
Journal of Algebra 638 (2024) 441–464
Contents lists available at ScienceDirect

Journal of Algebra

journal homepage: www.elsevier.com/locate/jalgebra

Generalising Kapranov’s theorem for tropical 
geometry over hyperfields

James Maxwell
Department of Mathematics, Computational Foundry, Bay Campus, Swansea 
University, Fabian Way, Swansea, SA1 8EN, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2021
Available online 10 October 2023
Communicated by Hannah Markwig

Keywords:
Hyperfield
Hyperoperation
Polynomials
Varieties
RAC

Kapranov’s theorem is a foundational result in tropical 
geometry. It states that the set of tropicalisations of points 
on a hypersurface coincides precisely with the tropical variety 
of the tropicalisation of the defining polynomial. The aim of 
this paper is to generalise Kapranov’s theorem, replacing the 
role of a valuation, ν : K → R ∪ {−∞}, with a more general 
class of hyperfield homomorphisms, H → T , which satisfy a 
relative algebraic closure condition. The map η : TC → T , 
η(x) := log(|x|), where TC is the tropical complex hyperfield, 
provides an example of such a hyperfield homomorphism.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Hyperfields are generalisations of fields, where the addition is allowed to be a multi-
valued operation. The notion of a multivalued operation was introduced by Marty in the 
mid 1930’s, who discussed hypergroups. Then, Krasner in [18] progressed the notion to 
hyperrings, and more recently the connection to tropical geometry has been discussed by 
Viro in [21], then by Connes and Consani in [11]. One of the main objects studied in this 
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paper is TC, the tropical complex hyperfield. It was first introduced by Viro in [20], and 
is described as a dequantisation of the complex numbers. The motivation of Viro’s work 
was to utilise structures with multivalued addition as an algebraic foundation for tropi-
cal geometry. There has been substantial progress made in the last several years in the 
development of the algebraic theory of hyperfields. Baker and Bowler developed a theory 
of matroids over hyperfields in [5], and there has been work done by Baker and Lorscheid 
on roots and multiplicities, especially characterising multiplicities for the Krasner, sign 
and tropical hyperfields, in [7]. The work completed by Jun, in [16] and [17], is a more 
recent study of algebraic geometry over hyperfields. In [17] algebraic sets over hyperfields 
are introduced and connected to tropical varieties, along with a scheme-theoretic point 
of view leading to a demonstration that hyperrings without zero divisors can be realised 
as the hyperring of global regular functions in [17, Theorem D]. One consequence of the 
multivalued addition is a necessary extension of the notion of a root. Over hyperfields 
roots are defined as elements at which the polynomial outputs a set that includes zero, 
rather than exactly equals zero.

The motivation for this paper comes from Kapranov’s theorem in tropical geome-
try, [19, Theorem 3.1.3], which states, under mild hypotheses, the set of roots of the 
tropicalisation of a polynomial p coincides with the set of tropicalisations of roots of p. 
Concretely, every root of ν∗(p) lifts to a root of p. The connection is that the valuation 
map ν : K → R ∪ {−∞} can naturally be viewed as a hyperfield homomorphism when 
enriching the tropical semiring to the tropical hyperfield.

We define a property of maps between hyperfields called relatively algebraically closed
(RAC). We describe this precisely in Definition 2.32, but intuitively the RAC prop-
erty states that when a univariate polynomial is pushed forward through a hyperfield 
homomorphism, the roots of the polynomial can be lifted back to roots of the origi-
nal polynomial. The existence of a hyperfield homomorphism that has this property is 
demonstrated by the map η = log(| · |) : TC → T , in Theorem 2.41, where TC is the 
tropical complex hyperfield and T := R ∪{−∞} is the tropical hyperfield. In particular, 
the operations on T are the hyperaddition ‘, defined as a ‘ b = max(a, b), unless a = b

then a ‘ b = [−∞, a]. The multiplication is d := +. This is a hyperfield analogue of the 
idempotent semiring structure that has been studied in [2] and more recently presented 
in both [19] and [21].

The main result of this paper is a hyperfield version of Kapranov’s theorem for sur-
jective RAC hyperfield homomorphisms which map to T .

Theorem 1.1. Take a surjective RAC hyperfield homomorphism, f : H → T , with in-
duced map of polynomials f∗ : H[X1 , . . . , Xn] → T [X1 , . . . , Xn], given by applying f
coefficient-wise. Then for all polynomials p ∈ H[X1 , . . . , Xn],

V (f∗(p)) = f(V (p)).
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A natural question regarding the RAC property of hyperfield homomorphisms is: can 
we give tractable sufficient conditions to guarantee that a map between hyperfields is 
RAC? This question is explored in Section 4 and partially answered, stating sufficient 
conditions for a specific class of hyperfield homomorphisms to be RAC.

1.1. Structure of the paper

In Section 2 hyperfields and hyperfield homomorphisms will be introduced and the 
definitions of polynomials and their roots over hyperfields are recalled. This will include 
examples of common hyperfields. The relative algebraic closure property is defined in 
Section 2, along with examples, in particular it is shown that η = log(| · |) : TC → T

has this property. Then in Section 3 the RAC property is used to construct a proof of 
a hyperfield version of Kapranov’s theorem for maps H → T . Finally, in Section 4 the 
characterisation of RAC maps is discussed. In particular, the multiplicity bound and 
inheritance properties are introduced and utilised to provide sufficient conditions for a 
hyperfield homomorphism to be RAC.
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2. Background

A hyperfield is a generalisation of a field, where the addition operation is allowed 
to be a multivalued operation, introduced by Marty and developed into hyperrings by 
Krasner [18]. Hyperfields are one class of generalisations of rings and fields; others include 
tracts (see [6]) and fuzzy rings (see [12]). There is a discussion of this range of algebraic 
structures in [8]. The connection between fuzzy rings and hyperrings is described in [14], 
where a fully faithful functor from hyperfields to fuzzy rings with weak morphisms is 
constructed. One particular motivation for working with hyperfields is that the tropical 
semiring, where a foundational theory has been thoroughly developed, has a natural 
analogue as the tropical hyperfield. This section will recall the definitions and notation 
of hyperfields.
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2.1. Hyperfields

Given a set H, then a map H×H → P (H)∗ is a hyperoperation of H which is denoted 
by ‘. Where P (H)∗ is the power set of H, explicitly, P (H)∗ is the set of all nonempty 
subsets of H. Then for subsets A, B ⊆ H,

A ‘ B :=
⋃

a∈A , b∈B

(a ‘ b).

