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Abstract: Accurate electricity price forecasting (EPF) is crucial to both market 

participants and decision makers in the electricity market environment. The paper 

reviews the screened 62 literature on EPF during 2012-2022 in terms of model structure 

and determinants of electricity price, and discusses the evaluation process, model type, 

research sample, and prediction horizon. Through the above efforts, we find that: (1) 

data preprocessing and model optimization are often used to improve the forecasting 

model accuracy, while the performance evaluation is essential, but the extensive 

benchmark of performance evaluation is still missing; (2) considering determinants of 

electricity price can significantly improve accuracy of the forecasting model, but there 

is disagreement over how many and which determinants should be taken into account; 

(3) most of the existing researches focus on point forecasting, but interval forecasting 

and density forecasting are more responsive to the range and uncertainty of electricity 

price changes. 
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1. Introduction 

The energy crisis caused by the Russia-Ukraine conflict since 2022 has caused 

electricity prices to soar in France, Germany and other European countries, which has 

led to a considerable impact on the daily life and production of people. Electricity power, 

as an essential energy for daily life, is an important foundation for economic 

development and social progress (Wang et al., 2017). The fluctuation of electricity 

prices not only affects the flows and allocations of various resources in the electricity 

market, but also brings great risks to the production and operation of market participants. 

Therefore, accurate electricity price forecasting is crucial to both market participants 

and decision makers in the electricity market environment (Gabrielli et al., 2022; Meng 

et al., 2022; Zhang et al., 2022).  

Electricity price forecasting refers to predicting future prices on the basis of 

meeting certain accuracy and speed by collecting historical data, constructing 

mathematical models and exploring the intrinsic connections and laws between 

electricity prices and the determinants of electricity prices (Nowotarski and Weron, 

2018). Most of the researches on electricity price forecasting in the past are based on 

the historical electricity price (Zhang et al., 2012; Liu and Shi, 2013; Shrivastava and 

Panigrahi, 2014), while the fluctuation of electricity prices in reality is influenced by 

many factors (Maciejowska, 2020; Doering et al., 2021; Wang et al., 2022). For 

example, with the increasing penetration of renewable energy in the electricity 

generation industry, the volatile renewable energy generation undoubtedly has a huge 

impact on the electricity price fluctuation (Gabrielli et al., 2022). In addition, other 



determinant of electricity prices such as the fossil energy prices (Doering et al., 2021), 

the carbon price (Bublitz et al., 2017), the electricity demand (Mosquera-López and 

Nursimulu, 2019), the calendar data (Neupane et al., 2017), and weather (Pena and 

Rodriguez, 2019) can also have a significant impact on the fluctuation of electricity 

prices. Therefore, the scientific judgement of determinants of electricity prices and the 

construction of a forecasting method with high applicability and performance on this 

basis are essential to the accurate electricity price forecasting (Liu et al., 2022; Tschora 

et al., 2022; Zhang et al., 2022). 

According to the existing literature, the scholars have proposed various effective 

EPF methods, which can be mainly classified into three categories as follows: the 

traditional econometric models, the artificial intelligence models, and the hybrid 

models. With the emergence of various models mentioned above, many scholars have 

summarized and reviewed EPF from different perspectives in great detail. For example, 

Weron (2014) provided a detailed classification of mainstream EPF models according 

to the development stage, explained the complexity of available solutions, their 

strengths and weaknesses, the opportunities and threats that forecasting tools may 

encounter, and pointed to the direction of development in the next decade. With the 

increasing importance of the probabilistic EPF for energy system planning and 

operation, Nowotarski and Weron (2018) provided an update and a further extension of 

the otherwise comprehensive EPF review based on Weron's research, and proposed 

much needed guidelines for the rigorous use of methods, measures, and evaluation. In 

addition, Lago et al. (2021) provided a detailed review of the state-of-the-art algorithms, 



the best practices and the open access benchmarks for day-ahead electricity price, and 

addressed the lack of a unified model evaluation methodology for existing research. 

Table 1 lists the comparison of the review articles published in recent years and this 

review article. 

The existing literature provided very detailed classification summaries and reviews 

of the EPF model, which have laid the foundation for further research in this paper. 

However, there are still possibilities for further refinement in the existing literature. 

First, most of the existing review articles only categorize and summarize the electricity 

price forecasting models, and fewer of them summarize the methods of the specific 

process of electricity price forecasting such as data pre-processing methods, model 

optimization algorithms and performance evaluation indicators. Second, the analysis of 

the electricity price determinants is important for the accuracy of electricity price 

forecasting, but the existing review articles have less generalization of the electricity 

price determinants. Finally, although the publishing year of the article is important for 

the evolutionary process of the research topic, the appearance year of the keywords can 

provide a more detailed picture of the evolution process of the research topic. 

On the basis of those, the major contributions of this paper are as follows:  

(1) The paper presents a systematic review of the literature related to EPF and 

provides a comparative analysis of existing EPF models in four modules: data 

preprocessing module, price forecasting module, model optimization module, and 

performance evaluation module.  

(2) We systematically review the literature on the determinants of the electricity 



price and further explore the determinants of the electricity price most used in the 

existing literature and the impact of adding the determinants of the electricity price 

as input variables on the performance of the forecasting models. 

(3) The paper further discusses the evolution process, the model type, the research 

sample, and the prediction horizon of EPF through the bibliometric analysis to 

facilitate the in-depth study of EPF. 

The remainder of the paper is organized as follows. Section 2 introduces how to 

search and screen literature. Section 3 provides a detailed comparative analysis of 

existing EPF models in terms of data preprocessing module, price forecasting module, 

model optimization module and performance evaluation module, respectively. Section 

4 reviews the literature on the determinants of the electricity price and further explores 

the determinants of the electricity price most used in the existing literature and the 

impact of adding the determinants of the electricity price as input variables on the 

performance of the forecasting models. Section 5 provides a systematic summary of 

evolution process, model type, research sample, and prediction horizon of EPF. Finally, 

Section 6 is the main conclusions and future directions. 



Table 1  
The comparison of the review articles published in recent years and this review article. 

Author Review Objects Classification(s) Main contents and discussions 

Weron (2014) Electricity price forecasting  
Multi-agent models, Fundamental methods, Reduced-form models, Statistical 

approaches, Computational intelligence 

This review article aims to explain the complexity of available 

solutions, their strengths and weaknesses, and the opportunities and 

threats that predictive tools offer or may encounter.  

Dutta and Mitra 

(2017) 
Dynamic pricing of electricity  Pricing policies, consumers’ willingness to pay and market segmentation  

The paper studies literature on various topics related to the dynamic 

pricing of electricity. 

Gürtler and Paulsen 

(2018) 

Forecasting performance of time series 

models on electricity spot markets  

Simulation models, Heuristic methods, Computational or artificial 

intelligence, Statistical models 

This paper gives empirical literature on various statistics to describe the 

modeling of electricity spot prices and analyzes several model types 

and their modified forecasting performance.  

Nowotarski and 

Weron (2018) 
Probabilistic electricity price forecasting \ 

The paper presents guidelines for the rigorous use of methods, 

measures, and tests in probabilistic electricity price forecasting.  

Acaroğlu and 

García (2021) 

Electricity Market Price and Load 

Forecasting Based on Wind Energy  

1.Short-term, middle-term, and long-term price and load forecasting 

2. Statistical, artificial intelligence, and hybrid models 

The latest electricity price and load forecasting techniques and 

discusses their strengths and weaknesses. 

Lago et al. (2021) Day-ahead electricity prices forecasting Statistical methods, Deep learning methods, Hybrid methods 
A review of state-of-the-art algorithms, best practices, and an open-

access benchmark  

Lu et al. (2021) 

Energy price prediction using data-driven 

models (Natural Gas Price, Oil Price, 

Electricity Price, Carbon Price) 

The basic model, the data cleaning method and optimizer 

The paper reviews the literature in terms of basic models, data cleaning 

methods, and optimizers and discusses issues such as literature release 

time, model structure, prediction accuracy, prediction time domain, and 

input variables.  

The Present Review 

Paper 

Electricity price forecasting, 

Determinants of electricity price 

1.Data preprocessing module, price forecasting module, model optimization 

module, and performance evaluation module. 

2. Model classifications-based determinants of electricity price 

Systematic decadal reviews of the literature related to EPF and 

determinants of electricity price and a summary of the evolutionary 

process, model structure, study sample, and prediction horizon. 



2. Literature query 

The electricity price prediction has drawn the attention of numerous academics in 

recent years, and the quantity of relevant academic work has exploded. In this article, 

taking "Web of Science" (WOS) and Scopus, two of the most widely used databases at 

the moment in the field of bibliometrics (Nowotarski and Weron, 2018; Weron, 2014), 

as examples, literature searches were conducted based on the following criteria: (1) Key 

words: "Electricity price prediction" OR "Electricity price forecasting" OR "Electricity 

price forecast" OR "Predict electricity price" OR "Forecast electricity price". (2) 

Period: 2012-20221. (3) Article type: "Research Article". In Fig. 1, the paper plots the 

number of literatures on electricity price prediction in the WOS and Scopus databases 

from 2012-2022. The total number of documents searched in the WOS and Scopus 

databases are 1404 and 1084, including 1331 (94.8%) and 1040 (95.9%) research 

papers, respectively. 

Fig. 1. The numbers of WoS- indexed (left panel) and Scopus-indexed (right panel) 

EPF articles in the years 2012-2022. 

