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A B S T R A C T

Nonlocal interactions are ubiquitous in nature and play a central role in many biological
systems. In this paper, we perform a bifurcation analysis of a widely-applicable advection–
diffusion model with nonlocal advection terms describing the species movements generated by
inter-species interactions. We use linear analysis to assess the stability of the constant steady
state, then weakly nonlinear analysis to recover the shape and stability of non-homogeneous
solutions. Since the system arises from a conservation law, the resulting amplitude equations
consist of a Ginzburg–Landau equation coupled with an equation for the zero mode. In
particular, this means that supercritical branches from the Ginzburg–Landau equation need not
be stable. Indeed, we find that, depending on the parameters, bifurcations can be subcritical
(always unstable), stable supercritical, or unstable supercritical. We show numerically that,
when small amplitude patterns are unstable, the system exhibits large amplitude patterns
and hysteresis, even in supercritical regimes. Finally, we construct bifurcation diagrams by
combining our analysis with a previous study of the minimizers of the associated energy
functional. Through this approach we reveal parameter regions in which stable small amplitude
patterns coexist with strongly modulated solutions.

. Introduction

Spontaneous pattern formation occurs throughout nature [1], with examples ranging from animal coat patterns [2] to territory
ormation [3], cell sorting [4] and swarm aggregation [5]. Therefore uncovering and analysing the mechanisms behind pattern
ormation is a central challenge in the life sciences where applied mathematics can play a role. Typically, research into pattern
ormation proceeds first by assessing which parameters may cause patterns to emerge spontaneously from a homogeneous steady
tate, using linear pattern formation analysis, sometimes called ‘Turing pattern analysis’ [2]. This determines whether patterns may
merge at short times from arbitrarily small perturbations. However, it is also important biologically to show whether these patterns
re stable. One approach to pattern stability is via weakly nonlinear analysis: a stable supercritical bifurcation branch suggest
hat asymptotic patterns will emerge continuously as the bifurcation parameter is changed, whereas an unstable subcritical branch
uggests that large amplitude asymptotic patterns may appear abruptly as the bifurcation point is crossed, their amplitude being
discontinuous function of the bifurcation parameter. This discontinuity in amplitude with respect to parameter change indicates

hat a biological system might suddenly change its behaviour in a dramatic fashion with only a small change in the underlying
echanisms.
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Many biological mechanisms generate attractive or repulsive forces governing phenomena such as chemotaxis [6,7], bacterial
rientation [8], swarms of animals [9], and motion of human crowds [10]. These mechanisms are driven by electrical, chemical
r social interactions. These interactions arise from individual organisms collecting information from their environment, such as
he presence of other individuals, food or chemicals. After gathering information, individuals move towards regions that contain
mportant components for survival or move away from less favourable areas, thus creating spatially inhomogeneous distributions of
ndividuals, which may have a certain degree of regularity in space and/or time (e.g. [5,11]). This process of acquiring information
rom the environment is generally nonlocal, as motile organisms are usually able to inspect a portion of their environment, either
y prolonging their protrusions, as in the case of cells [12], or by using their sight, hearing or smell, as with animals [13].

In recent years there has been an increasing interest in the mathematical modelling of nonlocal advection as a movement model
ith nonlocal information [4,5,12,14,15]. Recently, the following class of nonlocal advection–diffusion equations was proposed as
general model of interacting populations [11]

𝜕𝑢𝑖
𝜕𝑡

= 𝐷𝑖𝛥𝑢𝑖 + ∇ ⋅

(

𝑢𝑖
𝑁
∑

𝑗=1
𝛾𝑖𝑗∇(𝐾 ∗ 𝑢𝑗 )

)

, 𝑖 = 1,… , 𝑁. (1)

Here, 𝑢𝑖(𝑥, 𝑡) denotes the density of population 𝑖 at position 𝑥 and time 𝑡, for 𝑖 ∈ {1,… , 𝑁} and 𝐷𝑖 > 0 is the diffusion rate of 𝑢𝑖.
Individuals can detect the presence of other individuals, whether conspecifics or not, over a spatial neighbourhood described by
spatial averaging kernel 𝐾, which is a symmetric, non-negative function modelling the sensing range. The term 𝐾 ∗ 𝑢𝑗 denotes the
convolution between 𝐾 and 𝑢𝑗 and describes the nonlocal interactions of 𝑢𝑖 with 𝑢𝑗 . The parameters 𝛾𝑖𝑗 are the inter/intra-species
interaction parameters, giving the density-dependent rate at which species 𝑖 advects towards (if 𝛾𝑖𝑗 < 0), or away from (if 𝛾𝑖𝑗 > 0),
species 𝑗.

Model (1) implicitly focuses on time scales whereby birth and death processes are negligible. Nonetheless, it has a wide range
of possible applications in that it generalizes a variety of existing models describing many different phenomena, such as animal
home ranges [14], territory formation [3,16,17], and cell sorting [4]. On the mathematical side, well-posedness of System (1) was
analysed in [18,19]. When the kernel 𝐾 is sufficiently smooth, [18] shows that the system admits classical, positive and global
solutions in 1D dimension, and local strong solutions in any higher dimension. When the kernel is non-smooth, in [19] it is proven
that System (1) has weak solutions that exist globally in time.

From the perspective of pattern formation, numerical analysis shows that System (1) exhibits a great variety of spatio-temporal
patterns, depending on the model parameters. These include segregated and aggregated stationary patterns, periodic time oscillating
solutions, and aperiodic spatio-temporal behaviours [11,18]. In many cases the system admits an energy functional [20,21], which
can be used to gain analytic insight into the steady asymptotic patterns that can form from this system. Although [20] focused on
the 𝑁 = 2 case, the methods are more generally applicable in principle.

Here, we perform a bifurcation analysis of one of the cases analysed in [20], namely where 𝑁 = 2, 𝛾𝑖𝑗 = 𝛾𝑗𝑖 and 𝛾𝑖𝑖 = 0. For
simplicity, we also assume that 𝐷1 = 𝐷2. We use weakly nonlinear analysis to derive the equations governing the amplitude of the
stationary solutions. Through analysis of the amplitude equations, we determine the nature of bifurcations generating branches of
non-homogeneous solutions from a homogeneous state, then recover the shape of the non-homogeneous solutions and their stability.
We validate our results through numerical analysis, setting 𝐾 to be the top-hat distribution [20]. Finally, we combine our results
with results of [20] that were derived from an energy principle, to construct bifurcation diagrams that incorporate all the existing
analysis of this system.

An interesting feature of our analysis is that the equation governing the modulation of small-amplitude patterns is not always
the real Ginzburg–Landau (GL) equation. This contrasts with many examples of weakly nonlinear analysis, where the GL equation
provides the amplitude of the stationary pattern and its stability: in subcritical regimes, the pattern solution is always unstable;
in supercritical regimes, a periodic pattern is stable if its wavenumber lies within the Eckhaus band, [1,22–26]. In our case, the
real GL equation does not always provide a correct description of the pattern near the onset. This is because our system possesses
a conservation law, i.e. mass is conserved for all time. This conservation law gives rise to a large-scale neutral mode (the zero
mode) that can affect the stability of the pattern, so must be included into the analysis [27,28]. Therefore, the resulting amplitude
equations will consist of the GL equation coupled to an equation for the large-scale mode.

In [28] the authors used symmetry and scaling arguments to derive the amplitude equations governing systems with a conserved
quantity. They proved that there exist stable stationary solutions in the form of strongly modulated patterns (i.e. patterns that consist
of multiple Fourier modes), and these exist away from the branch that bifurcates from the constant steady state. The existence
of strongly modulated patterns for System (1) has also been shown in [20] by analysing the minimizers of an energy functional
associated with the system. Here we build on this by investigating the existence and stability of small amplitude patterns, and
showing that when these solutions are unstable, the system evolves towards either large amplitude or strongly modulated patterns.
In addition, our analysis shows that, in some parameter regions, stable small amplitude patterns can coexist with stable strongly
modulated solutions.

A similar two-species aggregation model was studied recently in [4]. Their model differs from our model (2) in regard of the
diffusion term. In [4] the terms 𝐷𝜕𝑥𝑥𝑢𝑖 for 𝑖 = 1, 2 are replaced by density dependent diffusion terms 𝐷𝜕𝑥(𝑢𝑖𝜕𝑥(𝑢1 + 𝑢2)). The pattern
forming mechanism is similar to our model, however, the arising aggregations have compact support.

This paper is organized as follows. Linear stability analysis is given in Section 2 and a weakly nonlinear analysis in Section 3.
In these two sections, the analysis is carried out with a generic kernel, in order to provide some general results that can be used for
future works. Section 4 focuses on detailed analysis where 𝐾 is the top-hat distribution. We analyse the amplitude equations, recover
the bifurcation diagrams and compare analytical results with numerical solutions. We finally combine the analysis performed here
with the results obtained in [20] to recover more exhaustive pictures of the bifurcation diagrams. In Section 5, we outline further
2

extensions of this work and discuss possible applications of our results to natural systems.
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2. Linear stability analysis

We consider System (1) with two interacting populations, 𝑢1 and 𝑢2, that either mutually avoid or attract with the same strength
(i.e. 𝛾12 = 𝛾21). We set 𝛾 ∶= 𝛾12 = 𝛾21 and fix 𝐷1 = 𝐷2 =∶ 𝐷, and 𝛾11 = 𝛾22 = 0. Therefore, System (1) reads as

𝜕𝑡𝑢1 = 𝐷𝜕𝑥𝑥𝑢1 + 𝛾𝜕𝑥
(

𝑢1𝜕𝑥(𝐾 ∗ 𝑢2)
)

,

𝜕𝑡𝑢2 = 𝐷𝜕𝑥𝑥𝑢2 + 𝛾𝜕𝑥
(

𝑢2𝜕𝑥(𝐾 ∗ 𝑢1)
)

.
(2)

We work on the one dimensional spatial domain 𝛺 =
[

− 𝑙
2 ,

𝑙
2

]

and impose periodic boundary conditions

𝑢𝑖
(

− 𝑙
2
, 𝑡
)

= 𝑢𝑖
( 𝑙
2
, 𝑡
)

, 𝜕𝑥𝑢𝑖
(

− 𝑙
2
, 𝑡
)

= 𝜕𝑥𝑢𝑖
( 𝑙
2
, 𝑡
)

, for 𝑖 ∈ {1, 2} and 𝑡 ≥ 0. (3)

We consider an even and non-negative kernel 𝐾 such that

∫

𝑙∕2

−𝑙∕2
𝐾(𝑥)𝑑𝑥 = 1, and Supp(𝐾) = {𝑥 ∈ R ∶ 𝐾(𝑥) > 0} = [−𝛼, 𝛼], (4)

where the constant 𝛼 denotes the sensitivity radius. We assume that 𝛼 < 𝑙∕2. Due to the periodic boundary conditions, we also
assume that 𝐾(𝑥) is wrapped around periodically over the domain.

