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A B S T R A C T

In this paper, we analyse the dynamic transmission of tail risk across a set of well-established sustainability-
related financial indices & equities and energy assets using a novel CAViaR-TVP-VAR connectedness measure
on daily data from 14 October 2014 to 31 August 2022. Findings suggest that the total risk connectedness is at
medium level and the short-run effect of COVID-19 on the risk transmission was mild. Furthermore, ESG and
green equities are persistent net risk transmitters, while green bond, carbon asset, and energy commodities are
tail risk takers. The role of renewable energy stocks is inconclusive due to distinct time-varying characteristics.
With reference to pairwise relationship, we show that sustainability equities strongly interact with crude oil
futures and fossil energy equities. Furthermore, green bond, carbon, natural gas and coal futures weakly
associate with the remaining assets in the system. Finally, we find that EPU, OVX, VIX, GPR, and the spread
of US Treasury have asymmetric impact on the spillovers. Altogether, our results offer insightful implications
for policymakers and especially for ‘‘green’’ and ‘‘brown’’ products investors in risk diversification from the
VaR perspective.
1. Introduction

The importance of slowing down climate change is becoming more
widely understood, which has led policymakers and investors to seek
more sustainable developments and investment. The US has rejoined
the Paris Agreement on climate change since 2021, along with nearly
200 countries around the globe, to reduce the emission of greenhouse
gases. Achieving the goal of carbon neutrality has been adopted as a
major target of several major countries for the next 30 years.1

Moving towards greener financialisation is not a new concept. As far
back as 2007, the European Investment Bank (EIB) issued the first so-
cially responsible fixed-income security product, known now as ‘‘Green
Bonds’’ or ‘‘Climate Awareness Bonds’’. At that time there was no clear
definition of this kind of products. In January 2014, the International
Capital Market Association published the first edition of Green Bond
Principles (GBP) as guidelines for green labelling of bonds, which is
believed to further improve the quality and liquidity of green bonds.
An 2017 report by the Climate Bonds Initiative Market Team pointed
out that the green bond market had grown by 92% in the subsequent

∗ Corresponding author.
E-mail address: blucey@tcd.ie (B. Lucey).

1 See https://www.iea.org/reports/world-energy-outlook-2020/achieving-net-zero-emissions-by-2050.
2 https://www.climatebonds.net/files/files/2016%20GB%20Market%20Roundup.pdf
3 https://climatedata.imf.org

year after the release of the GBP.2 By the end of 2021, the cumulative
global green bond issuance stood at 1.7 trillion US Dollars and is still
rapidly growing in 2022, where the euro area consistently contributes
the most.3 A better understanding of price relations between green
bonds and other financial markets is therefore crucial for determining
green bond performance and their usefulness in reducing portfolio
risks, which in return will further promote the growth and development
of the market underpinnings of a carbon-neutral society. Recently, there
have been a number of studies examining the price co-movement be-
tween green bonds and other assets such as Reboredo (2018), Reboredo
et al. (2022), Kanamura (2020), Reboredo and Ugolini (2020), Gormus
et al. (2018), etc. Others have considered the volatility behaviour or
the spillovers of green bonds (e.g., Zhang et al. (2022), Gormus et al.
(2018), Pham (2016), Gao et al. (2021), Le et al. (2021), etc.).

At the same time, as an alternative to fossil energy, renewable
energy has received more and more policy support in development
due to its benefits on carbon emissions reduction. We have witnessed
a exponential growth track in renewable energy industry in the last
two decades. Even during the COVID-19 pandemic, the growth of
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global adoption and production of renewable energy has been resilient
and has continuously peaked higher (Hannah Ritchie and Rosado,
2020). The evolution of the renewable/alternative energy has gained
considerable attention among investment communities and researchers.
A wide range of clean energy related equity indices have been cre-
ated to capture the performance of publicly listed alternative energy
related companies. This enables scholars to study the price/volatility
relationships between new energy stocks and other markets and the
effectiveness of new energy in portfolio risk management (e.g., Ren
and Lucey (2022), Shahbaz et al. (2021), Liu et al. (2021), He et al.
(2019), Kuang (2021), Ahmad et al. (2018), etc.).

In fact, developing alternative energy is only one of the concrete
approaches to achieve sustainable development and is within the en-
ergy sector. Nowadays, consumers, employees and even investors have
increasing expectations for organisations to behave responsibly and
sustainably. Regulators are also in favour of ‘‘greener’’ companies.
Embedding standards of Environmental, Social, and Governance (ESG)
in the business model or strategies is becoming more and more vital for
a company to thrive in the new world. In this context, ratings agencies
and financial institutions have created different sets of sustainabil-
ity indexes providing benchmarks of high performing ESG companies
for investors, such as MSCI ESG Leaders Indices, Dow Jones Sus-
tainability Indices, FTSE4Good Indices, etc. These socially responsible
products are extremely popular especially for the growing community
of environmentally conscious investors.

To this far, we have seen that environmentally friendly or ESG prod-
ucts are advocated and may tend to be somehow more appealing in the
current world context. However, are ESG products really a better choice
than brown products taking into consideration of risk? As suggested
by Baker et al. (2022), green stock investors may possibly be willing
to hold a portion of brown stocks for hedge purpose. Do ESG products
share similar risk exposure within group or even with brown products?
How would green investors benefit from holding brown products and
what are the implications? We attempt to answer these questions by
diving into the spillovers between several green and brown investments
in terms of the possibility of exposure to financial loss, the Value-at-Risk
(VaR), on daily frequency.

Our study therefore contributes to the literature in several ways.
First, we extend the variable set of Zhang et al. (2022) and Chatzianto-
niou et al. (2022a) who mainly focused on interconnectedness be-
tween green equities by including both carbon credit and fossil energy
(‘‘brown’’) assets. In particular, we not only used three primary energy
commodity futures products (i.e., crude oil, natural gas, and coal), but
also consider two energy equity indexes (i.e., oil & gas exploration
and production companies and coal mining companies), while many
previous studies have only considered oil & gas assets and ignored
coal-related assets. This allowed us to comprehensively analyse not just
the relationships within the sustainability (‘‘green’’) group, but also
the interactions between the sustainable and non-sustainable markets.
Briefly, amongst the investments, we show that green equities share
high level risk exposure with brown equities and oil futures. Second, we
provide new and indicative evidence by employing a newly developed
asymmetric slope Conditional Autoregressive Value-at-Risk (CAViaR)
Time-Varying Parameter Vector Autoregressive (TVP-VAR) Connected-
ness measure by Chatziantoniou et al. (2022b) to analyse the dynamic
transmission of tail risk, proxied by the VaR measure, among uniquely
specified sustainable and non-sustainable markets variables, rather than
price return or overall volatility. Our connectedness metrics measures
how the degree of the exposure to extreme loss in one market affects
the exposure in another or the rest of the markets. We found that
risk connectedness significantly varies with major events such as the
Brexit referendum, Paris agreement, and COVID-19 outbreak. However,
unlike the majority of previous studies, we show that the effect of
COVID-19 might be overestimated. We provide timely evidence that
the recent Russia–Ukraine war may have altered the dependence of
2

the respective markets. Moreover, since our approach measures the
VaR spillovers which is a different objective from measuring the return
and volatility; this has led to some different results from those of
previous studies such as Zhang et al. (2022). For example, surprisingly
in our case, we show that the sustainability-related equities are mostly
risk transmitters, and highly interact with fossil energy equities; Green
bond, carbon credit futures, and ‘‘brown’’ energy commodities (except
the crude oil) are less involved in the risk transmission. Finally, our
additional analysis based on a rolling window regression suggests that
economic policy uncertainty, geopolitical risk, the spread of US yield
curve, the implied volatility of US stock market, and the oil volatility,
have had asymmetric and time-varying effects on the connectedness
network. This helps explain why the pattern has been changing and
what macroeconomic indicators we should pay attention to. Therefore,
overall, our findings extend the understanding of risk relationship
between or among green and non-green assets risk spillovers, and shed
light to investing and risk management.

