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A B S T R A C T

Is clean energy a safe haven for cryptocurrencies, or vice versa? In this paper, we investigate the hedge and
safe haven property of a wide range of clean energy indices against two distinct types of cryptocurrencies
based on their energy consumption levels, termed ‘‘dirty’’ and ‘‘clean’’. Statistical evidence shows that clean
energy is not a direct hedge for either of types. However, it serves as at least a weak safe haven for both in
extreme bearish markets. Moreover, clean energy is more likely to be a safe haven for dirty cryptocurrencies
than clean cryptocurrencies during increased uncertainty. We further study the spillover patterns among clean
energy, cryptocurrency, stock, and gold markets. Weak connectedness is found between clean energy and
cryptocurrencies which implies the potential use of clean energy as a hedge and diversification tool for
cryptocurrencies in the future.
1. Introduction

Cryptocurrencies have been developing rapidly and become sought-
after assets. However, the energy footprint of conventional energy-
intensive cryptocurrencies (hereinafter referred to as ‘‘dirty’’ cryptocur-
rencies) that use ‘‘Proof of Work’’ (PoW) consensus has caused signifi-
cant ecological damage and has resulted in heightened public concerns
(Corbet and Yarovaya, 2020). In a recent study of Mora et al. (2018),
the authors projected that the carbon emissions from the continu-
ous adoption of Bitcoin, the most representative dirty cryptocurrency,
might itself lift global warming beyond two degrees Celsius within
thirty years. The estimated annual energy usage of Bitcoin now has
increased to 169.98 TWh, not just comparable but even higher than
the gross power consumption of Poland.1 Due to its computationally
expensive PoW mechanism, a single transaction of Bitcoin is esti-
mated to consume approximately 1834.02 kWh electricity which is
equivalent to the amount of energy used by an American family for
more than 62 days. Researchers have been emphasising the urgency

∗ Corresponding author at: Trinity Business School, Trinity College Dublin, Dublin 2, Ireland.
E-mail addresses: renb@tcd.ie (B. Ren), blucey@tcd.ie (B. Lucey).

1 Retrieved from https://digiconomist.net/bitcoin-energy-consumption on Oct 5, 2021.
2 https://www.businesswire.com/news/home/20210902005385/en/Global-Renewable-Energy-Industry-Guide-2021-Value-and-Volume-2016-2020-and-

Forecast-to-2025---ResearchAndMarkets.com.

of reducing cryptocurrency mining activities and using non PoW cryp-
tocurrencies (Schinckus, 2021). In recent years, an increasing number
of eco-friendly cryptocurrencies (hereinafter: ‘‘clean’’ cryptocurrencies)
have been launched to compete in the market, which is more valued
and appreciated in today’s context of moving towards greener industry.
Some of the new players have already become leading cryptocurrencies
by market capitalisation such as Cardano, Solana, etc.

At the same time we have also seen a strong growth track in clean
energy sectors. Revenue of clear energy companies is just under $700b,
with an annual growth rate of 6.8%.2 There have been created a wide
range of clean energy related equity indices to capture the movements
of publicly quoted clean energy related companies, and much research
has emerged showing their usefulness in acting as portfolio constituents
against regular stock and bond indices (see as examples Rezec and
Scholtens (2017), Ahmad and Rais (2018) and Kuang (2021))

The extant literature on the relationship between cryptocurrencies
and other assets has often considered traditional energy assets due to
the tremendous energy use involved in most cryptocurrency mining and
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transactions. Jiang et al. (2022) analyse the role of Bitcoin, gold, equity,
foreign exchange and energy (crude oil/natural gas) have played in the
global volatility connectedness network. They argue that the overall
volatility transmission in the financial system is possibly driven by
external investor attention between different markets. Moreover, they
find that Bitcoin, gold, foreign exchange and natural gas are volatility
transmitters, while crude oil and the stock market are receivers. Ji
et al. (2019b) test the information interdependence between leading
cryptocurrencies and several commodities and they pointed out that
the cryptocurrencies are unexpectedly weakly connected, but still in-
tegrated to energy markets such as natural gas, unleaded gas, heating
oil, and crude oil using both static and dynamic entropy-based spillover
measures. Zeng et al. (2020) show that the financial linkage between
Bitcoin and traditional assets such as stock, oil, and gold is weak, but
has been increasing. Rehman and Kang (2021) document the existence
of lead–lag relationships between Bitcoin and crude oil and natural
gas, while it is not the case for coal, which is quite interesting as we
know that China is the largest Bitcoin miner where power generation
relies extensively on coal. Akyildirim et al. (2021) further investigate
the dynamic correlation and extreme dependence between Bitcoin and
Chinese coal markets. They show that dynamic correlations between
Bitcoin and coal indices increases when extreme mining events occur in
China and such incidents are likely to induce Bitcoin volatilities. Oko-
rie (2021) and Corbet et al. (2021) discover significant correlation
and volatility spillovers between leading cryptocurrencies and elec-
tricity markets. Okorie and Lin (2020) find both bi-directional and
uni-directional volatility spillovers between the crude oil market and
cryptocurrencies. They further claim that crude oil is a good hedge
tool for risks of holding various cryptocurrencies. While Umar et al.
(2021) show that cryptocurrency market is less connected with global
technology sectors. Le et al. (2021b) further investigate whether the
spillover patterns between financial technology stocks and Bitcoin,
gold, global stock, crude oil, and foreign exchange are changed by
Covid-19 outbreak. Results suggest that the pandemic has shaped and
strengthened the volatility spillovers across markets and only gold
and U.S. dollar remains as safe havens, while other assets such as
Bitcoin, oil, financial technology stocks being large volatility spillover
receivers are not. Maghyereh and Abdoh (2020), Bouri et al. (2018),
and Uzonwanne (2021) have examined the direction of spillovers be-
tween Bitcoin and other markets. Wang et al. (2021) measure the time
and frequency connectedness among Bitcoin and other assets including
stock, gold oil, etc, but from a hedge perspective.

Relatively little literature has focused attention on the linkage be-
tween cryptocurrency and green markets, even after the latter market
has witnessed a major rise in recent years, especially for clean en-
ergy actions which are sustainable alternatives to traditional carbon-
intensive energy such as electricity, oil, and coal. Le et al. (2021a)
consider the time and frequency domain connectedness between cryp-
tocurrencies, green bond, and a variety of other assets, but their focal
point is on financial technology and not clean energy stocks.

There are few papers which can be regarded as closely related
to our research. For instance, Symitsi and Chalvatzis (2018) examine
the spillovers among, Bitcoin, fossil and clean energy, and technology
indices. There are significant return spillovers from energy and tech-
nology markets to Bitcoin, while volatility spillovers are found from
Bitcoin to energy markets in the long run and from technology market
to Bitcoin in the short run. While Corbet et al. (2021) show that there
is no significant linkage between the volatility of Bitcoin price and
largest green ETFs markets, Naeem and Karim (2021) further use a
time-varying optimal copula approach to examine the tail dependence
between Bitcoin and green investments. They find no tail dependence
between clean energy and Bitcoin, but they suggest that clean energy
is a potential diversification tool for Bitcoin as the hedge ratio and
hedge effectiveness are with clean energy in the portfolio. A similar
comment is provided by Pham et al. (2021) who propose that green
2

investments could offer diversification benefits to cryptocurrency since e
only weak connectedness between cryptocurrencies such as Bitcoin and
Ethereum and green assets is found during non-crisis periods. However,
these papers actually opened up a question — whether clean energy is
a direct hedge or even a safe haven for Bitcoin or Ethereum, or more
broadly, for cryptocurrencies. If we find that particular types of clean
energy stocks can act as safe havens or hedges against particular types
of cryptocurrency, or vice versa, it has implications for investors. For
example, it may be practical to protect against drawdowns in cryptocur-
rencies using clean energy stocks or vice versa. But the form of currency
matters. If we find that only dirty cryptocurrencies are a useful hedge
or safe haven against clean energy that suggests that the economic
incentive to invest in clean energy will be counter to the ecological
argument. Moreover, although there has been quite a lot of work done
on the interconnection of cryptocurrency with other financial assets,
the debate on whether Bitcoin or cryptocurrency market is isolated
from other assets (markets) has not come to an end.3

To answer the above questions we first test the potential role for
clean energy as a hedge or safe haven for two distinct types of cryp-
tocurrencies based on their characteristics of eco-efficiency4 and vice
versa, and then the spillovers across these two, along with general stock
and gold markets. The hedge and safe haven property are examined
using a dynamic conditional correlation Generalised Autoregressive
Conditional Heteroskedasticity (DCC-GARCH) model. The DCC-GARCH
model and its variants have been extensively employed in safe haven
analysis. For instance, Ratner and Chiu (2013) find that credit default
swaps are useful hedge and safe haven tools for different sector stocks
of U.S. market using the standard DCC-GARCH model. Yousaf et al.
(2022) use this model to investigate the hedge and safe haven property
of gold and green investments for conventional stock market. Wang
et al. (2020) use the this model to investigate the difference be-
tween gold-backed and USD-backed stablecoins’ ability of being hedges
and safe havens against traditional cryptocurrencies. Akhtaruzzaman
et al. (2021) study the evolution of the role gold has played as a
safe haven asset in the first two phases of COVID-19 crisis using the
DCC-GARCH model. Urquhart and Zhang (2019) discover the intra-
day hedge and safe haven ability of Bitcoin against major currencies
using several variants and specifications of DCC-GARCH model. More
practice of DCC-GARCH application in safe haven analysis can be seen
in studies of Bouri et al. (2017b), Bouri et al. (2017a), Wang et al.
(2019) and Peng (2020), etc. Next, the spillover effects are measured
using the Diebold and Yilmaz (2012) and Diebold and Yılmaz (2014)
(DY) connectedness framework in line with some previously mentioned
(e.g., Umar et al. (2021) and Zeng et al. (2020), etc.), and many other
papers in the area of connectedness analysis. For example, Yi et al.
(2018) follow the DY approach to investigate the volatility connected-
ness among three tiers of eight cryptocurrencies, and they found that
Bitcoin is not dominating as expected. Ji et al. (2019a) employ this
framework to analyse the connectedness and inter-dependency among
six large cryptocurrencies. Aharon et al. (2021) measure the spillover
effects between Bitcoin, five major currencies, and the US yield curve
elements using the DY approach. Jalan et al. (2021) employ the DY
in measuring the spillover between Bitcoin, gold, and gold-pegged
stablecoins. They find that gold market had more pronounced impact
on the volatility of these stablecoins than the Bitcoin during the studied
period.

Our study contributes to the literature from at least four aspects.
First, we provide statistical evidence that clean energy is not a direct
hedge for either dirty or clean cryptocurrencies currently.

Second, our study is among the first to empirically examine the safe
haven property of a wide range of clean energy indices during dirty

3 See Ji et al. (2018) and Corbet et al. (2020) as examples.
4 Corbet et al. (2021) suggest that cryptocurrencies have varying carbon

ootprints and power usage levels, possibly affecting how they interact with
nergy and utility businesses.
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and clean cryptocurrency market turmoils and its reverse. We find that,
in general, clean energy stocks serve as at least weak safe havens in
times of extreme falling cryptocurrency markets. In times of increased
volatility, clean energy is more likely to serve as a safe haven for dirty
cryptocurrencies than for clean cryptocurrencies.

Third, we measure the dynamic connectedness between different
clean energy subsectors and cryptocurrencies, which has not been done
in previous literature. Findings reveal that none of the clean energy
subsectors, nor general stock, or the gold market is strongly associated
with cryptocurrency markets, which extends the understanding of the
research on the interconnection of cryptocurrencies with other markets.

Fourth, our findings also provide references and implications for
regulators and policy makers as well as cryptocurrency founders in
designing the framework of further financial integration and promoting
greener industry, and ultimately the society.