We cannot review every literature because some of them are not representative, and 

 
1 As of the date of completion, the literature search for this paper was conducted as of October 31, 2022. 



we only review valuable and particularly innovative literature. Following Lu et al. 

(2021), the paper reviews and screens the searched literature in the following steps： 

Step 1: Multiple database searches 

Although the quality of the literature in the WOS and Scopus databases can be 

guaranteed, this paper complements the searched literature by combining the search 

results of several databases, taking into account the delay in literature search. Relevant 

search information is as follows: 

Search Topic: Electricity Price Forecasting (OR Prediction) 

Databases: WOS, Scopus, Elsevier, IEEE IEL, Springer and Google Scholar 

Key Words: "Electricity price prediction" OR " Electricity price forecasting" OR 

"Electricity price forecast" OR "Predict electricity price" OR "Forecast electricity 

price" 

Language: English 

Period: 2012-2022 

Step 2: Review and Screening 

We carefully read the literature searched in Step 1 and find that some of the 

searched literatures are similar to the topic, but the core content is not specific to 

electricity price prediction. Therefore, we eliminate the literature with low relevance 

and ensure that the selected literature is directly related to electricity price prediction. 

Step 3: Extraction of literature information and re-screening 

We further read and extract valuable information from the screened literature in 

Step 2, such as Author, Market, Input Factor, Model, Conclusion and Journal. In 



addition, the screened literature is further screened to ensure that the selected literature 

fits the article topic. 

Finally, this paper selects 62 electricity price prediction articles for further 

bibliometric analysis. See Appendix A for the screened literature. 

3. The mainstream electricity price forecasting model 

The section presents a systematic review of the literature related to EPF and 

provides a comparative analysis of existing EPF models in four modules: data 

preprocessing module, price forecasting module, model optimization module, and 

performance evaluation module. This section is organized as follows：Section 3.1 

describes common data preprocessing methods for the current price segment and 

provides a comparative analysis；Section 3.2 is a summary of the methods commonly 

used in the mainstream prediction modules at this stage. Section 3.3 is devoted to the 

introduction of the model optimization module; Section 3.4 presents the commonly 

used metrics for evaluating model results in the existing literature. In Appendix A, we 

summarize the important information of the 62 papers screened, including authors, 

publication year, prediction market, prediction model, methods used in each module, 

and prediction horizon. 

3.1 Data Preprocessing Module 

The data preprocessing module is usually the first step of the EPF system and is 

responsible for the initial processing of the original data in order to make the forecasting 

model work better. The popular data pre-processing methods used in the existing 

literature can be categorized into two types: the single decomposition methods and the 



dual decomposition methods (Yang et al., 2019).  

3.1.1 The single decomposition methods 

The commonly used data preprocessing methods is the single decomposition 

method at present, such as wavelet transform (WT) and WT-based expansion methods, 

empirical mode decomposition (EMD) and EMD-based expansion methods, variational 

mode decomposition (VMD) and VMD-based expansion methods. In addition, the dual 

decomposition method is also popular. 

The WT method, as one of the most common methods in the data preprocessing 

module, not only inherits and develops the localization idea of the short-time Fourier 

transform, but also can carry out multi-scale densification of data signals and convert 

high-frequency data to low-frequency data, which is a very ideal decomposition tool 

for signal time-frequency analysis and processing. Singh et al. (2017), Chang et al. 

(2019), Qiao and Yang (2020) decomposed and processed the "Hourly", "Daily", and 

"Monthly" datasets using the WT method, respectively, and all obtained satisfactory 

results. In addition, the WT-based expansion methods are also widely used. Cheng et 

al. (2019) and Meng et al. (2022) preprocessed the data using the empirical wavelet 

transform (EWT). Compared with WT, EWT integrates the adaptive decomposition 

concept of EMD method on the basis of WT theory, which provides a new adaptive 

time-frequency analysis idea for signal processing. The discrete wavelet transform 

(DWT) is a discretization of the scales and translations of the fundamental wavelets, 

and can better process the discrete data than WT (Zhang et al., 2012; Ebrahimian et al., 

2018; Memarzadeh and Keynia, 2021). 



The EMD method is a new adaptive signal time-frequency processing method 

creatively proposed by Huang et al. in 1998, which is especially suitable for the analysis 

and processing of nonlinear non-stationary signals. The EMD method decomposes the 

signal based on the time-scale characteristics of the data itself, and has strong 

adaptiveness. In addition, the EMD method has obvious advantages in the 

decomposition of nonlinear and non-smooth signals due to the unconstrained basis 

functions (Qiu et al., 2017). However, the EMD method has drawbacks such as the end 

effect and the mode mixing, which will have negative effects on the accuracy of 

decomposition methods (Shao et al., 2021; Deng et al., 2022; Zhang et al., 2022). To 

improve these deficiencies, the variants of EMD have been continuously proposed. For 

example, the ensemble empirical mode decomposition (EEMD) can effectively solve 

the end effect and the mode mixing problems by using white noise to separate signals 

into a uniformly distributed reference scale (Shao et al., 2021). In addition, the bivariate 

empirical mode decomposition (BEMD) (He et al., 2015), the improved empirical mode 

decomposition (IEMD) (Zhang et al., 2018), the complete ensemble empirical mode 

decomposition (CEEMD) (Hu et al., 2022), the complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) (Wang et al., 2018), and the improved 

complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) 

(Yang et al., 2019) are also widely used. 

The VMD method is an adaptive, completely non-recursive approach to modal 

variation and signal processing. In addition, the VMD method is able to decompose 

multicomponent signals into multiple single-component signals at one time, which 



avoids the endpoint effect and the spurious component problem encountered in the 

iterative process (Dragomiretskiy and Zosso, 2014). The VMD method is widely used 

to preprocess the original data on electricity prices with good performance (Yang et al., 

2020; Zhang et al., 2020; Heydari et al., 2020). For the extended VMD-based approach, 

Wang et al. (2020) applied the improved variational mode decomposition (IVMD) to 

electricity price forecasting in Australia and Singapore, and the result showed that the 

IVMD compared to VMD can adaptively perform optimal decomposition of different 

electricity price data and achieve high forecasting performance. Moreover, the adaptive 

parameter-based variational mode decomposition (APVMD) was proposed to address 

the drawback that VMD requires to manually set parameters, and its advantage is that 

the decomposition number parameters can be determined automatically without 

extensive experiments (Yang, 2022). 

 3.1.2 The dual decomposition methods 

Although the forecasting model integrated with single decomposition methods can 

enhance the predictive ability to some extent in the stage of data preprocessing, there 

are still some possibilities to improve the predictive ability of the model because the 

single decomposition methods often cannot completely process the non-smoothness of 

random and irregular data series (Wang et al., 2017; Yang et al., 2019; Zhang et al., 

2022). Therefore, Yang et al. (2019) proposed a dual decomposition strategy to improve 

the data pre-processing capability, which combines the advantages of ICEEMDAN and 

VMD. The original data of the electricity price series are firstly decomposed by the 

ICEEMDAN method into the low-frequency signals and the high-frequency signals, 



and then the high-frequency signals in the series are processed by the VMD method. 

The result shows that the strategy can better extract the main features of the electricity 

price series and fully consider the high frequency signals compared with the single 

decomposition methods. 

Similarly, Deng et al. (2022) also chose the dual decomposition method. The 

difference is that the original series are first decomposed through the EEMD method 

into smoothed intrinsic mode functions (IMFs) and non-smoothed IMFs, and the 

smoothed decomposed IMFs are input into the prediction model while the non-

smoothed decomposed IMFs will be further smoothed by the VMD method. The dual 

decomposition method employs VMD to solve the problem that the non-smoothed 

IMFs generated during the EEMD decomposition process affect the electricity price 

prediction performance.  

In addition, Zhang et al. (2022) proposed a two-layer decomposition method, 

which uses the combination of VMD and EEMD methods to preprocess the electricity 

price series. VMD can decompose the complex signal into several regular IMFs, thus 

significantly improving the prediction accuracy. However, the residual term containing 

rich information is paid less attention in VMD, which can reduce the predictive 

performance of the model. Therefore, the method further decomposes the residual terms 

generated by VMD with the help of EEMD, which significantly improves the accuracy 

of the forecasting model.  

  



Table 2 
The comparison of main data preprocessing methods. 

Data Preprocessing 
Methods 

Advantages Disadvantages References 

WT 

1.WT improves the localization idea of short-time Fourier transform and 
overcomes the shortcomings such as the window size does not vary with 
frequency. 
2. WT can highlight the characteristics of certain aspects of the problem and 
has a better decomposition effect on abrupt and non-smooth signals. 

1.The selection of wavelet bases is difficult. 
2. Compared with other modal decomposition 
methods, WT lacks strong self-adaptability. 

Chang et al. (2019); 
Qiao and Yang 
(2020); Singh et al. 
(2017) 

VMD 
The method can effectively deal with nonlinear and non-smooth signals, and 
has the advantages of better accuracy of complex data decomposition and 
better resistance to noise interference. 

1. The method requires artificial selection of 
decomposition layers and penalty factors. 
2. The method has the limitation of boundary 
effect and sudden signal. 

Heydari et al. (2020); 
Wang et al. (2020); 
Yang and Schell 
(2022); Yang et al. 
(2019, 2020); Zhang 
et al. (2020) 

EMD 

1. EMD has obvious advantages in dealing with non-stationary and non-linear 
data, and is suitable for analyzing non-linear and non-stationary signal 
sequences with high signal-to-noise ratio. 
2. EMD has strong adaptivity because it is based on the local characteristics of 
the time scale of signal sequences. 

