look for the minimizers of Eq. (A5) and examine different
cases demarcated by the signs of γ11 and γ12.

A.1 Self avoidance (�11 > 0) andmutual avoidance (�12 > 0)

Since γ12 > 0, in Eq. (A5) if we keep |S1| and |S2| fixed whilst lowering |S1∩ S2| then
the energy decreases. Thus, whenever |S1|+|S2| ≤ L = 1 we can choose disjoint sets
S1 and S2 that will correspond to lower energy solutions than any pair of non-disjoint
sets of equal measure. Furthermore, if |S1| + |S2| > 1, we can construct sets S1 and
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S2, such that |S1 ∩ S2| = |S1| + |S2| − 1 and these will correspond to lower energy
solutions than any other pair of sets of equal measure. Therefore, when |S1|+|S2| ≤ 1,
we will assume that S1 ∩ S2 = ∅, and when |S1| + |S2| > 1, we will assume that
|S1 ∩ S2| = |S1| + |S2| − 1 (as in Sect. 4.1.1).

To search for the local minimizers of the energy in Eq. (A5), we then define

E(uc1, u
c
2) =

⎧⎪⎨
⎪⎩

ln(uc1) + ln(uc2) + 1
2γ11(u

c
1 + uc2), if |S1| + |S2| ≤ 1,

ln(uc1) + ln(uc2) + 1
2γ11(u

c
1 + uc2)

+γ12uc1u
c
2|S1 ∩ S2|, if |S1| + |S2| > 1.

(A6)

To constrain our search, notice that Eq. (A3), pi = 1 and |Si | ≤ L = 1 imply that

uci ≥ 1, for i = 1, 2. (A7)

We analyse E(uc1, u
c
2) (Eq. (A6)) under the constraint in Eq. (A7), first in the region

where |S1| + |S2| ≤ 1 and then in the region where |S1| + |S2| > 1. By combining
these results we will have a complete picture of the local minima of E(uc1, u

c
2).

Note that by Eq. (A3), the case |S1| + |S2| ≤ 1 is equivalent to

1

uc1
+ 1

uc2
≤ 1. (A8)

By analysing the partial derivatives of E(uc1, u
c
2) in the region of the (uc1, u

c
2)-plane

defined by Eq. (A8), one can check that there are no local minima in this region.
Furthermore, E(uc1, u

c
2) → ∞ as either uc1 → ∞ or uc2 → ∞. Therefore any minima

in this region must lie on the boundary, 1/uc1 + 1/uc2 = 1 (solid black line in Fig. 2).
Analysis of the partial derivative of E(uc1, u

c
2) on this boundary shows that E(uc1, u

c
2)

has a unique minimum point, given by

MS = (uc1S, u
c
2S) := (2, 2) . (A9)

This is also a local minimum of the region defined by Eq. (A8). This can be shown by
performing a Taylor expansion of E(uc1, u

c
2) about the point MS . Since the slope of

the line tangent to the curve 1/uc1 + 1/uc2 = 1 inMS is −1, we choose two constant,
ε and δ, such that ε + δ ≥ 0 and the Taylor expansion gives

E(2 + ε, 2 + δ) ≈ E(2, 2) + ∂uc1
E(2, 2)ε + ∂uc2

E(2, 2)δ

= E(2, 2) + 1

2
(1 + γ11)(ε + δ)

≥ E(2, 2),

where the inequality uses γ11 > 0, ε + δ ≥ 0.
However, since the point MS lies on the boundary curve |S1| + |S2| = 1, we do

not yet know whether it is a minimum for the whole admissible region defined by
Eq. (A7) (white region in Fig. 2). To this end, we examine whetherMS is a minimum
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of E(uc1, u
c
2) (Eq. (A6)) in the region where |S1|+|S2| > 1. By Eq. (A7), the condition

|S1|+|S2| > 1 is equivalent to 1/uc1 + 1/uc2 > 1. Therefore we have the following
constraints

1

uc1
+ 1

uc2
> 1,

uci ≥ 1, for i = 1, 2. (A10)

Since |S1 ∩ S2| = |S1| + |S2| − 1, when |S1| + |S2| > 1 the function E(uc1, u
c
2)

(Eq. (A6)) can be rewritten as

E(uc1, u
c
2) = ln(uc1) + ln(uc2) + 1

2
γ11(u

c
1 + uc2) + γ12u

c
1u

c
2|S1 ∩ S2|

= ln(uc1) + ln(uc2) + 1

2
γ11(u

c
1 + uc2) + γ12u

c
1u

c
2(|S1|+|S2|−1),

= ln(uc1) + ln(uc2) + 1

2
γ11(u

c
1 + uc2) + γ12u

c
1u

c
2

(
1

u1
+ 1

u2
− 1

)
,

(A11)

where the third equality uses |Si |= 1
uci
.