The remainder of this paper is organised as follows. We review
some past research in Section 2. We then explain the methodology in
Section 3, followed by Section 4 where we describe the data in great
detail. We then present the empirical findings in Section 5 and lastly,
we conclude and address the implications of our study in Section 6.

2. Literature review

Spillover effect can be understood as a network effect that events
in one market or economy can have on another market or economy.
It increases when the linkages between financial markets and trade
activities among economies are stronger. In the context of globalisation,
analysing the financial spillovers or connectedness between markets
and assets becomes an essential issue and has important implications
for market participants and policymakers.

One early strand of finance literature on spillover effects focuses
on same type of conventional markets from a national or international
perspective, such as equity market (Theodossiou and Lee, 1993; Susmel
and Engle, 1994; Koutmos and Booth, 1995; Diebold and Yilmaz, 2008;
Ng, 2000; Baele, 2005; Hammoudeh et al., 2009; Anderson et al.,
2010), the commodity market (Kao and Wan, 2009; Kang et al., 2017;
Nazlioglu et al., 2013), the bond market (e.g., Ciner (2007), Chris-
tiansen (2007), Skintzi and Refenes (2006), Aftab and Beg (2021)),
and so on. Another strand of the financial spillovers literature tries to
uncover the interconnectedness between different types of markets or
assets. For example, Diebold and Yilmaz (2012) studied daily volatility
spillovers across US stock, bond, foreign exchange and commodities
markets. Ma et al. (2021) decomposed commodities’ volatility into
a fundamental component and a idiosyncratic component, and sub-
sequently analysed the risk and sentiment spillovers among markets
such as commodity, stock, foreign exchange, and so on. Arouri et al.
(2011) investigated the volatility spillovers between oil prices and US
stock sectors, while Ferrer et al. (2018) and Sadorsky (2012) focused
particularly on the volatility spillovers between crude oil and emerging
renewable energy technology stocks. Kanas (2000) found significant
and symmetric volatility spillovers running from stock returns to ex-
change rate changes in the US, the UK, Japan, France and Canada,
but not in the Germany. Yang and Zhou (2017) identified the roles
of implied volatilities of US Treasury bonds, global stock indexes, and
commodities in the volatility spillover network. They further inves-
tigated the impact of quantitative easing, interest rate and currency
factors on the system. There are more examples such as Mensi et al.
(2013), Yu et al. (2019), Kang et al. (2019), Bouri et al. (2018), Yoon
et al. (2019), etc.

Growing concerns about climate change have piqued the interest
of investors and policymakers in environmentally friendly investments
such as renewable energies, green bonds, ESG stocks, etc. Since the
financial markets for environmentally friendly investment has grown
in both scope and size, scholars have found increasingly important to

study the relationship between sub-class of green financial markets.
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Many studies have considered the relationship among or between
the green bond, clean energy, and conventional markets. For exam-
ple, Hammoudeh et al. (2020) used a time-varying causality test to
investigate the lead–lag relationships between green bond and other
financial markets (i.g., clean energy, carbon emission allowances, and
treasury bond). Ferrer et al. (2021) researched the return and volatility
connectedness between green bond and several different financial mar-
kets including treasury and corporate bonds, aggregated world equity
and renewable energy stocks, US exchange rate, and Brent crude oil
prices by virtue of quantile and frequency. Naeem et al. (2021) used
the same technique but concentrated on commodity markets and green
bonds. They found that green bonds more strongly connected with gold
and silver than with crude oil and natural gas and the connectedness
is more significant in the short term. Park et al. (2020) examined the
volatility spillovers between green bond and S&P 500 index proxied for
equity market. They reported that both markets respond to positive but
not negative shocks in the another market. Saeed et al. (2020) studied
the time-varying relationship between green assets (i.e., green bond and
clean energy) and fossil energy assets (i.e., WTI crude oil and oil & gas
company ETF). They suggested that clean energy is even more effective
in hedging ‘‘dirty’’ energy assets. Huynh (2022) found tail dependence
and causal relationship between green bond and premium government
bond using Student’s t-copulas and transfer entropy, respectively. Pham
and Do (2022) uncovered that there are stronger dynamic spillovers
between green bonds and European and the US implied volatilities than
with China and emerging markets. However, they are still significantly
lower than spillovers between implied volatilities themselves.

Our study particularly relates to the limited studies on spillovers
specifically between green bonds and several specialised eco-friendly
financial markets including renewable energy, green equity and most
importantly the ESG/sustainability which is usually overlooked, in
the same manner of Zhang et al. (2022) and Chatziantoniou et al.
(2022a). Chatziantoniou et al. (2022a) investigated the dynamic return
spillovers among four environmental financial indices (i.e., the S&P
Green Bond Index, MSCI Global Environment Index, Dow Jones Sus-
tainability Index World, and S&P Global Clean Energy Index) from both
quantile and frequency perspectives. Zhang et al. (2022) also studied
the spillovers among same group of environmental indices, but focused
on the volatility transmission and further extended the choices of
indexes. Specifically, they considered the carbon emission allowances
(credit) futures. Carbon credit futures facilitates the efficiency and
liquidity of the carbon emission trading system which is one of the sus-
tainable innovations that effectively helps in reduction of greenhouse
gas emissions by distributing the emission permits to carbon releasing
companies. We have seen that the successful establishment of the first
carbon trading scheme in the Europe has brought global imitators and
borrowers. The futures products allow companies to hedge the price
risk of holding, buying or selling the carbon emission allowances. It is
very liquid and also popular among a broad range of investors even
including those who do not have any emission reduction obligations.
Recent studies such as Demiralay et al. (2022), Jiang and Ma (2022)
and Zhang et al. (2017) have proven that carbon assets have some
hedge and diversification benefits.

Our selection of sustainability-related indexes slightly differs but
is more reasonable as we prefer indices provided by the same com-
pany to ensure the consistency of metrics and difference in choos-
ing companies. Some previous studies showed that relevant indices,
although offered by different companies such as MSCI World ESG
Leaders Index and Dow Jones Sustainability Index World which were
considered in Chatziantoniou et al. (2022a), have very similar price
patterns because they include utmost same constituents (Reboredo
(2018), Vicente-Ortega Martínez (2021), etc.). Such similarity can eas-
ily induce high spillovers in between. At the same time, we must not
ignore the traditional energy market. Amongst the literature, the oil
market is more often considered (e.g., Arouri et al. (2011, 2012), Chang
3

et al. (2013), Tan et al. (2020), etc.). Crude oil is arguably the most D
important strategic reserve commodity in the world. Numerous studies
such as Zhang (2017), Kang et al. (2015), Demirer et al. (2020),amongst
others, have been looking at the impact of crude oil price shocks
on other financial markets. Liu et al. (2022) detected significant oil
risk spillovers to G20 during crisis periods. Ji et al. (2018) docu-
mented that crude oil, coal, and clean energy play an significant role
in both returns and volatility of carbon-energy connectedness network.
Similarly, Tan et al. (2020) studied the volatility spillovers in a compre-
hensive ‘‘Carbon-Energy-Finance’’ system given the context of the tight
physical and financial connections. We have also seen less number of
studies such as Saeed et al. (2020), Zhang and Sun (2016), Ji et al.
(2018), etc, that have paid attention to alternative fossil energy assets
such as coal and gas futures, and energy ETF products. Our research
therefore adds to literature by considering a comprehensive selection
of sustainable and non-sustainable investments

Our study covers the period of COVID-19 period in which the
pandemic has been posing an unprecedented challenge to financial
systems from early 2020. A large number of research has shown that
the systemic risk and financial contagion sharply increased during
early waves of the disease (e.g., Rizwan et al. (2020), Akhtaruzzaman
et al. (2021), etc.). Of particular note is that the WTI price historically
turned negative to –37.63 USD/barrel and losing about –300% on 20
April 20 2020 due to the demand squeeze in the context of travel
and business restriction encountering the COVID-19 (Jawadi, 2023). It
is always worth investigating the spillover patterns during the crisis
period. The uncertainty and volatility have rapidly increased since the
Russia–Ukraine war. There is still room for researchers to have a look
at the changes in patterns resulted by the war. We add knowledge
to the literature by showing the changes in scale of the tail risks
during the period and the impact of important events and crises on
the spillovers among the system variables. We also base on some
previous studies (e.g., Zhang et al. (2023), Saeed et al. (2021), etc.) to
investigate potential determinants (e.g., EPU, GPR, TERM, VIX, OVX) of
the spillover network, which extends the knowledge of the deep reasons
that cause the spillover changes.