This definition can be extended for a string of elements. Let x1, ... , xk ∈ H then we 
define their sum as follows;

x1 ‘ x2 ‘ ... ‘ xk =
⋃

x′∈x2‘...‘xk

x1 ‘ x′ .

The hyperoperation ‘ is called commutative and associative if it satisfies

x ‘ y = y ‘ x (2.1)

and

(x ‘ y) ‘ z = x ‘ (y ‘ z) (2.2)

respectively.

Definition 2.3. A canonical hypergroup is a tuple (H, ‘, 0), where ‘ is a commutative 
and associative hyperoperation on H such that:

• (H0) 0 ‘ x = {x}, ∀ x ∈ H.
• (H1) For every x ∈ H there is a unique element of H, denoted −x, such that 0 ∈

x ‘ −x.
• (H2) x ∈ y ‘ z iff z ∈ x ‘ (−y). This is normally referred to as reversibility.

The reversibility condition is not required for non-canonical hypergroups, but throughout 
this work only canonical hypergroups will be used so the label canonical is dropped.

Definition 2.4. A hyperring is a tuple (H, d, ‘, 1, 0) such that:

• (H, d, 1) is a commutative monoid.
• (H, ‘, 0) is a commutative hypergroup.
• (Absorption rule) 0 d x = x d 0 = 0 for all x ∈ H.
• (Distributive law) a d (x ‘ y) = (a d x) ‘ (a d y) for all a, x, y ∈ H.
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Definition 2.5. A hyperring H is called a hyperfield if 0 �= 1 and every non-zero element 
of H has a multiplicative inverse.

Remark 2.6. From this point onward, to clarify context, when discussing results over a 
field K the following notation will be used: +, ×(or ·) and 

∑
. Whereas, when discussing 

results over a hyperfield H the following notation will be used: ‘ , d and ‘.

2.2. Examples of hyperfields

The following are some key examples of common hyperfields used in the literature. 
They will be used to demonstrate the properties that are defined in this paper.

Example 2.7. The tropical hyperfield has the underlying set R ∪ {−∞} and it is usually 
denoted as T . The multiplication on T is an extension of the addition on R:

x d y := x + y and x d −∞ = x + −∞ = −∞.

The hyperaddition is defined as the following multivalued operation:

x ‘ y =
{
{max(x, y)}, if x �= y

{z ∈ R | z � x} ∪ {−∞}, if x = y
(2.8)

The additive neutral element 0 of T is −∞ and will be viewed as the minimum element of 
T . Thus, throughout the remainder of the work the hyperaddition on T will be denoted 
as

x ‘ y =
{
{max(x, y)}, if x �= y

{z ∈ T | z � x}, if x = y

The multiplicative neutral element 1 of T is 0. The tropical hyperfield is a hyperfield 
analogue of the tropical semiring described in [19]. The tropical hyperfield can also be 
defined using min instead of max, and {∞} instead of {−∞}, which yields an isomorphic 
structure. For further discussions of the tropical hyperfield and demonstrations of its 
usefulness, see both [20] and [21].

The next example is a key part of the results outlined in the following sections. The 
main purpose it has is as a candidate to replace the valued field in Kapranov’s theorem.

Example 2.9. The tropical complex hyperfield is usually denoted TC and has the complex 
numbers C as its underlying set. The standard complex multiplication is given to TC. 
The hyperaddition is defined in the following way for all z, w ∈ C:
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Fig. 1. A visualisation of the hyperaddition of TC, with the outcome depicted in red. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

z ‘ w =

⎧⎪⎪⎨⎪⎪⎩
{c ∈ C : |c| � |z|}, if w = −z.

{z}, if |z| > |w|.
{w}, if |w| > |z|.
{Shortest closed arc connecting z and w, with radius |z|}, if |z| = |w|, z �= ±w.

With this hyperaddition TC is a hyperfield. The additive neutral element 0 of TC

is 0 and the multiplicative neutral element 1 of TC is 1. This hyperfield is discussed 
in [4, Example 9] and was introduced in [20, Section 6] where it is described as the 
dequantization of the field of complex numbers. For further intuition as to the behaviour 
of the hyperaddition of TC see Fig. 1 and [20, Figure 1 in Section 6].

Example 2.10. A field K can be viewed as a hyperfield in a trivial manner, where the 
hyperaddition is defined as x ‘ y = {x + y}.

Example 2.11. The Krasner hyperfield has the underlying set {0, 1}, and it is usually 
denoted K. The multiplication for K is defined as:

0 d 0 = 0, 1 d 1 = 1, 0 d 1 = 0.

The hyperaddition for K is defined as:

0 ‘ x = x ‘ 0 = {x} for x = 0, 1
1 ‘ 1 = {0, 1}.

The additive neutral element 0 of K is 0 and the multiplicative neutral element 1 of K
is 1.
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Example 2.12. The hyperfield of signs has the underlying set {−1, 0, 1}, and it is usually 
denoted by S. The multiplication is the restriction of the usual multiplication on the real 
numbers and the hyperaddition defined as:

0 ‘ 0 = {0}, 0 ‘ 1 = {1}, 0 ‘ −1 = {−1},

1 ‘ 1 = {1}, −1 ‘ −1 = {−1},

1 ‘ −1 = {0, 1,−1}.

The additive neutral element 0 of S is 0 and the multiplicative neutral element 1 of S is 
1.

Example 2.13. The phase hyperfield, usually denoted by P , has the underlying set of 
S1∪{0}, where S1 = {eiθ ∈ C |0 � θ < 2π }, which is the complex unit circle union with 
zero. Multiplication on P is inherited from C, and the hyperaddition is defined by the 
rule,

if θ1 = θ2 + π, then eiθ1 ‘ eiθ2 = {0, eiθ1 , eiθ2}.

If θ1 < θ2 < θ1 + π, then eiθ1 ‘ eiθ2 = {eiθ | θ1 < θ < θ2}.

If θ2 < θ1 < θ2 + π, then eiθ1 ‘ eiθ2 = {eiθ | θ2 < θ < θ1}.

It can be noted that this hyperaddition produces open arcs in contrast to the closed 
arcs produced over TC. The additive neutral element 0 of P is 0 and the multiplicative 
neutral element 1 of P is 1. See [5] and [10] for alternative but equivalent definitions of 
the phase hyperfield.