To verify whether MS is also a minimum on the part of the domain given by
Eq. (A10), we perform a Taylor expansion of E(uc1, u

c
2) in a neighbourhood of MS

within the region 1/uc1 + 1/uc2 < 1. Since the slope of the tangent line to the curve
1/uc1 + 1/uc2 = 1 at the point MS is −1, we choose two arbitrary constants, ε and δ,
such that ε + δ ≤ 0. Then Taylor expansion of E(uc1, u

c
2) is

E(2 + ε, 2 + δ) ≈ E(2, 2) + ∂uc1
E(2, 2)ε + ∂uc2

E(2, 2)δ

= E(2, 2) + 1

2
(1 + γ11 − 2γ12)(ε + δ)

≥ E(2, 2), (A12)

if γ11 < 2γ12 − 1, where the inequality uses ε + δ ≤ 0.
Next, we look for any otherminima in the region defined byEq. (A10). By analysing

first partial derivatives, one can show that there are no local minima of E(uc1, u
c
2)

(Eq. (A11)) in the interior of this region. Therefore any local minima must occur on
the boundaries. On the part of the boundary given by uci = 1, for i = 1, 2, there is a
unique minimum at

MH = (uc1H , uc2H ) := (1, 1) . (A13)

This is also a local minimum of the region defined by Eq. (A10). This can be shown
by performing a Taylor expansion of E(uc1, u

c
2) about the point MH , to give

E(1 + ε, 1 + δ) ≈ E(1, 1) + ∂uc1
E(1, 1)ε + ∂uc2

E(1, 1)δ
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= E(1, 1) +
(
1 + 1

2
γ11

)
(ε + δ)

≥ E(1, 1),

where the inequality uses γ11 > 0, ε ≥ 0 and δ ≥ 0. Here, ε and δ are chosen
to be non-negative so that we remain in the uci ≥ 1 region (Fig. 2). Therefore, if
γ11 > 2γ12 − 1, E(uc1, u

c
2) (Eq. (A5)) has a unique minimum, given by MH . Whilst

if 0 < γ11 < 2γ12 − 1, then E(uc1, u
c
2) has two local minima, given byMH andMS .

Finally, we write down the functions ui (x) (Eq. (A2)) which locally minimize
the energy E[u1, u2] (Eq. (A4)). If (uc1, u

c
2) = MH then u1(x) = u2(x) = 1, the

homogeneous steady state, which we denote by SH . If (uc1, u
c
2) = MS then

ui (x) =
{
2, for x ∈ Si
0, for x ∈ [0, 1]\Si , (A14)

with |Si | = 1/2, for i = 1, 2, and |S1 ∩ S2| = 0, denoted by S2,2
S .

In conclusion, if γ11 > 2γ12−1, the energy E(uc1, u
c
2) (Eq. (A4)) has a unique min-

imum, given by SH . However, if 0 < γ11 < 2γ12−1 the energy has two local minima,
given by SH and S2,2

S . Furthermore, linear stability analysis (Eq. (14)) suggests that
when α tends to zero, the homogeneous steady state is stable if γ11 > γ12 − 1. This
gives rise to the diagram of analytically-predicted steady states given by the red and
black lines in Fig. 7a.

A.2 Mutual attraction (12 < 0)

In this section, we analyze the local minimizers of the energy (Eq. (A4)) for γ12 < 0,
γ11 ∈ R and γ12 = γ21. We observe that the energy in Eq. (A4) decreases as |S1 ∩ S2|
increases, whilst keeping everything else constant. Therefore if we keep |S1| and |S2|
unchanged, then |S1 ∩ S2| is maximised when either S1 ⊆ S2 or S2 ⊆ S1, so that
|S1 ∩ S2|= mini |Si |. Thus by repeating the same argument presented in Sect. 4.2.1
for γ12 < 0 and γ11 = 0, we see that E[u1, u2] → −∞ as min{uc1, uc2} → ∞. As we
approach this limit, uc1, u

c
2 become arbitrarily large, so u1 and u2 (Eq. (A2)) become

arbitrarily high, arbitrarily narrow functions with overlapping support. We will denote
the limit of this solution by S∞

A .
One can also show, using a very similar argument to “Appendix A.1” (details omit-

ted), that the homogeneous steady state, SH , is the only other possible local minimiser
of the energy that satisfies uci ≥ 1, for i = 1, 2, and this is only a local minimum
when γ12 > −γ11 − 2. However, linear stability analysis (Eq. (13)) suggests that, in
the limit as α tends to zero, the homogeneous steady state is linearly stable only if
γ12 > −γ11 − 1. Therefore, any time SH is linearly stable, it is also a local energy
minimiser within the set of functions given by Eq. (A2). These results give rise to
the diagram of analytically-predicted steady states given by the red and black lines in
Fig. 7b–c.
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A.3 Self attraction (11 < 0) andmutual avoidance (12 > 0)

By following the same argument of “Appendix A.1”, to search for the local minimizers
of the energy in Eq. (A5), we define

E(uc1, u
c
2) =

⎧⎪⎨
⎪⎩

ln(uc1) + ln(uc2) + 1
2γ11(u

c
1 + uc2), if |S1| + |S2| ≤ 1,

ln(uc1) + ln(uc2) + 1
2γ11(u

c
1 + uc2)

+γ12uc1u
c
2|S1 ∩ S2|, if |S1| + |S2| > 1.