The periodic boundary conditions (Eq. (3)) ensure that in System (2) the total mass of each population 𝑢𝑖 is conserved in time.
Indeed the following identities are satisfied

𝑑
𝑑𝑡 ∫

𝑙∕2

−𝑙∕2
𝑢𝑖(𝑥, 𝑡)d𝑥 = 0, for 𝑖 = 1, 2. (5)

ence

∫

𝑙∕2

−𝑙∕2
𝑢𝑖(𝑥, 𝑡)d𝑥 = ∫

𝑙∕2

−𝑙∕2
𝑢𝑖(𝑥, 0)d𝑥 =∶ 𝑝𝑖, for all 𝑡 ≥ 0, (6)

here the constant 𝑝𝑖 denotes the size of population 𝑢𝑖, for 𝑖 = 1, 2.
Eq. (6) implies that system (2) has a unique equilibrium point given by

�̄� ∶= (�̄�1, �̄�2) =
( 𝑝1
𝑙
,
𝑝2
𝑙

)

. (7)

2.1. Nondimensionalization

We start our analysis by rescaling the original system (2) using the following non-dimensional coordinates and variables

�̃� = 𝑥
𝛼
, 𝑡 = 𝐷

𝛼2
𝑡, �̃�1 = 𝑙𝑢1, �̃�2 = 𝑙𝑢2. (8)

Note that, instead of 𝛼, one could have rescaled using any other constant that is proportional to the standard deviation of 𝐾(𝑥)
instead, which may be useful if 𝐾(𝑥) does not have compact support, for example.

In the non-dimensional spatial domain, we define the following kernel

�̃�(�̃�) ∶= 𝛼𝐾(𝛼�̃�) = 𝛼𝐾(𝑥). (9)

By Eq. (9), we see that Supp(�̃�) = [−1, 1] and that

∫

1

−1
�̃�(�̃�)𝑑�̃� = ∫

1

−1
𝛼𝐾(𝛼�̃�)𝑑�̃� = ∫

𝛼

−𝛼
𝐾(𝑥)𝑑𝑥 = 1. (10)

By (8) and (9), it follows that the convolution product becomes

𝐾 ∗ 𝑢𝑖(𝑥) = ∫

𝛼

−𝛼
𝐾(𝑥 − 𝑦)𝑢𝑖(𝑦)𝑑𝑦

= ∫

1

−1

1
𝛼
�̃�(�̃� − �̃�) 1

𝑙
�̃�𝑖(�̃�)𝛼𝑑�̃�

= 1
𝑙
�̃� ∗∼ �̃�𝑖(�̃�),

(11)

here ∗∼ denotes the convolution operator in the rescaled spatial coordinate.
By substituting Eqs. (8), (9) and (11) in Eqs. (2), we obtain the following non-dimensional system

𝜕𝑡�̃�1 = 𝜕�̃��̃��̃�1 +
𝛾
𝑙𝐷
𝜕�̃�

(

�̃�1𝜕�̃�(�̃� ∗∼ �̃�2)
)

,

𝜕𝑡�̃�2 = 𝜕�̃��̃��̃�2 +
𝛾
𝑙𝐷
𝜕�̃�

(

�̃�2𝜕�̃�(�̃� ∗∼ �̃�1)
)

,
(12)

where �̃� ∈
[

− 𝑙
2𝛼 ,

𝑙
2𝛼

]

. By the relations in Eq. (8), the boundary conditions now read as:

�̃�
(

− 𝑙 , 𝑡
)

= �̃�
( 𝑙 , 𝑡

)

, 𝜕 �̃�
(

− 𝑙 , 𝑡
)

= 𝜕 �̃�
( 𝑙 , 𝑡

)

, ∀𝑖 ∈ {1,… , 𝑁} and 𝑡 ≥ 0. (13)
3
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The boundary conditions (Eq. (13)) imply that the total mass of each population �̃�𝑖 is conserved in time. Therefore, for 𝑖 = 1, 2 and
ll 𝑡 ≥ 0, the following identities hold

∫

𝑙∕2𝛼

−𝑙∕2𝛼
�̃�𝑖(0, 𝑡)d�̃� = ∫

𝑙∕2𝛼

−𝑙∕2𝛼
�̃�𝑖(�̃�, 𝑡)d�̃� = ∫

𝑙∕2

−𝑙∕2

𝑙
𝛼
𝑢𝑖(𝑥, 𝑡)𝑑𝑥 = 𝑙

𝛼
𝑝𝑖, (14)

where the second equality uses the identities in Eq. (8) and the third equality uses Eq. (6). By Eq. (14) it follows that the
non-dimensional system in (12) has a unique equilibrium point given by

̄̃𝐮 ∶= ( ̄̃𝑢1, ̄̃𝑢2) =
(

𝑝1, 𝑝2
)

. (15)

To simplify the notation, we define �̃� ∶= 𝛾
𝑙𝐷 and 𝐿 ∶= 𝑙

𝛼 , and by dropping the tildes, the non-dimensional system (12) reads as

𝜕𝑡𝑢1 = 𝜕𝑥𝑥𝑢1 + 𝛾𝜕𝑥
(

𝑢1𝜕𝑥(𝐾 ∗ 𝑢2)
)

,

𝜕𝑡𝑢2 = 𝜕𝑥𝑥𝑢2 + 𝛾𝜕𝑥
(

𝑢2𝜕𝑥(𝐾 ∗ 𝑢1)
)

,
(16)

where 𝑥 ∈
[

−𝐿
2 ,

𝐿
2

]

. The boundary conditions for System (16) read as:

𝑢𝑖
(

−𝐿
2
, 𝑡
)

= 𝑢𝑖
(𝐿
2
, 𝑡
)

, 𝜕𝑥𝑢𝑖
(

−𝐿
2
, 𝑡
)

= 𝜕𝑥𝑢𝑖
(𝐿
2
, 𝑡
)

, ∀𝑖 ∈ {1,… , 𝑁} and 𝑡 ≥ 0. (17)

2.2. Linear stability analysis

We now perform a linear stability analysis of system (16) about the equilibrium point

�̄� = (�̄�1, �̄�2) = (𝑝1, 𝑝2), (18)

(see Eq. (15)). To this end, we consider a perturbation of the homogeneous solution (18) of the following form

𝐰 =
(

𝑢1 − �̄�1
𝑢2 − �̄�2

)

= 𝐮(0)𝑒𝜆𝑡+𝑖𝑞𝑥, (19)

subject to boundary conditions (17), where 𝐮(0) is a constant vector, 𝜆 ∈ R is the growth rate and 𝑞 is the wavenumber of the
perturbation. By substituting Eq. (19) into Eq. (16) and neglecting nonlinear terms, we obtain the following eigenvalue problem

𝜆(𝑞)𝐰 = (𝑞)𝐰, (20)

where

(𝑞) = −𝑞2
[

1 𝛾�̄�1�̂�(𝑞)

𝛾�̄�2�̂�(𝑞) 1

]

, (21)

and

�̂�(𝑞) ∶=∫

1

−1
𝐾(𝑥)𝑒−𝑖𝑞𝑥d𝑥 = ∫

1

−1
𝐾(𝑥) cos(𝑞𝑥)d𝑥, (22)

where the second equality uses the fact that 𝐾(𝑥) is an even function and then 𝐾(𝑥) sin(𝑞𝑥) is an odd function.
The eigenvalues of the matrix  (21) read

𝜆±(𝑞) ∶= −𝑞2(1 ± 𝛾|�̂�(𝑞)|
√

�̄�1�̄�2), (23)

and govern the evolution of the perturbation 𝐰 (Eq. (19)). If 𝛾 = 0 then 𝜆±(𝑞) ≤ 0. By continuity, if 𝛾 is arbitrarily small, 𝜆±(𝑞) ≤ 0 for
all wavenumbers 𝑞, and the equilibrium point �̄� (Eq. (18)) is linearly stable. As |𝛾| increases, either 𝜆+(𝑞) or 𝜆−(𝑞) becomes positive
or some values of 𝑞 and, consequently, the equilibrium �̄� becomes unstable.

The wavenumbers 𝑞 must be chosen in such a way that the periodic boundary conditions in Eq. (17) are satisfied, and thus we
ave a discrete set of admissible wavenumbers given by

𝐼 =
{

𝑞𝑚 ∶= 2𝜋𝑚
𝐿

, with 𝑚 ∈ Z≥0

}

. (24)

The equilibrium �̄� (Eq. (18)) is unstable when 𝜆±(𝑞𝑚) > 0 for some 𝑚 ∈ Z≥0. Note that 𝜆±(𝑞0) = 0 so the system never becomes
unstable at wavenumber 𝑞0. For 𝑚 > 0, if �̂�(𝑞𝑚) ≠ 0, we denote by 𝛾±𝑚 the instability thresholds of the wavenumber 𝑞𝑚, which are
efined as

𝛾±𝑚 = ± 1
|�̂�(𝑞𝑚)|

√

�̄�1�̄�2
, 𝑚 ∈ Z>0. (25)

Therefore the equilibrium �̄� (Eq. (18)) is unstable when

𝛾 < 𝛾− or 𝛾 > 𝛾+, for some 𝑚 ∈ Z . (26)
4

𝑚 𝑚 >0
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In the following section, we will perform a weakly nonlinear analysis to study the evolution of the perturbation 𝐰 when the
quilibrium �̄� becomes linearly unstable. We will adopt 𝛾 as bifurcation parameter and denote by 𝑞𝑐 the first admissible wavenumber
hat is destabilized as |𝛾| is increased. By Eq. (25), we note the critical wavenumber 𝑞𝑐 is defined as

𝑞𝑐 = arg max
𝑞𝑚∈𝐼

|�̂�(𝑞𝑚)|, (27)

where the set 𝐼 is defined in (24). We also underline that 𝑞𝑐 depends on the choice of kernel 𝐾 and may not be unique. We will
enote by 𝛾±𝑐 the corresponding bifurcation thresholds, that is

𝛾+𝑐 = 1
|�̂�(𝑞𝑐 )|

√

�̄�1�̄�2
and 𝛾−𝑐 = − 1

|�̂�(𝑞𝑐 )|
√

�̄�1�̄�2
. (28)

3. Amplitude equations

In this section we perform a weakly nonlinear analysis based on the method of multiple scales. Close to the threshold of instability,
that is in the weakly non-linear regime, we will use an expansion technique to recover an approximated solution, characterized by
a slowly varying amplitude, and the equations governing the amplitude of the solution. Through the analysis of these equations
(usually referred to as amplitude equations), we recover the amplitude and stability of the stationary solutions.

The idea behind the multiple scale method comes from the observation that, just above an instability threshold, a nonlinear
state is given by a superposition of modes whose wavenumbers 𝑞 lie in a narrow band 𝑞− ≤ 𝑞 ≤ 𝑞+ (see [29] Cap 6). The resulting
nonlinear state is a solution governed by one or more unstable modes and characterized by an amplitude that varies slowly in space,
due to the superposition of modes with almost identical wavenumbers. Also, the amplitude evolves slowly in time because, close to
the onset of instability, all growth rates are small.