3. Methodology

3.1. Tail risk spillovers

3.1.1. Conditional Autoregressive Value-at-Risk (CAViaR)
We follow Chatziantoniou et al. (2022b) to measure the tail risk of

variables by the asymmetric slope Conditional Autoregressive Value-
at-Risk (CAViaR) approach which was introduced by Engle and Man-
ganelli (2004). Chatziantoniou et al. (2022b) suggested that the asym-
metric slope CAViaR is more flexible than the other existing techniques
as it estimates the Value-at-Risk (VaR) in a direct way and allows
for asymmetric effects which is not the case for either the symmetric
absolute value or the indirect GARCH(1,1) approach.

The asymmetric slope CAViaR model assumes that the VaR of a
certain quantile follows an Autoregressive (AR) process which can be
written as:

𝑓𝛼,𝑡(𝛽) = 𝛽0 + 𝛽1𝑓𝛼,𝑡−1(𝛽) + 𝛽2𝑥
+
𝑡−1 + 𝛽3𝑥

−
𝑡−1 (1)

here 𝑓𝛼,𝑡 is the VaR at the 𝛼 level in period 𝑡, 𝛽0 is the constant, 𝛽1
nd 𝑓𝛼,𝑡−1(𝛽) are the weights of the lagged VaRs and the lagged VaRs,
espectively. 𝛽2 and 𝛽3 are the effects of positive and negative returns
n the VaR, respectively.

.1.2. Time-varying parameter vector autoregressive (TVP-VAR) connect-
dness

We considered applying a time-varying parameter VAR model (TVP-
AR) proposed by Antonakakis et al. (2020) on changes in CAViaR to
xamine the tail risk spillovers across sustainable and non-sustainable
nvestments. The TVP-VAR approach should have advantages over the

Y connectedness framework (Diebold and Yilmaz, 2012; Diebold and
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Yılmaz, 2014) that is based on a rolling window VAR approach as
this does not require a window size to be biasedly assigned. It also
avoids losing observations as it introduces a time-varying variance–
covariance matrix by adopting the Kalman filter in estimation with
forgetting factors assigned (Antonakakis et al., 2020).

The TVP-VAR model with 𝑝 lags is defined as the following:

𝑦𝑡 = 𝛷𝑡𝑧𝑡−1 + 𝜖𝑡 𝜖𝑡 ∣ 𝐼𝑡−1 ∼ 𝑁
(

0, 𝛴𝑡
)

,
𝑣𝑒𝑐

(

𝛷𝑡
)

= 𝑣𝑒𝑐
(

𝛷𝑡−1
)

+ 𝑒𝑡 𝑒𝑡 ∣ 𝐼𝑡−1 ∼ 𝑁
(

0, 𝐸𝑡
)

,
(2)

where 𝑦𝑡 represents 𝑚 × 1 vector of endogenous variables, while 𝑧𝑡−1
represents 𝑝𝑚 × 1 vector of lagged 𝑦𝑡 from 𝑡 − 𝑝 to 𝑡 − 1. 𝜖𝑡 and 𝑒𝑡 are
vectors of error terms. 𝐼𝑡−1 denotes all known information until 𝑡 − 1.
𝑡 and 𝐸𝑡 are time-varying variance–covariance matrices.

We introduced the time-varying coefficients and the time-varying
ariance–covariance matrices in the step of generalised forecast error
ariance decomposition. For generalised VAR model, 𝜙𝑖𝑗 (𝐻), the 𝐻-
tep ahead generalised forecast error variance will be first decomposed
nd then normalised by its row sum. Before doing that, based on the
old representation theorem, we transform the estimated TVP-VAR
odel into TVP- vector moving average (VMA) as: 𝑦𝑡 =

∑𝑝
𝑖=1 𝛷𝑖𝑡𝑦𝑡−𝑖 +

𝑡 =
∑∞

𝑗=0 𝐴𝑗𝑡𝜖𝑡−𝑗

𝑖𝑗 (𝐻) =
𝜎−1𝑗𝑗

∑𝐻−1
ℎ=0

(

𝑒′𝑖𝐴ℎ𝛴𝑒𝑗
)2

∑𝐻−1
ℎ=0

(

𝑒′𝑖𝐴ℎ𝛴𝐴′
ℎ𝑒𝑖

)

,

�̃�𝑖𝑗 (𝐻) =
𝜙𝑖𝑗 (𝐻)

∑𝑁
𝑗=1 𝜙𝑖𝑗 (𝐻)

(3)

here the 𝜎𝑗𝑗 denotes the estimated 𝑆𝐷 of the error term for variable
, 𝛴 is the variance matrix for the error-term vector 𝜀, and 𝑒𝑖 is the
election vector with one as the 𝑖th element and zero otherwise.

Following Antonakakis et al. (2020), we initiate the Kalman filter
sing the Minnesota prior, followed by using the benchmark decay
actors of (0.99, 0.99) in the estimation step.4

The total connectedness/spillovers (𝑇𝐶), directional connectedness
eceived by asset 𝑖 from 𝑗 (𝐷𝐶𝑖←𝑗), directional connectedness transmit-
ed to 𝑗 by 𝑖 (𝐷𝐶𝑖→𝑗), and net directional connectedness (𝑁𝐸𝑇 ) indices
re calculated as the following:

𝐶(𝐻) =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗 (𝐻)
∑𝑁

𝑖,𝑗=1 �̃�𝑖𝑗 (𝐻)
× 100 =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗 (𝐻)

𝑁
× 100 (4)

𝐷𝐶𝑖←𝑗 (𝐻) =

∑𝑁
𝑗=1,𝑗≠𝑖 �̃�𝑖𝑗 (𝐻)
∑𝑁

𝑖,𝑗=1 �̃�𝑖𝑗 (𝐻)
× 100 =

∑𝑁
𝑗=1,𝑗≠𝑖 �̃�𝑖𝑗 (𝐻)

𝑁
× 100 (5)

𝐷𝐶𝑖→𝑗 (𝐻) =

∑𝑁
𝑗=1,𝑗≠𝑖 �̃�𝑗𝑖(𝑁)
∑𝑁

𝑖,𝑗=1 �̃�𝑗𝑖(𝐻)
× 100 =

∑𝑁
𝑗=1,𝑗≠𝑖 �̃�𝑗𝑖(𝐻)

𝑁
× 100 (6)

𝑁𝐸𝑇𝑖(𝐻) = 𝐷𝑆𝑖→𝑗 (𝐻) −𝐷𝑆𝑖←𝑗 (𝐻) (7)

As the total connectedness by this measure is not in the range of [0,
1], adjusted total connectedness computed by

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 �̃�𝑖𝑗 (𝐻)

𝑁−1 × 100 was
sed.

.2. Drivers of spillovers

Finally, to investigate the potential drivers of the connectedness
etwork over time, we resorted to a dynamic estimation based on a
olling window size of 120 days, which essentially covers the rough
umber of observations during each wave of the COVID-19 pandemic.
pecifically, the model is written as:

𝐶(𝐻) = 𝛽0+𝛽1𝐸𝑃𝑈𝑡+𝛽2𝐺𝑃𝑅𝑡+𝛽3𝑇𝐸𝑅𝑀𝑡+𝛽4𝑉 𝐼𝑋𝑡+𝛽5𝑂𝑉 𝑋𝑡+𝜀𝑖 (8)

4 We also used another benchmark suggested, 0.96, to check the robustness,
esults remain similar. For the sake of brevity, results are available upon
equest.
4

where EPU, GPR, TERM, VIX, OVX denote the Economic Policy Uncer-
tainty Index, Geopolitical Risk Index, the spread between the 10-year
and 3-month US Treasury Constant Maturity rates, the Chicago Board
Options Exchange (CBOE) Volatility Index and the CBOE Crude Oil ETF
Volatility Index, respectively.