The remainder of this paper is organised as follows. Section 2 de-
scribes the data, followed by Section 3 which details the methodology
used in the analysis. Section 4 presents the empirical findings and
Section 5 checks the robustness of previous results. Lastly, Section 6
concludes and addresses the implications of our study.

2. Data

We collected daily closing price data for five major dirty cryp-
tocurrencies including Bitcoin (BTC), Ethereum (ETH), Bitcoin Cash
(BCH), Ethereum Classic (ETC) and Litcoin (LTC), as well as five clean
cryptocurrencies, Cardano (ADA), Ripple (XRP), IOTA (MIOTA), Stellar
(XLM), and Nano (NANO) from CoinMarketCap,5 spanning from Jan-
uary 1, 2018 to September 17, 2021.6 The dirty cryptocurrencies are all
built on PoW algorithms for consensus which results in massive energy
usage regarding mining and transactions, while clean cryptocurrencies
are built on different varieties of energy-efficient consensus algorithms,
including Proof-of-Stake (PoS), Ripple Protocol, Stellar Protocol, and

5 https://www.coinmarketcap.com.
6 Our selection takes into account the market capitalisation, data

vailability of closing price and market capitalisation, and recent online
edia attention. We chose BCH and ETC in addition to BTC, ETH, and LTC

s these two cryptos have been the largest PoW players following LTC for
ears, both are listed in the top 6 by market cap. Although DOGE is the
hird largest PoW crypto, we did not consider it as: 1. it was originally
esigned as a meme coin without other uses; 2. Its energy consumption
s arbitrary due to its relatively complicated mining mechanism; 3. It has
een highly influenced/boosted by Musk’s social media comments. The
election of clean cryptocurrencies was not as straightforward as choosing
irty cryptocurrencies. The first issue is the data availability. The data of
losing price and market cap should be available from January 1, 2018, so
ome other top players such as Solana, Polkadot, Avalanche, etc, were not
onsidered as they came to the market much later. BNB was not considered as
t shares a completely different nature as a derivative of the Binance Exchange,
istorically built on Ethereum blockchain technology, and began to support
taking in 2020. MIOTA and NANO are chosen as they have been the most
requently discussed and compared to the dirty cryptos and even other clean
layers regarding energy consumption in more recent period (e.g., see https:
/www.trgdatacenters.com/most-environment-friendly-cryptocurrencies/,
ttps://www.leafscore.com/blog/the-9-most-sustainable-cryptocurrencies-
or-2021/ (retrieved in September of 2021), and https://www.thetimes.co.u
/money-mentor/article/eco-friendly-cryptocurrencies/). Although they may
ave become smaller players (compared to other cryptos we use) in recent
onths, historically, MIOTA ranked as 10th largest, and NANO ranked as

he 20th among all as of January 7, 2018 (e.g., see the historical snapshot
f CoinMarketCap data at https://coinmarketcap.com/historical/20180107/).
dditionally, NANO is, to the best of our knowledge, one of the very few
nd earliest cryptos that explicitly address the ‘‘eco-friendly’’ characteristic,
hich can be seen from its description on CoinMarketCap website and from

heir official website’s title Nano | Eco-friendly & feeless digital currency,
which makes it a ideal representative of clean cryptos to attract potential
environmentally conscious investors.
3

s

some other alternatives. We further created two value-weighted indices
of the dirty and clean cryptocurrencies, respectively named as DCRYPT
and CCRYPT to track the overall performance of the two distinct cryp-
tocurrency groups. Next, clean energy indices sourced from Bloomberg
were used to represent the performance of the clean energy industry.
We not only used the S&P Global Clean Energy Index (SPGTCED)
and WilderHill Clean Energy Index (ECO) which tracks the overall
performance of global or U.S. clean energy sectors, but also selected
several indices from NASDAQ OMX Green Economy Index Family to
track the performance of individual clean energy generation subsectors,
partly following the literature of Pham (2019).7 Specifically, we used
the NASDAQ OMX Bio/Clean Fuels Index (GRNBIO), Fuel Cell Index
(GRNFUEL), Renewable Energy Index (GRNREG), Geothermal Index
(GRNGEO), Solar Energy Index (GRNSOLAR), and Winde Energy Index
(GRNWIND). The description of each clean energy index is provided
in Table 1. To account for the general stock market performance, we
collected the data for the S&P 500 Index (SP500) from Bloomberg.
Finally, we collected the London P.M. gold fixing price (GOLD) from
Federal Reserve Economic Data.8 Note that all data were sourced in U.S.
dollars and transformed to their first-differenced natural logarithms
before use. Table 2 summaries the statistics for the log returns in per-
centage.9 All return series are stationary and are not normal distributed
ased on Augmented Dickey–Fuller (ADF) test and Jarque–Bera (JB)
est, respectively.

. Methodology

.1. Safe haven analysis

We adopt the estimation framework introduced by Baur and Lucey
2010) and Baur and McDermott (2010) to examine the hedge and safe
aven property of clean energy indices against dirty and clean cryp-
ocurrencies. Similar to Akhtaruzzaman et al. (2021), Peng (2020), Rat-
er and Chiu (2013), and some others mentioned earlier, we start by
sing a DCC–GARCH model proposed by Engle (2002) to estimate the
orrelation of underlying asset pairs.

The estimation comprises two steps. The first is to estimate a
ARCH(1,1) model. Let 𝑟𝑡 be the 𝑁 × 1 vector of pairs of return series
1𝑡 and 𝑟2𝑡, given the information set 𝐼𝑡−1:

𝑟𝑡 = 𝜇𝑡 + 𝜖𝑡,

𝑡 = 𝛼0 + 𝛼1𝜖
2
𝑡−1 + 𝛽ℎ𝑡−1,

(1)

where 𝜖 is the vector of residuals.
Secondly, we estimate the DCC parameter. Let 𝐻𝑡 be the conditional

covariance matrix of 𝑟𝑡. We have assumed 𝑟𝑡 to be normally distributed
with a zero mean and we write 𝐻𝑡 as the following:

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡,

𝐷𝑡 = 𝑑𝑖𝑎𝑔 [ℎ1∕21𝑡 , ℎ1∕22𝑡 ],

𝑅𝑡 = 𝑑𝑖𝑎𝑔[𝑄𝑡]−1∕2 𝑄𝑡 𝑑𝑖𝑎𝑔[𝑄𝑡]−1∕2,

(2)

where 𝑅𝑡 denotes the matrix of time-varying conditional correlations,
𝑄𝑡 is the positive definite matrix of 𝑞12,𝑡, and ℎ𝑡 is the conditional
tandard deviations (𝑆𝐷s). Then we can get the estimated DCC model
s:

𝑡 = (1 − 𝑎 − 𝑏)𝑄̄ + 𝑎𝑢𝑡−1𝑢
𝑇
𝑡−1 + 𝑏𝑄𝑡−1, (3)

7 We focus on clean energy generation subsectors in this paper.
8 https://fred.stlouisfed.org/series/GOLDPMGBD228NLBM.
9 The number of observations used in spillover analysis is less than that in

afe haven analysis as we included gold in the spillover analysis which has

lightly fewer trading days than the stock markets.
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Table 1
Description of clean energy indices

Index name Description

S&P Global Clean Energy Index SPGTCED tracks the performance of world top 100 companies in clean energy sectors from both developed and emerging markets.
WilderHill Clean Energy Index ECO is the first index that tracks the performance of top clean energy companies traded on the NASDAQ.
NASDAQ OMX Bio/Clean Fuels Index GRNBIO tracks the performance of companies operating in plant-based fuel generation sector.
NASDAQ OMX Renewable Energy Index GRNREG tracks the performance of companies operating in renewable energy generation sectors, such as solar, wind, geothermal,

and fuel cells.
NASDAQ OMX Geothermal Index GRNGEO tracks the performance of companies operating in geothermal power generation sector.
NASDAQ OMX Fuel Cell Index GRNFUEL tracks the performance of companies operating in fuel cell energy sector.
NASDAQ OMX Solar Index GRNSOLAR tracks the performance of companies operating in solar energy generation sector.
NASDAQ OMX Wind Index GRNWIND tracks the performance of companies operating in wind energy generation sector
Table 2
Descriptive statistics of returns (%).

Mean Min Max Std. Dev Skewness Kurtosis ADF JB

SPGTCED 0.089 −12.498 11.035 1.697 −0.888 10.900 −7.257*** 4949.7***
ECO 0.119 −16.239 13.399 2.415 −0.657 6.733 −7.230*** 1911.1***
GRNBIO 0.051 −18.193 13.394 2.272 −1.380 13.061 −6.645*** 7230.9***
GRNFUEL 0.177 −18.028 21.617 3.829 0.180 3.735 −20.283*** 572.7***
GRNREG 0.071 −15.256 8.930 1.319 −1.632 25.452 −7.535*** 26 707***
GRNGEO 0.015 −13.390 18.255 2.186 0.686 11.250 −9.351*** 5212.6***
GRNSOLAR 0.106 −19.334 12.049 2.548 −0.704 6.551 −8.259*** 1823.7***
GRNWIND 0.074 −10.982 7.720 1.584 −0.276 4.651 −16.126*** 891.8***
BTC 0.128 −46.473 20.305 4.750 −1.156 11.468 −13.594*** 5554.2***
ETH 0.153 −55.071 35.365 6.258 −0.796 8.834 −20.648*** 3271.1***
ETC 0.052 −50.779 35.865 7.143 −0.441 7.293 −7.421*** 2191.5***
BCH −0.141 −56.140 42.082 7.447 −0.350 8.936 −20.230*** 3262.0***
LTC −0.025 −44.901 29.062 6.224 −0.668 7.122 −21.313*** 2132.5***
ADA 0.121 −50.371 32.209 7.238 0.002 4.197 −20.127*** 716.3***
XRP −0.083 −55.040 62.668 7.405 0.238 12.606 −30.085*** 6457.8***
XLM −0.042 −41.004 55.932 7.283 0.667 9.026 −22.001*** 3379.6***
MIOTA −0.085 −54.333 33.224 7.478 −0.528 6.744 −20.483*** 1892.5***
NANO −0.176 −61.455 54.654 9.113 0.028 8.112 −14.095*** 2672.2***
DCRYPT 0.136 −47.692 19.470 4.917 −1.266 11.057 −13.579*** 5222.2***
CCRYPT 0.027 −41.826 55.388 6.780 0.036 9.146 −14.665*** 3396.4***
SP500 0.053 −12.765 8.968 1.361 −1.117 18.298 −9.018*** 13 248.0***
GOLD 0.031 −5.265 5.133 0.913 −0.453 5.478 −12.866*** 1203.9***

Note:
***Indicates the significance level of 1%.
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where 𝑎 and 𝑏 are non-negative scalars satisfying 𝑎 + 𝑏 < 1, and 𝑄̄ is
the unconditional variance matrix of standardised residuals 𝑢𝑡. We can
hereby obtain the dynamic conditional correlations series 𝜌12,𝑡 as:

𝜌12,𝑡 = 𝑞12,𝑡∕
√

𝑞11,𝑡 𝑞22,𝑡. (4)

With the dynamic conditional correlations between cryptocurren-
ies and clean energy indices, we now can proceed to examine the safe
aven property of clean energy against cryptocurrencies. Following the
ork of Ratner and Chiu (2013) and Peng (2020), the dynamic condi-

ional correlation 𝐷𝐶𝐶𝑡 are regressed on dummy variables representing
he extreme movements of assets as follows:

𝐶𝐶𝑖𝑗,𝑡 = 𝑐0 + 𝑐1𝐷(𝑟𝑐𝑟𝑦𝑝𝑡𝑜𝑖𝑞10) + 𝑐2𝐷(𝑟𝑐𝑟𝑦𝑝𝑡𝑜𝑖𝑞5) + 𝑐3𝐷(𝑟𝑐𝑟𝑦𝑝𝑡𝑜𝑖𝑞1), (5)

here 𝐷(...) are dummy variables that capture extreme negative returns
f a cryptocurrency at the 10%, 5%, and 1% quantiles of the distri-
ution. According to the definition of safe haven in Baur and Lucey
2010), clean energy is a weak hedge for an individual cryptocurrency
f 𝑐0 is insignificantly different from zero, or a strong hedge if 𝑐0 is
egative. Clean energy serves as a weak (strong) safe haven for an
ndividual cryptocurrency under certain market condition if any of 𝑐1,
2 or 𝑐3 are non-positive (significantly negative).