The EMD method is subject to the end effect and 
the mode conflation problem, which makes feature 
extraction, model training, and pattern recognition 
difficult. 

Huang et al. (1998); 
He et al. (2020); 
Qiu et al. (2017); 
Shao et al. (2021) 

The dual 
decomposition methods 

The dual decomposition method can integrate the advantages of different 
decomposition methods and make up for the shortcomings of each. 

The method is more computational and time 
consuming. 

Wang et al. (2017); 
Yang et al. (2019); 
Deng et al. (2022); 
Zhang et al. (2022) 



3.1.3 The comparison of main data preprocessing methods 

 It is crucial to choose the appropriate data preprocessing method in EPF research. 

Table 2 lists the advantages and disadvantages of the main data preprocessing methods 

mentioned above to facilitate researchers and practitioners to choose the appropriate 

method. 

3.2 Price Forecasting Module 

 The selection of forecasting models is the core key of the EPF research and directly 

affects the performance of the overall forecasting system. According to the existing 

literature, scholars have proposed many effective forecasting models, which can be 

mainly classified into the following three categories: the traditional econometric model 

(Girish, 2016; Gianfreda et al., 2020; Billé et al., 2022), the artificial intelligence model 

(Keles et al., 2016; Panapakidis and Dagoumas, 2016; Jasiński, 2020) and the hybrid 

model (Agrawal et al., 2019; Zhang et al., 2019; Zhang et al., 2020). Notably, the 

different forecasting models have their own strengths and weaknesses. 

3.2.1 The Traditional Econometric Model 

The traditional econometric model is an early and more developed class of 

modeling techniques in the study of time series forecasting. The traditional econometric 

model, with its simplified and fixed model, has good fitting predictive power for 

electricity price series that meet its assumptions, which is also one of the common tools 

for electricity price volatility forecasting, risk control, and asset valuation. From the 

results of literature screened (see Appendix A), the combined ARMA-type model and 

GARCH-type model are widely used in the study of EPF (Liu and Shi, 2013; Girish, 



2016; Loi and Ng, 2018). For example, Bille et al. (2022) used ARFIMAX-GARCH-

type models in their study to forecast electricity prices in Italy, and the result shows that 

the model can introduce exogenous factors to improve the accuracy of the model 

forecasts. The advantage of the ARMA-GARCH-type model is that the combination of 

the two models can fully exploit each other's strengths and compensate for each other's 

weaknesses. Among them, the ARMA-type model is a common method for solving 

linear time series problems, especially showing good predictive performance for 

smooth series (Yang et al., 2017). In addition, compared with the ARMA-type model, 

the GARCH-type model can better characterize the volatility of the electricity price 

series and can capture the heteroskedasticity phenomenon of electricity prices more 

effectively (Girish, 2016). 

It is clear that the traditional econometric model has good forecasting accuracy for 

the time series data that meet the assumptions. However, the assumption is contrary to 

the actual situation in which the vast majority of data are characterized by non-

stationarity, non-linearity and high complexity. As a result, the traditional econometric 

model cannot accurately handle the nonlinear part of the electricity price series and is 

easily prone to the loss of local transient information, thus failing to obtain satisfactory 

prediction results. 

3.2.2 The Artificial Intelligence Model 

The artificial intelligence model has significant advantages over the traditional 

econometric model in predicting non-stationary, non-linear and highly complex time 

series. The artificial intelligence model can capture the hidden nonlinear mapping 



relationship by training and learning from historical data of electricity price series, and 

can combine the electricity price characteristics with the complex and variable external 

environment to minimize the prediction error, which has strong generalization ability 

and robustness, so it is widely used in EPF research. 

The artificial neural network (ANN) model, as the most popular model for EPF, 

has a powerful ability to portray and model the non-stationary and non-linear 

characteristics of time series (Panapakidis and Dagoumas, 2016). Keles et al. (2016) 

predicted the EPEX market electricity price based on the ANN model and the result 

shows that the ANN model achieves good results and the prediction error is much lower 

than the ARIMA results. Jasinski (2020) proposed a price forecasting method based on 

the ANN model to forecast electricity price in Poland, and the method can allow 

reducing the symmetric mean absolute percentage error (SMAPE) of the forecasting 

results by up to 15.3%. In addition, the ANN-type models have been widely used in 

EPF studies, including the convolutional neural network (CNN) (Deng et al., 2021; 

Deng et al., 2022), the deep neural networks (DNN) (Lago et al., 2018; Shi et al., 2021), 

the evolutionary neural networks (ENN) (Yang et al., 2019), the bidirectional recurrent 

neural networks (BRNN) (Ghayekhloo et al., 2019), the general regression neural 

network (GRNN) (Heydari et al., 2020), etc. 

The long short-term memory (LSTM) model, as an excellent variant of the 

recurrent neural networks (RNN) model, is also widely used in the research of EPF 

(Qiao and Yang, 2020; Iwabuchi et al., 2022; Meng et al., 2022; Xu et al., 2022). Chang 

et al. (2019), Memarzadeh and Keynia (2021), and Iwabuchi et al. (2022) applied the 



LSTM method to the electricity market in different regions for price forecasting, 

respectively, which showed better forecasting results. Meng et al. (2022) proposed an 

attention mechanism (AM) based LSTM hybrid model as a forecasting model in the 

price forecasting stage. Shao et al. (2021) combined the max-dependency and min-

redundancy (MRMR) with the bidirectional long short-term memory (BiLSTM) for the 

purpose of improving the efficiency of short-term EPF. Yang and Schell (2021) used 

the gated recurrent unit (GRU) and the transfer learning (TL) to forecast real-time 

electricity prices for wind farms in New York. In addition, the LSTM-based hybrid 

model is being further refined as the research progresses (Peng et al., 2018; Qiao and 

Yang, 2020; Xu et al., 2022). 

The support vector machine (SVM) based model and the extreme learning machine 

(ELM) based model are two other common artificial intelligence models for electricity 

price prediction (Agrawal et al., 2019; Wang et al., 2020; Yang et al., 2022; Yang et al., 

2020; Zhang et al., 2022). Among them, the SVM is a novel small-sample learning 

method with a solid theoretical foundation. Ifran et al. (2022) used SVM-AO to forecast 

the week ahead electricity prices in the England. Yan and Chowdhury (2014) proposed 

a multiple SVM-based medium-term forecasting model for electricity prices. The ELM 

has more advantages in the aspects of learning rate and generalization ability compared 

with SVM (Huang et al., 2006). In the study of EPF, Shrivastava and Panigrahi (2014) 

combined ELM with wavelet techniques to develop a hybrid model WELM to improve 

forecasting accuracy and reliability. Wang et al. (2020) used the outlier robust extreme 

learning machine (ORELM) model as a forecasting engine, which retains the 



advantages of the ELM model while effectively handling the outliers in the electricity 

price data. 

3.2.3 The Hybrid Model 

The traditional econometric model and the artificial intelligence model have their 

own advantages in the EPF researches. Some scholars have fully combined their 

advantages and proposed corresponding price prediction models in their studies. For 

example, Zhang et al. (2020) predicted the regular trend of electricity price series with 

the help of the seasonal autoregressive integrated moving average (SARIMA) model 

and captured the irregular trend of electricity price series with the help of the self-

adaptive particle swarm optimization (SAPSO) optimized the deep belief network 

(DBM) model. Voronin et al. (2014) used the ARMA-type model to capture the linear 

relationship between the normal interval electricity price series and the explanatory 

variables, the GARCH model to reveal the heteroskedasticity characteristics of the 

residuals, and the neural network to describe the nonlinear effects of the explanatory 

variables on electricity prices. Similarly, Babu and Reddy (2014) and Zhang et al. (2012) 

used the traditional econometric model to predict the linear part of the data series, while 

the nonlinear part was predicted using the artificial intelligence model. 

The combination of the artificial intelligence model with other models is also often 

used in the EPF researches. Agrawal et al. (2019) proposed a new two-stage integrated 

model for short-term electricity prices. Firstly, the extreme gradient boosting (EGB) 

takes into account the stochastic fluctuations in electricity costs in the dynamic market, 

while the relevance vector machine (RVM) provides sparse solutions and probabilistic 



predictions. Finally, the elastic net regression was used to further stack the results of 

these models in order to determine the final electricity price prediction. The result 

shows that the hybrid model has better accuracy and lower computational cost than the 

commonly used ANN-based models. 

In addition, many scholars have made improvements to the feature selection 

methods, function forms, parameter settings, and running times of existing forecasting 

methods around the own data characteristics of electricity price samples, such as non-

stationarity, seasonality, and volatility, and combined with the influence of external 

factors on electricity prices, in order to improve the forecasting performance of the 

models (Kostrzewski and Kostrzewska, 2019; Zhang et al., 2019; He et al., 2020). For 

example, Zhang et al. (2019) introduced a hybrid feature selection method in the 

forecasting strategy and combined three methods, the cuckoo search algorithm, support 

vector machine and singular spectrum, to propose a hybrid forecasting framework for 

short-term EPF. The results show that the method does outperform existing benchmark 

models and is a reliable tool for short-term EPF. 