4. Data

We aimed to investigate the tail risk connectedness among
sustainability-related indexes, carbon credit futures, and fossil energy
assets. The sustainability-related indexes we selected include the MSCI
World ESG Leaders Index, the MSCI Global Environment Index, the
MSCI Global Alternative Energy Index, and the Bloomberg Barclays
MSCI Global Green Bond Index, à la Zhang et al. (2022) and Chatzianto-
niou et al. (2022a). Our selection of sustainability-related indexes
slightly differs as we prefer indices provided by the same company
to ensure the consistency of metrics. Some previous studies showed
that relevant indices provided by different companies have similar
patterns (Reboredo (2018), Vicente-Ortega Martínez (2021), etc.). The
MSCI World ESG Leaders Index is a broad, diversified sustainability
benchmark, computed for investors seeking investments in companies
with leading Environmental, Social and Governance (ESG) performance
relative to their sector peers. The Bloomberg Barclays MSCI Global
Green Bond Index was designed in 2014 after the establishment of
the Green Bond Principles and in respond to the growing interest
among investors in fixed-income securities in which the proceeds will
be exclusively and formally applied to projects/activities that will
promote environmental sustainability. The MSCI Global Environment
Index tracks the performance of companies that derive at least 50% of
their revenues from environmentally beneficial products and services in
alternative energy, sustainable water, green building, pollution preven-
tion or clean technology sectors globally. The MSCI Global Alternative
Energy Index tracks the performance of companies that derive 50% or
more of their revenues from products and services in global alternative
energy industry.

We used the IHS Markit Global Carbon Index as a proxy for the
performance of global carbon credit futures markets. The IHS Markit
Global Carbon Index is the first and investable benchmark for the global
market, which consists of most liquid futures contracts on European
Union Allowances (EUA), California Carbon Allowances (CCA) and the
Regional Greenhouse Gas Initiative (RGGI), with pricing data from
OPIS by IHS Markit Pricing (North American Pricing) and ICE Futures
Pricing (European Pricing).

We considered both fossil energy commodities and equities as prox-
ies for the performance of the fossil energy markets. Specifically, we
used prices of several global benchmarks of the energy commodities
including the ICE West Texas Intermediate (WTI) Crude Oil futures,
the ICE Natural Gas futures, and the ICE Newcastle Coal futures.
Finally, similar to Saeed et al. (2020), we used a Global Oil & Gas
Exploration and Production Price Return Index by Refinitiv as a proxy
for the performance of companies involved in global oil & gas explo-
ration/production. We additionally used the Refinitiv Global Coal Price
Return Index as a proxy for the performance of companies involved in
global coal mining/production industry.

We employed daily data from 14 October 2014 to 31 August 2022,
where the start date is when the MSCI Green Bond Index started to
be daily computed. To remove the influence of the exchange rate on
results, all price data are denominated in US Dollars. Our data came
from multiple sources. The price data for MSCI World ESG Leaders
Index, the MSCI Global Environment Index, and the MSCI Global Al-
ternative Energy Index, the ICE WTI Crude Oil futures, the ICE Natural
Gas futures, and the ICE Newcastle Coal futures were from Refinitiv
Datastream. The price data for MSCI Global Green Bond Index was
from Bloomberg. The price data for IHS Markit Global Carbon Index

is available on the official website of the IHS Markit which is now
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Fig. 1. Tail risk measured as 5% VaR using the asymmetric slope CAViaR model.
a part of the S&P Global.5 The price data for Refinitiv Global Oil &
Gas Exploration and Production Price Return Index and the Refinitiv
Global Coal Price Return Index were from Refinitiv Eikon. [Regarding
the determinants, the TERM, VIX, and OVX are available on Federal
Reserve Bank of St. Louis website (https://fred.stlouisfed.org). The EPU
Index constructed by Baker et al. (2016a) is available on their web-
site (https://www.policyuncertainty.com/index.html). The GPR Index
by Caldara and Iacoviello (2022) is available on Iacoviello’s website
(https://www.matteoiacoviello.com/gpr.htm).

5. Results

5.1. CAViaR estimates

We visualised the tail risk series measured as 5% VaR using the
asymmetric slope CAViaR model to show the co-movements across
series in Fig. 1. Most series clustered in early 2020 when the COVID-
19 pandemic started. The green bond tends to have smallest tail risk on
average. The WTI crude oil futures exhibits the largest tail risk around
the day of historic negative price in 2020. The natural gas futures shows
significant increased tail risk in the post-COVID-19 era. Using other
levels such as 10% and 2.5% provides robust results with qualitatively
similar pattern and slightly different magnitude (see Figs. A.1 and B.1).

We then calculated the logarithm differences of the tail risk repre-
senting the changes in probability of expected loss. Table 1 summarises
the descriptive statistics of the tail risk changes. All series are stationary
according to the ERS unit root test (Elliott et al., 1996) results, and are
not normally distributed based on the JB test (Jarque and Bera, 1980)
results. Table 2 presents the Kendall rank correlation coefficients be-
tween pairs. We notice that correlations between sustainability-related
indexes are all positive, which indicates that a positive (negative)
change in one ‘‘green’’ index is likely to cause a positive (negative)
change in another ‘‘green’’ index. Similar statement can be applied to
carbon credit futures as it is positively correlated to all other products.
When it comes to the correlations between energy products, or between

5 https://indicesweb.ihsmarkit.com/Carbon/Home
5

energy and ‘‘green’’ products, the results are rather mixed. Surpris-
ingly, despite some insignificant estimates, the correlation between
WTI crude oil futures and all other indexes including sustainability-
related products (except the nature gas futures) are all positive, and the
correlation between the coal companies and all other indexes are also
positive. These encourage us to further analyse the spillovers among
the variables.

5.2. TVP-VAR connectedness measures

5.2.1. Static (average) results
We first compute the static (average) results of the tail risk trans-

mission among four sustainability-related indexes (ESG Leaders, Al-
ternative Energy, Environment, Green Bond), Carbon futures, three
primary fossil energy commodity futures (crude oil, natural gas, and
coal), and two aggregated energy equities (Oil & Gas Co. and Coal
Co.) in Table 3. The values in the 𝑖th row and 𝑗th column are the
pairwise directional connectedness between variable 𝑖 and variable 𝑗.
The column of ‘‘FROM’’ measures the spillover effects that variable 𝑖
receives from all other markets. Similarly, ‘‘TO’’ measures the spillover
effects transmitted from variable 𝑗 to other markets. ‘‘NET’’ is the net
directional connectedness of variable 𝑗, which represents the general
role of the variable 𝑗 in the system. ‘‘NPT’’ counts the times of variable
𝑗’s pairwise TO values exceeding its pairwise FROM values. ‘‘TCI’’ is
the adjusted total connectedness index of the whole network. Values
outside and in parentheses are results before and after the COVID-
19 outbreak, respectively. We used January 24, 2020 when human
transmission of the COVID-19 was discovered by Huang et al. (2020)
and reported in Lancet, which lifted the global concern, as the break
date.

First of all, we consider that the average total connectedness level
(33.20% in pre-COVID-19 period or 28.56% during COVID-19 crisis) is
at best moderate. This number indicates the proportion of the volatility
forecast error variance in the system we construct comes from spillover
effects. In our case, the relatively low to medium level of total con-
nectedness implies some extent of interdependence among variables.
Surprisingly, we find that the highest (top 3) spillover transmitters are
all sustainability-related indexes in the order of ESG Leaders, Environ-
ment, and Alternative Energy Index before the COVID-19, although

https://fred.stlouisfed.org
https://www.policyuncertainty.com/index.html
https://www.matteoiacoviello.com/gpr.htm
https://indicesweb.ihsmarkit.com/Carbon/Home
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Table 1
Summary statistics of tail risk changes.

ESG Leaders Alt. Energy Environment Green Bond Carbon Credit Newcastle Coal WTI Crude Oil Nature Gas Oil & Gas Co. Coal Co.