Alternatively, a similar approach to Eq. (5) is to regress 𝐷𝐶𝐶𝑡 on the
agged extreme conditional volatility of dirty or clean cryptocurrency
ndex which is proxied for market uncertainty, motivated by Baur and
cDermott (2010):

𝐶𝐶𝑖𝑗,𝑡 = 𝑐0 + 𝑐1𝐷(𝑣𝑐𝑟𝑦𝑝𝑡𝑜𝑞90,𝑡−1) + 𝑐2𝐷(𝑣𝑐𝑟𝑦𝑝𝑡𝑜𝑞95,𝑡−1) + 𝑐3𝐷(𝑣𝑐𝑟𝑦𝑝𝑡𝑜𝑞99,𝑡−1),

(6)
4

here the dummy variables 𝑐1, 𝑐2 and 𝑐3 here are equal to one if the
onditional volatility at 𝑡−1 exceeds the 90%, 95% and 99% quantiles,
espectively. This allows us to examine the safe haven property of clean
nergy against cryptocurrencies during increased market uncertainty.

To investigate the other way around that whether cryptocurrencies
re safe havens for clean energy stocks in times of extreme negative
arkets and uncertainty, we simply replace with clean energy data on

he right hand side for Eqs. (5) and (6), respectively.

.2. Spillover measures

We use the DY connectedness framework (Diebold and Yilmaz,
012; Diebold and Yılmaz, 2014) to estimate the spillover effects be-
ween clean energy indices and cryptocurrency indices. The DY model
s basically a generalised vector autoregressive (VAR) model which can
e used to trace the dynamic spillover relationship between two time
eries in a rolling window basis.

We begin with a VAR model with an infinite order of 𝑃 :

𝑡 =
𝑃
∑

𝑖=1
𝜑𝑖𝑦𝑡−𝑖 + 𝜀𝑡, (7)

here 𝑦𝑡 is the vector of endogenous variables, 𝜑𝑖 is the matrix of
parameters, and 𝜀𝑡 represents the vector of 𝑖.𝑖.𝑑. residuals.

In addition, we write the moving average representation of the
model defined in Eq. (7) as:

𝑦𝑡 =
∞
∑

𝐴𝑖𝜀𝑡−𝑖, (8)

𝑖=0
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Table 3
DCCs between clean energy indices and cryptocurrencies.

SPGTCED ECO GRNBIO GRNFUEL GRNREG GRNGEO GRNSOLAR GRNWIND

BTC 0.1572 0.1186 0.1370 0.0990 0.1491 0.0874 0.1088 0.1188
ETC 0.1301 0.1079 0.0852 0.0709 0.1260 0.0722 0.0956 0.0883
BCH 0.1338 0.1028 0.0908 0.0791 0.1250 0.0764 0.0799 0.0868
LTC 0.1464 0.1309 0.1206 0.0979 0.1561 0.0646 0.1115 0.1194
ETH 0.1493 0.1309 0.1244 0.1103 0.1425 0.0672 0.1007 0.1234
ADA 0.1605 0.1399 0.1354 0.1064 0.1588 0.1121 0.1331 0.0817
MIOTA 0.1530 0.1432 0.1456 0.1093 0.1557 0.1226 0.1396 0.0925
XRP 0.1348 0.1519 0.1195 0.1334 0.1271 0.0595 0.1043 0.0688
XLM 0.1743 0.1620 0.1607 0.1112 0.1713 0.0988 0.1385 0.0964
NANO 0.1601 0.1642 0.0998 0.1166 0.1526 0.0716 0.1353 0.0973
where the coefficient of the 𝑁 ×𝑁 matrix 𝐴𝑖 is recursively determined
as 𝐴𝑖 = 𝜑1𝐴𝑖−1 + 𝜑2𝐴𝑖−2 +⋯ + 𝜑𝑘−1𝐴𝑖−𝑘+1 + 𝜑𝑘𝐴𝑖−𝑘, but noted that 𝐴𝑖
quals to zero if 𝑖 is a negative number. 𝐴0 is an identity matrix.

Under the framework of generalised VAR model, 𝜙𝑖𝑗 (𝐻), the 𝐻-step
head generalised forecast error variance will be first decomposed and
hen normalised by its row sum as the following:

𝑖𝑗 (𝐻) =
𝜎−1𝑗𝑗

∑𝐻−1
ℎ=0

(

𝑒′𝑖𝐴ℎ𝛴𝑒𝑗
)2

∑𝐻−1
ℎ=0

(

𝑒′𝑖𝐴ℎ𝛴𝐴′
ℎ𝑒𝑖

)

,

𝜙̃𝑖𝑗 (𝐻) =
𝜙𝑖𝑗 (𝐻)

∑𝑁
𝑗=1 𝜙𝑖𝑗 (𝐻)

(9)

here the 𝜎𝑗𝑗 denotes the estimated 𝑆𝐷 of the error term for variable
, 𝛴 is the variance matrix for the error-term vector 𝜀, and 𝑒𝑖 is the
election vector with one as the 𝑖th element and zero otherwise.

Ultimately, the total spillover (𝑇𝑆), directional spillover received
y asset 𝑖 from 𝑗 (𝐷𝑆𝑖←𝑗), directional spillover transmitted to 𝑗 by 𝑖
𝐷𝑆𝑖→𝑗), and net spillover (𝑁𝑆) indices are calculated as the following:

𝑆(𝐻) =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝜙̃𝑖𝑗 (𝐻)
∑𝑁

𝑖,𝑗=1 𝜙̃𝑖𝑗 (𝐻)
× 100 =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝜙̃𝑖𝑗 (𝐻)

𝑁
× 100 (10)

𝑆𝑖←𝑗 (𝐻) =

∑𝑁
𝑗=1,𝑗≠𝑖 𝜙̃𝑖𝑗 (𝐻)
∑𝑁

𝑖,𝑗=1 𝜙̃𝑖𝑗 (𝐻)
× 100 =

∑𝑁
𝑗=1,𝑗≠𝑖 𝜙̃𝑖𝑗 (𝐻)

𝑁
× 100 (11)

𝑆𝑖→𝑗 (𝐻) =

∑𝑁
𝑗=1,𝑗≠𝑖 𝜙̃𝑗𝑖(𝑁)
∑𝑁

𝑖,𝑗=1 𝜙̃𝑗𝑖(𝐻)
× 100 =

∑𝑁
𝑗=1,𝑗≠𝑖 𝜙̃𝑗𝑖(𝐻)

𝑁
× 100 (12)

𝑁𝑆𝑖(𝐻) = 𝐷𝑆𝑖→𝑗 (𝐻) −𝐷𝑆𝑖←𝑗 (𝐻) (13)

4. Results

4.1. Safe haven analysis

4.1.1. Dynamic conditional correlations
Table 3 lists the average DCC coefficients between clean energy in-

dices and the two groups of cryptocurrencies. All mean DCC coefficients
are universally positive. The time-varing DCCs between clean energy in-
dices and cryptocurrencies are in the Appendix A. From Figs. A.1 to A.8,
it can be observed that large variations in correlations appeared around
the April of 2020 for most pairs, except for GRNFUEL versus NANO and
GRNGEO versus ETC. The dynamic correlations between GRNFUEL and
both ETC and NANO and that between GRNGEO and both ETC and
IMOTA are lower, but more stable than the other pairs. Complemented
by Table 3, we see that the correlations between clean energy indices
and cryptocurrencies are positive in most of the time, regardless of
cryptocurrency types, which implies that the clean energy indices might
not have direct hedge potentials for both types of cryptocurrency
during the periods under study and in the near future. Moreover, clean
energy stocks react heterogeneously to cryptocurrencies and there is
no differentiated patterns between clean energy stocks and the two
cryptocurrency groups.
5

4.1.2. Return analysis
Table 4 summarises the results of the hedge and safe haven property

of clean energy indices in extreme bearish cryptocurrency market
conditions. All the hedge ratios (𝜃0) in Table 4 are significantly positive,
which confirms that none of the clean energy indices can be a direct
hedge for either types of cryptocurrencies during the studied period.
The 𝜃1 for most of the panels are negative and some of which are
significant, which indicates that clean energy indices can be weak or
even strong safe havens for cryptocurrencies in the 10% quantile during
the period, with very few exceptions. In terms of 𝜃2 and 𝜃3, the results
are more spotty. It suggests that clean energy can also be a weak safe
haven for cryptocurrency in 5% and 1% quantiles, but it depends very
much on which clean energy and cryptocurrency are used.

Reversing the relationship in Table 5, we see that the results for
𝜃s are not uniformed. Cryptocurrency, regardless of types, seems to
be a weak safe haven for GRNSOLAR in the 10% quantile as all 𝜃1
for GRNSOLAR are insignificantly negative in all panels. Most of the
cryptocurrencies are weak havens for GRNGEO at 10% except for BTC
which is a strong safe haven, and XRP, MIOTA, and NANO which
are not safe havens for GRNGEO in the 10% quantile at all. For 𝜃2
and 𝜃3, we can only see few of cryptocurrencies are safe havens for
clean energy stocks, such as ETC which acts as safe havens for most
clean energy subsectors in various quantiles. Clearly, the results are
even more spotty than the reverse, and we cannot clearly say that
cryptocurrencies are general safe havens for clean energy stocks and
we cannot distinguish the difference between types.

Overall, we find that clean energy can be generally viewed as a safe
haven for the extreme returns of either dirty or clean cryptocurrencies
in the 10% quantiles; clean energy can be a safe haven for them in the
5% and 1% quantiles as well, but it really depends on the selection
of underlying assets. Most of the cryptocurrencies are not evident
as general safe havens for clean energy stocks. Given the ecological
footprint of dirty cryptocurrencies that is perhaps a comforting finding.
The portfolio suggestion that arises from this is that investors with
significant exposure to (in particular, from an ecological perspective,
dirty) cryptocurrencies can choose clean energy stocks for safe haven
benefits and environmental responsibility.

4.1.3. Uncertainty analysis
Table 6 summarise the results of the hedge and safe haven property

of clean energy indices for cryptocurrencies in periods of increased
crypto market uncertainty. All hedge coefficients (𝜃0) in Table 6 are
significantly positive, which confirms that clean energy indices cannot
be a direct hedge for either types of cryptocurrencies during the times
of increased market uncertainty. Although the results of 𝜃1 coefficients
are spotty, most of them are positive, which indicates that clean energy
indices are not safe havens for either types of cryptocurrency during
high market uncertainty (90% threshold). For 𝜃2, most of them for dirty
cryptocurrencies are negative and some of which are significant, which
suggests that most of the clean energy indices are weak or strong safe
havens for dirty cryptocurrencies on the 95% threshold of volatility.
Exceptions are GRNFUEL which is not a safe haven for BTC and ETH,

GRNREG which is not a safe haven for LTC, GRNGEO which is not a
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Table 4
Results of hedge and safe haven analysis of clean energy indices for daily cryptocurrency extreme returns.