Generally just beyond a bifurcation threshold, if the band of unstable wavenumbers [𝑞−, 𝑞+] around 𝑞𝑐 has width 𝑂(𝜀), where
𝜀 ≪ 1, the positive growth rates are 𝑂(𝜀2). Therefore, the solution evolves as

𝐮(𝑥, 𝑡) ∼ �̄� + �̃�(𝑋, 𝑇 )𝑒𝑖𝑞𝑐𝑥 + 𝐴∗(𝑋, 𝑇 )𝑒−𝑖𝑞𝑐𝑥, (29)

where 𝑋 = 𝜀𝑥 is a long spatial scale, 𝑇 = 𝜀2𝑡 is a slow temporal scale, �̃�(𝑋, 𝑇 ) is a complex function and denotes the slow modulation
of the critical mode 𝑒𝑖𝑞𝑐𝑥, and 𝐴∗ is the complex conjugate of �̃�. Also, in the limit of 𝜀→ 0, this solution must satisfy the boundary
conditions in Eq. (17).

However, in systems with a conservation law, so that 𝜆(0) = 0, long-scale modes evolve on long timescales, and must be included
in the analysis (see also [28]). Therefore solutions to System (16)–(17) evolve as

𝐮(𝑥, 𝑡) = �̄� + �̃�(𝑋, 𝑇 )𝑒𝑖𝑞𝑐𝑥 + 𝐴∗(𝑋, 𝑇 )𝑒−𝑖𝑞𝑐𝑥 + �̃�(𝑋, 𝑇 ), (30)

where �̃�(𝑋, 𝑇 ) is a real function and denotes the slow modulation of the mode corresponding to the zero wavenumber, 𝑞 = 0.
Recall that the homogeneous steady state is linearly stable for 𝛾−𝑐 < 𝛾 < 𝛾+𝑐 , and becomes unstable for 𝛾 < 𝛾−𝑐 or 𝛾 > 𝛾+𝑐 . In

the following Theorem, we derive an approximation of the solutions close to the instability thresholds (𝛾 ≈ 𝛾+𝑐 or 𝛾 ≈ 𝛾−𝑐 ) and the
equations governing the amplitude of the solutions. Since the analysis is broadly the same, we do not distinguish between 𝛾+𝑐 and
𝛾−𝑐 and use 𝛾𝑐 to denote both the thresholds. This Theorem also shows that the ansatz in Eq. (30) correctly describes solutions in
the weakly nonlinear regime.

Theorem 3.1. Let 𝜀 ∶=
√

|

𝛾−𝛾𝑐
𝛾𝑐

|. When 𝜀 ≪ 1, solutions to system (16) have the following form

𝑢1 = �̄�1 + 𝜀𝜌1(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥) + 𝜀2[𝜓1(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥) + 𝐵] + 𝑂(𝜀3),

𝑢2 = �̄�2 + 𝜀𝜌2(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥) + 𝜀2[𝜓2(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥) + 𝐵] + 𝑂(𝜀3).
(31)

Here, (�̄�1, �̄�2) is the homogeneous steady state (18), and 𝜌1, 𝜌2, 𝜓1, 𝜓2 are constants defined as

𝜌1 = 1, 𝜌2 = − 1
𝛾𝑐 �̄�1�̂�(𝑞𝑐 )

,

𝜓1 =
1
2�̄�1

1 − 𝛾𝑐 �̄�1�̂�(2𝑞𝑐 )
1 − 𝛾2𝑐 �̄�1�̄�2�̂�2(2𝑞𝑐 )

, 𝜓2 =
1
2�̄�1

1 − 𝛾𝑐 �̄�2�̂�(2𝑞𝑐 )
1 − 𝛾2𝑐 �̄�1�̄�2�̂�2(2𝑞𝑐 )

.
(32)

Also, 𝐴(𝑋, 𝑇 ) and 𝐵(𝑋, 𝑇 ) are governed by the following equations

1. If �̄�1 ≠ �̄�2,

𝐴𝑇 = 𝜎𝐴 − 𝛬|𝐴|2𝐴,

𝐵 = 0,
. (33)

2. If �̄�1 = �̄�2,

𝐴𝑇 = 𝜎𝐴 − 𝛬|𝐴|2𝐴 + 𝜈𝐴𝐵,
2 (34)
5

𝐵𝑇 = 𝜇𝐵𝑋𝑋 − 𝜂(|𝐴| )𝑋𝑋 ,
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where the coefficients 𝜎, 𝛬, 𝜈, 𝜇 and 𝜂 are defined as

𝜎 = −𝑞2𝑐 , if 𝛾
−
𝑐 < 𝛾 < 𝛾

+
𝑐 (stable regime), 𝜎 = 𝑞2𝑐 , if 𝛾 < 𝛾

−
𝑐 or 𝛾 > 𝛾+𝑐 (unstable regime),

𝛬 = 1
2
𝑞2𝑐 𝛾𝑐 [2�̂�(2𝑞𝑐 )(𝜓1 + 𝜓2) − �̂�(𝑞𝑐 )(𝜓1𝜌2 + 𝜓2𝑎2)],

𝜈 =
𝑞2𝑐
�̄�1
, 𝜇 = 1 + 𝛾𝑐 �̄�1�̂�(0), 𝜂 = 1

�̄�1
.

(35)

Finally, 𝐴∗ denotes the complex conjugate of 𝐴.

roof. Recall the definition of 𝐰 from Eq. (19). Separating the linear part from the non linear part, System (16) can be rewritten
s

𝜕𝑡𝐰 = 𝜕𝑥𝑥𝛾 [𝐰] + 𝜕𝑥𝛾 [𝐰, 𝜕𝑥(𝐾 ∗ 𝐰)], (36)

here the actions of linear operator 𝛾 and the non-linear operator 𝛾 on the vectors 𝐫 = (𝑟1, 𝑟2)𝑇 and 𝐬 = (𝑠1, 𝑠2)𝑇 are defined as

𝛾 [𝐫] =
(

1 𝛾�̄�1𝐾 ∗
𝛾�̄�2𝐾 ∗ 1

)(

𝑟1
𝑟2

)

, 𝛾 [𝐫, 𝐬] = 𝛾
(

𝑟1𝑠2
𝑟2𝑠1

)

. (37)

hoosing 𝛾 such that 𝛾 − 𝛾𝑐 ∼ 𝜀2, we write the following expansion

𝛾 = 𝛾𝑐 + 𝜀2𝛾 (2). (38)

rom the definition of 𝜀, it follows that either 𝛾 (2) = 𝛾𝑐 or 𝛾 (2) = −𝛾𝑐 . In particular, 𝛾 (2) = −𝛾𝑐 in the stable regime (𝛾−𝑐 < 𝛾 < 𝛾+𝑐 ),
hile 𝛾 (2) = 𝛾𝑐 in the unstable regime (𝛾 < 𝛾−𝑐 or 𝛾 > 𝛾+𝑐 ).

We then employ the method of multiple scales and adopt a long spatial scale 𝑋 = 𝜀𝑥 and multiple temporal scales 𝑇1, 𝑇2,… such
that

𝑡 =
𝑇1
𝜀

+
𝑇2
𝜀2

+⋯ . (39)

As 𝜀→ 0, temporal and spatial derivatives decouple as

𝜕𝑡 → 𝜕𝑡 + 𝜀𝜕𝑇1 + 𝜀
2𝜕𝑇2 , 𝜕𝑥 → 𝜕𝑥 + 𝜀𝜕𝑋 . (40)

We employ a regular asymptotic expansion of 𝐰 in terms of 𝜀

𝐰 = 𝜀𝐰1 + 𝜀2𝐰2 + 𝜀3𝐰3 +⋯ , (41)

where

𝐰𝑗 =
∞
∑

𝑚=−∞
𝐰𝑗𝑚(𝑋, 𝑇1, 𝑇2)𝑒𝑖𝑞𝑚𝑥, for 𝑗 = 1, 2,… , (42)

and must satisfy the boundary conditions in Eqs. (17).
By Eqs. (38) and (41), we see that the operators 𝛾 and 𝛾 in (37) decouple in orders of 𝜀 as

𝛾 [𝐫] =
(

1 (𝛾𝑐 + 𝜀2𝛾 (2))�̄�1𝐾 ∗
(𝛾𝑐 + 𝜀2𝛾 (2))�̄�2𝐾 ∗ 1

)(

𝑟1
𝑟2

)

= 𝛾𝑐 [𝐫] + 𝜀2
(

0 𝛾 (2)�̄�1𝐾 ∗
𝛾 (2)�̄�2𝐾 ∗ 0

)(

𝑟1
𝑟2

)

,

𝛾 [𝐫, 𝐬] = (𝛾𝑐 + 𝜀2𝛾 (2))
(

𝑟1𝑠2
𝑟2𝑠1

)

= 𝛾𝑐 [𝐫, 𝐬] + 𝜀2𝛾(2) [𝐫, 𝐬] .

(43)

By substituting Eqs. (41), (38), (40) and (43) into Eq. (36), we obtain

𝜀2𝜕𝑇1𝐰1 + 𝜀3𝜕𝑇2𝐰1 + 𝜀3𝜕𝑇1𝐰2 + 𝜀4𝜕𝑇2𝐰2 =

(𝜕𝑥𝑥 + 2𝜀𝜕𝑥𝑋 + 𝜀2𝜕𝑋𝑋 )𝛾𝑐 [𝜀𝐰1 + 𝜀2𝐰2 + 𝜀3𝐰3 + 𝜀4𝐰4]

+ 𝜀2(𝜕𝑥𝑥 + 2𝜀𝜕𝑥𝑋 + 𝜀2𝜕𝑋𝑋 )
(

0 𝛾 (2)�̄�1𝐾 ∗
𝛾 (2)�̄�2𝐾 ∗ 0

)

(𝜀𝐰1 + 𝜀2𝐰2 + 𝜀3𝐰3)

+ (𝜕𝑥 + 𝜀𝜕𝑋 )𝛾𝑐 [(𝜀𝐰1 + 𝜀2𝐰2 + 𝜀3𝐰3), (𝜕𝑥 + 𝜀𝜕𝑋 )(𝐾 ∗ (𝜀𝐰1 + 𝜀2𝐰2 + 𝜀3𝐰3))]
2 𝛾 (2) 2 3 2 3 5

(44)
6

+ 𝜀 (𝜕𝑥 + 𝜀𝜕𝑋 ) [(𝜀𝐰1 + 𝜀 𝐰2 + 𝜀 𝐰3), (𝜕𝑥 + 𝜀𝜕𝑋 )(𝐾 ∗ (𝜀𝐰1 + 𝜀 𝐰2 + 𝜀 𝐰3))] + 𝑂(𝜀 ).
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Next we collect the terms at each order of 𝜀 and obtain a sequence of equations for each 𝐰𝑖. At order 𝜀, we obtain the homogeneous
linear problem 𝜕𝑥𝑥𝛾𝑐 [𝐰1] = 0, where the function 𝐰1, has the form as in (42). Therefore, we have:

𝜕𝑥𝑥𝛾𝑐 [𝐰1] = 𝜕𝑥𝑥
∞
∑

𝑚=−∞

(

1 𝛾𝑐 �̄�1𝐾 ∗
𝛾𝑐 �̄�2𝐾 ∗ 1

)

𝐰1𝑚𝑒
𝑖𝑞𝑚𝑥

= 𝜕𝑥𝑥
∞
∑

𝑚=−∞

(

1 𝛾𝑐 �̄�1�̂�(𝑞𝑚)
𝛾𝑐 �̄�2�̂�(𝑞𝑚) 1

)

𝐰1𝑚𝑒
𝑖𝑞𝑚𝑥

= −
∞
∑

𝑚=−∞
𝑞2𝑚

(

1 𝛾𝑐 �̄�1�̂�(𝑞𝑚)
𝛾𝑐 �̄�2�̂�(𝑞𝑚) 1

)

𝐰1𝑚𝑒
𝑖𝑞𝑚𝑥

= 0,

(45)

where the second equality uses

𝐾 ∗ 𝑒𝑖𝑞𝑚𝑥 = ∫

1

−1
𝐾(𝑦)𝑒𝑖𝑞𝑚(𝑥−𝑦)𝑑𝑦 = ∫

1

−1
𝐾(𝑦)𝑒−𝑖𝑞𝑚𝑦𝑑𝑦𝑒𝑖𝑞𝑚𝑥 = �̂�(𝑞𝑚)𝑒𝑖𝑞𝑚𝑥. (46)

with �̂� defined in (22). The fourth equality in Eq. (45) is satisfied if and only if

𝑞2𝑚

(

1 𝛾𝑐 �̄�1�̂�(𝑞𝑚)
𝛾𝑐 �̄�2�̂�(𝑞𝑚) 1

)

𝐰1𝑚𝑒
𝑖𝑞𝑚𝑥 = 0, for all 𝑚 ∈ Z. (47)

Non-trivial solutions to Eq. (47) exist when either the determinant of the matrix is zero or 𝑞𝑚 = 0. Recalling the definition of 𝑞𝑚
24) and 𝛾𝑐 (28), we see that non-trivial solutions exist only for 𝑞𝑚 = 𝑞0 and 𝑞𝑚 = 𝑞𝑐 .

Therefore, the function 𝐰1 that satisfies this linear problem 𝜕𝑥𝑥𝛾𝑐 [𝐰1] = 0 is

𝐰1 = 𝝆0𝐴0(𝑋, 𝑇1, 𝑇2) + 𝝆
(

𝐴(𝑋, 𝑇1, 𝑇2)𝑒𝑖𝑞𝑐𝑥 + 𝐴∗(𝑋, 𝑇1, 𝑇2)𝑒−𝑖𝑞𝑐𝑥
)

, (48)

where 𝐴0(𝑋, 𝑇1, 𝑇2) is a real function, 𝐴(𝑋, 𝑇1, 𝑇2) is a complex function, 𝐴∗ denotes the complex conjugate of 𝐴, and

𝝆0 =
(

𝜌01
𝜌02

)

, 𝝆 =
(

𝜌1
𝜌2

)

(49)

are constant vectors. First, notice that 𝜕𝑥𝑥𝛾𝑐 [𝝆0𝐴0(𝑋, 𝑇1, 𝑇2)] = 0, for any 𝝆0 and 𝐴0(𝑋, 𝑇1, 𝑇2). Also, in order to satisfy 𝜕𝑥𝑥𝛾𝑐 [𝐰1] = 0,
the vector 𝝆 must be such that

𝝆 ∈ Ker
(

1 𝛾𝑐 �̄�1�̂�(𝑞𝑐 )
𝛾𝑐 �̄�2�̂�(𝑞𝑐 ) 1

)

, (50)

where �̂� is defined in (22). Since 𝛾𝑐�̂�(𝑞𝑐 )
√

�̄�1�̄�2 = ±1 (see Eq. (28)), 𝝆 can be defined up to a constant. We shall choose the following
normalization

𝝆 =
(

1
𝜌2

)

, where 𝜌2 ∶= − 1
𝛾𝑐 �̄�1�̂�(𝑞𝑐 )

. (51)

At this stage, the amplitudes 𝐴(𝑋, 𝑇1, 𝑇2) and 𝐴0(𝑋, 𝑇1, 𝑇2), and the vector 𝝆0 are still unknown.
At order 𝜀2 we obtain the following problem

𝜕𝑥𝑥𝛾𝑐 [𝐰2] = 𝐅, (52)

with
𝐅 = − 2𝜕𝑥𝑋𝛾𝑐 [𝐰1] − 𝜕𝑥𝛾𝑐 [𝐰1, 𝜕𝑥(𝐾 ∗ 𝐰1)] + 𝜕𝑇1𝐰1

= − 2𝑖𝑞𝑐

(

1 𝛾𝑐 �̄�1�̂�(𝑞𝑐 )
𝛾𝑐 �̄�2�̂�(𝑞𝑐 ) 1

)(

1
𝜌2

)

(𝐴𝑋𝑒𝑖𝑞𝑐𝑥 − 𝐴∗
𝑋𝑒

−𝑖𝑞𝑐𝑥)

+ 2𝑞2𝑐 𝜌2𝛾𝑐�̂�(𝑞𝑐 )
(

1
1

)

(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥)

+ 𝑞2𝑐 𝛾𝑐�̂�(𝑞𝑐 )
(

𝜌01𝜌2
𝜌02

)

𝐴0(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥)

+ 𝝆0𝜕𝑇1𝐴0 + 𝝆
(

𝜕𝑇1𝐴𝑒
𝑖𝑞𝑐𝑥 + 𝜕𝑇1𝐴

∗𝑒−𝑖𝑞𝑐𝑥
)

=2𝑞2𝑐 𝜌2𝛾𝑐�̂�(𝑞𝑐 )
(

1
1

)

(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥) + 𝑞2𝑐 𝛾𝑐�̂�(𝑞𝑐 )
(

𝜌01𝜌2
𝜌02

)

𝐴0(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥)

= − 2
�̄�1
𝑞2𝑐

(

1
1

)

(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥) + 𝑞2𝑐 𝛾𝑐�̂�(𝑞𝑐 )
(

𝜌01𝜌2
𝜌02

)

𝐴0(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥)

+ 𝝆0𝜕𝑇1𝐴0 + 𝝆
(

𝜕𝑇1𝐴𝑒
𝑖𝑞𝑐𝑥 + 𝜕𝑇1𝐴

∗𝑒−𝑖𝑞𝑐𝑥
)

,

(53)

here the second equality uses Eq. (46), the third equality is true because, by Eq. (50), the term on the second line is equal to zero,
nd the fourth equality uses the definition of 𝜌 (Eq. (51)).
7
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By the Fredholm Alternative Theorem, Eq. (52) admits a solution if and only if for any 𝐚 ∈ 𝐿2(−𝐿∕2, 𝐿∕2) such that

𝐚 ∈ Ker{(𝜕𝑥𝑥𝛾𝑐 )𝑇 } = Ker
{

𝜕𝑥𝑥

(

1 𝛾𝑐 �̄�2𝐾 ∗
𝛾𝑐 �̄�1𝐾 ∗ 1

)}

, (54)

he equality ⟨𝐅, 𝐚⟩ = 0 is satisfied, where ⟨⋅, ⋅⟩ denotes the scalar product in 𝐿2(−𝐿∕2, 𝐿∕2). Notice that any 𝐚 ≠ 𝟎 satisfying the
condition in (54) is a constant multiple of

𝐚 =
(

1
𝑎2

)

(𝑒𝑖𝑞𝑐𝑥 + 𝑒−𝑖𝑞𝑐𝑥), with 𝑎2 ∶= − 1
𝛾𝑐 �̄�2�̂�(𝑞𝑐 )

. (55)

Therefore Eq. (52) only has a solution when 𝜌01 = 𝜌02 = 0 and 𝜕𝑇1𝐴 = 0, that is the amplitude 𝐴 does not depend on 𝑇1. From now
on, we will denote 𝑇2 by 𝑇 for simplicity and write 𝐴(𝑋, 𝑇 ) instead of 𝐴(𝑋, 𝑇2).

Therefore, the linear problem in Eq. (52) reduces to

𝜕𝑥𝑥𝛾𝑐 [𝐰2] = − 2
�̄�1
𝑞2𝑐

(

1
1

)

(𝐴2(𝑋, 𝑇 )𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2(𝑋, 𝑇 )𝑒−2𝑖𝑞𝑐𝑥). (56)

Finally, by Eq. (56) it follows that the function 𝐰2, having the form as in (42), is given by

𝐰2 = 𝝍0𝐵0(𝑋, 𝑇 ) + 𝝍(𝐴2(𝑋, 𝑇 )𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2(𝑋, 𝑇 )𝑒−2𝑖𝑞𝑐𝑥), (57)

where 𝐵0(𝑋, 𝑇 ) is a real function and

𝝍0 =
(

𝜓01
𝜓02

)

, 𝝍 =
(

𝜓1
𝜓2

)

(58)

are constant vectors. Notice that 𝜕𝑥𝑥𝛾𝑐 [𝝍0𝐵0(𝑋, 𝑇 )] = 0, for any 𝝍0 and 𝐵0(𝑋, 𝑇 ). Substituting Eq. (57) into Eq. (56) and solving
for 𝝍 we obtain

𝜓1 =
1
2�̄�1

1 − 𝛾𝑐 �̄�1�̂�(2𝑞𝑐 )
1 − 𝛾2𝑐 �̄�1�̄�2�̂�2(2𝑞𝑐 )

,

𝜓2 =
1
2�̄�1

1 − 𝛾𝑐 �̄�2�̂�(2𝑞𝑐 )
1 − 𝛾2𝑐 �̄�1�̄�2�̂�2(2𝑞𝑐 )

,
(59)

hilst 𝐴(𝑋, 𝑇 ), 𝐵0(𝑋, 𝑇 ), and 𝝍0 remain unknown.
At order 𝜖3, we find the following problem

𝜕𝑥𝑥𝛾𝑐 [𝐰3] = 𝐆, (60)

here

𝐆 = 𝜕𝑇𝐰1 − 2𝜕𝑥𝑋𝛾𝑐 [𝐰2] − 𝜕𝑋𝑋𝛾𝑐 [𝐰1] −
(

0 𝛾 (2)�̄�1𝐾 ∗
𝛾 (2)�̄�2𝐾 ∗ 0

)

𝜕𝑥𝑥𝐰1

− 𝜕𝑥𝛾𝑐 [𝐰1, 𝜕𝑥(𝐾 ∗ 𝐰2)] − 𝜕𝑥𝛾𝑐 [𝐰2, 𝜕𝑥(𝐾 ∗ 𝐰1)]