Mean 0.047 0.018 0.029 0.025 0.036 0.022 −0.009 0.07 −0.012 −0.039
Variance 399.644 186.166 203.073 165.525 204.973 247.461 47.6 168.192 76.143 125.137
Skewness 1.894*** 1.772*** 1.828*** 1.179*** 1.481*** 4.233*** 6.526*** 1.611*** 1.966*** 1.656***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Ex.Kurtosis 4.833*** 4.360*** 4.447*** 1.644*** 3.718*** 25.243*** 117.576*** 5.947*** 7.942*** 3.628***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
JB 3033.364*** 2539.921*** 2666.726*** 664.861*** 1817.725*** 57033.185*** 1125970.506*** 3680.610*** 6319.356*** 1941.395***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ERS −8.328*** −4.621*** −11.272*** −5.272*** −16.173*** −12.669*** −13.072*** −9.091*** −9.579*** −22.468***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes:
1. The null hypothesis of Jarque–Bera (JB) test: the series is normally distributed.
2. The null hypothesis of Elliott–Rothenberg–Stock (ERS) test: the series is non-stationary.
3.***, ** and * denote the rejections of the null hypothesis at the significance level of 1%, 5% and 10%, respectively.
Table 2
Kendall rank correlation coefficients.

ESG Leaders Alt. Energy Environment Green Bond Carbon Credit Newcastle Coal WTI Crude Oil Nature Gas Oil & Gas Co. Coal Co.

ESG Leaders 1.000*** 0.324*** 0.384*** 0.036** 0.038** −0.017 0.160*** −0.009 0.200*** 0.203***
Alt. Energy 0.324*** 1.000*** 0.325*** 0.084*** 0.042*** −0.011 0.078*** −0.017 0.117*** 0.195***
Environment 0.384*** 0.325*** 1.000*** 0.021 0.038** −0.005 0.098*** −0.006 0.145*** 0.168***
Green Bond 0.036** 0.084*** 0.021 1.000*** 0.049*** 0.032** 0.013 0.013 −0.011 0.063***
Carbon Credit 0.038** 0.042*** 0.038** 0.049*** 1.000*** 0.017 0.038** 0.027 0.025 0.056***
Newcastle Coal −0.017 −0.011 −0.005 0.032** 0.017 1.000*** 0.012 0.031** −0.009 0.006
WTI Crude Oil 0.160*** 0.078*** 0.098*** 0.013 0.038** 0.012 1.000*** −0.002 0.187*** 0.123***
Nature Gas −0.009 −0.017 −0.006 0.013 0.027 0.031** −0.002 1.000*** −0.003 0.032**
Oil & Gas Co. 0.200*** 0.117*** 0.145*** −0.011 0.025 −0.009 0.187*** −0.003 1.000*** 0.164***
Coal Co. 0.203*** 0.195*** 0.168*** 0.063*** 0.056*** 0.006 0.123*** 0.032** 0.164*** 1.000***

Notes:
1. ***, ** and * denote the rejections of the null hypothesis at the significance level of 1%, 5% and 10%, respectively.
the Oil & Gas companies Index has taken the place of Alternative
Energy Index in the post-COVID-19 period to be a new transmitter.
Both Green Bond Index and carbon credit futures have relatively low
FROM and TO effects. However, they are not as low as those of coal
futures, which is interesting as coal as one of the most important energy
sources for heating does not affect the other markets much. In fact,
all energy commodities have significantly lower spillovers with others
compared to either ‘‘green’’ or ‘‘brown’’ equities. Lastly, we note that
the average total connectedness has decreased in the post-COVID-19
era, which implies that the average tail risk transmission has weakened
in recent years, unexpectedly. We see that the spillovers transmitted
by the sustainability-related indexes and energy commodities have
all decreased, while only the energy equities have transmitted more
spillovers to other assets, which may be resulted by the increased inter-
est in more sustainable products and the declined production and trade
activities in oil as these impulses higher risks in energy companies’
performance.

We visualise the pairwise connections over the full sample as shown
in Fig. 2, which helps the readers quickly distinguish the role of each
variable. There are two node colours, blue and yellow; blue colour
denotes the role of a general tail risk transmitter within the system
while yellow is for risk receivers. Node size indicates the magnitude
of TO spillover effects; the larger the node size, the greater the effects.
Arrow shows the direction of the spillovers transmission between two
variables; also, the larger the interaction, the thicker the arrow. The
coal futures looks isolated as there is no arrow pointing to or out from
it and the node size is quite small. This is because, as we described
earlier, although the coal futures transmits slightly higher spillovers to
high ESG and alternative energy companies, carbon futures, and natural
gas futures at a comparable level as green bond, it receives even lower
risk than the green bond while green bond is a complete risk receiver as
expected as a lower-risk product. If we go back to look at the Table 3,
we see that the average net spillovers of coal futures is almost zero
especially in the post-COVID era. The Alternative Energy Index receives
risks from both leading ESG firms and Environment Index, which is not
6

so surprising if considering that the ESG Leaders Index and Environ-
ment Index both cover broader sectors including the alternative energy
industry. There is not much transmission among energy commodities
and carbon credit futures, which implies the diversification benefits
of constructing such portfolio. In any way, these interesting results
encourage us to look at the evolution of the connectedness within the
system over time.

5.2.2. Time-varying results
Fig. 3 shows the time-varying evolution of the total connectedness

which extends the understanding of transmissions within the system.
Apart from the CAViaR-based spillovers at 5% level (brown area),
we also plotted the 10% and 2.5% level results to ensure robustness,
represented by red and green lines, respectively. With the help of the
dynamic total connectedness plot, we are able to explain what we
have found earlier that the average total connectedness has decreased
in the post-COVID-19 era. Although we do observe that there was
an exceptionally sharp increase in the tail risk transmission at the
beginning of the COVID-19 which is greater in extent than that in the
late 2016, the peak is not as high as that in the latter after the Brexit
referendum. The tail risk spillovers had significantly decreased around
the time when the Paris agreement was going effective from late 2016,
which is reasonable as our dataset comprises of sustainability-related
indexes and carbon credit futures that directly deal with the climate
issues. However, the slowing down of the industrial activities, the
falling investors’ confidence, the US–China Trade War, and the COVID-
19 had led the market crash over a long period, which is reflected in our
graph where we see the rapid growth of tail risk spillovers in early 2018
and relatively substantially high level in 2018–2019, followed by the
second all-time peak in early 2020. Fortunately, the tail risk spillovers
have retained at relatively low level since late 2021, which leads to the
lower average risk spillover during & in the post-COVID-19 era than
that before COVID-19.

Now we move on to the dynamic net connectedness plots which
enable us to distinguish the overall roles of each variable has played
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Table 3
Average total connectedness.

Pre- (During)
COVID-19

ESG Leaders Alt. Energy Environment Green Bond Carbon
Credit

Newcastle
Coal

WTI Crude
Oil

Nature Gas Oil & Gas Co. Coal Co. FROM

ESG Leaders 41.62 (50.56) 14.61 (10.77) 23.76 (16.65) 0.90 (1.08) 0.55 (0.74) 0.30 (0.89) 3.55 (3.04) 0.41 (0.24) 7.86 (8.01) 6.44 (8.01) 58.38 (49.44)
Alt. Energy 16.94 (12.43) 48.31 (57.98) 18.57 (12.93) 1.99 (0.71) 0.73 (0.70) 0.39 (1.08) 2.18 (1.36) 0.64 (0.59) 3.99 (6.28) 6.26 (5.96) 51.69 (42.02)
Environment 24.55 (18.19) 16.81 (12.30) 42.63 (55.85) 1.09 (0.51) 0.66 (1.23) 0.23 (0.51) 2.25 (1.82) 0.34 (0.53) 5.22 (4.97) 6.22 (4.08) 57.37 (44.15)
Green Bond 1.93 (2.81) 3.50 (1.84) 2.00 (1.70) 85.44 (85.53) 2.26 (1.41) 0.92 (0.35) 0.60 (0.79) 0.91 (1.07) 0.78 (1.51) 1.66 (2.98) 14.56 (14.47)
Carbon
Credit