 3.3 Model Optimization Module 

 The model optimization module in the forecasting model can optimize the 

parameters of the original model and solve the problems of over-fitting, parameter 

sensitivity and local extremes in the forecasting process, so that the price forecasting 

model can obtain better forecasting performance. 

In the screened literature, the particle swarm optimization algorithm (PSO) is the 

most commonly used optimization algorithm. The PSO algorithm is an evolutionary 



computational technique proposed by Eberhart and Kennedy (Eberhart and Kennedy, 

1995; Kennedy and Eberhart, 1995), which originated from the idea of studying the 

foraging behavior of bird flocks. The optimization algorithm has the advantages of fast 

convergence, few parameters, and simple implementation, which is widely used in the 

research of electricity price prediction (Zhang et al., 2012; Ebrahimian et al., 2018; 

Zhang et al., 2020). Lei and Feng (2012) and Zhang et al. (2012) used PSO to optimize 

the model for accurate parameters identification to improve the prediction performance 

of the model. In addition, Osório et al. (2019) used the hybrid PSO algorithm to 

optimize the prediction model to make the weight parameters have adaptive properties. 

Similarly, Yang et al. (2017) adjusted the penalty factor and kernel parameters of the 

kernel based extreme learning machine (KELM) to achieve stable and more efficient 

regression performance with the help of the SAPSO algorithm. 

In addition to the PSO optimization algorithm, Meng et al. (2022) used the 

crisscross optimization algorithm (CSO) to retrain the parameters of the fully connected 

layer to further improve the generalization ability of the forecasting model. Yang et al. 

(2022) selected the chaotic sine cosine algorithm (CSCA) proposed by Wang et al. 

(2020) to optimize the price forecasting model. Compared with the traditional sine 

cosine algorithm, the CSCA has the advantage of faster convergence and less likely to 

fall into local optimum (Wang et al., 2020). To adapt to the conditions of multi-

objective optimization, Yang et al. (2020) used the improved multi-objective sine cosine 

algorithm (IMOSCA) in the model optimization stage, and Yang et al. (2019) used the 

multi-objective grey wolf optimizer (MOGWO) to optimize the price prediction model. 



The results show that both IMOSCA and MOGWO enable the model to forecast each 

component with better accuracy and stability. In addition, the Adam algorithm (Kingma 

and Ba, 2015) is often used in the optimization module of EPF for its efficient 

computational performance and low memory consumption (Chang et al., 2019; Deng 

et al., 2021). 

3.4 Performance Evaluation Module 

 The selection of the evaluation indicator is critical to quantifying the performance 

of the price forecasting model. However, it is unfortunately that the extensive 

benchmark of performance evaluation has not been identified in the existing literature 

(Tian et al., 2018). The section presents an econometric analysis of the performance 

evaluation indicator of the 62 screened literature. Fig. 2 shows the frequency of various 

performance evaluation indicators in the screened literature, and Table 3 shows the rules 

of the top 10 evaluation indicators used in the literature.  

From Fig. 2, it can be seen that the frequency of the mean absolute percentage error 

(MAPE), the mean absolute error (MAE) and the root mean square error (RMSE) is 

much higher than other metrics. As one of the most popular metrics for evaluating 

predictive performance, MAPE does not have a specific magnitude and allows for 

parameter comparisons across scenarios. When the value of MAPE is 0%, it means that 

the model is a perfect model, and when it is greater than 100 %, it means that the model 

is an inferior model. As shown in Table 3, MAE can be regarded as the numerator of 

MAPE, and its value indicates how well the predicted value matches the true value. 

SMAPE is a refined version of MAPE, which makes up for the asymmetry of MAPE. 



The value of SMAPE can be taken as a negative number, which makes the evaluation 

index more intuitive. Compared to MAPE and MAE, RMSE is more intuitive in 

magnitude and sensitive to extreme values. The RMSE value represents the average 

difference between the predicted result and the true value.  

The above four indicators are mainly used to test the prediction accuracy of the 

model. In addition, the index of agreement (IA) can be used to measure the prediction 

ability of the model; Theil's inequality coefficient (TIC) can objectively evaluate the 

generalization ability of the model; Theil's U1 (U1) measures the prediction accuracy of 

the model, and Theil's U2 (U2) measures the prediction quality of the model. 

Fig. 2. The frequency of various performance evaluation indicators. 

  



Table 3  
The performance indicator rules. 
Indicator Definition Equation 
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Notes: ˆi in, y , y , y denote the number of samples, the i-th sample real value, the i-th sample 

predicted value and the sample mean value, respectively. 

4. Electricity price forecasting with determinants of electricity price 

The accurate electricity price forecasting is a widespread concern for the market 

participant. However, with the increasing penetration of renewable energy in the 

electricity generation industry, the volatile renewable energy generation undoubtedly 

has a huge impact on the electricity price fluctuation, which also brings new challenges 

to EPF. To address this challenge, many scholars would like to improve the forecasting 

performance of the model by including factors affecting electricity prices as input 

variables in the EPF model, rather than relying simply on the historical electricity price 

data for forecasting (Gabrielli et al., 2022; Meng et al., 2022; Tschora et al., 2022). 

Therefore, the section aims to review the literature on the determinants of electricity 

price (Section 4.1) and further explore the impact of the determinants of electricity price 

on the performance of forecasting models (Section 4.2). 

4.1 Determinants of electricity price 

This section summarizes and analyzes the literature on the topic of "Determinants 

of Electricity Price" using the literature searching and screening method mentioned in 

Section 2. And then, we classify the determinants of the electricity price in the screened 

literature, as shown in Table 4. From Table 4, it can be found that the determinants of 

electricity price fluctuations in the screened literature fall into three main categories, 

which are the supply and demand of electricity, the fossil energy prices and other factors 

such as climate, import and export, carbon price, etc. 

The electricity supply and demand affect the electricity price mainly based on the 



relationship between supply and demand, and especially the volatile renewable energy 

generation has a huge impact on electricity price fluctuations. Peura and Bunn (2021) 

conducted a detailed empirical analysis of the relationship between renewable energy 

generation and electricity prices using a game-theoretic market model, and the result 

shows that the instability of renewable generation can not only affect the spot market 

price of electricity through the merit-order effect, but also have an impact on the 

forward market price. Maciejowska (2021) analyzed the impact of two renewable 

energy sources (wind and solar) on the spot price of electricity in Germany. The result 

shows that the specifical effect of wind power generation and solar power generation 

on the electricity price fluctuations depends on the electricity demand of customers. 

Similarly, Da Silva and Cerqueira (2017), Mosquera-López et al. (2017), Mosquera-

López and Nursimulu (2019) and Wang et al. (2022) also highlight the influence of 

electricity demand on electricity price fluctuations in their studies. 

The most stable form of power generation is the fossil energy generation at this 

stage, so the fossil energy price fluctuation will also affect the electricity price 

fluctuation accordingly (Boersen and Scholtens, 2014; Moreno et al., 2014; Bublitz et 

al., 2017; Peña and Rodríguez, 2019). However, there are different viewpoints on the 

impact of fossil energy on the electricity price. For example, Bublitz et al. (2017) found 

that the impact of carbon and coal prices on German electricity prices has been twice 

as high as the renewable expansion between 2011 and 2015. Peña and Rodríguez (2019) 

considered the impact of renewable energy and other fundamental determinants on 

electricity prices in ten EU countries from 2008 to 2016. The result shows that the 



increase in renewable energy production reduces wholesale electricity prices in all 

countries, but the explanatory power of other factors such as fuel prices, meteorological 

conditions and the net balance of imports and exports varies between countries. 

Notably, the carbon price is gradually paid more and more attention by scholars as 

a special factor influencing electricity prices with the focus on climate issues and carbon 

emissions (Boersen and Scholtens, 2014; Bublitz et al., 2017; Mosquera-López et al., 

2017; Mosquera-López and Nursimulu, 2019; Wang et al., 2022). In addition, the 

weather factor is also the focus of scholars' attention (Mosquera-López et al., 2017; 

Peña and Rodríguez, 2019). For instance, Mosquera-López et al. (2017) used quantile 

regressions to assess the impact of weather factors on electricity prices and found that 

wind speed and temperature are the main drivers, especially in the tails of the price 

distribution. In summary, the existing research has well demonstrated that the electricity 

price fluctuation is not only influenced by one factor, but is the combined result of 

multiple factors. Based on this, how to select the external factors to improve the 

forecasting model accuracy will become a critical step in EPF research (Gabrielli et al., 

2022), which also brings a great challenge to future EPF research.



Table 4  
The determinants of the electricity price. 

Reference 
Renewable Energy 

Generation 

Other 

Generation 

Electricity 

Demand 

Electricity 

Load 
Weather 

Electricity 

Import/Export 

Fossil Fuels 

Price 

Carbon 

Price 

Other 

Factor(s) 

Wang et al. (2022) √ √ √   √ √ √ √ 

Peura and Bunn (2021) √         

Doering et al. (2021) √ √  √   √  √ 

Maciejowska et al. (2021) √         

Pereira et al. (2019)         √ 

Peña and Rodríguez (2019) √    √ √ √   

Mosquera-López and 

Nursimulu (2019) 
√  √    √ √  

Li et al. (2019)         √ 

Mosquera-López et al. (2017) √  √  √  √ √ √ 

Bublitz et al. (2017) √   √   √ √  

Da Silva and Cerqueira (2017) √  √    √  √ 

Paschen (2016) √         

Sapio and Spagnolo (2016)  √       √ 

Moreno et al. (2014)       √   

Boersen and Scholtens (2014)       √ √  

Papler and Bojnec (2012)         √ 

Moreno et al. (2012) √        √ 



4.2 Electricity price forecasting model with determinants of electricity price 

From the existing literature, there is a common agreement that the electricity price 

fluctuations are determined by many factors. Some scholars believe that adding the 

determinants of electricity price as input variables in the EPF model can improve the 

predictive performance of the model (Gabrielli et al., 2022; Meng et al., 2022; Tschora 

et al., 2022). Based on this, we divide the screened literature into two categories, which 

are the EPF without determinants of electricity price and the EPF with determinants of 

electricity price. As shown in Table 5, the EPF with determinants of electricity price 

take into account the data of electricity price determinants besides the historical 

electricity price data, such as the renewable energy generation, the electricity demand, 

the fossil energy prices, weather, etc.  