Remark 2.14. To align with the literature, for the remainder of the work singleton sets, 
such as {a}, will simply be written as elements a.

2.3. Hyperfield homomorphisms

Definition 2.15. Given hypergroups H1 and H2, with respective hyperoperations ‘1 and 
‘2, a hypergroup homomorphism is a map f : H1 → H2, such that f(0) = 0 and 
f(x ‘1 y) ⊆ f(x) ‘2 f(y) for all x, y ∈ H1.

Definition 2.16. Given hyperrings H1 and H2, with respective hyperoperations ‘1 and 
‘2 and multiplication d1 and d2, a homomorphism of hyperrings f : H1 → H2 is a map 
such that:

1. f(x ‘1 y) ⊆ f(x) ‘2 f(y) and f(0) = 0.
2. f(x d1 y) = f(x) d2 f(y) and f(1) = 1.
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I.e., this is a homomorphism of additive hypergroups and a homomorphism of multi-
plicative monoids.

Definition 2.17. A map f : H1 → H2 between hyperfields is a hyperfield homomorphism 
if it is a hyperring homomorphism.

Example 2.18. The following are common examples of hyperfield homomorphisms.

f : H → K, f(x) =
{

1, if x �= 0.
0, if x = 0.

ph : C → P , ph(x) =
{

x
|x| , if x ∈ C\{0}.
0, if x = 0.

sgn : R → S, sgn(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ R>0.

−1, if x ∈ R<0.

0, if x = 0.

A discussion of these and other hyperfield homomorphims can be found in [3].

Example 2.19. For ease of notation, denote the tropical semiring by R ∪ {−∞} = R̄. 
Let K be a algebraically closed valued field with non-trivial valuation ν : K → R̄, then 
there is a corresponding map, trop : K → T , which is a hyperfield homomorphism. This 
correspondence can be seen in [7, Example 1.8 - (1)].

The next example will be a description of the hyperfield homomorphism which is the 
basis for the results in this paper.

Example 2.20. There exists a hyperfield homomorphism from the tropical complex hy-
perfield to the tropical hyperfield. The map is denoted η : TC → T , and is defined 
as:

η(z) := log(|z|).

This homomorphism has been discussed in [21, Sections 5.3 and 5.6] and appeared in 
a slightly different guise in [3]. Firstly, the tropical triangle hyperfield, T	 := R�0
is defined and the hyperfield homomorphism | · | : TC → T	 is given as the stan-
dard absolute value. When T	 is discussed in [3] it is stated that the logarithm map, 
log : T	 → R ∪ {−∞}, induces a hyperfield structure on R ∪ {−∞}. This hyperfield 
structure is precisely the tropical hyperfield, denoted in this work as T and defined here 
in Example 2.7. The motivation for working with the composition map η(z) := log(|z|)
is that the tropical hyperfield is the multivalued analogue of the tropical semiring, and 
isomorphic to the tropical triangle hyperfield.
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2.4. Polynomials over hyperfields

This section will describe how polynomials and their roots are defined over hyperfields.

Definition 2.21. The set of polynomials in n-variables over a hyperfield H will be denoted 
H[X1 , . . . , Xn], where elements of this set are defined as:

‘
I

cI d Xi1 d · · · d Xin = ‘
I

cI d XI , (2.22)

where multi-index notation is used and I = (i1 , . . . , in) ⊂ Zn and cI ∈ H.

Polynomials over hyperfields, as in the classical setting, are formal sums of monomials. 
It is only when evaluating a polynomial at an element of H that the operations, in par-
ticular the hyperaddition, are utilised. To clarify how to understand this, the evaluation 
map will now be defined.

Definition 2.23. Let p ∈ H[X1 , . . . , Xn] be a polynomial over H, and a ∈ Hn. Then, the 
evaluation p(a) is defined as a multivalued operation,

a �→ p(a) = ‘
I

cI d aI ∈ P (H)∗,

using the operations of H. In a similar manner to the statement at the end of last section, 
singletons sets will be written as elements when evaluating polynomials as well. Note 
that, when evaluating a monomial the hyperaddition is not present. Hence, evaluating a 
monomial will always yield a singleton.

Remark 2.24. Note that the notation H[X1 , . . . , Xn] is used only to denote the set of 
polynomials over H. In general there is no ring or hyperring structure on H[X1 , . . . , Xn], 
unlike the specialised case where H is a field. Even in the univariate case it is easy to see 
that the set of polynomials is not a hyperring; the multivalued nature of the addition in H
combined with the distributivity leads to products of polynomials also being multivalued. 
For example, (aX‘b) d(cX‘d) ⊆ acX2‘(ad ‘bc)X‘bd. The coefficient (ad ‘bc) is not 
necessarily single valued, which shows that multiplication of polynomials is multivalued, 
hence H[X1 , . . . , Xn] is not a hyperring. See [16, Remark 4.4 and Example 4.13] for an 
explicit example where the behaviour of H[X1 , . . . , Xn] is more controllable.

One difference to note between polynomials defined over a field and those defined 
over a hyperfield occurs when the polynomial is evaluated at an element of H. When 
a polynomial defined over a hyperfield is evaluated at an element, the output, unlike 
over a field, can be a set of elements. This leads to the following notion of a root of a 
polynomial over H.



450 J. Maxwell / Journal of Algebra 638 (2024) 441–464
Definition 2.25. Let p = ‘I cI d XI ∈ H[X]. An element a = (a1 , . . . , an) is a root of 
the polynomial if 0 ∈ p(a) = ‘I cI d aI .

This allows for a natural definition of the variety of p(X1 , . . . , Xn) as,

V (p) := {a = (a1 , . . . , an) ∈ Hn | 0 ∈ p(a)}.

The next definition recalls the notion of the multiplicity of a root for univariate poly-
nomials defined over hyperfields.

Definition 2.26. ([7, Def. 1.5]) Let p(X) ∈ H[X], the multiplicity of an element a ∈ H is 
denoted multa(p) and defined as,

multa(p) =
{

0, if a ∈ H is not a root.
1 + max{multa(q), if ∃ q ∈ H[X], s.t. p ∈ (X ‘ −a) d q(X)}.

(2.27)

Because of the multivalued nature of multiplication of polynomials with coefficients 
in a hyperfield, the polynomial q(X) in (2.27) is not necessarily unique. This is the 
motivation behind the recursive definition of the multiplicity. See [7] for details on the 
original definition and examples of the non-uniqueness.