1.50 (1.39) 1.47 (0.96) 1.56 (2.46) 2.56 (0.85) 88.31 (88.17) 0.73 (0.95) 0.76 (0.93) 1.00 (1.29) 1.03 (1.11) 1.08 (1.88) 11.69 (11.83)

Newcastle
Coal

0.58 (1.04) 0.58 (0.56) 0.62 (0.55) 1.04 (0.71) 0.62 (0.54) 92.14 (93.48) 1.28 (0.67) 1.49 (1.48) 0.83 (0.52) 0.81 (0.45) 7.86 (6.52)

WTI Crude
Oil

5.91 (4.05) 3.01 (1.74) 3.53 (2.39) 0.31 (0.49) 0.65 (0.72) 0.92 (0.35) 64.63 (75.20) 0.78 (0.42) 15.50 (11.22) 4.76 (3.42) 35.37 (24.80)

Nature Gas 1.33 (0.58) 1.29 (1.41) 0.98 (1.01) 0.95 (1.29) 1.25 (1.75) 1.71 (1.46) 1.01 (0.60) 89.63 (88.77) 0.85 (1.28) 0.99 (1.87) 10.37 (11.23)
Oil & Gas Co. 10.43 (9.29) 4.82 (6.37) 6.90 (5.26) 0.70 (0.74) 0.44 (0.62) 0.59 (0.35) 13.37 (8.95) 0.61 (0.53) 55.51 (58.45) 6.64 (9.46) 44.49 (41.55)
Coal Co. 9.27 (10.48) 7.84 (6.71) 8.74 (4.76) 1.02 (1.95) 1.22 (1.34) 0.54 (0.36) 3.91 (2.98) 0.85 (0.51) 6.80 (10.47) 59.82 (60.44) 40.18 (39.56)
TO 72.43 (60.27) 53.94 (42.66) 66.66 (47.71) 10.57 (8.31) 8.38 (9.04) 6.32 (6.30) 28.92 (21.15) 7.02 (6.66) 42.86 (45.38) 34.88 (38.10) TCI
NET 14.05 (10.83) 2.25 (0.64) 9.29 (3.56) −3.99

(−6.16)
−3.31
(−2.79)

−1.55
(−0.22)

−6.45
(−3.65)

−3.35
(−4.57)

−1.63 (3.83) −5.30
(−1.46)

33.20 (28.56)

NPT 9.00 (9.00) 7.00 (6.00) 8.00 (8.00) 3.00 (2.00) 2.00 (2.00) 2.00 (2.00) 4.00 (4.00) 0.00 (1.00) 6.00 (6.00) 4.00 (5.00)

Note:
Values outside and in parentheses are results prior to and during the COVID-19 outbreak, respectively.
Fig. 2. Visualisation of average pairwise directional tail risk transmission network. Note: Blue — risk transmitter; Yellow — risk receiver; Node size — magnitude of TO spillover
effects; Arrow — direction of the spillovers; Thickness — intensity of the interaction. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
over the whole sample period (Fig. 4). Apparently, there are only two
persistent net transmitters of tail risk in the system — the ESG Leaders
Index and the Global Environment Index, although the latter might
have emitted some risks in quite negligibly short periods (e.g., early
2022). The patterns between the two are quite different, particularly,
the risks transmitted from Environment Index had significantly reduced
to 0 prior the 2018 and the risk level in recent period has been much
lower than in previous risky times and that of the ESG Leaders Index.
Alternative Energy Index was evidenced as the third largest transmitter
in pre-COVID-19 period. However, from the dynamic plot, we see that
it had switched roles several times since 2018. Prior to the COVID-19,
7

the alternative energy industry seemed to be a net risk receiver rather
than the transmitter. It was again the transmitter at the beginning of
the pandemic but quickly lost it. Notably, in the most recent period
while the Europe is suffering from the energy crisis caused by the Russia
invasion to Ukraine, the alternative energy industry has become risk
transmitter again. The dynamic result of green bond’s role is expected
and consistent with the static result. Green bond has long been a
risk receiver, despite a short-lived positive period in the mid 2015.
All futures products except for coal can be generally viewed as risk
takers. Coal has been a risk transmitter when entering the year of
2022. The two energy equities also behave differently. While the coal
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Fig. 3. Dynamic total connectedness index (%). Notes: Black area — CAViaR-based spillovers at 5% level; Red line — CAViaR-based spillovers at 10% level; Green line —
CAViaR-based spillovers at 2.5% level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Net total connectedness. Notes: Black area — CAViaR-based spillovers at 5% level; Red line — CAViaR-based spillovers at 10% level; Green line — CAViaR-based spillovers
at 2.5% level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
companies are risk takers except for a short period around 2022, the
oil and gas companies have already transformed to transmitter roles
since late 2019. These results suggest a diversified portfolio is essential
for investors as different assets even within the same group behave
differently in the system. However, we still need to figure out the
pairwise relations to uncover the tail risk transmission between pairs
and provides more useful insights for the policy markers and investors.

Fig. 5 plot the dynamic net connectedness results between pairs.
Notably, ESG Leaders Index is generally a risk transmitter for almost
8

all others over the sample period. However, we do observe that the risk
transmissions from ESG to futures products have significantly reduced,
or even reversed (e.g., coal futures) in recent times. Green bond,
although it is a persistent risk receiver in the system, is not a persistent
risk taker for every other market. Instead, it frequently switches roles
especially for energy commodities and equities. More recently it is more
likely to be a transmitter for carbon and energy futures evidenced
by the up trending pattern towards the end of the study period. On
average, we notice that the transmissions among sustainability-related
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equity indexes and energy equities are much more intensive than those
between sustainability-related indexes (including green bond) between
the futures products or between the energy equities and the futures
products (except the WTI crude oil futures), which are consistent
with our static results. These may be resulted by some extent of the
systematic co-movement in the equity markets and dominating position
of crude oil as the strategic commodity. The WTI crude oil futures
has been a risk taker for almost all equities indexes. Future products
other than the WTI crude oil are more isolated in the system. Besides,
we should not ignore that the coal futures transmitted quite a lot and
significant tail risks to the alternative energy industry and carbon credit
futures since the energy crisis around 2022. In return, the performance
of the alternative energy equities transmitted back the risks to the coal
companies. Coal as a strong substitute to natural gas being a heating
source has been sought-after since the energy crisis, where we see that
the coal companies expelled significant risks to the natural gas futures
than the oil & gas companies did.

5.3. Drivers of spillover intensity

Fig. 6 depicts the t-statistics of estimated coefficients using rolling
window regression (Eq. (8)). Two horizontal red lines above and below
the 𝑥-axis represent the critical value at 5% level — +1.96 and −1.96,
respectively. Therefore, lines of studied potential determinants above
and below the respective horizontal lines are statistically significant
estimates. It is not surprising that all potential driving variables have
had asymmetric effects on the connectedness network and such re-
lationships are time-varying. TERM, the yield spread which can be
viewed as the US expectation of economics recession, has had the great-
est effect on the connectedness network. We show that the negative
impact of TERM on the connectedness during the peak of COVID-19
and Russia–Ukraine War was much higher than non-crisis period in
2018/02–2020/02, which makes sense as the expectations of long-
term recession during these periods was indeed very low, as indicated
by the high TERM rate. The economic policy uncertainty (EPU) had
no significant impact on the connectedness prior to the COVID-19.
During the beginning phase of COVID-19 with the travel restrictions
being imposed, we find that higher EPU leads to higher risk exposure
spillovers. The effect decreased with the decreasing threat of COVID-19,
and has been increasing with the tension of the war in 2022. Similarly,
we see that the geopolitical risk (GPR) has almost opposite effect on
the risk spillovers than the EPU does on the network, although during
most of time the impact has been insignificant. OVX, stands for the
expectation of crude oil price volatility, has had relatively high impact
on the risk exposure. The effect of OVX was relatively consistently
positive and significant during non-crisis period, and more unstable
during crisis period. Especially when the oil price was pushed higher
in late 2021 and spiked high at the beginning of Russia invasion, the
expectation of oil volatility has had much negative effect on the risk
exposure among the market, which possibly because both ESG and
fossil energy stocks were performing well during positive expectations
to the oil price in early 2022. Therefore, we can also see that the effect
of OVX has been decreasing following the oil price collapse afterwards.
VIX has relatively high asymmetric impact on the connectedness. This
is reasonable as the biggest risk exposure transmitters and receivers in
our system are equity indexes. The larger the expectation of higher
volatilities in the equity market, the higher the fear in unexpected
financial loss in the equities. During the crisis periods, higher fear in
the US equity market leads to higher risk exposures.