Hedge (𝜃0) 10% quantile (𝜃1) 5% quantile (𝜃2) 1% quantile (𝜃3)

Panel A :SPGTCED

BTC 0.1574*** −0.0052 0.0080 −0.0098
ETC 0.1299*** −0.0034 0.0065 0.0147
BCH 0.1339*** −0.0031 0.0040 0.0017
LTC 0.1461*** −0.0002 0.0053 0.0043
ETH 0.1495*** −0.0098 0.0119 0.0143
ADA 0.1610*** −0.0032 −0.0064 0.0080
MIOTA 0.1534*** −0.0486** 0.0184** 0.0105
XRP 0.1368*** −0.0163 −0.0052 −0.0047
XLM 0.1744*** 0.0002 −0.0027 0.0003
NANO 0.1604*** −0.0132** 0.0157** 0.0189

Panel B: ECO

BTC 0.1194*** −0.0164 0.0208 −0.0210
ETC 0.1076*** −0.0017 0.0043 0.0196
BCH 0.1035*** −0.0009 −0.0137 0.0031
LTC 0.1323*** 0.0007 −0.0067 −0.0055
ETH 0.1317*** −0.0055 −0.0066 0.0090
ADA 0.1408*** −0.0028 −0.0136 0.0027
MIOTA 0.1444*** −0.0196 0.0137 −0.0045
XRP 0.1529*** −0.0168 0.0097 0.0234
XLM 0.1625*** −0.0053 −0.0007 0.0081
NANO 0.1652*** −0.0155* 0.0086 0.0085

Panel C: GRNBIO

BTC 0.1372*** −0.0107 0.0205 −0.0114
ETC 0.0863*** −0.0183 0.0123 0.0042
BCH 0.0921*** −0.0155 −0.0042 0.0363
LTC 0.1203*** 0.0011 0.0012 0.0113
ETH 0.1250*** −0.0128 0.0064 0.0387
ADA 0.1357*** −0.0066 0.0009 0.0307
MIOTA 0.1471*** −0.0397*** 0.0475** 0.0017
XRP 0.1205*** −0.0211 0.0127 0.0409
XLM 0.1605*** −0.0122 0.0361 −0.0354
NANO 0.1008*** −0.0265** 0.0282* 0.0229

Panel D: GRNFUEL

BTC 0.0991*** −0.0088 0.0056 0.0296
ETC 0.0727*** −0.0254** 0.0220 −0.0400
BCH 0.0788*** −0.0037 0.0099 0.0065
LTC 0.0972*** 0.0025 0.0108 −0.0090
ETH 0.1105*** −0.0027 −0.0010 0.0101
ADA 0.1073*** −0.0038 −0.0094 −0.0027
MIOTA 0.1096*** −0.0218** 0.0381*** 0.0011
XRP 0.1337*** −0.0055 0.0111 −0.0251
XLM 0.1121*** −0.0052 −0.0095 0.0105
NANO 0.1167*** −0.0020 0.0025 −0.0004

Panel E: GRNREG

BTC 0.1501*** −0.0220 0.0251 −0.0030
ETC 0.1266*** −0.0120 0.0049 0.0374
BCH 0.1272*** −0.0277 0.0074 0.0218
LTC 0.1570*** −0.0069 −0.0029 −0.0024
ETH 0.1445*** −0.0327* 0.0138 0.0569
ADA 0.1604*** −0.0118 −0.0109 0.0154
MIOTA 0.1570*** −0.0306** 0.0320 0.0090
XRP 0.1299*** −0.0265** −0.0024 −0.0004
XLM 0.1719*** −0.0067 −0.0041 0.0181
NANO 0.1543*** −0.0293*** 0.0182 0.0301

Panel F: GRNGEO

BTC 0.0875*** −0.0041 0.0040 0.0096
ETC 0.0722*** −0.0000 0.0000 0.0000
BCH 0.0764*** −0.0015 −0.0008 0.0180**
LTC 0.0644*** −0.0011 0.0060 0.0049
ETH 0.0673*** −0.0052 −0.0011 0.0466***
ADA 0.1119*** 0.0009 0.0032 0.0077
MIOTA 0.1225*** −0.0022 0.0050** 0.0044
XRP 0.0595*** −0.0015 0.0014 0.0092
XLM 0.0983*** 0.0056 −0.0026 −0.0015
NANO 0.0720*** −0.0116*** 0.0138*** 0.0149*

(continued on next page)
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(

Table 4 (continued).
Panel G: GRNSOLAR

BTC 0.1095*** −0.0114 0.0115 −0.0173
ETC 0.0981*** −0.0319*** 0.0143 −0.0052
BCH 0.0819*** −0.0161 −0.0146 0.0345
LTC 0.1119*** −0.0011 −0.0043 −0.0122
ETH 0.1017*** −0.0108 −0.0025 0.0217
ADA 0.1335*** 0.0006 −0.0118 0.0133
MIOTA 0.1409*** −0.0260*** 0.0239* 0.0007
XRP 0.1064*** −0.0326* 0.0160 0.0337
XLM 0.1385*** −0.0070 0.0129 0.0028
NANO 0.1369*** −0.0239** 0.0125 0.0134

Panel I: GRNWIND

BTC 0.1196*** −0.0139 0.0082 0.0206
ETC 0.0883*** −0.0009 −0.0088 0.0501**
BCH 0.0871*** −0.0042 0.0022 0.0027
LTC 0.1193*** −0.0030 0.0090 −0.0046
ETH 0.1236*** −0.0091* 0.0067 0.0315***
ADA 0.0828*** −0.0087 −0.0062 0.0126
MIOTA 0.0932*** −0.0183** 0.0216** 0.0028
XRP 0.0694*** −0.0063 0.0051 −0.0172
XLM 0.0971*** −0.0054 −0.0065 0.0162
NANO 0.0981*** −0.0147** 0.0119 0.0066

Notes:
1. Eq. (5) is used. Table shows the relationship between each clean energy index (each panel) as a safe haven and various cryptocurrencies.
2. Clean energy is a weak hedge for an individual cryptocurrency if 𝜃0 is insignificantly different from zero, or a strong hedge if 𝜃0 is negative. Clean energy serves as a weak
strong) safe haven for an individual cryptocurrency under certain market condition if any of 𝜃1, 𝜃2 or 𝜃3 are non-positive (significantly negative).

*Denote the rejections of the null hypothesis at the significance level of 10%.
**Denote the rejections of the null hypothesis at the significance level of 5%.
***Denote the rejections of the null hypothesis at the significance level of 1%.
Table 5
Results of hedge and safe haven analysis of cryptocurrencies for daily clean energy extreme returns.

Hedge (𝜃0) 10% quantile (𝜃1) 5% quantile (𝜃2) 1% quantile (𝜃3)

Panel A: BTC

SPGTCED 0.1532*** 0.0224** 0.0306*** 0.0142
ECO 0.1145*** 0.0234* 0.0175 0.0865**
GRNBIO 0.1327*** −0.0016 0.0649*** 0.1138***
GRNFUEL 0.0961*** 0.0190* 0.0046 0.0460*
GRNGEO 0.0872*** −0.0098* 0.0213* 0.0076
GRNREG 0.1414*** 0.0485*** 0.0406 0.0777*
GRNSOLAR 0.1062*** −0.0095 0.0053* 0.0778*
GRNWIND 0.1170*** −0.0013 0.0291** 0.0424*

Panel B: ETC

SPGTCED 0.1290*** 0.0090* −0.0003 0.0180
ECO 0.1082*** −0.0196** 0.0210* 0.0549***
GRNBIO 0.0807*** 0.0073 0.0345 0.1872***
GRNFUEL 0.0702*** 0.0137 −0.0093 −0.0237
GRNGEO 0.0722*** −0.0000 0.0000 0.0000
GRNREG 0.1245*** 0.0107 −0.0079 0.0798***
GRNSOLAR 0.0948*** −0.0098 0.0214 0.0653
GRNWIND 0.0873*** 0.00533 0.0089 −0.0045

Panel C: BCH

SPGTCED 0.1318*** 0.0112** 0.0173** 0.0070
ECO 0.0991*** 0.0236** 0.0134 0.0590*
GRNBIO 0.0853*** 0.0036 0.0695** 0.1533***
GRNFUEL 0.0762*** 0.0266** 0.0009 0.0188
GRNGEO 0.0725*** 0.0032 0.0161*** 0.0011
GRNREG 0.1186*** 0.0426** 0.0265 0.0796**
GRNSOLAR 0.0770*** 0.0000 0.0433* 0.0696*
GRNWIND 0.0861*** 0.0024 0.0070 0.0146

Panel D: LTC

SPGTCED 0.1454*** 0.0026 0.0073 0.0296***
ECO 0.1304*** 0.0061 0.0057 0.0584***
GRNBIO 0.1171*** 0.0027 0.0299* 0.1666***
GRNFUEL 0.0974*** 0.0071 −0.0131 0.0421**
GRNGEO 0.0644*** −0.0032 0.0087 0.0125
GRNREG 0.1538*** 0.0114 0.0109 0.0625***
GRNSOLAR 0.1105*** −0.0088 0.0269** 0.0480**
GRNWIND 0.1185*** −0.0012 0.0145** 0.0146

(continued on next page)
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Table 5 (continued).
Panel E: ETH

SPGTCED 0.1468*** 0.0092 0.0255** 0.0251
ECO 0.1282*** 0.0168*** −0.0007 0.1026***
GRNBIO 0.1205*** 0.0074 0.0385* 0.1194***
GRNFUEL 0.1091*** 0.0133* −0.0021 −0.0067
GRNGEO 0.0669*** −0.0077 0.0208*** 0.0019
GRNREG 0.1363*** 0.0307* 0.4150 0.1029**
GRNSOLAR 0.0984*** −0.0020 0.0319* 0.0879**
GRNWIND 0.1226*** 0.0003 0.0095* 0.0245***

Panel F: ADA

SPGTCED 0.1594*** −0.0012 0.0160* 0.0365**
ECO 0.1381*** 0.0106 −0.0020 0.0835***
GRNBIO 0.1322*** 0.0042 0.0255 0.1411***
GRNFUEL 0.1057*** 0.0140* −0.0154 0.0107
GRNGEO 0.1120*** −0.0081 0.0173** 0.0035
GRNREG 0.1561*** 0.0058 0.0275 0.0677***
GRNSOLAR 0.1320*** −0.0041 0.0176 0.0631***
GRNWIND 0.0798*** 0.0022 0.0227* 0.0506**

Panel G: MIOTA

SPGTCED 0.1510*** 0.0094 0.0179** 0.0146
ECO 0.1398*** 0.0243** 0.0046 0.0682**
GRNBIO 0.1412*** 0.0012 0.0572*** 0.1318***
GRNFUEL 0.1068*** 0.0232** 0.0010 0.0192
GRNGEO 0.1219*** 0.0022 0.0086*** −0.0001
GRNREG 0.1510*** 0.0291** 0.0242 0.0527*
GRNSOLAR 0.1386*** −0.0060 0.0226* 0.0443**
GRNWIND 0.0906*** 0.0046 0.0187* 0.0472***

Panel H: XRP

SPGTCED 0.1325*** −0.0077 0.0508*** 0.0544*
ECO 0.1465*** 0.0303* 0.0219 0.1210***
GRNBIO 0.1155*** 0.0085 0.0342* 0.1330***
GRNFUEL 0.1313*** 0.0280* −0.0258 0.0665*
GRNGEO 0.0589*** 0.0022 0.0071 0.0021***
GRNREG 0.1235*** 0.0093 0.0354* 0.0870***
GRNSOLAR 0.1012*** −0.0034 0.0485* 0.0963**
GRNWIND 0.0678*** −0.0005 0.0160** 0.0225*