Example 2.28.

1. If p(X) = X2 ‘ X ‘ 1 ∈ K[X], then 1 ∈ V (p), as

p(1) = 1 ‘ 1 ‘ 1 = K  0.

2. If p(X) = X2 ‘ X ‘ −1 ∈ S[X], then −1 ∈ V (p), as

p(−1) = 1 ‘ −1 ‘ −1 = S  0.

Remark 2.29. There is a complete description of roots and corresponding multiplicities 
for univariate polynomials over K, S and T in [7], where the results are used to demon-
strate proofs of Descartes’ Rule of Signs and Newton’s Polygon Rule.

Now that polynomials have been defined, their structure can be combined with hy-
perfield homomorphisms to describe an induced map of polynomials over hyperfields.

Definition 2.30. Let f : H1 → H2 be a hyperfield homomorphism. This induces a map 
from polynomials with coefficients in H1 to polynomials with coefficients in H2. This map 
is denoted f∗ : H1[X1 , . . . , Xn] → H2[X1 , . . . , Xn], and is defined for p = ‘I cI dXI ∈
H1[X1 , . . . , Xn] as;

f∗(p) = ‘ f(cI) d XI ∈ H2[X1 , . . . , Xn].

I
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(Note: the hyperoperations are now the operations over H2, and f∗(p) will be called the 
push-forward of p.)

Example 2.31. Take the polynomial p = 4X2 − 5X + 1 ∈ R[X], the hyperfield ho-
momorphism sgn : R → S induces the map sgn∗ : R[X] → S[X], which gives 
sgn∗(p) = X2 ‘ −X ‘ 1 ∈ S[X].

Note that roots of p ∈ H1[X] push-forward to roots of f∗(p) ∈ H2[X]. This is precisely 
described in Lemma 3.2. Next the definition of a relatively algebraically closed hyperfield 
homomorphism is introduced.

Definition 2.32. Let f : H1 → H2 be a surjective hyperfield homomorphism, with induced 
map f∗ : H1[X] → H2[X]. We say that f is relatively algebraically closed (RAC) if for all 
univariate polynomials p ∈ H1[X] and every root b ∈ V (f∗(p)), there exists a ∈ f−1(b)
such that a ∈ V (p).

The map f : H1 → H2 being RAC has the immediate consequence that V (f∗(p)) ⊆
f(V (p)) for all p ∈ H1[X]. Then, combining with Lemma 3.2, this gives V (f∗(p)) =
f(V (p)).

Example 2.33. The RAC property is defined for surjective hyperfield homomorphisms, 
as this will play a crucial role in later results. Although, there are maps which are not 
surjective but still have a RAC-like root lifting property. To demonstrate this, consider 
a transcendental field extension Q → Q(α). The inclusion map i : Q ↪→ Q(α) has the 
root lifting property for univariate polynomials but is clearly not surjective.

Definition 2.34. A hyperfield H is called algebraically closed if every univariate polyno-
mial has a root in H.

The Krasner hyperfield K is algebraically closed, by [7, Remark 1.11]. Thus, a hy-
perfield H is algebraically closed if and only if the canonical map (from Example 2.18) 
f : H → K is RAC.

The following example outlines a RAC map which is the main motivating example 
for this paper. It is the map that is studied in tropical geometry, and is the basis for the 
generalisation to hyperfield homomorpshisms.

Example 2.35. Let K be an algebraically closed field with surjective valuation, ν : K →
R̄. This is a RAC map. This is the underlying structure investigated when discussing 
valuations and tropicalisation maps in relation to tropical geometry. See [19, Section 
2.1] for a more detailed description. The corresponding hyperfield homomorpshim trop :
K → T is a RAC hyperfield homomorphism. This is a consequence of Proposition 2.39
which demonstrates that roots over T occur due to an analogous tropical vanishing as 
over the semiring R̄.
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Example 2.36. Take the map sgn : R → S, and p = X2−X +1 ∈ R[X]. Then, sgn∗(p) =
X2 ‘ −X ‘ 1 ∈ S[X]. The polynomial p has an empty variety, whereas sgn∗(p)(1) =
1 ‘ −1 ‘ 1 = S, so 1 ∈ V (sgn∗(p)). This demonstrates that the map R → S is not a 
RAC map.

Example 2.37. Take the map ph : C → P , and the polynomial p = X2+X+1 ∈ C[X]. It is 
shown in [7, Remark 1.10], that ph∗(p) has a root at each a = eiθ for all π/2 < θ < 3π/2. 
Not every element of this set can be lifted and hence ph : C → P is not a RAC map.

2.5. Connecting RAC to TC

The remainder of the section will be focused on demonstrating that the map η : TC →
T satisfies the RAC property.

Proposition 2.38. Let p = ‘
n
i=0 ci d Xi ∈ TC[X]. An element a ∈ TC is a root of p if 

there exist j1 , . . . , jm ∈ {0 , . . . , n} such that

|cj1aj1 | = · · · = |cjmajm | > |ciai| ∀i /∈ {j1 , . . . , jm} and 0 ∈
m

‘
k=1

cjk d ajk .

Proof. By the definition of the hyperaddition over TC, only the monomial terms with 
the largest absolute value contribute to the hypersum when the polynomial p is evaluated 
at a. Thus, by the hypothesis,

p(a) =
n

‘
i=0

ci d ai

=
m

‘
k=1

cjk d ajk ,

 0

so, 0 ∈ p(a) and hence a root of p. �
Next tropical vanishing is stated for polynomials over the tropical hyperfield. This 

extends the ideas in [5, Example 2.22].

Proposition 2.39. Given p ∈ T [X], an element a ∈ T is a root of p if and only if there 
exists j1, . . . , jm ∈ {0, . . . , n} such that

cj1 d aj1 = · · · = cjm d ajm > ci d ai ∀i /∈ {j1 , . . . , jm}, and m � 2,

or, p is a monomial and p(a) = cj d aj = −∞.
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Proof. If p is a monomial then p(a) = cj d aj . Hence, the only way for a to be a root is 
if this term is equal to −∞. This is characterised by the second case of the statement of 
the Proposition.

If m � 2 then the hyperaddition over T gives that the hypersum is defined only by 
the largest terms. By the hypothesis this allows the hypersum to be reduced as follows.

p(a) =
n

‘
i=0

ci d ai =
m

‘
k=1

cjk d ajk .