The electricity price forecasting model with determinants of electricity price 

showed better accuracy in price forecasting and this opinion is strongly supported by 

the present literature (Wang et al., 2022; Meng et al., 2022; Tschora et al., 2022). 

Gianfreda et al. (2020) compared the accuracy of forecasting models with and without 

determinants of electricity price with the help of the historical data for four countries: 

Germany, Denmark, Italy and Spain. The result shows that the prediction accuracy of 

the model with determinants of electricity price (electricity demand, renewable energy 

generation and fossil energy prices) is significantly superior for both point and interval 

forecasts. Meng et al. (2022) considered the influence of renewable energy on EPF in 

their study and introduced wind power generation, solar power generation and historical 



electricity price series as input features into the forecasting model. The result shows 

that the proposed model with determinants of electricity price has a greater advantage 

in electricity markets with high penetration of renewable energy. Billé et al. (2022) 

considered the fundamental drivers such as electricity demand, renewable energy 

generation, fossil energy prices, and electricity imports, and included these exogenous 

regressors in the conditional mean and variance equations. The result shows that the 

proposed model with determinants of electricity price can obtain a higher forecasting 

performance in terms of the point forecasting and the interval forecasting. 

The reasonable choice of variables is the key to ensure the accuracy of the 

forecasting model. However, the interdependence of variables may appear if all the 

electricity price determinants are considered because there are many determinants of 

electricity prices. To address this issue, Gabrielli et al. (2022) conducted a sensitivity 

study on a total of 13 electricity price determinants in five categories, including 

electricity demand, electricity generation, electricity imports, energy price, and carbon 

price. The empirical result shows that using 2-4 determinants of electricity price as input 

variables will allow the model to achieve the best predictive performance rather than 

more electricity price determinants.  

As shown in Figure 3, the frequency ranking of the input factor is approximately 

the identical to that of the determinants of electricity price fluctuations. The renewable 

energy generation, the electricity demand, and the fossil energy prices are used most 

frequently among all the input factors, except for the historical electricity price data. In 



addition, the weather factor is also widely used as an important input variable that 

cannot be ignored. It is interesting to find that carbon price, an important factor 

influencing electricity price fluctuations, is rarely mentioned in studies on electricity 

price forecasting. 

Fig. 3. The frequency of determinants of electricity price used. 



Table 5  
The input factors of the electricity price forecasting model. 

Reference 
Renewable Energy 

Generation 

Other 

Generation 

Electricity 

Demand 

Electricity 

Load 
Weather 

Calendar 

Data 

Fossil Fuels 

Price 

Carbon 

Price 

Other 

Factor(s) 

Meng et al. (2022) √         

Tschora et al. (2022)         √ 

Gabrielli et al. (2022) √ √ √    √ √ √ 

Bille et al. (2022) √ √ √    √   

Wang et al. (2022) √ √ √    √ √ √ 

Jasinski (2020) √    √     

Gianfreda et al. (2020) √  √    √   

Zhang et al. (2019)     √     

Vu et al. (2019) √ √ √       

Loi and Ng (2018)       √   

Lago et al. (2018a) √ √  √ √  √   

Lago et al. (2018b) √ √   √  √   

Neupane et al. (2017)     √ √    

Keles et al. (2016) √  √ √ √ √ √   

Cerjan et al. (2014) √  √       

Yan and Chowdhury (2014)   √    √  √ 

Voronin et al. (2014)   √  √    √ 



5. Discussion 

5.1 The Evolution Process of EPF 

To further explore the evolution process of EPF, we used VOSviewer Version 

1.6.11 to conduct a bibliometric analysis and visualization of the keywords for the 

screened 62 articles, as shown in Fig. 4 and Fig. 5. 

Fig. 4. The network visualization of the keyword co-occurrence. 

The network visualization of the keyword co-occurrence is drawn by the clustering 

method, as shown in Fig. 4. The same color represents the same category2, and the sizes 

of the nodes represent the frequency of the keyword (i.e., the Degree Centrality). The 

 
2 In this paper, we preprocess the data by removing keywords with few occurrences, combining synonyms and removing outliers, 
and divide the keywords into 5 categories for cluster analysis: the forecasting methods and modules (Red), the specific forecasting 
models (Purple), the data preprocessing (Green), the forecasting objects (Blue), and the optimization algorithms (Yellow). 



overlay visualization of the keyword co-occurrence is plotted based on the average year 

taking the score value, as shown in Fig. 5. The darker the color means the older the 

average year of the keyword mentioned. 

Fig. 5. The overlay visualization of the keyword co-occurrence. 

From Fig. 4 and Fig. 5, it can be found that: (1) Most of scholars have conducted 

more researches on data preprocessing module, price forecasting module, and model 

optimization module. Furthermore, scholars tend to innovate more in the price 

forecasting module over time, but less in the evaluation of model performance. It may 

be due to the fact that the existing model evaluation metrics are fixed and authoritative, 

and it is difficult to make a breakthrough in this area. Most of the existing researches 

on the innovation of evaluation indicators are weighted summation of evaluation 



indicators, and less of them propose new model evaluation indicators. (2) Compared to 

the traditional econometric models, the artificial intelligence models and the hybrid 

models are more widely used in electricity price forecasting in the last decade, and most 

of the studies focus on the period 2017-2022. The neural network is the most widely 

used Among price prediction models. In addition, the deep learning, the machine 

learning, and the ensemble learning are getting more and more attention from the 

researchers as time goes by. (3) The determinants of electricity price such as the 

renewable energy, the electricity demand and the electricity load are increasingly 

mentioned as research progresses, which indicates that the determinants of electricity 

price will play an more important role in electricity price forecasting. 

5.2 Model Structure 

Following Lu et al. (2021), we also divide the forecasting models into four 

categories according to the structure: (1) Data Pro-processing + Price Forecasting + 

Model Optimization + Performance evaluation (P-F-O-E); (2) Data Pro-processing + 

Price Forecasting + Performance evaluation (P-F-E); (3) Price Forecasting +Model 

Optimization + Performance evaluation (F-O-E); (4) Price Forecasting + Performance 

evaluation (F-E). It is interesting to find that all structures of the model include the 

performance evaluation, which also indicates that the performance evaluation is a 

necessary module to check the accuracy of the model, as well as plays an important role 

in EPF. 

 



Fig. 6. The percentage of models with various architectures. 

Fig. 7. The use trend of models with various architectures. 

As shown in Fig. 6, the P-F-O-E-type models are the most used among all models 

for EPF, while the F-O-E-type models account for the smallest share. This indicates that 



data preprocessing and model optimization play increasingly important roles in EPF. 

As can be shown in Fig. 7, the use of the P-F-O-E-type model shows a rising trend and 

develops rapidly after 2017. The advantage of this model is that it cannot only make 

the model input variables more suitable for the prediction with the help of data 

preprocessing methods, but also optimize the parameters of the model using 

optimization algorithms, thus making the forecasting results more accurate. In addition, 

it can be observed from the figures that scholars prefer to use data preprocessing alone 

rather than using model optimization algorithms alone. Notably, the F-E type models 

are also widely used, but the proportion of the model is decreasing as the research 

progresses. The F-E type models do not use data preprocessing or model optimization 

methods, and rely only on their own proposed new forecasting models to forecast 

electricity prices, which requires the forecasting models to have strong adaptability and 

data processing capabilities. 

5.3 Research Sample and Prediction Horizon 

The selection of research sample plays a significant role in EPF. From Fig. 8, it 

can be seen that the sample data selected for the existing researches are mainly from 

Europe, Australia, and America, where the electricity markets have developed earlier 

and the data are easily accessible. As shown in Fig. 9, the Spanish electricity market is 

the most studied among European countries, which is closely related to the advantages 

of the Spanish electricity market itself. The renewable energy generation in Spain is 

well developed and the country has the most flexible grid in the world, which can 

provide a superior source of data for EPF and a solid basis for testing the accuracy of 



the model. The Australian electricity market is one of the most liberal electricity 

markets in the world, and the Australian regions most commonly used in the EPF 

studies are New South Wales and Queensland. PJM is the first electricity market 

established in America, and its real-time electricity prices are updated every 5 minutes. 

Therefore, it is widely used as a research sample for EPF. 

The prediction horizon is often made based on policy or management needs. In 

this paper, we define "5-Min," "30-Min," and "Hourly" as ultra-short-term, "Daily" as 

short-term, and "Monthly" and "Annual" as medium- and long-term (Lu et al., 2021). 