Panel I: XLM

SPGTCED 0.1728*** 0.0020 0.0207*** 0.0221**
ECO 0.1580*** 0.0144 0.0386** 0.0650**
GRNBIO 0.1559*** 0.0111 0.0375* 0.0172***
GRNFUEL 0.1085*** 0.0270*** −0.0007 0.0053
GRNGEO 0.0988*** −0.0044 0.0072 0.0065
GRNREG 0.1661*** 0.0292** 0.0307* 0.0697***
GRNSOLAR 0.1358*** −0.0024 0.0449*** 0.0678**
GRNWIND 0.0950*** 0.00723 0.0096 0.0260**

Panel J: NANO

SPGTCED 0.1588*** 0.0063 0.0076 0.0286**
ECO 0.1613*** 0.0152* 0.0176 0.0479**
GRNBIO 0.0973*** 0.0015 0.0191 0.1367***
GRNFUEL 0.1161*** 0.0040*** 0.0006 −0.0027
GRNGEO 0.0713*** 0.0005 0.0049 0.0009
GRNREG 0.1477*** 0.0135 0.0512*** 0.0907***
GRNSOLAR 0.1334*** −0.0038 0.0337** 0.0578**
GRNWIND 0.0960*** −0.0020 0.0293*** 0.0066

Notes:
1. Modified Eq. (5) is used. Table shows the relationship between each cryptocurrency index (each panel) as a safe haven and various clean energy indices.
2. A cryptocurrency is a weak hedge for clean energy subsector index if 𝜃0 is insignificantly different from zero, or a strong hedge if 𝜃0 is negative. A cryptocurrency serves as a
weak (strong) safe haven for a clean energy subsector index under certain market condition if any of 𝜃1, 𝜃2 or 𝜃3 are non-positive (significantly negative).
Denote the rejections of the null hypothesis at the significance level of 10%.
*Denote the rejections of the null hypothesis at the significance level of 5%.
**Denote the rejections of the null hypothesis at the significance level of 1%.
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afe haven for ETC, and GRNWIND which is not a safe haven for ETH.
inally, regarding 𝜃3, we can see that coefficients for most of the panels
re positive, except for some of which in Panel E and F, which indicates
hat more than half of the clean energy indices are not safe havens
or either dirty or clean cryptocurrencies during extreme uncertainty
99% threshold). Exceptions are GRNREG which is a weak safe haven
or NANO on the 99 99% threshold; and GRNGEO which is a weak safe
aven for clean cryptocurrencies on the 99% threshold.

Table 7 presents the results of the hedge and safe haven property of
irty and clean cryptocurrencies in periods of increased clean energy
8

s

arket uncertainty. We find that none of the cryptocurrencies is a
afe haven on the 90% threshold. Interestingly, we notice that some of
he cryptocurrencies are strong safe havens for GRNFUEL on the 95%
hreshold of volatility, including ETC, BCH, ETH, ADA, XLM. ETC is
lso a weak haven for ECO and GRNWIND. LTC is a weak safe haven
or GRNGEO and NANO is for GRNWIND on the 99% threshold. BTC,
IOTA, and XRP are not safe havens for clean energy at all. Similar to

he previous analysis on returns, these spotty and inconsistent results
uggest that cryptocurrencies in regardless types are not a appropriate

afe haven choice for clean energy stocks.
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Table 6
Results of hedge and safe haven analysis of clean energy indices in periods of extreme dirty and clean cryptocurrency volatility proxied for market uncertainty.

Hedge (𝜃0) 90% threshold (𝜃1) 95% threshold (𝜃2) 99% threshold (𝜃3)

Panel A: SPGTCED

BTC 0.1553*** 0.0191* −0.0184 0.0898***
ETC 0.1285*** 0.0197 −0.0286*** 0.0976***
BCH 0.1450*** 0.0097* −0.0138* 0.0775***
LTC 0.1477*** 0.0168*** −0.0233*** 0.0846***
ETH 0.1472*** 0.0136* −0.0134 0.1340***
ADA 0.1599*** −0.0050 0.0181** 0.0172
MIOTA 0.1508*** 0.0151** 0.0107 0.0139
XRP 0.1337*** −0.0109 0.0356* 0.0370
XLM 0.1734*** 0.0010 0.0137** 0.0138
NANO 0.1580*** −0.0001 0.0359*** 0.0214*

Panel B: ECO

BTC 0.1162*** 0.0147 −0.0242 0.2111***
ETC 0.1055*** 0.0277*** −0.0356*** 0.1386***
BCH 0.1019*** 0.0102 −0.0383** 0.1694***
LTC 0.1308*** 0.0065 −0.0136 0.1138***
ETH 0.1301*** −0.0000 −0.0260 0.2012***
ADA 0.1382*** −0.0033 0.0289** 0.0542**
MIOTA 0.1383*** 0.0260** 0.0312* 0.0630**
XRP 0.1457*** 0.0174 0.0664** 0.1112***
XLM 0.1576*** 0.0168 0.0399** 0.0731**
NANO 0.1607*** 0.0103 0.0357*** 0.0584***

Panel C: GRNBIO

BTC 0.1336*** 0.0251 −0.0262 0.2142***
ETC 0.0790*** 0.0435*** −0.0151 0.2459***
BCH 0.0875*** 0.0234 −0.0345 0.2558***
LTC 0.1158*** 0.0282** −0.0048 0.2173***
ETH 0.1209*** 0.0229 −0.0162 0.1997***
ADA 0.1329 0.0056 0.0282* 0.0461*
MIOTA 0.1401*** 0.0350** 0.0273 0.0579*
XRP 0.1155*** 0.0074 0.0452** 0.0883***
XLM 0.1558*** 0.0074 0.0702*** 0.0646*
NANO 0.0962*** 0.0033 0.0517*** 0.0655**

Panel D: GRNFUEL

BTC 0.0947*** 0.0111 0.0172 0.2087***
ETC 0.0701*** −0.0079 −0.0072 0.1828***
BCH 0.0768*** 0.0059 −0.0072 0.1959***
LTC 0.0965*** 0.0045 −0.0135 0.1549***
ETH 0.1087*** −0.0070 0.0050 0.1346***
ADA 0.1065*** −0.0191** 0.0265** 0.0471**
MIOTA 0.1041*** 0.0274*** 0.0284** 0.0967***
XRP 0.1272*** 0.0142 0.0740*** 0.1045***
XLM 0.1096*** −0.0020 0.0251* 0.0585***
NANO 0.1159*** 0.0029** 0.0050*** 0.0092***

Panel E: GRNREG

BTC 0.1441*** 0.0347* −0.0169 0.2361***
ETC 0.1238*** 0.0120 −0.0215* 0.2001***
BCH 0.1224*** 0.0108 −0.0186 0.2355***
LTC 0.1536*** 0.0076 0.0041 0.1499***
ETH 0.1385*** 0.0159 −0.0102 0.2786***
ADA 0.1577*** −0.0056 0.0290* 0.0205
MIOTA 0.1532*** 0.0178 0.0117 0.0110
XRP 0.1274*** −0.0224 0.0317 0.0287
XLM 0.1689*** 0.0101 0.0245 0.0061
NANO 0.1494*** 0.0062 0.0507*** −0.0007

Panel F: GRNGEO

BTC 0.0867*** 0.0033 −0.0126 0.0955***
ETC 0.0722*** 0.0000 0.0000 0.0000***
BCH 0.0754*** 0.0026 −0.0011 0.0750***
LTC 0.0643*** 0.0030 −0.0100* 0.0518***
ETH 0.0664*** 0.0025 −0.0108 0.1088***
ADA 0.1100*** 0.0202*** 0.0036 −0.0095
MIOTA 0.1218*** 0.0077*** −0.0001 −0.0020
XRP 0.0589*** 0.0051 0.0034 −0.0108
XLM 0.0977*** 0.0105*** 0.0032 −0.0154
NANO 0.0708*** −0.0021 0.0258*** −0.0207***

(continued on next page)
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Table 6 (continued).
Panel G: GRNSOLAR

BTC 0.1063*** 0.0185 −0.0380 0.2462***
ETC 0.0943*** 0.0061 −0.0296** 0.2133***
BCH 0.0798*** 0.0045 −0.0522 0.2300***
LTC 0.1097*** 0.0097 −0.0139 0.1446***
ETH 0.0996*** 0.0023 −0.0316 0.2345***
ADA 0.1304*** 0.0103 0.0269** 0.0316*
MIOTA 0.1370*** 0.0134 0.0160 0.0360
XRP 0.1003*** 0.0038 0.0566** 0.0799*
XLM 0.1334*** 0.0224* 0.0477*** 0.0457
NANO 0.1327*** 0.0076 0.0400*** 0.0426*

Panel I: GRNWIND

BTC 0.1164*** 0.0031 −0.0075 0.2458***
ETC 0.0862*** 0.0094 −0.0146 0.1841***
BCH 0.0859*** 0.0007 −0.0049 0.1095***
LTC 0.1176*** 0.0087* −0.0062 0.1220***
ETH 0.1213*** 0.0073** 0.0009 0.1295***
ADA 0.0808*** −0.0048 0.0211 0.0266
MIOTA 0.0909*** 0.0064 0.0157 0.0096
XRP 0.0685*** −0.0019 0.0063 0.0207*
XLM 0.0961*** 0.0008 0.0044 0.0090
NANO 0.0955*** 0.0011 0.0339*** 0.0010

Notes:
1. Eq. (6) is used; Table shows the relationship between each clean energy index (each panel) as a safe haven and various cryptocurrencies under extreme uncertainty.
2. Clean energy is a weak hedge for an individual cryptocurrency under extreme uncertainty if 𝜃0 is insignificantly different from zero, or a strong hedge if 𝜃0 is negative. Clean
energy serves as a weak (strong) safe haven for an individual cryptocurrency under certain level of uncertainty if any of 𝜃1, 𝜃2 or 𝜃3 are non-positive (significantly negative).
*Denote the rejections of the null hypothesis at the significance level of 10%.
**Denote the rejections of the null hypothesis at the significance level of 5%.
***Denote the rejections of the null hypothesis at the significance level of 1%.
Table 7
Results of hedge and safe haven analysis of cryptocurrencies in periods of extreme clean energy market uncertainty.