As all these terms are equal by the hypothesis, the hyperaddition over T will produce 
the set of elements less than this value, union with −∞, i.e. {z ∈ T |z � r}, where 
r = cj1 d aj1 = · · · = cjm d ajm . Thus,

m

‘
k=1

cjk d ajk = {z ∈ T |z � r}.

Hence, p(a)  −∞ and therefore a is a root of p.
For the reverse implication let a ∈ V (p), then there are two options.
If p(a) = −∞, then either p is a monomial and when evaluated at a the monomial is 

equal to −∞, implying the second case of the statement of the proposition. Or, if p is 
not a monomial but p(a) = −∞, every term of p(a) has to be equal to −∞ and can be 
viewed as the maximum. Therefore, this implying the first part of the statement of the 
proposition.

Alternatively, p(a) = {z ∈ T |z � r}  −∞. This happens when the largest terms of 
p(a), which exactly define the hypersum, are equal. This is precisely the first case. �
Lemma 2.40. Given a, b ∈ T , if a > b, then for all α ∈ η−1(a) and β ∈ η−1(b), it holds 
that |α| > |β|.

Proof. Taking a, b ∈ T such that a > b, if α ∈ η−1(a), and β ∈ η−1(b) then log(|α|) =
a > b = log(|β|). As both the logarithm and exponential functions preserve order, 
log(|α|) > log(|β|) ⇒ |α| > |β|, as required. �
Theorem 2.41. The hyperfield homomorphism η : TC → T is RAC.

Proof. A polynomial p = ‘
n
i=0 ci d Xi ∈ TC[X] has push-forward q = η∗(p) =

‘
n
i=0 η(ci) d Xi ∈ T [X]. By Proposition 2.39, a ∈ V (q) when one of two cases oc-

cur.
Firstly, if q(a) = −∞, every term in q(a) must be equal to −∞, which implies that 

a = −∞. This then has the unique lift to 0 ∈ TC. It can be seen that η(p(0)) ⊆
η∗(p)(η(0)) = q(−∞) = −∞. Therefore, η(p(0)) = −∞, which gives p(0) = 0. Hence 
0 ∈ V (p) as required.



454 J. Maxwell / Journal of Algebra 638 (2024) 441–464
Then, when m � 2 there must exist k1 , . . . , km ∈ {1 , . . . , n} such that, η(ck1) dak1 =
. . . = η(ckm

) d akm > η(ci) d ai for all i ∈ {0 , . . . , n}\{k1 , . . . , km}. This allows for 
t, t′ ∈ {k1 , . . . , km} to be chosen to construct a lift of a as follows:

ã =
(−ct′

ct

) 1
t−t′

.

To confirm that ã is a lift of a, apply the map η to ã to give

η(ã) =
(
η(−ct′) d (η(ct))−1

) 1
t−t′

.

Furthermore, observe that η(ct) d at = η(ct′) d at
′ . Then,

η(ct) d at = η(ct′) d at
′ ⇒ at−t′ = η(ct′) d (η(ct))−1

⇒ a =
(
η(ct′) d (η(ct))−1

) 1
t−t′

.

As η(x) = log(|x|) = log(| − x|) = η(−x), this shows that a = η(ã) as required.
It remains to shown that ã is a root of the original polynomial p. Note that due to 

Lemma 2.40,

|ck1 ã
k1 | = . . . = |ckm

ãkm | > |ciãi|, for all i /∈ {k1 , . . . , km}. (2.42)

Furthermore, observe the relationship between the monomial terms with t, t′ exponents,

ctã
t

‘ ct′ ã
t′ = ct

((−ct′

ct

) 1
t−t′

)t

‘ ct′
((−ct′

ct

) 1
t−t′

)t′

= (−1)
t

t−t′ (ct)
−t′
t−t′ (ct′)

t
t−t′ ‘ (−1)

t′
t−t′ (ct)

−t′
t−t′ (ct′)

t
t−t′

= (−1)(−1)
t′

t−t′ (ct)
−t′
t−t′ (ct′)

t
t−t′ ‘ (−1)

t′
t−t′ (ct)

−t′
t−t′ (ct′)

t
t−t′

= {z ∈ C : |z| � R}, where R = |ctãt|.

Then, ‘m
j=1 ckj

d ãkj  0, which combined with (2.42) and Proposition 2.38 gives that 
ã ∈ V (p). �
Corollary 2.43. The tropical complex hyperfield TC is algebraically closed.

Proof. It is a classical result in tropical geometry that the tropical semiring is alge-
braically closed, see for example [15]. This is trivially equivalent to the statement that 
the hyperfield T is algebraically closed. As the map η : TC → T is RAC and surjective, 
every polynomial p ∈ TC[X] has a corresponding polynomial η∗(p) ∈ T [X], which has 
a root and can be lifted back to a root of p. Hence, every polynomial in TC[X] has a 
root. �
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Remark 2.44. The results outlined in [7] regarding root multiplicities over T and K
demonstrate from a hyperfield perspective why they are both algebraically closed.

Example 2.45. Take the polynomial p = i d X2 ‘

(
−1+i

√
3

2

)
d X ‘ −1 ∈ TC[X], then 

the push-forward is η∗(p) = 0 dX2 ‘0 dX ‘0 ∈ T [X]. It can be seen that 0 ∈ V (η∗(p)). 
In accordance with the proof of Theorem 2.41, take t = 2 and t′ = 1. This gives,

ct = c2 = i, −ct′ = −c1 =
(1 − i

√
3

2

)
, 1/(t− t′) = 1

Taking the template for the lift,

ã =
(−ct′

ct

) 1
t−t′ =

(1 − i
√

3
2i

)
.

Now to confirm that this is a pull back of 0 and is a root of p(X):

∣∣∣(1 − i
√

3
2i

)∣∣∣ = 1
2 |1 − i

√
3| = 1 ⇒ f

(1 − i
√

3
2i

)
= 0.

Finally,

p(ã) = p
(1 − i

√
3

2i

)
= i

(1 − i
√

3
2i

)2
‘

(−1 + i
√

3
2

)(1 − i
√

3
2i

)
‘ −1

=
( i−√

3
2

)
‘

(1 + i
√

3
2i

)
‘ −1

=
( i−√

3
2

)
‘ −

( i−√
3

2

)
‘ −1

= {z ∈ C : |z| � 1} ‘ −1  0.

This shows that ã is a lifted root, which demonstrates the application of the structure 
of the proof of Theorem 2.41.