(A15)

We analyse E(uc1, u
c
2) (Eq. (A15)) under the constraint

uci ≥ 1, for i = 1, 2, (A16)

first when |S1| + |S2| ≤ 1 and then when |S1| + |S2| > 1. Recall that the condition in
Eq. (A16) is obtained by Eq. (A3), using pi = 1 and |Si | ≤ L = 1.

When |S1| + |S2| ≤ 1, E(uc1, u
c
2) → −∞ as either uc1 → ∞ or uc2 → ∞. As we

approach this limit, uc1, u
c
2 become arbitrarily large, so the functions u1(x) and u2(x)

(Eq. (A2)) become arbitrarily high, arbitrarily narrow functions with |S1 ∩ S2| = ∅.
We denote the limit of this solution by S∞,∞

S , in which the subscript S stands for
aggregation and the ∞,∞ superscript denotes that both u1(x) and u2(x) become
unbounded and separated as uc1, u

c
1 → ∞.

As discussed in “Appendix A.1”, |S1| + |S2| ≤ 1 is equivalent to the following
condition

1

uc1
+ 1

uc2
≤ 1. (A17)

Thus, by analysing the partial derivatives of E(uc1, u
c
2) in the region of the (uc1, u

c
2)-

plane defined by Eq. (A17), one can check that there are no local minima in the
interior of this region. Analysis of the partial derivative of E(uc1, u

c
2) on the boundary

1/uc1 + 1/uc2 = 1 shows that E(uc1, u
c
2) has a unique minimum point, given by

MS = (uc1S, u
c
2S) := (2, 2) . (A18)

This is also a local minimum of the region defined by Eq. (A17) when γ11 > −1. This
can be shown by performing a Taylor expansion of E(uc1, u

c
2) about the pointMS , to

give

E(2 + ε, 2 + δ) ≈ E(2, 2) + ∂uc1
E(2, 2)ε + ∂uc2

E(2, 2)δ

= E(2, 2) + 1

2
(1 + γ11)(ε + δ)

≥ E(2, 2),

where the inequality uses γ11 > −1, ε + δ ≥ 0. We recall that ε + δ ≥ 0 ensures that
we remain in the |S1|+|S2|≤ 1 region (Fig. 2).
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Since the pointMS lies on the boundary curve |S1|+|S2| = 1, we have so far only
established that when γ11 > −1, MS is a minimum of E(uc1, u

c
2) (Eq. (A15)) in the

region where |S1| + |S2| ≤ 1. We also need to show MS is a minimum in the region
where |S1| + |S2| > 1. By Eq. (A7), the condition |S1| + |S2| > 1 is equivalent to
1/uc1 + 1/uc2 > L . Therefore we have the following constraints

1

uc1
+ 1

uc2
> 1,

uci ≥ 1, for i = 1, 2. (A19)

As already shown in “Appendix A.1” (see Eq. (A11)), when |S1| + |S2| > 1 the
function E(uc1, u

c
2) (Eq. (A6)) can be rewritten as

E(uc1, u
c
2) = ln(uc1) + ln(uc2) + 1

2
γ11(u

c
1 + uc1) + γ12u

c
1u

c
2

(
1

u1
+ 1

u2
− 1

)
.

(A20)

To show that MS (Eq. (A18)) is a minimum on the region of the domain given by
Eq. (A19), we perform a Taylor expansion of E(uc1, u

c
2) (Eq. (A20)) aroundMS within

this region. Since the slope of the tangent line to the curve 1/uc1 + 1/uc2 = 1 at the
pointMS is −1, we choose two arbitrary constants, ε and δ, such that ε + δ ≤ 0. The
Taylor expansion is then

E(2 + ε, 2 + δ) ≈ E(2, 2) + ∂uc1
E(2, 2)ε + ∂uc2

E(2, 2)δ

= E(2, 2) + 1

2
(1 + γ11 − 2γ12)(ε + δ)

≥ E(2, 2), (A21)

if γ11 < 2γ12 − 1. Therefore, MS (Eq. (A18)) is a local minimum of E(uc1, u
c
2)

(Eq. (A15)) when −1 < γ11 < 2γ12 − 1. We recall that if (uc1, u
c
2) = MS then

the functions ui (x) (Eq. (A2)) that locally minimize the energy E[u1, u2] (Eq. (A5))
correspond to the class of functions S2,2