Hedge (𝜃0) 90% threshold (𝜃1) 95% threshold (𝜃2) 99% threshold (𝜃3)

Panel A: BTC

SPGTCED 0.1477*** 0.0924*** 0.0006 0.0170
ECO 0.1035*** 0.1312*** 0.0239 0.0757**
GRNBIO 0.1186*** 0.1436*** 0.0694*** 0.0546
GRNFUEL 0.0900*** 0.0653*** 0.0194 0.1249***
GRNGEO 0.0842*** 0.0228*** 0.0124 0.0235*
GRNREG 0.1289*** 0.1706*** 0.0371 0.1266***
GRNSOLAR 0.0933*** 0.0986*** 0.0938*** 0.0857**
GRNWIND 0.1129*** 0.0256*** 0.0595*** 0.0369*

Panel B: ETC

SPGTCED 0.1281*** 0.0118** 0.0106 0.0258**
ECO 0.1045*** 0.0302*** 0.0102 −0.0126
GRNBIO 0.0663*** 0.1311*** 0.0880*** 0.1266***
GRNFUEL 0.0668*** 0.0502*** −0.0358** 0.0876***
GRNGEO 0.0722*** 0.0000 0.0000*** 0.0000***
GRNREG 0.1206*** 0.0303*** 0.0034 0.1364***
GRNSOLAR 0.0873*** 0.0326*** 0.0756*** 0.1196***
GRNWIND 0.0856*** 0.0119 0.0353*** −0.0309

Panel C: BCH

ECO 0.0901*** 0.1179*** 0.0094 0.0429
GRNBIO 0.0680*** 0.1873*** 0.0631*** 0.0808*
GRNFUEL 0.0719*** 0.0813*** −0.0374** 0.0873***
GRNGEO 0.0740*** 0.0112*** 0.0208*** 0.0223***
GRNREG 0.1085*** 0.1224*** 0.0590*** 0.1295***
GRNSOLAR 0.0647*** 0.1100*** 0.0709*** 0.0620
GRNWIND 0.0848*** 0.0053 0.0271*** 0.0048

Panel D: LTC

SPGTCED 0.1438*** 0.0126*** 0.0186*** 0.0326***
ECO 0.1239*** 0.0665*** 0.0160 0.0578***
GRNBIO 0.1059*** 0.0898*** 0.0830*** 0.1421***
GRNFUEL 0.0943*** 0.0229*** 0.0064 0.0985***
GRNGEO 0.0623*** 0.0160*** 0.0140** −0.0013
GRNREG 0.1475*** 0.0499*** 0.0459*** 0.1297***
GRNSOLAR 0.1036*** 0.0326*** 0.0748*** 0.0856***
GRNWIND 0.1169*** 0.0128*** 0.0235*** 0.0005

(continued on next page)
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Table 7 (continued).
Panel E: ETH

SPGTCED 0.1423*** 0.0490*** 0.0230** 0.0883***
ECO 0.1186*** 0.1004*** 0.0241 0.0926***
GRNBIO 0.1075*** 0.1365*** 0.0487*** 0.0814**
GRNFUEL 0.1068*** 0.0401*** −0.0254** 0.0728***
GRNGEO 0.0649*** 0.0103* 0.0187** 0.0332***
GRNREG 0.1243*** 0.1167*** 0.0920*** 0.1748***
GRNSOLAR 0.0885*** 0.059*** 0.1125*** 0.1064***
GRNWIND 0.1209*** 0.0135*** 0.0105* 0.0540***

Panel F: ADA

SPGTCED 0.1559*** 0.0258*** 0.0191** 0.1012***
ECO 0.1313*** 0.0638*** 0.0249** 0.0899***
GRNBIO 0.1218*** 0.0893*** 0.0657*** 0.1242***
GRNFUEL 0.1042*** 0.0278*** −0.0230* 0.0567***
GRNGEO 0.1096*** 0.0056 0.0356*** 0.0106
GRNREG 0.1491*** 0.0440*** 0.0749*** 0.1471***
GRNSOLAR 0.1256*** 0.0201** 0.0871*** 0.1051***
GRNWIND 0.0737*** 0.0337*** 0.0646*** 0.1311***

Panel G: MIOTA

SPGTCED 0.1478*** 0.0350*** 0.0179** 0.0759***
ECO 0.1318*** 0.1001*** 0.0126 0.0678**
GRNBIO 0.1272*** 0.1468*** 0.0570*** 0.0760**
GRNFUEL 0.1034*** 0.0437*** 0.0087 0.1089***
GRNGEO 0.1214*** 0.0055*** 0.0099*** 0.0087**
GRNREG 0.1432*** 0.0777*** 0.0663*** 0.1323***
GRNSOLAR 0.1315*** 0.0448*** 0.0580*** 0.0646***
GRNWIND 0.0853*** 0.0287*** 0.0664*** 0.0944***

Panel H: XRP

SPGTCED 0.1245*** 0.0806*** 0.0120 0.1588***
ECO 0.1361*** 0.1317*** 0.0288 0.1156***
GRNBIO 0.1030*** 0.1279*** 0.0534*** 0.0924***
GRNFUEL 0.1250*** 0.0457*** 0.0374* 0.1884***
GRNGEO 0.0580*** 0.0069** 0.0129*** 0.0144**
GRNREG 0.1143*** 0.0701*** 0.0808*** 0.1669***
GRNSOLAR 0.0898*** 0.0761*** 0.1108*** 0.1315***
GRNWIND 0.0654*** 0.0160*** 0.0310*** 0.0255**

Panel I: XLM

SPGTCED 0.1691*** 0.0405*** 0.0141*** 0.0444***
ECO 0.1481*** 0.1237*** 0.021 0.0508**
GRNBIO 0.1431*** 0.1190*** 0.0854*** 0.1323***
GRNFUEL 0.1054*** 0.0699*** −0.0288** 0.0305
GRNGEO 0.0969*** 0.0086** 0.0169*** 0.0102
GRNREG 0.1567*** 0.1151*** 0.0388** 0.1029***
GRNSOLAR 0.1261*** 0.0696*** 0.0866*** 0.1051***
GRNWIND 0.0915*** 0.0269*** 0.0331*** 0.0561***

Panel J: NANO

SPGTCED 0.1574*** 0.0112** 0.0237*** 0.0349***
ECO 0.1549*** 0.0850*** 0.0051 0.0502***
GRNBIO 0.0867*** 0.0925*** 0.0532*** 0.1141***
GRNFUEL 0.1154*** 0.0100*** 0.0014 0.0090***
GRNGEO 0.0710*** −0.0041 0.0179*** 0.0124
GRNREG 0.1381*** 0.1014*** 0.0520*** 0.1627***
GRNSOLAR 0.1255*** 0.0564*** 0.0658*** 0.0738***
GRNWIND 0.0939*** 0.0148* 0.0447*** −0.0256

Notes:
1. Modified Eq. (6) is used; Table shows the relationship between each cryptocurrency index (each panel) as a safe haven and various clean energy indices under extreme
uncertainty.
2. A cryptocurrency is a weak hedge for a clean energy subsector index under extreme uncertainty if 𝜃0 is insignificantly different from zero, or a strong hedge if 𝜃0 is negative.
A cryptocurrency serves as a weak (strong) safe haven for a clean energy subsector index under certain level of uncertainty if any of 𝜃1, 𝜃2 or 𝜃3 are non-positive (significantly
negative).
*Denote the rejections of the null hypothesis at the significance level of 10%.
**Denote the rejections of the null hypothesis at the significance level of 5%.
***Denote the rejections of the null hypothesis at the significance level of 1%.
Overall, we conclude that clean energy is more likely to be a safe
haven for dirty cryptocurrencies than clean cryptocurrencies in the
periods of increased market uncertainty, depending on the choice of
underlying assets while the reverse is not the case, cryptocurrencies
not showing consistent safe haven properties for clean energy stocks.
11
4.2. Spillover effects

4.2.1. Return spillovers
We use an optimal lag length of 1 selected by the Akaike Infor-

mation Criterion (AIC) for the VAR model to calculate the 𝑇𝑆, 𝐷𝑆,
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Table 8
Average dynamic total return connectedness.

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM OTHERS

GOLD 71.35 2.73 3.14 2.67 3.25 1.63 1.49 3.78 2.39 3.08 3 1.49 28.65
SP500 1.14 25.51 10.41 13.21 8.32 5.15 5.06 11.53 12.25 3.83 1.96 1.66 74.49
SPGTCED 1.06 9.58 21.83 15.00 7.11 6.51 4.79 13.06 11.14 7.43 1.27 1.23 78.17
ECO 0.81 12.16 14.56 21.61 7.97 8.84 4.74 9.72 13.84 3.31 1.17 1.28 78.39
GRNBIO 1.62 10.53 10.34 11.7 33.97 4.96 4.03 7.17 8.63 3.29 2.06 1.7 66.03
GRNFUEL 0.88 7.92 10.44 14.52 5.51 37.41 2.47 7.32 7.58 3.55 1.18 1.23 62.59
GRNGEO 1.5 8.02 9.24 8.52 5.55 3.03 43.25 8.22 6.05 3.3 1.84 1.48 56.75
GRNREG 1.41 10.64 13.7 10.29 5.24 4.91 4.48 23.11 11.72 11.54 1.68 1.29 76.89
GRNSOLAR 1.01 12.51 12.29 15.34 6.7 4.98 4.02 12.65 24.26 3.27 1.58 1.4 75.74
GRNWIND 1.48 6.18 13.04 6.07 3.71 3.82 2.73 18.63 4.92 37.33 1.2 0.88 62.67
DCRYPT 2.03 2.93 2.49 1.98 2.78 1.5 1.66 3.27 2.39 1.44 49.99 27.53 50.01
CCRYPT 1.19 2.73 2.33 2.57 2.78 2.01 1.25 2.55 2.32 0.9 28.02 51.36 48.64
TO OTHERS 14.14 85.92 101.96 101.86 58.92 47.33 36.72 97.9 83.22 44.93 44.96 41.16 759.03
Inc. OWN 85.49 111.42 123.79 123.47 92.89 84.75 79.97 121.01 107.47 82.26 94.95 92.53 TOTAL
NET −14.51 11.42 23.79 23.47 −7.11 −15.25 −20.03 21.01 7.47 −17.74 −5.05 −7.47 63.25
Fig. 1. Dynamic total return connectedness.
Fig. 2. Dynamic directional return connectedness FROM others.
𝑁𝑆 for the return series. Following Saeed et al. (2021), Aharon et al.
(2021), Zeng et al. (2020) and Diebold and Yilmaz (2012), and many
other studies, we set a 200-day rolling window size and a 10-day ahead
forecast horizon.
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As shown in Table 8, the average dynamic total return connect-
edness from January 2018 to September 2021 is 63.25%, which is
about medium-high level. From Fig. 1, we can observe that there was
a notable increase in total connectedness of around 25% in the April
of 2020, which can be explained by the increased correlations between
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Fig. 3. Dynamic directional return connectedness TO others.
Fig. 4. Total net return connectedness.
assets at that time from DCCs plots (Appendix A). However, if we dig
into the total connectedness table, we can see that the average total
spillovers between either of the cryptocurrency markets and clean en-
ergy markets are relatively low during the period, despite the fact that
SPGTCED and ECO are the two largest spillover transmitters (101.96%
and 101.86%). The FROM connectedness between clean energy indices
and cryptocurrency indices is much lower than that between clean
energy and general stock markets (SP&500), and are at the same
level of that between clean energy and gold. The TO connectedness
shows that cryptocurrency market transmits more information to gold
than to clean energy markets on average. Gold market is the most
isolated as it is the smallest spillover receiver (28.65%)/transmitter
(14.14%), followed by the dirty cryptocurrency (50.01%/37.9%) and
clean cryptocurrency (48.64%/41.16%).

Fig. 2 depicts the dynamic directional return spillovers received
by one market from other markets over time. Clearly, S&P500 and
most of the clean energy markets heavily are affected by other markets
13
as they continue receiving the highest spillover effects during the
whole period. Clean energy markets are greater spillover receivers than
cryptocurrency markets, while gold is the smallest receiver at both the
beginning and the end. All market received much more spillovers from
other markets in 2020 than in other periods.

Fig. 3 presents the dynamic directional return spillovers of one
market transmitted to other markets. General clean energy indices
such as SPGTCED and ECO have higher spillover effects to others
than most of the other subsector indices. S&P500 had relatively high
spillover effects to others until the early 2021. Dirty cryptocurrency
market convey slightly higher spillover effects to others than clean
cryptocurrency and gold markets. Gold, similar to previous results, has
the least spillover effect to others at all time.

If look at the net spillovers (Fig. 4), we can easily tell that both
of the gold, dirty and clean cryptocurrency markets are spillover re-
ceivers during the whole sample period. General market (s&p500) has
received much more spillovers from other markets since 2021. More
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Fig. 5. Net pairwise directional return connectedness for DCRYPT.
Fig. 6. Net pairwise directional return connectedness for CCRYPT.
interestingly, the role of clean energy indices play in terms of spillovers
varied from sectors to sectors. Half of the clean energy indices are
spillover transmitter in the whole period, including SPGTCED, ECO,
GRNREG, and GRNSOLAR, while GRNFUEL, GRNGEO, and GRNWIND
are spillover receivers. GRNBIO switched from receivers to transmitters
in the April of 2020 and then switched back from 2021 onward.