3. A generalisation of Kapranov’s theorem

This section will present a specific generalisation of Kapranov’s Theorem over hyper-
fields. The theorem, originating in [13], is a key result in tropical geometry and thus 
recalled here.

Theorem 3.1. Let ν : K → R̄ be the surjective valuation from Example 2.19. Given a 
Laurent polynomial p ∈ K[X±1

1 , . . . , X±1
n ], then

V (ν∗(p)) = ν(V (p)),
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where ν(V (p)) := {(ν(y1), . . . ν(yn)) : (y1, . . . yn) ∈ V (p)}. Explicitly, the valuation is 
extended to the map ν : Kn → R̄n, by applying it coordinate wise to n-tuples. (For a 
detailed proof see [19, Theorem 3.1.3]).

An essential point to recognise is that for arbitrary hyperfield homomorphisms one 
containment holds automatically.

Lemma 3.2. Let f : H1 → H2 be a hyperfield homomorphism. For p = ‘I cI d XI ∈
H1[X1 , . . . , Xn],

f(V (p)) ⊆ V (f∗(p)).

Proof. By definition f∗(p) = ‘I f(cI) d XI ∈ H2[X1 , . . . , Xn]. Let a = (a1 , . . . , an) ∈
Hn

1 be a root of p, meaning a ∈ V (p) and

0 ∈ p(a) = p(a1 , . . . , an) = ‘
I

cI d aI . (3.3)

The aim is to demonstrate that f(a) ∈ V (f∗(p)) holds. Firstly,

f∗(p)(f(a)) = ‘
I

f(cI) d f(a)I

= ‘
I

f(cI d aI)

⊇ f
(
‘

I

cI d aI
)

 f(0) = 0

The above steps use the properties of a hyperfield homomorphism to give that 0 ∈
f∗(p)(f(a)), yielding f(a) ∈ V (f∗(p)). Hence, f(V (p)) ⊆ V (f∗(p)) holds. �

The main result of the paper is to specifically generalise Kapranov’s Theorem to 
hyperfield homomorphisms f : H → T , which satisfy the RAC property. The following 
theorem demonstrates that the RAC property for a hyperfield homomorphism H → T

can be used to deduce the existence of lifts of roots for polynomials in n-variables.

Theorem 3.4 (Generalised Kapranov’s Theorem). Given a polynomial p ∈ H[X1 , . . . , Xn]
and a surjective RAC hyperfield homomorphism f : H → T ,

V (f∗(p)) = f(V (p)).

Proof. The inclusion f(V (p)) ⊆ V (f∗(p)) is a direct consequence of Lemma 3.2.
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The inclusion in the reverse direction, V (f∗(p)) ⊆ f(V (p)), is more interesting and 
requires an argument. Take a point a ∈ V (f∗(p)), so 0 ∈ f∗(p)(a). The aim is to demon-
strate that there exists an element in V (p) that pushes forward to a. This will be done 
by restricting to univariate polynomials and using the property that f : H → T is a 
RAC map, to find an appropriate lift of a.

Firstly, choose lifts λi ∈ f−1(ai): note that such values exist as f is surjective, where 
a = (a1 , . . . , an) ∈ V (f∗(p)) and λ = (λ1, . . . , λn) ∈ Hn. The map f : H → T

can be used to define the coordinate wise map F : Hn → Tn , F (x1, . . . , xn) :=
(f(x1) , . . . , f(xn)). For any non-zero D = (d1, . . . , dn) ∈ Zn the map ϕ(x) := (λ1 d

xd1 , . . . , λn d xdn) defines an inclusion ϕ : H∗ → (H∗)n, where H∗ denotes H/{0}. 
Then, if the map ψ : T∗ → (T∗)n is defined as

ψ(x) : = (f(λ1) d xd1 , . . . , f(λn) d xdn)

= (f(λ1) + d1x , . . . , f(λn) + dnx),

the diagram below is commutative:

H∗ T∗

(H∗)n (T∗)n

f

ϕ

F

ψ

Note that ψ(0) = F (λ) = a. The polynomial p will be pulled back through ϕ to a 
univariate polynomial, then pushed forward through f∗ and it will be shown that this 
polynomial has a root at 0. The RAC property will be used to lift this root back. The 
pullback of p, denoted ϕ∗p, is the univariate polynomial defined by the expression for p
where Xi is replaced with λi d Xdi . Explicitly,

ϕ∗p = ‘
I

cI d (λ1 d Xd1)i1 d . . . d (λn d Xdn)in ,

= ‘
I

cI d λI
d XD·I ∈ H[X].

The pullback polynomial ϕ∗p is pushed forward to f∗(ϕ∗p) ∈ T [X]. The image of f∗(ϕ∗p)
is equal to the image of f∗(p) when restricted to ψ.

f∗(p)(ψ(X)) = f∗(p)
(
f(λ1) d Xd1 , . . . , f(λn) d Xdn

)
= ‘ f(cI) d f(λ)I d XD·I
I
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= f∗(ϕ∗p)(X).

The next step is to show that f∗(ϕ∗p) has a root at 0 ∈ T . This can be seen as,

f∗(ϕ∗p)(0) = ‘
I

f(cI) d f(λ)I d 0D·I .

Then, due to the arithmetic over T ,

‘
I

f(cI) d f(λ)I d 0D·I = ‘
I

f(cI) d f(λ)I

= ‘
I

f(cI) d aI

= f∗(p)(a)  0. (3.5)

This shows that 0 ∈ V (f∗(ϕ∗p)). Then, the property that the map f : H → T is a 
RAC homomorphism gives that there exists an element ã ∈ H such that f(ã) = 0 and 
ã ∈ V (ϕ∗p).

Furthermore, to ensure that ã can be pushed forward to a root of p the tuple D ∈ Zn

must be chosen with the following property. Choose D ∈ Zn such that the dot products 
of D taken with exponent vectors of monomial terms of p = ‘I cI dXI , are all distinct. 
Explicitly,

D · J = d1 · j1 + · · · + dn · jn �= d1 · j′1 + · · · + dn · j′n = D · J ′,

for all pairs J, J ′ ∈ I. The condition D · J �= D · J ′ can be interpreted as D not lying on 
the hyperplane defined by X · (J − J ′). Therefore, it is possible to pick such a D ∈ Zn, 
as the number of possible pairs J, J ′ is finite and Zn can not be covered by a finite union 
of hyperplanes.