In particular, the ultra-short-term and short-term electricity price predictions are more 

focused on providing a basis for management, while the medium- and long-term 

electricity price predictions are used for the guidance of policy. As seen in Fig. 10, 

"Hourly" has the highest percentage, followed by "30-Min" and "Daily". It shows that 

most of the existing researches focus on ultra-short-term and short-term real-time EPF, 

and fewer researches are conducted for medium- and long-term EPF. 

 



Fig. 8. The regional distribution of the research sample. 

Fig. 9. The distribution of the research sample in European. 

 



Fig. 10. The percentage of the prediction horizons. 

6. Conclusions and future directions 

6.1 Conclusions 

This study systematically reviews and compares the screened 62 literature of EPF 

during the period 2012-2022. The contributions of this paper to the existing literature 

are as follows. First, this paper provides a detailed classification and comparison of the 

data preprocessing methods, price forecasting methods, model optimization methods, 

and performance evaluation indicators from the perspective of model structure. Second, 

this paper reviews the literature on the determinants of the electricity price and further 

explores the extent to which external variables affect the performance of the EPF model. 

Finally, this paper presents an econometric analysis of the evolution process, model 

structure, research sample, and prediction horizon of EPF with the help of bibliometric 

methods. Based on the above efforts, this paper summarizes the following: 

(1) The number of researches on EPF shows an upward trend in general. The P-F-

O-E-type model is the most popular among the four structural models and has 



a significant growth in the number of applications after 2017. In addition, 

scholars prefer to use data preprocessing methods alone compared to using 

model optimization algorithms alone. However, both data preprocessing 

methods and model optimization algorithms can be useful to improve the price 

forecasting model performance. 

(2) In the data preprocessing module, the single decomposition methods are still 

widely used, such as WT, VMD, and EMD. Moreover, the dual decomposition 

methods have been proven to have good data preprocessing capabilities, but 

less research has been done on this. In the price forecasting module, the 

artificial intelligence is widely used and are mainly based on neural networks. 

As research advances, deep learning, integrated learning and machine learning 

are also attracting more attention. In the model optimization module, most of 

the existing studies are based on the heuristic algorithms to optimize the model 

parameters and thus improve the performance of the prediction models. In the 

result evaluation module, scholars prefer to use MAPE, MAE and RMSE to 

evaluate the prediction accuracy of models, but there is still no standardized 

evaluation system. 

(3) Considering determinants of electricity price in EPF can significantly improve 

the accuracy of the price forecasting model. As the penetration of renewable 

energy in the power generation industry increases, scholars have become more 

concerned about the impact of renewable energy on the electricity price 

volatility. Besides, electricity generation, electricity demand and weather are 



also determinants of the electricity price fluctuations. However, how many and 

which determinants of electricity price should be considered in EPF are still 

worth discussing. 

(4) In terms of the research sample, the electricity markets in Europe, Australia 

and America are more frequently used. In terms of the prediction horizon, 

scholars prefer to forecast the short-term electricity price, and the "Hourly" 

type data are most widely used. However, the medium- and long-term EPF are 

more beneficial for policy decisions and risk aversion than short-term EPF. 

6.2 Future research directions 

Based on the above conclusions, this paper summarizes the future development 

direction of EPF as follows: 

(1) In the data preprocessing module, the dual decomposition method has a strong 

data processing capability and can make up for the shortcomings of the single 

decomposition method. Therefore, the dual decomposition method should be 

explored more to improve the model prediction performance in the future. In 

the price forecasting module, the existing research focuses on neural networks, 

however, deep learning, integrated learning and machine learning also have 

powerful forecasting capabilities and should be developed more in the future. 

In the model optimization module, besides focusing on the improvement of 

model prediction accuracy, multi-objective optimization and the setting of 

objective function should be considered more. In the performance evaluation 

module, the extensive benchmark of performance evaluation should be further 



explored in the future. 

(2) Scholars have realized the importance of determinants of electricity price for 

EPF and have added some determinants of electricity price as input variables 

in EPF modeling. There are many determinants of electricity price fluctuations. 

Considering all determinants would not only make data collection difficult, but 

also lead to a redundancy of effects. In addition, considering fewer external 

factors may miss key variables. Therefore, how many and which external 

factors should be discussed further in future EPF research. 

(3) In terms of the research target, most of the existing researches focus on the 

electricity price point forecasting. However, compared with point forecasts, 

the interval forecasts and the density forecasts are more responsive to the range 

and uncertainty of electricity price changes and provide more complete and 

rich information, which can provide more systematic decision support to 

government departments and market participants for asset allocation and risk 

management, etc. Therefore, the interval forecasts and the density forecasts 

should be paid more attention in the future. 

 

  



Appendix A. The important information of the 62 papers screened 

Author (Year) Market Model Data  
Preprocessing 

Price 
Forecasting 

Model 
Optimization 

Performance 
Evaluation 

Prediction 
Horizon(s) 

Meng et al. (2022) Danish EWT-AM-
LSTM-CSO EWT AM-LSTM CSO MAE, RMSE Hourly 

Tschora et al. (2022) France, Germany, 
Belgium  ML \ ML \ RMAE, 

SMAPE, Daily 

Gabrielli et al. (2022) 
United Kingdom, 
Germany, Sweden, 
Denmark 

GPR \ GPR \ MAPE Annual, Monthly, 
Hourly 

Yang et al. (2022) Australian, Singapore APVMD-
CSCA-KELM APVMD KELM CSCA MAE, RMSE, 

MAPE, TIC, IA  Hourly 

Deng et al. (2022) Ontario EEMD-VMD-
TCMS-CNN EEMD+VMD CNN TCMS MSE, MAE, 

RMSE, R2  Hourly 

Ifran et al. (2022) New England SVM-AO, 
DenseNet-AO 

RFE, XGboost, 
RF SVM, DenseNet AO MAPE, RMSE, 

MSE, MAE Daily 

Bille et al. (2022) Italy ARFIMA-
GARCH \ ARFIMA-

GARCH \ RMSE, CRPS Hourly 

Zhang et al. (2022) Australian, Spanish VMD-EEMD-
DE-ELM VMD+EEMD ELM DE RMSE, MAPE, 

MAE 30-Min 

Iwabuchi et al. (2022) Australian WT-LSTM WT LSTM \ MAPE Hourly 

Xu et al. (2022) Australian LSTM-LUBE-
MGWA \ LSTM-LUBE MGWA PICP, PIAW Hourly 

Deng et al. (2021) Ontario 
Multi-Scale 
Dilated Deep 
CNN  

\ 
Multi-Scale 
Dilated Deep 
CNN  

Adam \ 5-Min 

Memarzadeh and 
Keynia (2021) PJM, Spanish, Iran DWT-LSTM DWT LSTM \ MAPE, RMSE, 

MAE, VAR \ 

Yang and Schell 
(2021) NYISO GRU-TL \ GRU-TL \ MAPE, MAE 5-Min 

Shi et al. (2021) France TSEP \ ANN, DNN \ MAE, MAPE Daily 

Shao et al. (2021) Australian, PJM 
EEMD-
BiLSTM-
MRMR 

EEMD BiLSTM-
MRMR \ RMSE, MAPE Daily 

Jasinski (2020) Poland ANNs \ ANN \ DM Hourly 

Qiao and Yang (2020) US WT-SAE-
LSTM WT SAE-LSTM \ 

RMSPE, MAE, 
MAPE, RMSE, 
Theil's U1, 
Theil's U2, R2  

Monthly 

Yang et al. (2020) Australian 
AVMD-
IMOSCA-
RELM 

VMD RELM IMOSCA 
MAE, RMSE, 
MAPE, TIC, 
PICP, FIAW, 
AWD 

30-Min 

Zhang et al. (2020) Australian, PJM, 
Spanish 

VMD-SAPSO-
DBM-SARIMA VMD 

Regular: 
SARIMA 
Inregular: DBN 

SAPSO RMSE, MAPE, 
MAE 30-Min 

He et al. (2020) Singapore DCNN–LDLFs DNDT DCNN–LDLFs \ MAPE, MAE, 
RMSE 30-Min 

Gianfreda et al. (2020) Germany, Denmark, 
Italy, Spain AR(X), VAR(X) \ AR(X), VAR(X) \ RMSE, CRPS Hourly 

Heydari et al. (2020) PJM, Spanish, Italy VMD-GRNN-
GSA VMD GRNN GSA RMSE, MAE, 

MAPE, R, TIC Hourly 



Wang et al. (2020) Australian, Singapore IVMD-CSCA-
PSR-ORELM IVMD ORELM CSCA MAE, RMSE, 