Figs. 5 and 6 are the net pairwise directional return connected-
ness for dirty and clean cryptocurrency indices, respectively. The net
spillovers from dirty cryptocurrency to clean cryptocurrency was nega-
tive at the beginning, and turned positive from the mid of 2019, which
means that dirty cryptocurrency has regained the market dominance
from clean cryptocurrency. Generally, both CCRYPT and DCRYPT are
spillover receivers of the general stock market and most of the clean
energy markets. Both DCRYPT and CCRYPT are transmitters for gold.
14
4.2.2. Volatility spillovers
The volatility series are estimated using standard GARCH(1,1)

model (Appendix B). We choose an optimal lag order of 4 based on
the AIC and same other settings to calculate the 𝑇𝑆, 𝐷𝑆, and 𝑁𝑆 for
the volatility series. As recorded in Table 9, the average dynamic total
connectedness of volatilities from January 2018 to September 2021 is
64.12%, which is slightly higher than that of returns. Fig. 7 presents
the time-varing dynamic total volatility spillovers among different
markets. It can observed that there was a even sharper increase in
total connectedness between volatilities than returns in the April of
2020 when the correlations between markets increased at the same
time (Appendix A). If we zoom in total spillovers table, we can see
that the average total spillovers between either of the cryptocurrency
market and clean energy markets are still relatively low during the
period, but are higher than the that observed in return connectedness.
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Table 9
Average dynamic total volatility connectedness.

Gold SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM OTHERS

GOLD 56.98 4.58 5.88 4.1 4.21 1.88 2.48 5.62 3.68 4.02 2.93 3.63 43.02
SP500 2.82 30.78 10.56 10.2 8.83 4.5 4.54 11.87 6.55 5 2.15 2.21 69.22
SPGTCED 2.5 9.36 23.9 12.67 8.49 4.24 7.12 12.75 8.34 5.85 2.63 2.16 76.1
ECO 2.94 12.51 15.23 21.57 9.53 5.24 5.56 10.13 8.2 4.68 2.36 2.05 78.43
GRNBIO 2.35 10.34 10.29 7.8 32.52 2.5 7.12 8.71 4.94 6.76 3.31 3.34 67.48
GRNFUEL 1.64 7.97 8.99 10.79 4.49 45.92 5.72 4.61 3.31 2.92 2.15 1.5 54.08
GRNGEO 3.94 6.52 10.55 7.21 7.41 2.33 39.23 6.85 5.86 4.3 2.85 2.95 60.77
GRNREG 2.11 11.81 14.14 8.41 6.94 4.82 4.71 24.6 9.5 8.06 2.68 2.22 75.4
GRNSOLAR 2.44 10.76 12.38 11.77 7.77 3.06 3.84 13.7 25.29 4.26 2.8 1.93 74.71
GRNWIND 2.05 4.09 11.15 5.94 5.07 4.38 6.38 14.63 5.4 34.64 3.62 2.64 65.36
DCRYPT 1.99 3.17 4.68 3.66 5.46 1.7 2.29 4.86 4.15 5.52 45.87 16.65 54.13
CCRYPT 1.31 3.05 4.99 4.13 4.89 3.31 2.85 5 3.03 2.84 15.35 49.26 50.74
TO others 26.09 84.17 108.84 86.69 73.09 37.97 52.62 98.72 62.97 54.2 42.8 41.28 769.43
Inc. own 83.07 114.96 132.73 108.25 105.62 83.88 91.85 123.33 88.26 88.85 88.67 90.54 TOTAL
NET −16.93 14.96 32.73 8.25 5.62 −16.12 −8.15 23.33 −11.74 −11.15 −11.33 −9.46 64.12
Fig. 7. Dynamic total volatility connectedness.
Fig. 8. Dynamic directional volatility connectedness FROM others.
SPGTCED and ECO are the largest transmitters, followed by GRNREG
and S&P500. Half of the clean energy markets are larger receivers than
the general stock market. The cryptocurrency and the gold market
generally are involved the least in the volatility transmission. The
15
level of FROM and TO connectedness between clean energy indices
and cryptocurrency indices are slightly higher than that of return
connectedness, but are still slightly lower than that between clean
energy and gold on average. Gold market remains as the most isolated
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Fig. 9. Dynamic directional volatility connectedness TO others.
Fig. 10. Total net volatility connectedness.
market as it is the smallest spillover receiver (43.02%) and transmitter
(26.09%) again.

Fig. 8 depicts the dynamic directional volatility spillovers received
by one market from other markets over time. This time, the two major
clean energy indices SPGTCED and ECO are the largest receivers. Most
of the other clean energy subsectors share similar pattern, but not for
the case in GRNFUEL which is more volatile. Clean cryptocurrency
received more spillovers than dirty cryptocurrency before the mid of
2020, but has received much less afterwards. All market received much
more spillovers from other markets in 2020 than in other periods.

Fig. 9 presents the dynamic directional volatility spillovers of one
market transmitted to other markets. S&P500 and some of the clean
energy indices have relatively higher spillover effects to others than
from the others. Dirty cryptocurrency conveys slightly higher spillover
effects to others than clean cryptocurrency and gold on average. Gold,
similar to previous result, has the least spillover effects to others at all
time. One important feature is that the clean cryptocurrency once had
16
a extremely large spillover effect to other markets near the end of year
2020.

The plots of net volatility spillovers show quite a different picture to
those of returns (Fig. 10). Gold is no longer a all time receiver as it was
a transmitter before 2020 April. S&P500 and major clean energy indices
such as SPGTCED and ECO still can be considered as transmitters during
the whole sample period. Other clean energy subsectors vary from type
to type. They have been switching between receiver and transmitter
at different time. Dirty cryptocurrency generally can be classified as a
receiver after 2020 April. Clean cryptocurrency is a receiver at most of
the time, but it transmitted very large spillovers once in December of
2020.

Figs. 11 and 12 are the net pairwise directional volatility con-
nectedness for dirty and clean cryptocurrency indices, respectively.
Surprisingly, the net spillover from dirty to clean cryptocurrency was
positive, but has become negative following a extreme negative shock
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Fig. 11. Net pairwise directional volatility connectedness for DCRYPT.
Fig. 12. Net pairwise directional volatility connectedness for CCRYPT.
at the end of 2020. This tells us that when clean cryptocurrency is ex-
periencing high volatility, the dirty cryptocurrency market get affected.
In addition, the net volatility spillover from dirty cryptocurrency to
gold has become quite negative from 2020 April to December, which
suggests that investments have been somehow transferred from dirty
cryptocurrency to gold market when the former is experiencing high
uncertainty. Another interesting pattern is that clean cryptocurrency
had a extreme volatility spillover effect to all other market near the end
of 2020, which has decayed rapidly. Similar to previous findings, the
net spillovers between cryptocurrencies and clean energy are different
and there is no unified pattern among them.

Overall, the return and volatility connectedness between clean en-
ergy and general market or between clean energy subsectors are more
pronounced than that between clean energy and cryptocurrencies,
which suggests that investor in the market have not really linked the
clean energy and cryptocurrencies together regardless of whether the
cryptocurrency is dirty or clean.
17
5. Robustness check

We further consider using a time-varying parameter VAR model
(TVP-VAR) proposed by Antonakakis et al. (2020) to examine the ro-
bustness of previous results of spillover analysis sections. The TVP-VAR
approach is claimed to have advantages over the DY (rolling window
VAR) approach such that it does not require a rolling window size to
be biasedly assigned and it avoids loosing observations as it introduces
a time-varing variance–covariance matrix by adopting the Kalman
filter in estimation with forgetting factors assigned (Antonakakis et al.,
2020).

The TVP-VAR model with 𝑝 lags is defined as the following:

𝑦𝑡 = 𝛷𝑡𝑧𝑡−1 + 𝜖𝑡 𝜖𝑡 ∣ 𝐼𝑡−1 ∼ 𝑁
(

0, 𝛴𝑡
)

,
𝑣𝑒𝑐

(

𝛷𝑡
)

= 𝑣𝑒𝑐
(

𝛷𝑡−1
)

+ 𝑒𝑡 𝑒𝑡 ∣ 𝐼𝑡−1 ∼ 𝑁
(

0, 𝐸𝑡
)

,
(14)

where 𝑦𝑡 represents 𝑚 × 1 vector of endogenous variables, while 𝑧𝑡−1
represents 𝑝𝑚 × 1 vector of lagged 𝑦 from 𝑡 − 𝑝 to 𝑡 − 1. 𝜖 and 𝑒 are
𝑡 𝑡 𝑡
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Fig. 13. Dynamic total return spillovers using VAR and TVP-VAR.
Fig. 14. Dynamic total volatility spillovers using VAR and TVP-VAR.
vectors of error terms. 𝐼𝑡−1 denotes all known information until 𝑡 − 1.
𝛴𝑡 and 𝐸𝑡 are time-varying variance–covariance matrices.

Following Antonakakis et al. (2020), we initiate the Kalman filter
using the Minnesota prior, followed by using the benchmark decay
factors of (0.99, 0.99) in the estimation step to calculate the time-varing
coefficients and variance–covariance matrices. Finally, the time-varing
coefficients and the time-varing variance–covariance matrices are intro-
duced to the step of generalised forecast error variance decomposition
in the DY approach so that we can calculate the spillover indices 𝑇𝑆,
𝐷𝑆𝑖←𝑗 , 𝐷𝑆𝑖→𝑗 , and 𝑁𝑆.

Tables C.1 and D.1 list the average dynamic total return and volatil-
ity connectedness, respectively. Figs. C.1 to C.6 are plots of dynamic
return connectedness results, while Figs. D.1 to D.6 are plots of dynamic
volatility connectedness results.

By using the TVP-VAR model, we avoid the loss of the first 200
observations, and we show that there was a decaying return connect-
edness from 2018 to 2019 and same for the volatility connectedness
but from 2018 to 2020, which were probably due to the collapse in
crypto market started in the January of 2018. The major differences
between the results of using the DY and TVP-VAR models happens in
18
the period from 2020 April till the year end. To better illustrate the
difference, we drop the first 200 results of total connectedness obtained
using the TVP-VAR model, and scale both results obtained by DY and
TVP-VAR models to 100 at the start. Figs. 13 and 14 compare the
dynamic total return and volatility connectedness using VAR and TVP-
VAR approaches, respectively. Both show a drastic increase in the total
spillovers approaching the April of 2020. However, while using the
VAR approach the high level of spillovers lasted for nearly a year before
collapsing at the beginning of 2021, the spillover calculated using the
TVP-VAR model has been decaying after the peak. This is not surprising
as the DY approach is more sensitive to outliers than the TVP-VAR
method as the latter is smoothed by a Kalman filter. Overall, both
approaches provided qualitatively similar information and our findings
remain robust.

6. Conclusions

Previous studies such as Naeem and Karim (2021) and Pham et al.
(2021) suggest that green investments such as clean energy could
be used as diversification or hedge tool for cryptocurrency investors.
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Fig. A.1. DCCs between SPGTCED and cryptocurrencies.

Fig. A.2. DCCs between ECO and cryptocurrencies.
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Fig. A.3. DCCs between GRNBIO and cryptocurrencies.

Fig. A.4. DCCs between GRNFUEL and cryptocurrencies.
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Fig. A.5. DCCs between GRNREG and cryptocurrencies.

Fig. A.6. DCCs between GRNGEO and cryptocurrencies.
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Fig. A.7. DCCs between GRNSOLAR and cryptocurrencies.

Fig. A.8. DCCs between GRNWIND and cryptocurrencies.
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However, in this paper, we show that the time-varing dynamic condi-
tional correlations between clean energy indices and cryptocurrencies
is positive the majority of the time, regardless of cryptocurrency types,
which implies that clean energy indices might not be a direct hedge for
either dirty and clean cryptocurrencies.