S defined in Eq. (A14).
Next we look for other local minima within the region of the domain given by

Eq. (A19). A direct calculation using partial derivatives shows that there are no local
minima of E(uc1, u

c
2) in the interior of this region.We now verify whether local minima

occur on the boundaries. On the part of the boundary given by uci = 1, for i = 1, 2,
there is a local minimum at

MH = (uc1H , uc2H ) := (1, 1) . (A22)

This is also a local minimum of the region defined by Eq. (A19) when γ11 > −2. This
can be shown by performing a Taylor expansion of E(uc1, u

c
2) (Eq. (A20)) about the

point MH , to give

E(1 + ε, 1 + δ) ≈ E(1, 1) + ∂uc1
E(1, 1)ε + ∂uc2

E(1, 1)δ
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= E(1, 1) +
(
1 + 1

2
γ11

)
(ε + δ)

≥ E(1, 1),

where the inequality uses γ11 > −2, ε ≥ 0 and δ ≥ 0. Note that ε and δ are chosen
to be non-negative so that we remain in the uci ≥ 1 region (Fig. 2). We recall that if
(uc1, u

c
2) = MH then the functions ui (x) (Eq. (A2)) that locally minimize the energy

E[u1, u2] (Eq. (A5)) correspond to SH , the homogeneous steady state.
Notice also that on the boundary uc1 = 1, E(uc1, u

c
2) (Eq. (A20)) decreases as

uc2 → ∞ and, analogously, on the boundary uc2 = 1, E(uc1, u
c
2) (Eq. (A20)) decreases

as uc1 → ∞. Therefore, by keeping uci = 1 fixed, for i = 1, 2, E(uc1, u
c
2) → −∞ as

ucj → ∞, for j �= i . As we approach this limit, the function u j (x) (Eq. (A2)) becomes
an arbitrarily high function with an arbitrarily narrow support, while ui (x) (Eq. (A2)),
for i �= j , remains at finite height. We denote the limit of these solutions by S1,∞

S .
In conclusion:

• If γ11 > 2γ12 − 1, then the energy E(uc1, u
c
2) (Eq. (A2)) has the following local

minima: SH , S∞,∞
S and S1,∞

S .
• If −1 < γ11 < 2γ12 − 1, the energy E(uc1, u

c
2) (Eq. (A2)) has the following local

minima: SH , S∞,∞
S , S1,∞

S and S2,2
S .

• If −2 < γ11 < −1, the energy E(uc1, u
c
2) (Eq. (A2)) has the following local

minima: SH , S∞,∞
S and S1,∞

S .
• If γ11 < −2, the energy E(uc1, u

c
2) (Eq. (A2)) has the following local minima:

S∞,∞
S and S1,∞

S .

Furthermore, linear stability analysis (Eq. (14)) suggests that when α tends to zero,
the homogeneous steady state is stable if γ11 > γ12 −1. This gives rise to the diagram
of analytically-predicted steady states given by the red and black lines in Fig. 8.

Appendix B: Details of calculations from Section 5.2

Here, we analyze the solutions to the system
{
det(A(2)

1 ) = 0, det(A(2)
2 ) = 0

}
, where

A(2)
1 and A(2)

2 are given in Eqs. (58) and (61), respectively. We write the system{
det(A(2)

1 ) = 0, det(A(2)
2 ) = 0

}
in full as

0 = (D1 + γ11u1)(D2 + γ22u2) − γ12γ21u1u2, (B23)

0 = γ12u1 (γ11 (D2 + γ22u2) − γ12γ21u2)

− (γ22 (D1 + γ11u1) − γ12γ21u1) (D1 + γ11u1) , (B24)

By subtracting Eq. (B24) from Eq. (B23), we obtain the following linear equation in
u2

γ11D2u1 − γ11γ12D2u1 − γ12γ21D1u1 + γ22 (D1 + γ11u1)
2

123



Detecting minimum energy states and multi-stability… Page 43 of 44 56

+ D1D2 − γ11γ12γ21u
2
1

+ u2(γ22D1 + (γ12 − 1) (γ12γ21 − γ11γ22) u1) = 0. (B25)

By using Eq. (B25) to find u2 in terms of u1 and then substituting this into Eq. (B23),
we obtain the following cubic equation in u1

γ 2
22D

3
1 − D1u1

(
γ21γ

2
12D2 + γ22 (2γ12γ21 − 3γ11γ22) D1

)

+ u22D1 (γ12γ21 − 3γ11γ22) (γ12γ21 − γ11γ22)

+ u31γ11 (γ12γ21 − γ11γ22)
2 = 0. (B26)

Since Equation (B26) has at most three roots, System (B23)–(B24) has at most three
solutions.
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