MAPE, IA, TIC 30-Min 

Yang et al. (2019) Australian 
ICEEMDAN-
VMD-
MOGWO-ENN 

ICEEMDAN+VM
D ENN MOGWO 

AE, MAE, 
MAPE, RMSE, 
Theil's U1, 
Theil's U2 

30-Min 

Zhang et al. (2019) Australian 
HFS-CSS-r, 
HFS-CSS-ρ,  
HFS-CSS–τ 

SSA SVM CSA IMAPE, 
SMAPE 30-Min 

Agrawal et al. (2019) New England RVM-EGB \ RVM EGB MAE, MAPE, 
RMSE Hourly 

Ghayekhloo et al. 
(2019) NYISO EGT-Cluster-

BRNN EGT-Cluster BRNN \ MSE, MAPE, 
RMSE Hourly 

Cheng et al. (2019) EU EWT-BiLSTM-
SVR-BO EWT 

Low freq.: SVR  
High freq.: 
BiLSTM 

BO MAE, MAPE, 
RMSE Hourly 

Chang et al. (2019) Australian, France WT-Adam-
LSTM WT LSTM Adam 

MSE, RMSE, 
MAE, MAPE, 
Theil's U1, 
Theil's U2 

Daily 

Vu et al. (2019) Australian ARTV, SVM, 
KR WT ARTV, SVM, 

KR \ MAE, MAPE, 
RMSE 30-Min 

Windler et al. (2019) Germany, Austria WNN, TBATS, 
DFNN \ WNN, TBATS, 

DFNN \ SMAPE, RMSE Hourly 

Kostrzewski and 
Kostrzewska (2019) PJM Bayesian 

SVDEJX \ Bayesian 
SVDEJX \ \ Hourly 

Peng et al. (2018) Australian, Germany, 
Austria, France  DE-LSTM \ LSTM DE RMSE, MAE, 

MAPE Hourly 

Loi and Ng (2018) Singapore ARIMA-
GARCH \ ARIMA-

GARCH \ 
AIC, RMSE, 
MAE, MAPE, 
TIC 

30-Min 

Lago et al. (2018a) Belgium LSTM–DNN, 
GRUNN–DNN \ LSTM–DNN, 

GRUNN–DNN \ SMAPE Hourly 

Ebrahimian et al. 
(2018) PJM, New England WT-NN-MPSO DWT Three Stage 

Cascade NN  MPSO MAE, MAPE, 
WME, WPE Hourly 

Lago et al. (2018b) Belgium, France DNN \ DNN \ SMAPE Hourly 

Bisoi et al. (2018) PJM, Ontario, 
Australian MKELM-WCA \ MKELM WCA RMSE, MAE, 

MAPE Hourly 

Osório et al. (2018) Spanish, PJM WT-DEEPSO-
ANFIS-MCS WT ANFIS-MCS DEEPSO MAPE Hourly 

Yang et al. (2017) PJM, Spanish, 
Australian 

WT-ARMA-
SAPSO-KELM WT 

Linear: ARMA 
Non-linear: 
SAPSO-KELM 

SAPSO 

MAPE, MAE, 
DMAE, 
WMAE, 
RMSE, Theil's 
U1, Theil's U2, 

Daily 

Singh et al. (2017) Australian WT-GNM-
IEMA WT GNM IEMA MAPE, MAE, 

VAF, RMSE Hourly 

Qiu et al. (2017) Australian EMD-KRR-
SVR EMD KRR-SVR \ RMSE 30-Min 

Shao et al. (2017) Ontario, New York TSS-RFE-
MRMR-SVM  TSS-RFE-MRMR SVM \ MPCE Hourly 

Neupane et al. (2017) New York, Australian, 
Spanish FWM, VWM \ ANN, SVR, RF FWM, VWM MER, MAE, 

MAPE 30-Min 

Gollou and Ghadimi 
(2017) PJM WT-NN-

VEHBMO DWT Three Stage 
Cascade NN  VEHBMO WME, WPE Hourly 



Keles et al. (2016) EU MLFFANN \ FFANN \ MAD, RMSE Daily 

Panapakidis and 
Dagoumas (2016) Italy ANN \ ANN \ 

MAPE, APE, 
MAE, Theil's 
U1, Theil's U2 

Hourly 

Sandhu et al. (2016) Ontario ANN \ ANN \ MAPE, RMSE, 
MAE Hourly 

Girish (2016) India AR-GARCH \ AR-GARCH \ RMAE. MAPE, 
MAE, TIC Hourly 

Rafiei et al. (2016) Ontario, Australian WT-ISCA-LSE WT TNN-ICSA, 
ELM LSE PINC, PICP, 

ACE, SC Hourly 

Kou et al. (2015) Australian, PJM, New 
England VHGP \ VHGP \ RE, SE, NLPD, 

MAPE 30-Min 

He et al. (2015) Australian BED BEMD VAR \ MSE, MAE Hourly 

Pany and Ghoshal 
(2015) Ontario, Indian LLWNN WT LLWNN \ 

DMAE, 
DMAPE, 
WMAE, 
WMAPE 

Hourly 

Babu and Reddy 
(2014) Australian ARIMA-ANN MA 

Low freq.: 
ARIMA  
High freq.: 
ANN 

\ MAE, MSE Hourly 

Shrivastava and 
Panigrahi (2014)  

Ontario, PJM, New 
York, Italian WELM WT ELM \ 

MeDE, MAE, 
MAPE, MDE, 
(W/D)RMSE 

Hourly 

Cerjan et al. (2014)  EU SD-NN-PS \ SD, NN, PS \ MAE, MAPE, 
RMSE Daily 

Yan and Chowdhury 
(2014) PJM Multiple SVM \ SVM \ MAE, MAPE Hourly 

Liu and Shi (2013)  New England ARMA-
GARCH-M \ ARMA-

GARCH-M \ RMSE, MAPE, 
MAE, TIC Hourly 

Anbazhagan and 
Kumarappan (2013) New York, Spanish RNN \ RNN \ MAPE, SSE, 

SDE Hourly 

Cifter (2013) EU MS-GARCH MS GARCH \ RMSE Daily 

Voronin et al. (2013)  Finnish (S)AR(I)MAX-
GARCH-ANN MTSD (S)AR(I)MAX-

GARCH-ANN \ 
MSE, MAE, 
MAPE, 
AMAPE 

Daily 

Lei and Feng (2012) Nordpool, California, 
Ontario PGM \ PGM PSO MAPE Hourly 

Zhang et al. (2012) Australian WT-ARIMA-
PLSSVM DWT ARIMA, 

PLSSVM PSO MAPE, MAE, 
RMSE Hourly 

 

  



Appendix B. List of Abbreviations 

Abbreviations  

ACE Average Coverage Error 
AE Average Error 
AMAPE Adapted MAPE 
AM-LSTM Attention Mechanism-based LSTM 
ANFIS adaptive neuro-fuzzy inference system 
AO Aquila Optimizer 
AWD Accumulated Width Deviation 
AIC Akaike’s Information Criterion 
APE Absolute Percentage Error 
APVMD Adaptive Parameter-based VMD 
ARTV Autoregressive Time Varying 
BED Bivariate EMD Denoising 
BEMD Bivariate EMD 
BO Bayesian Optimization 
CEEMD Complete Ensemble EMD 
CNN Convolutional Neural Networks 
CRPS Continuous Ranked Probability Score 
CSCA Chaotic Sine Cosine Algorithm 

CSS The Combination of the Cuckoo Search Algorithm, Support Vector Machine and 
Singular Spectrum Analysis 

DAE Daily Average Error 
DBN Deep Belief Network 
DEEPSO hybrid particle swarm optimization 
DFNN Deep Feedforward Neural Network 
DM Diebold-Mariano 
DMAE Daily Weighted MAE 
DRMSE Daily Weighted RMSE 
DMAPE Daily Weighted MAPE 
DNDT Data Normalization and Dimension Transformation 
EEMD Ensemble EMD 
EGB Extreme Gradient Boosting 
EMD Empirical Mode Decomposition 
ENN Elman Neural Network 
EWT Empirical Wavelet Transform 
GME General Maximum Entropy 
GNM Generalized Neuron Model 
GRU-TL Gated Recurrent Unit-Transfer Learning 
HFS Hybrid Feature Selection 
IA Index of Agreement 
ICEEMD Improved CEEMD 
ICEEMDAN ICEEMD with Adaptive Noise 
ICSA Improved Clonal Selection Algorithm 
IEAM Improved Environment Adaptation Method 
IMF Intrinsic Mode Function 
IMOSCA Improved Multi-Objective Sine Cosine Algorithm 
KELM Kernel-based Extreme Learning Machine 
KR Kernel Regression 
LLWNN Local Linear Wavelet Neural Network 
LMP Locational Marginal Price 
LSE Least-Squared Error 
LSTM Long Short-term Memory 
LUBE Lower–Upper Bound Estimation 
MAD Mean Absolute Deviation 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MCS Monte Carlo Simulation 
MDE Mean Daily Error 



MER Mean Error Relative 
MeDE Median Daily Error 
MGWA Modified Grey Wolf Algorithm 
MKELM Multi-kernel Extreme Learning Machine 
MLE Maximum Likelihood Estimator 
MLFFANN Multi-Layer Feed-Forward ANN model 
MOGWO Multi-objective Grey Wolf Optimizer 
MPSO Modified Particle Swarm Optimization 
MTSD Multiplicative Time Series Decomposition 
NARDL Nonlinear Autoregressive Distributed Lags 
NLPD average Negative Log Predictive Density 
OLS Ordinary Least Square Regression 
ORELM Outlier-Robust Extreme Learning Machine 
PCA Principal Component Analysis 
PIAW Prediction Interval Average Width 
PICP Prediction Interval Coverage Probability 
PINC Prediction Interval Nominal Confidence 
PMLR Panel Multivariate Linear Regression 
PS Price Spikes Detection 
RE Reliability Evaluation 
RELM Regularized Extreme Learning Machine 
RF Random Forest 
RFE Recursive Feature Eliminator 
RMAE Relative Mean Absolute Error 
RMM Regression-based Mixture Model 
RMSE Root Mean Square Error 
RNN Recurrent Neural Network 
RVM Relevance Vector Machine 
SAE Stacked Autoencoder 
SAPSO Self-adaptive Particle Swarm Optimization 
SC Sharpness Criterion 
SD Similar Days Methodology 
SDE Standard Deviations of Error 
SE Sharpness Evaluation 
SMAPE Symmetric Mean Absolute Percentage Error 
SSA Singular Spectral Analysis 
SSE Sum Squared Error 
SVAR Structural Vector Autoregressive 