Furthermore, we test the hedge and safe haven property of clean
energy indices in spells of extreme falling crypto markets and extreme
crypto market uncertainty and the reverse based on the framework
proposed by Baur and Lucey (2010) and Baur and McDermott (2010).
We confirm our previous finding that clean energy stocks have not
yet become an effective direct hedge for cryptocurrencies. However,
we find compelling evidence that clean energy can can be viewed
as a safe haven for both dirty or clean cryptocurrencies at the 10%
quantiles of negative returns, in general; it can be a safe haven in the
5% and 1% quantiles as well, depending on the selection of underlying
assets. In addition, clean energy is more likely to be a safe haven for
dirty cryptocurrencies than for clean cryptocurrencies in periods of
extreme market volatility, subject to the selection of underlying assets
as well. In contrast, cryptocurrency asset is not a universal safe haven
for clean energy stocks. We believe that retail investors or institutional
managers who have used or are seeking to use clean energy stocks
to hedge cryptocurrencies would find this study beneficial for their
23
Table B.1
Estimation results of GARCH(1,1) model.

𝜇 𝜔 𝛼 𝛽 Log-Likelihood

SPGTCED 0.0008** 0.0000*** 0.1537*** 0.8447*** 2731.232
ECO 0.0008 0.0000*** 0.0946*** 0.9001*** 2343.399
GRNBIO 0.0007 0.0000*** 0.1364*** 0.8268*** 2380.133
GRNFUEL 0.0008 0.0000** 0.0647*** 0.9309*** 1861.709
GRNREG 0.0007** 0.0000** 0.1562*** 0.8391*** 3005.217
GRNGEO 0.0006 0.0000*** 0.3488*** 0.6854*** 2368.953
GRNSOLAR 0.0010 0.0000*** 0.1018*** 0.8599*** 2215.170
GRNWIND 0.0010** 0.0000* 0.0972*** 0.8646*** 2617.024
DCRYPT 0.0015 0.0003*** 0.1343*** 0.7439*** 1505.958
CCRYPT −0.0024 0.0004*** 0.1942*** 0.7526*** 1230.797
SP500 0.0011*** 0.0000*** 0.2907*** 0.6967*** 3027.870
Gold 0.0001 0.0000** 0.0631*** 0.9271*** 3136.461

Note:
1. Volatility clustering are captured as the coefficients 𝛼 and 𝛽 for all series are
significantly positive and their sum are closed to one.
*Indicate the significance level of 10%.
**Indicate the significance level of 5%.
***Indicate the significance level of 1%.
Fig. C.1. Dynamic total return connectedness (TVP-VAR).
Fig. C.2. Dynamic directional return connectedness FROM others (TVP-VAR).
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Fig. C.3. Dynamic directional return connectedness TO others (TVP-VAR).
Fig. C.4. Total net return connectedness (TVP-VAR).
investments and portfolio constructions. As we see more investors,
especially from institutions, are pouring their money into the crypto
market, investing in clean energy stocks seems to be a valuable de-
cision. While cryptocurrencies have a significant negative ecological
impact this can be perhaps mitigated by investors in these assets also
choosing clean energy assets, which supports companies undergoing
sustainable actions as well as the market growth, while also receiving
the safe haven benefits for encountering cryptocurrency extreme risks
in return. In other words, portfolio stability and ecological protection
are not necessarily incompatible.

Finally, we adopt a widely used spillover measure by Diebold
and Yilmaz (2012) to calculate the spillover indices across selected
markets. Overall, we find that the return and volatility connectedness
24
between clean energy and cryptocurrencies is much lower than that
between clean energy and the general equity market or between clean
energy subsectors, which suggests that clean energy markets are more
associated with the general market, while cryptocurrencies are more
isolated and act as a separate asset class. To some extent, our results
support the findings of Ji et al. (2018) which claim isolation of Bitcoin
market. Clearly, investors in the financial market have not to date really
connected clean energy and either types of cryptocurrencies together,
and they appear to hold cryptocurrencies based on the intrinsic or
expected value of cryptocurrencies and not based on their fundamental
differences in transaction mechanisms or energy acquisition channels,
which offers the potentials of using clean energy as a hedge for cryp-
tocurrencies in the future. However, investors should be also aware that
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Fig. C.5. Net pairwise directional return connectedness for DCRYPT (TVP-VAR).
Fig. C.6. Net pairwise directional return connectedness for CCRYPT (TVP-VAR).
clean energy stocks do not homogeneously react to the movements of
other markets such as cryptocurrencies in our case, while Pham (2019)
discovers similar evidence in the clean energy-crude oil relationship.
This suggests that investors need to consider the own characteristics of
different clean energy indices/stocks and cryptocurrencies and manage
their portfolio at a disaggregate level. Policy makers need to aware that
single policy would not affect all clean energy markets to the same
extent, instead they need to carefully research the distinctive character-
istics of each sub-market before the implementation. The current weak
connectedness between cryptocurrency markets and other markets also
provides opportunities for further integration of these markets.
25
Ethereum, the second largest cryptocurrency in the market, has
just announced again in the second half of 2021 its upgrade plan to
Ethereum 2.0 in the near future which will abandon its current power-
hungry PoW consensus and move forward with energy-efficient PoS
instead. We would like to see more dirty cryptocurrencies follow the
steps of Ethereum. Apparently, current policy of promoting sustainabil-
ity is not appealing enough for cryptocurrency founders as investors
seem to be indifferent to investing in dirty and clean cryptocurrencies,
or somewhat slightly in favour of dirty cryptos. We see that clean
cryptocurrencies have been conveying volatility shocks to dirty cryptos
since 2021, but dirty cryptos are still dominating the crypto market be-
ing the return transmitters. Policy makers should create incentives for
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Table C.1
Average dynamic total return connectedness using TVP-VAR.

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM OTHERS

Gold 67.33 2.79 4.27 3.32 3.72 1.46 1.88 4.96 3 3.57 2.39 1.31 32.67
SP500 1.16 25.69 10.17 13.18 8.64 5.09 5.14 11.64 12.67 3.74 1.56 1.32 74.31
SPGTCED 1.28 9.07 21.99 15.23 7.3 6.92 4.79 13.17 10.59 7.44 1.19 1.03 78.01
ECO 0.91 11.46 14.78 21.98 8.23 9.36 4.59 9.81 13.5 3.33 0.96 1.08 78.02
GRNBIO 1.71 10.75 10.51 12.2 33.34 5 3.77 7.89 9.01 3.12 1.46 1.24 66.66
GRNFUEL 0.7 7.24 10.92 15.35 5.59 36.99 2.75 7.26 7.53 3.4 1.12 1.17 63.01
GRNGEO 1.29 8.06 9.2 8.62 5.05 3.27 44.21 8.55 5.89 3.32 1.48 1.06 55.79
GRNREG 1.75 10.43 13.72 10.38 5.74 4.86 4.64 22.92 11.64 11.35 1.43 1.13 77.08
GRNSOLAR 1.09 12.47 11.95 15.31 7.01 5.23 3.82 12.7 24.87 3.31 1.14 1.08 75.13
GRNWIND 1.76 5.91 13.05 6.51 3.8 4.22 3.14 18.28 4.98 36.3 1.17 0.87 63.7
DCRYPT 1.74 2.76 2.49 2.02 2.45 1.42 1.88 3.03 2.23 1.36 50.21 28.43 49.79
CCRYPT 1 2.54 2.23 2.51 2.44 1.74 1.28 2.41 2.13 0.81 29.06 51.86 48.14
TO others 14.39 83.49 103.31 104.62 59.96 48.56 37.68 99.71 83.17 44.75 42.95 39.73 762.32
Inc. own 81.73 109.18 125.29 126.61 93.3 85.55 81.89 122.62 108.03 81.05 93.16 91.59 TOTAL
NET −18.27 9.18 25.29 26.61 −6.7 −14.45 −18.11 22.62 8.03 −18.95 −6.84 −8.41 63.53
Table D.1
Average dynamic total volatility connectedness using TVP-VAR.

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM OTHERS

GOLD 35.43 4.21 9.7 10.1 6.18 5.5 2.95 9.13 6.86 6.05 1.92 1.96 64.57
SP500 3.49 25.84 10.81 9.49 11.11 4.57 3.14 13.17 9.48 5.7 2.35 0.87 74.16
SPGTCED 4.78 7.54 18.39 14.03 10.05 7.37 4.82 12.94 10.39 6.87 1.66 1.14 81.61
ECO 4.95 7.97 14.75 17.72 10.6 7.95 4.27 11.47 10.73 6.45 1.74 1.39 82.28
GRNBIO 4.38 10.38 11.74 10.95 21.48 4.53 5.08 12.2 8.78 6.08 2.75 1.66 78.52
GRNFUEL 3.96 4.32 12.98 12.32 6.51 33.73 4.72 8.5 5.33 6.1 0.7 0.84 66.27
GRNGEO 4.23 6.53 11.26 9.87 8.33 4.49 30.87 8.78 6.81 5.86 1.48 1.48 69.13
GRNREG 4.36 9.11 13.96 11.06 9.38 6.72 3.97 18.27 10.01 8.74 2.86 1.56 81.73
GRNSOLAR 4.41 9.38 13.03 12.99 9.72 5.13 3.45 13.23 18.36 6.11 2.64 1.55 81.64
GRNWIND 4.05 4.63 12.9 10.56 7.09 6.75 4.62 15.25 7.63 21.05 3.18 2.29 78.95
DCRYPT 2.51 3.65 3.74 3.56 4.73 1.47 1.07 6.77 4.05 5.2 45.79 17.46 54.21
CCRYPT 1.36 1.66 3.21 3.82 3.04 2.47 1.4 4.6 2.48 2.76 17.92 55.27 44.73
TO OTHERS 42.48 69.4 118.08 108.74 86.74 56.95 39.48 116.05 82.54 65.91 39.22 32.2 857.79
Inc. OWN 77.91 95.24 136.47 126.46 108.22 90.68 70.35 134.32 100.91 86.96 85 87.47 TOTAL
NET −22.09 −4.76 36.47 26.46 8.22 −9.32 −29.65 34.32 0.91 −13.04 −15 −12.53 71.48
Fig. D.1. Dynamic total volatility connectedness (TVP-VAR).
the transition of dirty cryptocurrencies from PoW consensus mechanism
to energy-efficient non PoW consensus, and for the investors, especially
the institutional investors, to invest more in cleaner cryptocurrencies
rather than the dirty ones. The development of green energy and
green cryptocurrencies has brought significant environmental benefits
compared to fossil energy and dirty cryptocurrencies. Restrictions and
legal constraints of energy use in crypto-mining are still weak. Greater
efforts should be made by the society to promote greener industry and
investment, and arouse the environmental awareness of investors and
founders/companies of dirty cryptocurrencies.
26
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Fig. D.2. Dynamic directional volatility connectedness FROM others (TVP-VAR).
Fig. D.3. Dynamic directional volatility connectedness TO others (TVP-VAR).
Appendix A. DCCs between clean energy indices and cryptocur-
rencies over time

See Figs. A.1–A.8.

Appendix B. Estimation results of GARCH(1,1) model in volatility
spillover analysis

See Table B.1.
27
Appendix C. Return spillovers analysis using TVP-VAR

See Table C.1 and Figs. C.1–C.6.

Appendix D. Volatility spillovers analysis using TVP-VAR

See Table D.1 and Figs. D.1–D.6.
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Fig. D.4. Total net volatility connectedness (TVP-VAR).

Fig. D.5. Net pairwise directional volatility connectedness for DCRYPT (TVP-VAR).

Fig. D.6. Net pairwise directional volatility connectedness for CCRYPT (TVP-VAR).
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Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2022.105951.
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