6. Conclusions

We investigated the tail risk spillovers among sustainability-related
products, energy futures, and energy equities. Specifically, we con-
sidered five types of representative sustainable (‘‘green’’) products,
including three equity indices (i.e., the MSCI World ESG Leaders Index,
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the MSCI Global Environment Index, and the MSCI Global Alternative
Energy Index), one treasury index (i.e., the Bloomberg Barclays MSCI
Global Green Bond Index) and one futures index (i.e., the IHS Markit
Global Carbon Index). On the other hand, we included two types of
primary fossil energy (‘‘brown’’) investments, including three global
commodity futures products (i.e., the ICE WTI Crude Oil futures, the
ICE Natural Gas futures, and the ICE Newcastle Coal futures) and two
equity indices (i.g., the Global Oil & Gas Exploration and Production
Price Return Index and Global Coal Price Return Index). With the help
of a novel CAViaR-based TVP-VAR models developed by Chatzianto-
niou et al. (2022b), we were able to directly measure the conditional
VaR of each asset or index at a defined level, and further incorporate
them into a dynamic connectedness model to comprehensively analyse
the time-varying transmission of the extreme uncertainty/risk of po-
tential substantial loss among the ‘‘green’’ and ‘‘brown’’ markets. Our
sample spans from 14 October 2014 to 31 August 2022 covering several
global events. Particularly, we divided our sample by late January of
2020 to explicitly take the COVID-19 pandemic into consideration.

Some interesting findings aroused. First, the static result of the
average total connectedness reveals an at best medium-level spillovers
among the system variables. The decrease in the overall average con-
nectedness after COVID-19 outbreak suggests that the impact of COVID-
19 on the sustainability-fossil energy nexus is not as severe as we may
have expected. Moreover, keep in mind that our approach measures
the spillovers of tail risks proxied by the conditional VaR, which is a
completely different objective from measuring the volatility; this has
led to some different results from those of previous studies, e.g., Zhang
et al. (2022). Specifically, we found that the ESG Leaders Index is
both the largest risk transmitter and receiver, followed by the Global
Environment Index and Global Alternative Energy Index. Within the
sustainability products, both of the carbon emission allowance futures
and the green bond are net risk receivers. The carbon futures even
outperforms the green bond index being more neutral, although it
transforms slightly more risks in the post-COVID-19 period. Addition-
ally, in the fossil energy group, equity indexes transfer quite a lot
but lower risks than ‘‘green’’ products in the system, while energy
futures products are significantly more isolated and even less involved
in the system than the green bond and carbon credit futures. An
exception is the WTI crude oil futures which tends to be more vulner-
able and involved in this system, given its global dominance among
commodities.

With respect to the dynamic results which not just verify the pre-
vious static results but also depict more insightful pictures, we showed
that the rate of the increase in the spillover at the beginning of COVID-
19 is phenomenal. However, the magnitude of the peak of the daily
tail risk spillovers during the first wave of COVID-19 is lower than that
in the year around mid 2016 when the Brexit referendum and Paris
Agreement took place. This suggests that the initial effect of COVID-19
is overestimated on a daily basis, which is somehow in line with the
inferences in Chatziantoniou et al. (2022a). The relatively low-level
of spillovers since late 2021 and the overall less extent of variations
compared to previous years explains the lower average connectedness
revealed by the static results. Besides, previous static results suggest all
sustainability-related equity indices (ESG Leaders, Environment, Alter-
native Energy) are net transmitters, but the dynamic plots indicate that
alternative energy stocks had become a net receiver two year before the
COVID-19 outbreak. Its role of transmitter after the outbreak was short-
lived in early times; however, after the Russian invasion in Ukraine,
the alternative energy stocks has regained the transmitter position.
All futures products seem to have long been risk receivers but each
behave differently. Notably, we found that the crude oil and natural
gas futures started to receive more since 2022 than at the beginning
of the plague; On the contrary, coal futures has become a transmitter
since 2022 but has weakened more recently, while the role of carbon
futures has become more inconclusive. Regarding energy equities, we

see that coal companies had been a receiver until late 2021 and has
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Fig. 5. Pairwise net total connectedness (a), (b) and (c). Notes: Black area — CAViaR-based spillovers at 5% level; Red line — CAViaR-based spillovers at 10% level; Green line
— CAViaR-based spillovers at 2.5% level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
been switching role in more recent period, while oil and gas com-
panies has started transmitting tail risks since late 2019. An possible
reason is that coal has criticised for being harmful to the environment,
which leads to the passive position in the investments. Finally, the
pairwise results further provide support and extend the understanding
of the relations between pairs. Here we address a notable finding
10
that the spillovers among sustainability-related equities and energy
equities are much more intensive than those between sustainability-
related indexes (including green bond) between the futures products
or between the energy equities and the futures products (except the
WTI crude oil futures). Finally, regression results reveal that economic
policy uncertainty, geopolitical risk, the spread of US yield curve, the
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Fig. 5. (continued).
Fig. 6. Rolling t-statistic based on a rolling-window (120 observations) regression. Notes: The horizontal red lines indicate 5% critical value of (±1.96). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
implied volatility of US stock market, and the oil volatility, impact the
connectedness network asymmetrically.

These results provide valuable insights. From the investors’ per-
spectives, how to effectively diversify their portfolio to minimise the
risk (VaR) remains an essential task. Our study suggests that equities,
regardless of whether they are sustainable more or less, share similar
tail risk pattern to some extent. Investors in sustainability equities are
encouraged to choose non-equity products such as carbon credit futures
11
or green bond as constituents to diversify the extreme risks. A better
risk minimising but worse decision in faith would be to include a small
portion of fossil energy futures such as coal and natural gas as long
as it does not harm the carbon-neutral portfolio too much. There is
more flexibility for investors in fossil energy investments that they can
either diversify the risks by investing more in combination of energy
futures and energy equities, or further considering the emerging assets
such as green bond and carbon credit futures. The latter may lead to
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Fig. A.1. Tail risk measured as 10% VaR using the asymmetric slope CAViaR model.
Fig. B.1. Tail risk measured as 2.5% VaR using the asymmetric slope CAViaR model.
better performance in portfolio VaR and mitigation in damage to the
sustainability. Future research might be interested in capturing these
by creating and examining the performance of dynamic VaR-optimised
portfolios. For policymakers, our findings indicate that sustainability-
related equities especially the leading companies in ESG performance
transmit significant tail risk to other sustainable industry and fossil
energy industries; in retrospect, green bond and futures products could
be useful to stabilise the market given their general role as risk re-
ceivers. How to balance the relationships and maintain the healthy
development of markets is one of the priorities. Meanwhile, careful
consideration of external driving forces such as EPU, yield curve,
VIX, GPR, OVX, etc, is critical. Other promising directions of future
12
research might be considering the time-domain tail risk relationship
between these or with additional markets by taking frequency effect
into account (Baker et al., 2016b).
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Table C.1
Average total connectedness at 10%.