The pullback ϕ∗p utilises the requirement imposed on the tuple D = (d1 , . . . , dn). If 
the requirement was not imposed, this would allow multiple monomials in the restricted 
polynomial to have equal exponents. This would lead to the corresponding coefficient 
being a hypersum, thus the potentially detrimental possibility of the restriction becoming 
a set of polynomials rather than a single polynomial, which is what is needed here.

This condition on D implies that the element ã can then be pushed forward through ϕ
to give an element ϕ(ã) ∈ V (p). As the diagram commutes, this shows that the F (ϕ(ã)) =
ψ(f(ã)) = ψ(0) = a, which is sufficient to show that for every element of V (f∗(p)) there 
is a lift to an element of V (p). This demonstrates that V (f∗(p)) ⊆ f(V (p)), giving the 
desired result.

Hence, it has been shown that both f(V (p)) ⊆ V (f∗(p)) and V (f∗(p)) ⊆ f(V (p))
hold. These taken together demonstrate the required equality, V (f∗(p)) = f(V (p)). �
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It is necessary that the RAC property is defined for surjective hyperfield homomor-
phisms, as we can easily find points in V (f∗(p)) that have no preimage in Tn. The 
following example demonstrates this, and was contributed by Ben Smith.

Example 3.6. Consider the embedding of K inside T

e : K ↪→ T , a �→
{
−∞ a = 0
0 a = 1

.

Consider any non-trivial univariate polynomial p ∈ K[X] and its push-forward e∗(p). 
If e∗(p) is a monomial then the only possible root is −∞, which has 0 ∈ V (p) in its 
preimage. Assume e∗(p) is not a monomial and b ∈ V (e∗(p)), there exists at least two 
distinct i, j ∈ supp(p) with i ·b = j ·b � k ·b for all k ∈ supp(p). This can only occur when 
b = 0, which has 1 ∈ V (p) in its preimage, or when b = −∞ and 0 /∈ supp(p), which has 
0 ∈ V (p) in its preimage. This implies e only fails to be RAC as it is not surjective. If we 
had defined the RAC property for non-surjective hyperfield homomorphisms Theorem 3.4
would hold for e in the n = 1 case.

When we move to multivariate polynomials, it can be shown that e does not satisfy 
Theorem 3.4 for n � 2. For example, the bivariate polynomial X1 ‘ X2 ‘ 1 ∈ K[X1, X2]
gives rise to the ‘line’ V (p) = {(1, 0), (0, 1), (1, 1)}. However, the tropical line given by 
the push-forward e∗(p) has infinitely many points

V (e∗(p)) = {(a, 0) | a ∈ T�0} ∪ {(0, a) | a ∈ T�0} ∪ {(a, a) | a ∈ T�0} ,

and so e(V (p)) = {(0, −∞), (−∞, 0), (0, 0)} is contained as a strict subset. This high-
lights why we only define the RAC property for surjective hyperfield homomorphisms. 
As without surjectivity the multivariate case can not be inferred from the univariate 
case.

The structure of the proof of Theorem 3.4, restricting to univariate polynomials to 
use the RAC property is based on the argument presented in a proof of the original 
theorem in tropical geometry, as seen in [9]. Therefore, this adapted proof along with 
Example 2.35 gives a proof which encompasses that of the original Kapranov’s Theorem.

In particular, since η : TC → T is RAC, the above theorem applies to it.

4. Characterising RAC maps

This section aims to present sufficient conditions for a hyperfield homomorphism to 
be a RAC map. This will not include a complete description of the necessary conditions 
for a hyperfield homomorphism to be RAC; this remains an open topic. To begin the 
exploration into RAC hyperfield homomorphisms, a definition linking multiplicities of 
roots to the degree of the polynomial is presented.
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Definition 4.1. A hyperfield is said to satisfy the multiplicity bound if for all univariate 
polynomials, p ∈ H[X], ∑

a∈H
multa(p) � deg(p).

Furthermore, a hyperfield is said to satisfy the multiplicity equality if the above inequality 
is an equality for all univariate polynomials.

Proposition B from [7] describes a relationship between the multiplicities of roots over 
a field and the multiplicities of the push-forward of these roots over a hyperfield. It is 
stated below, in notation consistent with this paper.

Proposition 4.2. ([7, Prop. B]) Let K be a field and H a hyperfield with hyperfield ho-
momorphism f : K → H. Let p ∈ K[X], with push-forward f∗(p) ∈ H[X]. Then,

multb(f∗(p)) �
∑

a∈f−1(b)

multa(p)

for all b ∈ H. Moreover, if H satisfies the multiplicity bound for the polynomial f∗(p)
and p ∈ K[X] splits into linear factors then,

multb(f∗(p)) =
∑

a∈f−1(b)

multa(p).

Lemma 4.3. Let f : K → H be a hyperfield homomorphism, with H satisfying the mul-
tiplicity bound. If the polynomial p ∈ K[X] splits into linear factors, then V (f∗(p)) ⊆
f(V (p)) for p.

Proof. Take the polynomial p ∈ K[X], f∗(p) ∈ H[X]. Take b ∈ V (f∗(p)), so 0 ∈ f∗(p)(b)
and hence multb(f∗(p)) > 0. As p splits into linear factors over K and H satisfies the 
multiplicity bound, by Proposition 4.2 we have,

0 < multb(f∗(p)) =
∑

a∈f−1(b)

multa(p).

Therefore, there exists â ∈ f−1(b) such that multâ(p) > 0. Thus, â is a root of p ∈ K[X]. 
This demonstrates that given an element b ∈ V (f∗(p)) there exists an element â, such 
that f(â) = b and p(â) = 0. This shows that V (f∗(p)) ⊆ f(V (p)). �

The above lemma provides a method for detecting whether a hyperfield homomor-
phism from a field to a hyperfield is a RAC map. The next stage is to understand whether 
this view can be extended to maps f : H1 → H2. Proposition 4.2 is the key tool used 
in the proof of Lemma 4.3. The following discussion aims to explore a generalisation of 
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this result for maps f : H1 → H2. Firstly, it is important to recognise that this is not 
a simple generalisation and the property from [7, Prop. B] does not always hold in this 
less restrictive setting.