− 𝜕𝑥𝛾𝑐 [𝐰1, 𝜕𝑋 (𝐾 ∗ 𝐰1)] − 𝜕𝑋𝛾𝑐 [𝐰1, 𝜕𝑥(𝐾 ∗ 𝐰1)]

= (𝐴𝑇 𝑒𝑖𝑞𝑐𝑥 + 𝐴∗
𝑇 𝑒

−𝑖𝑞𝑐𝑥)𝝆 + 8𝑖𝑞𝑐

(

1 𝛾𝑐 �̄�1�̂�(2𝑞𝑐 )
𝛾𝑐 �̄�2�̂�(2𝑞𝑐 ) 1

)

𝝍(𝐴𝐴𝑋𝑒2𝑖𝑞𝑐𝑥 − 𝐴∗𝐴∗
𝑋𝑒

−2𝑖𝑞𝑐𝑥)

−
(

1 𝛾𝑐 �̄�1�̂�(𝑞𝑐 )
𝛾𝑐 �̄�2�̂�(𝑞𝑐 ) 1

)

𝝆(𝐴𝑋𝑋𝑒𝑖𝑞𝑐𝑥 + 𝐴∗
𝑋𝑋𝑒

−𝑖𝑞𝑐𝑥)

+ 𝑞2𝑐 𝛾
(2)�̂�(𝑞𝑐 )

(

𝜌2�̄�1
�̄�2

)

(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥)

+ 𝑞2𝑐 𝛾𝑐

(

2�̂�(2𝑞𝑐 )
(

𝜓2
𝜓1𝜌2

)

− �̂�(𝑞𝑐 )
(

𝜓1𝜌2
𝜓2

))

|𝐴|2(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥)

+ 𝑞2𝑐 𝛾𝑐�̂�(𝑞𝑐 )
(

𝜓01𝜌2
𝜓02

)

(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥)𝐵0

+ 3𝑞2𝑐 𝛾𝑐

(

2�̂�(2𝑞𝑐 )
(

𝜓2
𝜓1𝜌2

)

+ �̂�(𝑞𝑐 )
(

𝜓1𝜌2
𝜓2

))

(𝐴3𝑒3𝑖𝑞𝑐𝑥 + 𝐴∗3𝑒−3𝑖𝑞𝑐𝑥)

− 4𝑖𝑞𝑐�̂�(𝑞𝑐 )𝜌2

(

1
1

)

(𝐴𝐴𝑋𝑒2𝑖𝑞𝑐𝑥 − 𝐴∗𝐴∗
𝑋𝑒

−2𝑖𝑞𝑐𝑥).

(61)

By Eq. (50), it follows that the third term of the second equality of Eq. (60) is the null vector. In order to simplify the notation, we
rewrite Eq. (61) as:

𝐆 =(𝐴𝑇 𝝆 + 𝐴𝐆1 + 𝐴𝐵0𝐆
(2)
1 + |𝐴|2𝐴𝐆(3)

1 )𝑒𝑖𝑞𝑐𝑥 +𝐆2(𝐴2)𝑋𝑒2𝑖𝑞𝑐𝑥 +𝐆3𝐴
3𝑒3𝑖𝑞𝑐𝑥

∗ ∗ ∗ (2) ∗ 2 ∗ (3) −𝑖𝑞𝑐𝑥 ∗2 −2𝑖𝑞𝑐𝑥 ∗3 −3𝑖𝑞𝑐𝑥
(62)
8

+ (𝐴𝑇 𝝆 + 𝐴 𝐆1 + 𝐴 𝐵0𝐆1 + |𝐴 | 𝐴 𝐆1 )𝑒 +𝐆2(𝐴 )𝑋𝑒 +𝐆3𝐴 𝑒 .
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The linear problem in Eq. (60) admits a solution if and only the Fredholm condition ⟨𝐆, 𝐚⟩ = 0 is satisfied, where 𝐚 is defined
n Eq. (54). Note that the terms 𝐆2(𝐴2)𝑋𝑒2𝑖𝑞𝑐𝑥 + 𝐆2(𝐴∗2 )𝑋𝑒−2𝑖𝑞𝑐𝑥 and 𝐆3𝐴3𝑒3𝑖𝑞𝑐𝑥 + 𝐆3𝐴∗3𝑒−3𝑖𝑞𝑐𝑥 are hortogonal to 𝐚. Therefore, the
redholm condition ⟨𝐆, 𝐚⟩ = 0 for Eq. (60) gives the following amplitude equation

𝐴𝑇 = 𝜎𝐴 − 𝛬|𝐴|2𝐴 + 𝛿𝐴𝐵0, (63)

here

𝜎 = −
⟨𝐆1, 𝐚⟩
⟨𝝆, 𝐚⟩

= 𝑞2𝑐
𝛾 (2)

𝛾𝑐
,

𝛬 =
⟨𝐆(3)

1 , 𝐚⟩
⟨𝝆, 𝐚⟩

= 1
2
𝑞2𝑐 𝛾𝑐 (2�̂�(2𝑞𝑐 )(𝜓1 + 𝜓2) − �̂�(𝑞𝑐 )(𝜓1𝜌2 + 𝜓2𝑎2)),

𝛿 = −
⟨𝐆(2)

1 , 𝐚⟩
⟨𝝆, 𝐚⟩

= 1
2
𝑞2𝑐

(

𝜓01
�̄�1

+
𝜓02
�̄�2

)

.

(64)

At order 𝜖4, we have the following problem

𝜕𝑥𝑥𝛾𝑐 [𝐰4] = 𝜕𝑇𝐰2 − 2𝜕𝑥𝑋𝛾𝑐 [𝐰3] − 𝜕𝑋𝑋𝛾𝑐 [𝐰2]

− 𝛾 (2)�̂�(2𝑞𝑐 )
(

0 �̄�1
�̄�2 0

)

𝜕𝑥𝑥𝐰2 − 2𝛾 (2)�̂�(𝑞𝑐 )
(

0 �̄�1
�̄�2 0

)

𝜕𝑥𝑋𝐰1

− 𝜕𝑥𝛾𝑐 [𝐰1, 𝜕𝑥(𝐾 ∗ 𝐰3)] − 𝜕𝑥𝛾𝑐 [𝐰3, 𝜕𝑥(𝐾 ∗ 𝐰1)] − 𝜕𝑥𝛾𝑐 [𝐰2, 𝜕𝑥(𝐾 ∗ 𝐰2)]

− 𝜕𝑥𝛾𝑐 [𝐰1, 𝜕𝑋 (𝐾 ∗ 𝐰2)] − 𝜕𝑥𝛾𝑐 [𝐰2, 𝜕𝑋 (𝐾 ∗ 𝐰1)]

− 𝜕𝑋𝛾𝑐 [𝐰1, 𝜕𝑥(𝐾 ∗ 𝐰2)] − 𝜕𝑋𝛾𝑐 [𝐰2, 𝜕𝑥(𝐾 ∗ 𝐰1)]

− 𝜕𝑋𝛾𝑐 [𝐰1, 𝜕𝑋 (𝐾 ∗ 𝐰1)] − 𝜕𝑥𝛾
(2)
[𝐰1, 𝜕𝑥(𝐾 ∗ 𝐰1)]

=
(

𝜓01
𝜓02

)

(𝐵0)𝑇 −
(

𝜓01 + 𝛾𝑐 �̄�1�̂�(0)𝜓02
𝛾𝑐 �̄�2�̂�(0)𝜓01 + 𝜓02

)

(𝐵0)𝑋𝑋 + 1
�̄�1

(

1
1

)

(|𝐴|2)𝑋𝑋

+
3
∑

ℎ=1
𝐫ℎ𝑒𝑖ℎ𝑞𝑐𝑥 + c.c.

(65)

ince the function 𝐰4 is as in (42), in Eq. (65) all terms independent of 𝑥 must be equal to zero, that is
(

𝜓01
𝜓02

)

(𝐵0)𝑇 =
(

𝜓01 + 𝛾𝑐 �̄�1�̂�(0)𝜓02
𝛾𝑐 �̄�2�̂�(0)𝜓01 + 𝜓02

)

(𝐵0)𝑋𝑋 − 1
�̄�1

(

1
1

)

(|𝐴|2)𝑋𝑋 . (66)

hen �̄�1 = �̄�2, we can choose 𝜓01 = 𝜓02 and, by setting 𝐵 ∶= 𝜓01𝐵0, we obtain the following amplitude equations

𝐴𝑇 = 𝜎𝐴 − 𝛬|𝐴|2𝐴 + 𝜈𝐴𝐵,

𝐵𝑇 = 𝜇𝐵𝑋𝑋 − 𝜂(|𝐴|2)𝑋𝑋 ,
(67)

where

𝜈 =
𝑞2𝑐
�̄�1
, 𝜇 = 1 + 𝛾𝑐 �̄�1�̂�(0), 𝜂 = 1

�̄�1
, (68)

and 𝜎 and 𝛬 are given in Eq. (64). Notice that 𝜈 = 𝛿∕𝜓01 (see Eq. (64)), with 𝜓01 = 𝜓02 and �̄�1 = �̄�2. On the other hand, if �̄�1 ≠ �̄�2,
Eq. (66) is satisfied when 𝜓01 = 𝜓02 = 0 and (|𝐴|2)𝑋𝑋 = 0. □

3.1. Small amplitude solutions

The stationary solutions of the amplitude equations in (33) and (34) correspond to steady states of system (16). Notice that if
𝐵 = 0, Eq. (34) reduces to Eq. (33), which is a Stuart-Landau equation. If 𝛬 > 0, system (16) undergoes a supercritical bifurcation,
while if 𝛬 < 0 the system undergoes a subcritical bifurcation [22].

In the supercritical regime, as the homogeneous steady state becomes unstable, stationary small amplitude patterns emerge and
correspond to solutions of Eq. (33) with 𝐴 = 𝑎0𝑒𝑖𝜙, where 𝜙 ∈ R is the phase of the pattern and the amplitude 𝑎0 is real and must
satisfy 𝑎20 = 𝜎∕𝛬. These small amplitude solutions are always stable [22].

Analogously, stationary small amplitude patterns correspond to solutions of Eq. (34) with 𝐴 = 𝑎0𝑒𝑖𝜙 and 𝐵 = 0, where 𝜙 ∈ R and
𝑎20 = 𝜎∕𝛬. However, in this case the stationary patterns might be destabilized by large-scale modes [27]. In the following Proposition
we will derive a stability condition for these stationary solutions.