Pre- (During)
COVID-19

ESG Leaders Alt. Energy Environment Green Bond Carbon
Credit

Newcastle
Coal

WTI Crude
Oil

Nature Gas Oil & Gas Co. Coal Co. FROM

ESG Leaders 40.98 (49.84) 14.51 (10.72) 23.72 (16.59) 0.80 (0.95) 0.48 (0.46) 0.30 (0.58) 3.55 (3.21) 0.38 (0.25) 8.69 (9.06) 6.60 (8.35) 59.02 (50.16)
Alt. Energy 17.07 (12.50) 48.29 (57.85) 18.49 (12.95) 1.63 (0.62) 0.59 (0.67) 0.40 (0.92) 2.22 (1.43) 0.64 (0.63) 4.30 (6.10) 6.35 (6.31) 51.71 (42.15)
Environment 24.76 (18.30) 16.67 (12.28) 42.26 (55.54) 1.00 (0.47) 0.60 (1.01) 0.24 (0.42) 2.31 (2.04) 0.32 (0.51) 5.45 (5.07) 6.39 (4.36) 57.74 (44.46)
Green Bond 1.95 (2.18) 3.18 (1.40) 2.08 (1.20) 85.76 (86.80) 2.04 (1.74) 0.97 (0.50) 0.70 (0.91) 0.82 (1.15) 0.81 (1.38) 1.69 (2.75) 14.24 (13.20)
Carbon
Credit

1.50 (0.88) 1.38 (0.88) 1.59 (1.89) 2.34 (1.05) 88.31 (88.82) 0.90 (1.18) 0.59 (0.85) 1.40 (1.90) 1.03 (0.81) 0.95 (1.73) 11.69 (11.18)

Newcastle
Coal

0.64 (0.92) 0.62 (0.59) 0.74 (0.56) 1.00 (0.74) 0.59 (0.74) 91.83 (93.57) 1.33 (0.59) 1.34 (1.46) 0.90 (0.50) 1.00 (0.33) 8.17 (6.43)

WTI Crude
Oil

5.69 (4.29) 2.93 (1.84) 3.42 (2.64) 0.26 (0.58) 0.49 (0.60) 0.96 (0.31) 61.86 (71.59) 0.74 (0.46) 18.55 (13.55) 5.10 (4.15) 38.14 (28.41)

Nature Gas 1.30 (0.56) 1.27 (1.38) 0.91 (1.00) 0.95 (1.42) 1.48 (2.39) 1.52 (1.41) 1.08 (0.67) 89.73 (88.38) 0.83 (1.17) 0.95 (1.61) 10.27 (11.62)
Oil & Gas Co. 11.05 (10.08) 4.77 (5.90) 6.80 (5.32) 0.50 (0.81) 0.31 (0.54) 0.56 (0.39) 16.07 (10.95) 0.48 (0.49) 52.82 (55.82) 6.65 (9.71) 47.18 (44.18)
Coal Co. 9.67 (10.93) 7.84 (6.93) 8.96 (4.98) 0.92 (1.81) 1.08 (1.23) 0.61 (0.35) 4.38 (3.51) 0.76 (0.50) 7.31 (11.24) 58.48 (58.51) 41.52 (41.49)
TO 73.62 (60.64) 53.17 (41.91) 66.71 (47.14) 9.40 (8.44) 7.67 (9.39) 6.46 (6.06) 32.22 (24.16) 6.89 (7.35) 47.87 (48.88) 35.67 (39.31) TCI
NET 14.60 (10.48) 1.46 (−0.24) 8.97 (2.68) −4.84

(−4.77)
−4.02
(−1.79)

−1.71
(−0.37)

−5.92
(−4.25)

−3.39
(−4.27)

0.69 (4.69) −5.84
(−2.18)

33.97 (29.33)

NPT 9.00 (9.00) 7.00 (5.00) 8.00 (8.00) 3.00 (2.00) 2.00 (2.00) 2.00 (3.00) 4.00 (4.00) 0.00 (1.00) 6.00 (7.00) 4.00 (4.00)

Note:
Values outside and in parentheses are results prior to and during the COVID-19 outbreak, respectively.
Table D.1
Average total connectedness at 2.5%.

Pre- (During)
COVID-19

ESG Leaders Alt. Energy Environment Green Bond Carbon
Credit

Newcastle
Coal

WTI Crude
Oil

Nature Gas Oil & Gas Co. Coal Co. FROM

ESG Leaders 43.98 (53.66) 14.24 (9.83) 23.91 (16.31) 0.98 (1.22) 0.53 (0.64) 0.30 (1.08) 3.35 (3.60) 0.42 (0.25) 7.08 (6.97) 5.19 (6.45) 56.02 (46.34)
Alt. Energy 16.12 (11.23) 50.83 (62.07) 18.35 (11.93) 2.29 (0.80) 0.74 (0.73) 0.30 (0.97) 2.10 (1.30) 0.64 (0.74) 3.44 (5.58) 5.19 (4.65) 49.17 (37.93)
Environment 24.30 (17.49) 16.48 (11.17) 44.45 (58.57) 1.16 (0.53) 0.71 (1.31) 0.25 (0.57) 2.13 (1.92) 0.38 (0.59) 4.69 (4.43) 5.45 (3.43) 55.55 (41.43)
Green Bond 1.98 (2.99) 3.77 (1.59) 2.05 (1.62) 85.16 (85.77) 2.24 (1.44) 0.87 (0.35) 0.53 (0.51) 0.94 (0.92) 0.78 (1.67) 1.68 (3.13) 14.84 (14.23)
Carbon
Credit

1.36 (1.15) 1.51 (0.93) 1.55 (2.59) 2.58 (0.90) 88.59 (89.08) 0.56 (0.92) 0.84 (0.75) 0.98 (1.21) 0.95 (0.94) 1.07 (1.53) 11.41 (10.92)

Newcastle
Coal

0.63 (0.99) 0.57 (0.62) 0.63 (0.53) 0.96 (0.64) 0.68 (0.57) 92.12 (93.34) 1.18 (0.55) 1.58 (1.62) 0.86 (0.73) 0.79 (0.40) 7.88 (6.66)

WTI Crude
Oil

5.00 (4.45) 2.87 (1.54) 3.07 (2.52) 0.38 (0.36) 0.74 (0.58) 0.85 (0.27) 63.83 (74.72) 0.69 (0.38) 18.78 (12.11) 3.80 (3.06) 36.17 (25.28)

Nature Gas 1.30 (0.61) 1.29 (1.47) 0.97 (1.02) 0.94 (1.11) 1.21 (1.61) 1.59 (1.62) 1.06 (0.50) 89.82 (88.77) 0.89 (1.26) 0.93 (2.01) 10.18 (11.23)
Oil & Gas Co. 8.99 (7.98) 4.23 (5.57) 6.14 (4.67) 0.78 (0.77) 0.48 (0.56) 0.63 (0.46) 16.59 (10.41) 0.70 (0.55) 55.92 (61.09) 5.53 (7.94) 44.08 (38.91)
Coal Co. 7.45 (8.31) 6.70 (5.29) 7.89 (4.16) 1.13 (2.21) 1.27 (1.20) 0.55 (0.29) 3.35 (2.76) 1.04 (0.65) 5.80 (8.79) 64.82 (66.35) 35.18 (33.65)
TO 67.12 (55.20) 51.67 (38.01) 64.56 (45.35) 11.19 (8.54) 8.60 (8.65) 5.91 (6.52) 31.14 (22.32) 7.39 (6.91) 43.27 (42.49) 29.64 (32.60) TCI
NET 11.10 (8.85) 2.50 (0.07) 9.01 (3.92) −3.65

(−5.69)
−2.81
(−2.27)

−1.98
(−0.14)

−5.04
(−2.95)

−2.79
(−4.32)

−0.80 (3.58) −5.54
(−1.05)

32.05 (26.66)

NPT 9.00 (8.00) 7.00 (5.00) 8.00 (7.00) 2.00 (2.00) 3.00 (2.00) 1.00 (5.00) 4.00 (4.00) 2.00 (0.00) 6.00 (7.00) 3.00 (5.00)

Note:
Values outside and in parentheses are results prior to and during the COVID-19 outbreak, respectively.
Appendix A. Tail risk measured at 10%

See Fig. A.1.

Appendix B. Tail risk measured at 2.5%

See Fig. B.1.

Appendix C. Average total connectedness at 10%

See Table C.1.

Appendix D. Average total connectedness at 2.5%

See Table D.1.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2023.106812.
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