Example 4.4. Take the hyperfield homomorphism f : P → K. Note that, over the 
Krasner hyperfield K, the multiplicity bound achieves equality for all polynomials: ∑

b∈K multb(p) = deg(p) for all p ∈ K[X], (see [7, Remark 1.11] for details). Take the 
polynomial p = X2 ‘ X ‘ 1 ∈ P [X], then due to the argument presented in [7, Remark 
1.10], 

∑
a∈P multa(p) = ∞, in particular a = eiθ is a root of p for all π2 < θ < 3π

2 . Now 
the push-forward coefficients of the polynomial are unchanged, f∗(p) = X2 ‘X ‘1, with ∑

b∈K multb(f(p)) = 2. This then leads to,

∞ =
∑

a∈P\{0}
multa(p) =

∑
a∈f−1(1)

multa(p) �� mult1(f(p)) = 2.

This demonstrates that the property does not hold in total generality over all hyperfield 
homomorphisms.

There are several key properties of fields that underpin the result in Proposition 4.2. 
These properties do not automatically hold for hyperfields. The first key property is 
that all fields satisfy the multiplicity bound. The second has to do with the factorisation 
process of polynomials. Restricting to hyperfields with the multiplicity bound is a solution 
to half the problem, whereas the factorisation property needs to be discussed in further 
detail.

If K is a field, then K[X] is a unique factorization domain. Moreover, if K is alge-
braically closed then every polynomial p ∈ K[X] factorises completely into a product 
of linear factors. It is not obvious that these properties extend to hyperfields. This is 
due to the non-uniqueness of the choice of factorisation, even for more well-behaved hy-
perfields, such as those with the doubly distributive property (see [10] for description of 
doubly distributive hyperfields). It could occur that for two distinct roots, the maximum 
multiplicity is achieved with different factorisations. In an attempt to overcome this the 
next definition is introduced.

Definition 4.5. Given a polynomial p ∈ H[X], denote the list of roots by Ap :=
{a1 . . . ak}, where each ai appears multai

(p) times in Ap. A hyperfield H is said to have 
the inheritance property at p, if for all subsets {aj1 , . . . , ajm} ⊆ Ap, with m � deg(p), 
there exists q ∈ H[X] such that

p ∈ (X − aj1) d (X − aj2) d · · · d (X − ajm) d q.

A hyperfield is said to have the inheritance property in general if it holds for every 
polynomial p ∈ H[X].
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The work in this paper does not extend to characterising the multiplicity bound 
or inheritance properties, but rather opens this area up for exploration. The following 
conjecture is based on the current knowledge of doubly distributive hyperfields. In par-
ticular, it can be seen as a consequence of the results in [7] that K, S and T all satisfy 
the multiplicity bound.

Conjecture 4.6. All hyperfields with the doubly distributive property satisfies the multi-
plicity bound.

The inheritance property has not explicitly been studied in the literature. Although, 
the work in [1] and [7] suggests that K, S and T satisfy the inheritance property.

Conjecture 4.7. All hyperfields with the doubly distributive property satisfies the inheri-
tance property.

There will now be a demonstration of the implications of the multiplicity bound and 
the inheritance property.

Lemma 4.8. Given the hyperfield homomorphism f : H1 → H2, then for all p = ‘
n
i=0 cid

Xi ∈ H1[X],

multb(f∗(p)) �
∑

a∈f−1(b)

multa(p) (4.9)

holds if H1 satisfies the multiplicity bound and inheritance property.

Proof. As H1 satisfies the multiplicity bound the list of roots, including repetitions 
corresponding to the multiplicities, {a1 . . . ak} is a finite set with k � deg(p). Take the 
subset {aj1 . . . ajm} ⊆ {a1 . . . ak}, such that f(aj1) = · · · = f(ajm) = b. These are 
the only elements of H1 that are roots of p and push-forward to b. By the inheritance 
property, there exists a q ∈ H1[X], such that,

p ∈ (X − aj1) d · · · d (X − ajm) d q.

By the hyperfield homomorphism properties it can be seen that under f∗,

f∗(p) ∈ (X − f(aj1)) d · · · d (X − f(ajm)) d f∗(q)

∈ (X − b) d · · · d (X − b) d f∗(q).

This gives multb(f∗(p)) � m, implying that,

multb(f∗(p)) �
∑
−1

multa(p). �

a∈f (b)
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Theorem 4.10. Given H1 which satisfies the multiplicity equality and has the inheritance 
property, and H2 that satisfies the multiplicity bound, then the homomorphism f : H1 →
H2 is a RAC map.

Proof. The hyperfield H1 satisfying the multiplicity equality and the inheritance prop-
erty implies by Lemma 4.8 that, multb(f∗(p)) �

∑
a∈f−1(b) multa(p) holds. These to-

gether then imply that;

deg(p) =
∑
a∈H1

multa(p) �
∑
b∈H2

multb(f∗(p)) � deg(f∗(p)) = deg(p).

Explicitly, the first equality is given by the multiplicity equality of H1 and the sec-
ond inequality holds due to the multiplicity bound on H2. Yielding, multb(f∗(p)) =∑

a∈f−1(b) multa(p). Then finally, multb(f∗(p)) =
∑

a∈f−1(b) multa(p) gives that the map 
f : H1 → H2 is RAC, using analogous logic to the proof of Lemma 4.3. �
Remark 4.11. Theorem 4.10 demonstrates that there are sufficient conditions that can 
be given to both hyperfields to give the corresponding homomorphism as RAC, although 
this does not classify all RAC maps. It does incorporate the motivating example for the 
paper, trop : K → T . Although, it can be seen in Example 4.12 that TC does not satisfy 
the multiplicity bound, and hence does not fulfil the conditions of Theorem 4.10. This 
demonstrates the theoretical complexity in attempting to outline the conditions for a 
hyperfield homomorphism to be RAC.

Example 4.12. Given the polynomial p = X2 ‘ X ‘ 1 ∈ TC[X], then

p(−1) = (−1)2 ‘ −1 ‘ 1

= 1 ‘ −1 ‘ 1

=
(
{a ∈ C : |a| � 1}

)
‘ 1

 −1 ‘ 1  0

p(i) = −1 ‘ i ‘ 1

=
(
{shortest closed arc between − 1 and i}

)
‘ 1

 −1 ‘ 1  0

p(−i) = −1 ‘ −i ‘ 1

=
(
{shortest closed arc between − 1 and − i}

)
‘ 1

 −1 ‘ 1  0

These three calculations over TC imply that {−1, i, −i} ⊂ V (p) ⊂ TC. This shows that 
a degree 2 polynomial can have three distinct root over TC, thus the multiplicity bound 
does not hold.
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