Proposition 3.1. Suppose �̄�1 = �̄�2. If 𝜎 > 0 and 𝛬 > 0 then small amplitude patterns to System (16) exist. These solutions are unstable if
the following condition holds

𝛤 ∶=
𝛬𝜇
𝜂𝜈

− 1 < 0, (69)

where 𝜎, 𝛬, 𝜇, 𝜂 and 𝜈 are given in Theorem 3.1.
9
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Table 1
List and description of main parameters involved in the study of stability and bifurcations.
Parameter list and description

Parameter Description Properties

𝛾 ∶= 𝛾12 = 𝛾21 Inter-species interaction parameter 𝛾 > 0 ∶ Mutual avoidance
𝛾 < 0 ∶ Mutual attraction

𝐿 ∶= 𝑙∕𝛼 Length of the rescaled domain 𝐿 > 2: ratio between the length
of the domain 𝑙 and the sensing range 𝛼

𝜎 (Eq. (64)) Linear Stuart-Landau coefficient 𝜎 < 0: �̄� (Eq. (18)) stable
𝜎 > 0: �̄� (Eq. (18)) unstable

𝛬 (Eq. (64)) Nonlinear Stuart-Landau coefficient 𝛬 < 0: subcritical bifurcation
𝛬 > 0: supercritical bifurcation

𝛤 (Eq.(69)) Stability coefficient 𝛤 < 0: unstable supercritical bifurcation
computed for 𝛬 > 0 𝛤 > 0: stable supercritical bifurcation

Proof. By Theorem 3.1, if �̄�1 = �̄�2, the amplitude of the stationary solutions to System (16) is governed by Eq. (34). When 𝜎 > 0
and 𝛬 > 0, stationary small amplitude patterns exist and correspond to solutions of (34) with 𝐴 = 𝑎0𝑒𝑖𝜙 and 𝐵 = 0, where 𝜙 ∈ R
and 𝑎20 = 𝜎∕𝛬. To study the stability of this stationary solution, we consider the following perturbation

𝐴(𝑋, 𝑇 ) = (𝑎0 + 𝑎(𝑋, 𝑇 ))𝑒𝑖𝜙, 𝐵(𝑋, 𝑇 ) = 𝑏(𝑋, 𝑇 ). (70)

e substitute the perturbation (70) in Eqs. (34), and by linearizing in 𝑎 and 𝑏 we obtain:

𝑎𝑇 = − 𝜎(𝑎 + 𝑎∗) + 𝜈𝑎0𝑏,

𝑏𝑇 =𝜇𝑏𝑋𝑋 − 𝜂𝑎0(𝑎𝑋𝑋 + 𝑎∗𝑋𝑋 ).
(71)

We consider a perturbation of the form

𝑎(𝑋, 𝑇 ) = 𝑒�̄�𝑇 (𝑉 𝑒𝑖𝑄𝑋 +𝑊 ∗𝑒−𝑖𝑄𝑋 ) and 𝑏(𝑋, 𝑇 ) = 𝑒�̄�𝑇 (𝑈𝑒𝑖𝑄𝑋 + 𝑈∗𝑒−𝑖𝑄𝑋 ), (72)

here �̄� is the growth rate of the perturbation, 𝑈, 𝑉 ,𝑊 ∈ C and 𝑄 ≥ 0 denotes a spatial mode. Notice that 𝑎 is a complex
erturbation, while 𝑏 is real. Upon substituting Eqs. (72) in Eqs. (71), we obtain the following eigenvalue problem

�̄�
⎛

⎜

⎜

⎝

𝑉
𝑊
𝑈

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−𝜎 −𝜎 𝜈𝑎0
−𝜎 −𝜎 𝜈𝑎0

𝜂𝑎0𝑄2 𝜂𝑎0𝑄2 −𝜇𝑄2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑉
𝑊
𝑈

⎞

⎟

⎟

⎠

, (73)

rom which we recover the growth rates

�̄�0(𝑄) = 0, �̄�±(𝑄) = 1
2

(

−𝜇𝑄2 − 2𝜎 ±
√

𝜇2𝑄4 +𝑄2
(

8𝑎20𝜂𝜈 − 4𝜇𝜎
)

+ 4𝜎2
)

. (74)

Recalling that 𝑎20 = 𝜎∕𝛬, a simple calculation shows that �̄�+(𝑄) > 0 if 𝑄 ≠ 0 and 𝛤 = 𝛬𝜇
𝜂𝜈 − 1 < 0. □

The analysis so far is valid for any non-negative, symmetric kernel 𝐾 satisfying Eq. (4). In the following section, we adopt the
top-hat distribution and use the results obtained so far to recover the instability thresholds and to predict the shape of the emerging
patterns.

For readers convenience, we conclude this section with Table 1, in which we have collected the main parameters involved in
the study of stability and bifurcations, and included a brief description of their significance and properties.

4. The top hat distribution

In this section we analyse System (2) with

𝐾(𝑥) = 𝐾𝛼(𝑥) ∶=

{

1
2𝛼 , 𝑥 ∈ [−𝛼, 𝛼]
0, otherwise.

(75)

The parameter 𝛼, modelling the sensing radius of an organism, is such that 𝛼 < 𝑙∕2, where 𝑙 is the length of the domain. As
in Section 2, we will work in dimensionless co-ordinates, so that our study system is given by Eqs. (16) and the dimensionless
averaging kernel is

𝐾1(𝑥) =

{

1
2 , 𝑥 ∈ [−1, 1],

(76)
10
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Fig. 1. Graphs of the growth rates 𝜆±(𝑞) (Eq. (77)), in the mutual avoidance (Panel (a)) and in the mutual attraction (Panel (b)) regime. Panel (a) shows the
graphs of 𝜆±(𝑞) for increasing values of 𝛾 > 0: 0 < 𝛾 < 𝛾+1 (left); 𝛾 = 𝛾+1 (centre); 𝛾 > 𝛾+1 (right). Panel (b) shows the graphs of 𝜆±(𝑞) for decreasing values of
𝛾 < 0: 𝛾−1 < 𝛾 < 0 (left); 𝛾 = 𝛾−1 (centre); 𝛾 < 𝛾−1 (right). As the magnitude of 𝛾 increases, the first wavenumber destabilized is 𝑞1 (Eq. (79)).

4.1. Linear stability analysis

Linear stability analysis of System (16) around the equilibrium point �̄� = (𝑝1, 𝑝2) (Eq. (18)), gives the following eigenvalues (see
Eq. (23))

𝜆±(𝑞) ∶= −𝑞2(1 ± 𝛾|�̂�1(𝑞)|
√

�̄�1�̄�2), (77)

where

�̂�1(𝑞) = ∫

1

−1
𝐾1(𝑥)𝑒−𝑖𝑞𝑥d𝑥 =

{ sin(𝑞)
𝑞 , if 𝑞 ≠ 0

1, if 𝑞 = 0.
(78)

Recall that the admissible wavenumbers are 𝑞𝑚 = 2𝜋𝑚∕𝐿, with 𝑚 ∈ N.
Fig. 1 shows the graphs of 𝜆±(𝑞) (Eq. (77)) for different values of 𝛾. Observe that the first wavenumber that is destabilized as 𝛾

is varied is

𝑞𝑐 = 𝑞1 =
2𝜋
𝐿
. (79)

Since 𝐿 > 2, we have �̂�1(𝑞𝑐 ) > 0, so the corresponding bifurcation thresholds, obtained by solving 𝜆±(𝑞𝑐 ) = 0, are

𝛾±𝑐 = 𝛾±1 ∶= ± 1
�̂�1(𝑞𝑐 )

√

�̄�1�̄�2
. (80)

Since the equilibrium �̄� becomes unstable as 𝜆±(𝑞𝑐 ) > 0, the system undergoes an instability when

𝛾 < 𝛾−𝑐 = − 1
�̂�1(𝑞𝑐 )

√

�̄�1�̄�2
or 𝛾 > 𝛾+𝑐 = 1

�̂�1(𝑞𝑐 )
√

�̄�1�̄�2
. (81)

4.2. Analysis of the amplitude equations and bifurcations

By Theorem 3.1, when 𝜀 =
√

|

𝛾−𝛾𝑐
𝛾𝑐

|≪ 1 (where 𝛾𝑐 = 𝛾±𝑐 ), the solutions to System (16) have the following form

𝑢1 = �̄�1 + 𝜀𝜌1(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥) + 𝜀2(𝜓1(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥) + 𝐵) + 𝑂(𝜀3),

𝑢2 = �̄�2 + 𝜀𝜌2(𝐴𝑒𝑖𝑞𝑐𝑥 + 𝐴∗𝑒−𝑖𝑞𝑐𝑥) + 𝜀2(𝜓2(𝐴2𝑒2𝑖𝑞𝑐𝑥 + 𝐴∗2𝑒−2𝑖𝑞𝑐𝑥) + 𝐵) + 𝑂(𝜀3).
(82)

Recall from (32) that the constants 𝜌1, 𝜌2 are defined as

𝜌1 = 1, 𝜌2 = − 1 . (83)
11
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Note that in the mutual avoidance case (𝛾 > 0), 𝛾𝑐 = 𝛾+𝑐 > 0 and then 𝜌2 < 0, which implies that 𝑢1 and 𝑢2 show a spatial oscillation
that is out of phase. On the other hand, in the mutual attraction regime (𝛾 < 0), 𝛾𝑐 = 𝛾−𝑐 < 0 and then 𝜌2 > 0, which means that the
spatial pattern for 𝑢1 and 𝑢2 are in phase.

Theorem 3.1 also says that 𝐴(𝑋, 𝑇 ) and 𝐵(𝑋, 𝑇 ) are governed by the following equations

1. If �̄�1 ≠ �̄�2,

𝐴𝑇 = 𝜎𝐴 − 𝛬|𝐴|2𝐴,

𝐵 = 0,
. (84)

2. If �̄�1 = �̄�2,

𝐴𝑇 = 𝜎𝐴 − 𝛬|𝐴|2𝐴 + 𝜈𝐴𝐵,

𝐵𝑇 = 𝜇𝐵𝑋𝑋 − 𝜂(|𝐴|2)𝑋𝑋 ,
(85)

where the coefficients 𝜎, 𝛬, 𝜈, 𝜇 and 𝜂 are defined in Eq. (35)
As discussed in Section 3, the sign of 𝛬 determines the type of bifurcation: for 𝛬 > 0 the system exhibits a supercritical bifurcation,

while for 𝛬 < 0 the system undergoes a subcritical bifurcation (see also Table 1). The sign of 𝛬 depends on �̄�1, �̄�2 and on the length
of the domain, 𝐿 (see the definition of 𝛬 in Eq. (35)). Fig. 2 shows the graphs of 𝛬 versus 𝐿, in the mutual avoidance (𝛾 > 0) and
in the mutual attraction (𝛾 < 0) regime with 𝐾 = 𝐾1, for both �̄�1 = �̄�2 and �̄�1 ≠ �̄�2.

For 𝛾 > 0, if �̄�1 = �̄�2 then the qualitative behaviour of 𝛬(𝐿) remains unchanged as �̄�1 = �̄�2 are varied. In fact, Fig. 2(a) shows that
or different values of �̄�1 = �̄�2, 𝛬(𝐿) is negative (subcritical bifurcation) for 2 < 𝐿 < 3, while it is positive (supercritical bifurcation)
or 𝐿 > 3. On the other hand, if �̄�1 ≠ �̄�2 (Fig. 2(b)), 𝛬(𝐿) is negative for 2 < 𝐿 < 3, becomes positive for 𝐿 > 3, and then 𝛬(𝐿)
ecomes negative again for sufficiently large values of 𝐿 depending on the ratio �̄�1∕�̄�2.

For 𝛾 < 0, if �̄�1 = �̄�2, 𝛬(𝐿) is positive for 2 < 𝐿 < 6 and it becomes negative as 𝐿 > 6 (see Fig. 2(c)). The qualitative behaviour
f 𝛬(𝐿) does not change as �̄�1 = �̄�2 are varied. However, if �̄�1 ≠ �̄�2 (Fig. 2(d)) we observe the emergence of a subcritical regime for
ufficiently small values of 𝐿 depending on the ratio �̄�1∕�̄�2.

As shown in Section 3, if 𝛬(𝐿) is positive then small amplitude patterns emerge from the homogeneous steady state beyond the
ifurcation threshold. These solutions are always stable when �̄�1 ≠ �̄�2 but can be unstable when �̄�1 = �̄�2.

Proposition 3.1 shows that when �̄�1 = �̄�2 the stability of small amplitude patterns is determined by the coefficients of the
mplitude equations in (85) and that, in particular, these solutions are unstable if 𝛤 = 𝛬𝜇

𝜂𝜈 − 1 < 0. By using the definitions of
𝛬, 𝜈, 𝜇 and 𝜂 in Eq. (35), we recover

𝛤 =
(1 + �̂�1(𝑞1))(2�̂�1(2𝑞1) + �̂�1(𝑞1))

2�̂�1(𝑞1)(�̂�1(2𝑞1) + �̂�1(𝑞1))
− 1. (86)

Note that 𝛤 does not depend on �̄�1. Indeed, since 𝑞1 = 2𝜋∕𝐿, it follows that 𝛤 depends only on 𝐿. In Fig. 3 we show the graphs of
𝛤 versus 𝐿 for 𝛾 > 0 in (a), and 𝛾 < 0 in (b). We also recall that we are analysing the sign of 𝛤 in supercritical regimes (𝛬 > 0), for
this reason we plot the curve 𝛤 (𝐿) only in those intervals in which 𝛬 > 0. The graph in Fig. 3(a) shows that in the mutual avoidance
case (𝛾 > 0), small amplitude patterns exist and are unstable for 3 < 𝐿 < 3.5, and that they become stable as 𝐿 > 3.5. Fig. 3(b) shows
that in the mutual attraction scenario (𝛾 < 0), 𝛤 (𝐿) is always negative and therefore small amplitude patterns are always unstable.
These results are summarized in Fig. 4.

In summary, our analysis shows that the nature of the transition and the stability of the bifurcation patterns depend mainly on
𝐿. These results can be read and re-interpreted in terms of the parameters of the original system (2), recalling that 𝐿 = 𝑙∕𝛼, where 𝛼
is the sensing radius and 𝑙 is the length of the dimensional spatial domain. Therefore, the qualitative behaviour of the system under
study strongly depends on the measure of the sensing radius compared on the length of the domain.

4.3. Numerical simulations

In this Section, we perform a numerical investigation of system (16). To solve numerically System (16), we use the spectral
method and numerical schemes presented in [20]. By employing a continuation technique, we recover numerical bifurcation
diagrams which are compared with the bifurcation diagrams obtained via the weakly nonlinear analysis. We show that our weakly
nonlinear analysis provides accurate approximations of stable steady-state solutions in supercritical stable regimes, as long as we
stay close to the bifurcation threshold. We also analyse those bifurcations that generate unstable small amplitude patterns. In these
cases, we numerically detect the existence of stable large amplitude solutions.

First, we analyse the scenarios depicted in Figs. 2(b) (𝛾 > 0) and (d) (𝛾 < 0), in which �̄�1 ≠ �̄�2. These figures show subcritical
ifurcations for sufficiently small values of 𝐿, then a shift to a supercritical regime, as 𝐿 increases, and again a subcritical regime,
s 𝐿 increases further. Recall that if �̄�1 ≠ �̄�2 then supercritical bifurcations always give rise to stable small amplitude solutions.

Fig. 5 shows bifurcation diagrams obtained by fixing �̄�1 = 0.1 and �̄�2 = 10 and by changing 𝐿, in the mutual avoidance regime
𝛾 > 0). This case corresponds to the scenario shown in Fig. 2(b) (centre). Dashed and solid lines represent unstable and stable
ranches, respectively, computed analytically, while the dots are computed numerically. For 𝐿 = 2.7, the weakly nonlinear analysis
redicts a subcritical bifurcation, and the numerical simulations confirm this result. In fact, just beyond the instability threshold
𝛾 > 𝛾𝑐 ≈ 3.20), we find stable large amplitude solutions, which persist when we decrease the control parameter 𝛾 below the
12

nstability threshold (Fig. 5(a)). For 𝐿 = 5, the analysis predicts a supercritical bifurcation and, again, the numerical simulations
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Fig. 2. Graphs of the nonlinear Stuart-Landau coefficient 𝛬 (Eq. (64)) versus the domain length 𝐿, in the mutual avoidance (𝛾 > 0) and in the mutual attraction
(𝛾 > 0) regime, with �̄�1 = �̄�2 and �̄�1 ≠ �̄�2. Positive values of 𝛬 correspond to supercritical bifurcations, negative values of 𝛬 correspond to subcritical bifurcations.

confirm this result. In Fig. 5(b) we see, indeed, a good matching between the analytical branch and the numerical solutions, as
long as 𝛾 is sufficiently close to the bifurcation threshold 𝛾𝑐 ≈ 1.32. Finally, for 𝐿 = 15 the subcritical bifurcation predicted by
our analysis is also detected numerically (see Fig. 5(c)). Here, we observe bistability between the homogeneous steady state and
non-homogeneous solutions below the instability threshold 𝛾𝑐 ≈ 1.03.

Fig. 6 shows bifurcation diagrams obtained by fixing �̄�1 = 0.1 and �̄�2 = 10, for three different values of 𝐿, in the mutual attraction
regime (𝛾 < 0). This case corresponds to the scenario shown in Fig. 2(d) (centre). The numerical simulations, again, confirm the
results of the weakly nonlinear analysis: we have detected subcritical transitions for 𝐿 = 2 and 𝐿 = 10, and a stable branch bifurcating
supercritically for 𝐿 = 5, whose amplitude is well approximated by the weakly nonlinear analysis.
13
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Fig. 3. Graphs of the stability coefficient 𝛤 (Eq. (69)) versus the domain length 𝐿, in the mutual avoidance (a), and in the mutual attraction regime (b). If
𝛬 > 0 and 𝛤 < 0, small amplitude patterns exist and are unstable, and if 𝛬 > 0 and 𝛤 > 0, small amplitude patterns exist and are stable.

Fig. 4. Graphs of the curves for the critical values of the density-dependent advection strength 𝛾 = 𝛾+𝑐 in (a) and 𝛾 = 𝛾−𝑐 in (b) (Eq. (28)) versus the domain
length 𝐿. When the magnitude of 𝛾 is small, the homogeneous steady state is linearly stable. As the magnitude of 𝛾 increases, the system undergoes a bifurcation
and the homogeneous steady state becomes unstable as 𝛾 crosses 𝛾±𝑐 . For 𝛾 > 0 (a), when 𝐿 is small the system undergoes a subcritical bifurcation. As 𝐿 increases,
the bifurcation becomes supercritical, and the emerging patterns will be unstable. As 𝐿 increases further, the system undergoes a supercritical bifurcation leading
to the emergence of stable patterns. For 𝛾 < 0 (b), when 𝐿 is small the system undergoes a supercritical bifurcation generating unstable small amplitude patterns.
As 𝐿 increases, the bifurcation becomes subcritical.

Fig. 5. Comparison between analytical and numerical bifurcation diagrams of system (16) with density-dependent advection strength 𝛾 > 0, and nonlocal kernel
𝐾 = 𝐾1 (see Eq. (76)), �̄�1 = 0.1 and �̄�2 = 10, for different values of the length of the domain 𝐿. These scenarios correspond to Fig. 2(b) (centre). Dashed and
solid lines represent unstable and stable branches, respectively, which are computed analytically, while the dots are computed numerically. As the length of the
domain increases, the system changes its qualitative behaviour. In (a): 𝐿 = 2.7 and the system exhibits a subcritical bifurcation at 𝛾 = 𝛾𝑐 = 3.19933. In (b), 𝐿 = 5
and at 𝛾 = 𝛾𝑐 = 1.32131 a branch of stable solutions bifurcates from the homogeneous state. In (c), 𝐿 = 15 and the system exhibits a subcritical bifurcation at
𝛾 = 𝛾𝑐 = 1.02985.
14
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Fig. 6. Comparison between analytical and numerical bifurcation diagrams of system (16) with 𝛾 < 0, 𝐾 = 𝐾1 (see Eq. (76)), �̄�1 = 0.1 and �̄�2 = 10, for different
values of the length of the domain 𝐿. These scenarios correspond to Fig. 2(d) (centre). Dashed and solid lines represent unstable and stable branches, respectively,
which are computed analytically, while the dots are computed numerically. As the length of the domain increases, the system changes its qualitative behaviour.
In (a): 𝐿 = 2.5 and the system exhibits a subcritical bifurcation at 𝛾 = 𝛾𝑐 = −4.2758. In (b), 𝐿 = 5 and at 𝛾 = 𝛾𝑐 = −1.32131 a branch of stable solutions bifurcates
from the homogeneous state. In (c), 𝐿 = 10 and the system exhibits a subcritical bifurcation at 𝛾 = 𝛾𝑐 = −1.06895.

It remains to analyse the case �̄�1 = �̄�2, corresponding to the scenarios depicted in Figs. 2(a) (𝛾 > 0) and (c) (𝛾 < 0). In this
case, three different types of bifurcation are predicted by the analysis: subcritical bifurcations (for 𝛬 < 0), unstable supercritical
bifurcations (for 𝛬 > 0 and 𝛤 < 0) and stable supercritical bifurcations (for 𝛬 > 0 and 𝛤 > 0) (see Fig. 4). In particular, for
𝛾 > 0, system (16) undergoes subcritical bifurcations for 2 < 𝐿 < 3, unstable supercritical bifurcations for 3 < 𝐿 < 3.5, and stable
supercritical bifurcations for 𝐿 > 3.5 (see Fig. 4(a)).

In Fig. 7 we analyse System (16) with 𝛾 > 0 and �̄�1 = �̄�2 = 10, for 𝐿 = 3.1 in (a), and 𝐿 = 4 in (b). In Fig. 7(a) (left) we show the
patio-temporal evolution of a numerical solution whose initial condition is a small perturbation of the weakly nonlinear solution
ith 𝐿 = 3.1. We observe that the numerical solution moves away from the initial condition and evolves towards a large amplitude
attern. The initial condition and the final stationary state are reported in Fig. 7(a) (centre). Therefore, when the supercritical branch
s unstable, the system supports large amplitude patterns. These solutions exist even below the bifurcation threshold, as shown by
he bifurcation diagram in Fig. 7(a) (right). These large amplitude solutions are not predicted by the weakly nonlinear analysis.
owever we conjecture that they might be obtained analytically by expanding the weakly nonlinear analysis to higher orders.

In Fig. 7(b) (left) we show the spatio-temporal evolution of a numerical solution whose initial condition is a small perturbation
f the weakly nonlinear solution with 𝐿 = 4. In this case, the analysis predicts that the small amplitude pattern is stable. In the
umerical simulation we observe that the solution moves towards a small amplitude pattern, which is well approximated by the
eakly nonlinear analysis. This result confirms the stability predicted by our analysis. The initial condition and the final stationary

tate are reported in Fig. 7(b) (centre). Finally, a comparison between the analytical and numerical bifurcation diagrams is shown
n 7(b) (right).

Finally, Fig. 8 shows analytic and numerical bifurcation diagrams of System (16) with 𝛾 < 0 and �̄�1 = �̄�2 = 10. Our previous
nalysis predicts unstable supercritical bifurcations for 2 < 𝐿 < 6, and subcritical bifurcations for 𝐿 > 6 (see Fig. 4(b)). We have
erified these results numerically, and the comparisons between analytical and numerical bifurcation diagrams are shown in Fig. 8.

.4. Bistability between small amplitude patterns and strongly modulated solutions

The existence of non-constant solutions to system (16), far away from any bifurcation of the constant solution, was already
etected and analysed in [20] using an energy method. By minimizing an energy functional associated with the system, nontrivial
tationary solutions were revealed which, as 𝐿 increases, tend to look increasingly like piecewise constant functions, when 𝛾 > 0,
r spike solutions, when 𝛾 < 0. We call such solutions strongly modulated because they are given by the superposition of more than
ne unstable Fourier mode. In this section, we will combine numerical and analytic solutions inferred by both the weakly nonlinear
nalysis here and the results presented in [20] to construct more comprehensive bifurcation diagrams.

For this, we focus on the case 𝛾 > 0 and �̄�1 = �̄�2. Here, the system exhibits supercritical bifurcations for large values of 𝐿 (see
ig. 2(a)). Also, as shown in Fig. 3(a), these supercritical bifurcations generate stable small amplitude patterns. In [20] we showed
hat under the same conditions (that is 𝐿 ≫ 1, 𝛾 > 0 and �̄�1 = �̄�2), the system supports strongly modulated patterns. Therefore
e expect that for 𝐿 sufficiently large, there exist parameter regions in which small amplitude patterns and strongly modulated

olutions coexist and are stable.
15
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Fig. 7. Numerical investigation of system (16) in the mutual avoidance regime (𝛾 > 0) with �̄�1 = �̄�2 = 10, for two different values of 𝐿. In (a): 𝐿 = 3.1 and
the analysis predicts an unstable supercritical bifurcation at 𝛾 = 𝛾𝑐 = 0.225754. On the left, numerical simulation showing that the system moves away from the
unstable solution and evolves towards a large amplitude pattern. In the centre, initial condition and the final stationary state. On the right, comparison between
analytical and numerical bifurcation diagrams. In (b): 𝐿 = 4 and the analysis predicts a stable supercritical bifurcation at 𝛾 = 𝛾𝑐 = 0.15708. On the left, numerical
simulation showing that the system moves towards the stable small amplitude solution. In the centre, initial condition and the final stationary state. On the
right, comparison between analytical and numerical bifurcation diagrams.

Fig. 8. Comparison between analytical and numerical bifurcation diagrams of system (16) with 𝛾 < 0, 𝐾 = 𝐾1 (see Eq. (76)), �̄�1 = �̄�2 = 10, for different values of
the length of the domain 𝐿. These scenarios correspond to Fig. 2(c) (right). Dashed and solid lines represent unstable and stable branches, respectively, which
are computed analytically, while the dots are computed numerically. As the length of the domain increases, the system changes its qualitative behaviour. In (a):
𝐿 = 5 and the system exhibits a supercritical bifurcation at 𝛾 = 𝛾𝑐 ≈ −13.2, giving rise to a branch of unstable small amplitude solutions. In (b), 𝐿 = 10 and at
𝛾 = 𝛾𝑐 ≈ −10.7 the system exhibits a subcritical bifurcation.
16
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Fig. 9. Bifurcation diagrams of system (16) with 𝛾 > 0, 𝐾 = 𝐾1 (see Eq. (76)), �̄�1 = �̄�2 = 1, for different values of the length of the domain 𝐿. These scenarios
correspond to Fig. 2(a) (centre). Dashed and solid lines represent unstable and stable branches, respectively, which are computed analytically, while the dots
are computed numerically. The system exhibits a supercritical stable bifurcation at: 𝛾 = 𝛾𝑐 = 1.06896 in (a); 𝛾 = 𝛾𝑐 = 1.01664 in (b); 𝛾 = 𝛾𝑐 = 1.0264 in (c). As 𝐿
becomes sufficiently large, the system support strongly modulated patterns, which coexist with stable small amplitude patterns.

We have verified this numerically and the results are shown in Fig. 9. When 𝐿 is not too large, the system admits small amplitude
solutions that bifurcate supercritically from the homogeneous steady state and remain stable as the control parameter 𝛾 increases
(see Fig. 9(a)). In this case, we do not find strongly modulated solutions. As 𝐿 increases, the supercritical branch of patterns predicted
by the weakly nonlinear analysis still exists and is stable as long as 𝛾 is sufficiently close to the bifurcation threshold (see Fig. 9(b)).
However, a second branch appears higher up, representing the strongly modulated solutions predicted by [20]. As 𝐿 increases
further, the branch of stable small amplitude solutions becomes smaller and smaller (Fig. 9(c)), and the solutions transition to
strongly modulated for values of 𝛾 closer to the bifurcation threshold.

5. Discussion

We have analysed bifurcations for a nonlocal advection diffusion system with two interacting populations that either mutually
avoid or mutually attract. First, we analysed the linear stability of the homogeneous steady state and recovered the instability
thresholds. Beyond these thresholds, the homogeneous steady state becomes unstable and the system is expected to form spatially
inhomogeneous patterns. To predict the evolution of the system in the unstable regime, we used weakly nonlinear analysis to
recover the equations governing the amplitude of the pattern and approximations of the inhomogeneous solutions. We found that
the amplitude equations consist of a Ginzburg–Landau equation coupled with an equation for the zero mode. Indeed, we obtained
a sequence of linear problems whose general solutions must be a linear combination of the critical mode and the zero mode. This
follows from the fact that the system under study obeys a conservation law. An equivalent result was shown in [30], where similar
amplitude equations were derived using symmetry and scaling arguments. By means of the amplitude equations, we recovered the
condition that ensures the stability of the patterns bifurcating from the homogeneous steady state.

To obtain concrete numerical results, we analysed the case where the spatial-averaging kernel, 𝐾, is a top-hat distribution. By
combining analysis of the amplitude equation with numerical solutions, we showed that the system exhibits a variety of different
types of bifurcations and bistability regimes, strongly depending on the ratio 𝑙∕𝛼. In particular, we found stable small amplitude
patterns bifurcating supercritically from the homogeneous steady state at the onset of the instability. We also found subcritical
regimes generating unstable small amplitude patterns, which coexist with both the stable homogeneous solution and stable large
amplitude patterns. In this case, numerics revealed an hysteresis effect due to the bistability between two stationary states.
Finally, we also found supercritical bifurcations generating unstable small amplitude patterns. Beyond the instability threshold,
we numerically detected stable large amplitude patterns that persist even when decreasing the bifurcation parameter below the
instability threshold, revealing again a hysteresis effect similar to that found in the subcritical regime.

By combining weakly nonlinear analysis, numerical simulations and the energy functional analysis from [20], we obtained a
comprehensive bifurcation picture. We found parameter regions exhibiting bistability between small amplitude patterns and strongly
modulated solutions, when 𝑙∕𝛼 ≫ 1. The range of bistability becomes smaller and smaller as 𝑙∕𝛼 increases, because the small
amplitude patterns lose their stability for values of the control parameter increasingly closer to the bifurcation threshold (Fig. 9).
Overall, our analysis reveals that our system may display discontinuous phase transitions either when 𝛼 ≈ 𝑙 or when the sensing
range 𝛼 is very small compared to the length 𝑙 of the domain.

Our study provides an example of how to combine different and complementary approaches to recover more comprehensive
pictures of the bifurcation diagrams. To extend these results further, it would be interesting to expand the weakly nonlinear analysis
up to higher orders. Such an approach could reveal analytically some of the large amplitude branches here found numerically, as well
as the branches of solutions connecting small and large amplitude patterns. Numerical continuation software, such as pde2path [31],
gives another way of approaching this problem [26,32]. Our analysis revealed parameter regions with bistability between two
extended states, a scenario in which systems often exhibit snaking branches of localized solutions [33,34]. Extending our weakly
17
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nonlinear analysis to higher orders may help locate the codimension-two point where the nascence of localized structures may take
place, which would be an interesting subject for future work.

Our focus here has been on a particular example of Eq. (1) [11], with just two populations and no self-interaction terms (𝑁 = 2,
𝑖𝑖 = 0). However, even in this relatively-simple system, we found an unexpectedly rich variety of patterning scenarios. Therefore,
e conjecture that analysis of the system with 𝑁 ≥ 3 populations and/or 𝛾𝑖𝑖 ≠ 0 would reveal even more complex patterning and

bifurcation structure. Our next goal, indeed, is to analyse the more general scenarios (𝑁 ≥ 3, 𝛾𝑖𝑖 ≠ 0). A possible way forward
might be to analyse phase transitions by combining the tools used here with those from [21]. In [21] the authors studied the phase
transitions of the Mckean-Vlasov equation by analysing the minimizers of the energy associated to the problem. Combining this
with weakly nonlinear analysis might shed light on the number of steady states at the onset of an instability, and consequently on
types of phase transition occurring when the bifurcation parameter crosses the instability threshold.

System (1) has several applications to natural systems and, in particular, to ecological systems. Therefore the analysis presented in
this paper, as well as possible future extensions, might help to address some important ecological questions regarding the emergence
of territories, as well as their sizes and stability [13]. Indeed, variations in territory size and shape can strongly affect population
structure and dynamics [35], therefore understanding the mechanisms and consequences of these changes is crucial for informing
the design of efficient conservation strategies. Our results support the hypothesis that the formation of territorial patterns is not
just a consequence of a heterogeneity in resources distribution, but that they can emerge as a consequence of animal behaviour
and mutual interactions [13,35,36]. Our analysis also predicts that a small sensing range relative to the length of the domain can
facilitate a territory instability, in agreement with other theoretical studies suggesting that poor sensory information can promote
the range size instability [37]. In summary, the analysis of the class of models (1) with the techniques here presented and discussed
can help to resolve biological and ecological questions that may be inaccessible to experimental investigation.
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