SVDEJX Stochastic Volatility Model with Double Exponential Distribution of Jumps and 
Exogenous Variables 

TBATS Exponential Smoothing State Space Model with BoxCox Transformation, ARMA errors, 
Trend and Seasonal Components 

TSS Time Series Segmentation 
TCMS-CNN Multiscale CNN using Time-cognition 
T-GARCH Threshold-GARCH 
TIC Theil's Inequality Coefficient 
TNN Training Neural Networks 
VAR Variance 
VEHBMO Chaotic Vector Evaluated Honey Bee Mating Optimization 
VHGP Variational Heteroscedastic Gaussian Process 
VMD Variational Mode Decomposition 
WCA Water Cycle Algorithm 
WMAE Weekly Weighted Mean Absolute Errors 
WME Weekly Mean Error 
WNN Weighted Nearest Neighbor 
WPE Weekly Peak Error 
XGboost Extreme Gradient Boosting 

  



Acknowledgments 

This work was supported by the National Social Science Foundation of China (No. 
20BJL058), the Natural Science Foundation of Shandong Province (No. 
ZR2020MG074), and the Academic Innovation Team of Shandong Normal University 
"green development and enterprise performance". 
 

References 

Acaroğlu, H., García Márquez, F.P., 2021. Comprehensive Review on Electricity 
Market Price and Load Forecasting Based on Wind Energy. Energies. 14(22): 
7473. http://doi.org/10.3390/en14227473 

Agrawal, R.K., Muchahary, F., Tripathi, M.M., 2019. Ensemble of relevance vector 
machines and boosted trees for electricity price forecasting. Appl Energ. 250: 540-
548. http://doi.org/10.1016/j.apenergy.2019.05.062 

Ali, M., Prasad, R., 2019. Significant wave height forecasting via an extreme learning 
machine model integrated with improved complete ensemble empirical mode 
decomposition. Renew Sust Energ Rev. 104: 281-295. 
http://doi.org/10.1016/j.rser.2019.01.014 

Anbazhagan, S., Kumarappan, N., 2013. Day-Ahead Deregulated Electricity Market 
Price Forecasting Using Recurrent Neural Network. Ieee Syst J. 7(4): 866-872. 
http://doi.org/10.1109/JSYST.2012.2225733 

Babu, C.N., Reddy, B.E., 2014. A moving-average filter based hybrid ARIMA–

ANN model for forecasting time series data. Appl Soft Comput. 23: 27-38. 
http://doi.org/10.1016/j.asoc.2014.05.028 

Beltrán, S., Castro, A., Irizar, I., et al., 2022. Framework for collaborative intelligence 
in forecasting day-ahead electricity price. Appl Energ. 306: 118049. 
http://doi.org/10.1016/j.apenergy.2021.118049 

Billé, A.G., Gianfreda, A., Del Grosso, F., et al., 2022. Forecasting electricity prices 
with expert, linear, and nonlinear models. Int J. Forecasting. 
http://doi.org/10.1016/j.ijforecast.2022.01.003 

Bisoi, R., Dash, P.K., Das, P.P., 2020. Short-term electricity price forecasting and 
classification in smart grids using optimized multi-kernel extreme learning 
machine. Neural Computing and Applications. 32(5): 1457-1480. 
http://doi.org/10.1007/s00521-018-3652-5 

Boersen, A., Scholtens, B., 2014. The relationship between European electricity 
markets and emission allowance futures prices in phase II of the EU (European 
Union) emission trading scheme. Energy. 74: 585-594. 
http://doi.org/10.1016/j.energy.2014.07.024 

Bublitz, A., Keles, D., Fichtner, W., 2017. An analysis of the decline of electricity 
spot prices in Europe: Who is to blame? Energ Policy. 107: 323-336. 
http://doi.org/https://doi.org/10.1016/j.enpol.2017.04.034 

Cerjan, M., Matijaš, M., Delimar, M., 2014. Dynamic Hybrid Model for Short-Term 
Electricity Price Forecasting. Energies. 7(5): 3304-3318. 
http://doi.org/10.3390/en7053304 

http://doi.org/10.3390/en14227473
http://doi.org/10.1016/j.apenergy.2019.05.062
http://doi.org/10.1016/j.rser.2019.01.014
http://doi.org/10.1109/JSYST.2012.2225733
http://doi.org/10.1016/j.asoc.2014.05.028
http://doi.org/10.1016/j.apenergy.2021.118049
http://doi.org/10.1016/j.ijforecast.2022.01.003
http://doi.org/10.1007/s00521-018-3652-
http://doi.org/10.1016/j.energy.2014.07.024
http://doi.org/https:/doi.org/10.1016/j.enpol.2017.04.034
http://doi.org/10.3390/en7053304


Chang, Z.H., Zhang, Y., Chen, W.B., 2019. Electricity price prediction based on 
hybrid model of Adam optimized LSTM neural network and wavelet transform. 
Energy. 187. http://doi.org/10.1016/j.energy.2019.07.134 

Cheng, H., Ding, X., Zhou, W., et al., 2019. A hybrid electricity price forecasting 
model with Bayesian optimization for German energy exchange. Int J Elec Power. 
110: 653-666. http://doi.org/10.1016/j.ijepes.2019.03.056 

Cifter, A., 2013. Forecasting electricity price volatility with the Markov-switching 
GARCH model: Evidence from the Nordic electric power market. Electr Pow Syst 
Res. 102: 61-67. http://doi.org/10.1016/j.epsr.2013.04.007 

Da Silva, P.P., Cerqueira, P.A., 2017. Assessing the determinants of household 
electricity prices in the EU: a system-GMM panel data approach. Renewable and 
Sustainable Energy Reviews. 73: 1131-1137. 
http://doi.org/10.1016/j.rser.2017.02.016 

Deng, Z., Liu, C., Zhu, Z., 2021. Inter-hours rolling scheduling of behind-the-meter 
storage operating systems using electricity price forecasting based on deep 
convolutional neural network. Int J Elec Power. 125: 106499. 
http://doi.org/10.1016/j.ijepes.2020.106499 

Deng, Z., Qi, X., Xu, T., et al., 2022. Operational Scheduling of Behind-the-Meter 
Storage Systems Based on Multiple Nonstationary Decomposition and Deep 
Convolutional Neural Network for Price Forecasting. Comput Intel Neurosc. 2022: 
1-18. http://doi.org/10.1155/2022/9326856 

Doering, K., Sendelbach, L., Steinschneider, S., et al., 2021. The effects of wind 
generation and other market determinants on price spikes. Appl Energ. 300: 
117316. http://doi.org/10.1016/j.apenergy.2021.117316 

Dragomiretskiy, K., Zosso, D., 2014. Variational Mode Decomposition. Ieee T Signal 
Proces. 62(3): 531-544. http://doi.org/10.1109/TSP.2013.2288675 

Dutta, G., Mitra, K., 2017. A literature review on dynamic pricing of electricity. The 
Journal of the Operational Research Society. 68(10): 1131-1145. 
http://doi.org/10.1057/s41274-016-0149-4 

Ebrahimian, H., Barmayoon, S., Mohammadi, M., et al., 2018. The price prediction 
for the energy market based on a new method. Economic research - Ekonomska 
istraživanja. 31(1): 313-337. http://doi.org/10.1080/1331677X.2018.1429291 

Gabrielli, P., Wüthrich, M., Blume, S., et al., 2022. Data-driven modeling for long-
term electricity price forecasting. Energy. 244: 123107. 
http://doi.org/10.1016/j.energy.2022.123107 

Ghayekhloo, M., Azimi, R., Ghofrani, M., et al., 2019. A combination approach based 
on a novel data clustering method and Bayesian recurrent neural network for day-
ahead price forecasting of electricity markets. Electr Pow Syst Res. 168: 184-199. 
http://doi.org/10.1016/j.epsr.2018.11.021 

Gianfreda, A., Ravazzolo, F., Rossini, L., 2020. Comparing the forecasting 
performances of linear models for electricity prices with high-RES penetration. Int 
J Forecasting. 36(3): 974-986. http://doi.org/10.1016/j.ijforecast.2019.11.002 

Girish, G.P., 2016. Spot electricity price forecasting in Indian electricity market using 
autoregressive-GARCH models. Energy Strateg Rev. 11-12: 52-57. 

http://doi.org/10.1016/j.energy.2019.07.134
http://doi.org/10.1016/j.ijepes.2019.03.056
http://doi.org/10.1016/j.epsr.2013.04.007
http://doi.org/10.1016/j.rser.2017.02.016
http://doi.org/10.1016/j.ijepes.2020.106499
http://doi.org/10.1155/2022/9326856
http://doi.org/10.1016/j.apenergy.2021.117316
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1057/s41274-016-0149-4
http://doi.org/10.1080/1331677X.2018.1429291
http://doi.org/10.1016/j.energy.2022.123107
http://doi.org/10.1016/j.epsr.2018.11.021
http://doi.org/10.1016/j.ijforecast.2019.11.002


http://doi.org/10.1016/j.esr.2016.06.005 
Gollou, A.R., Ghadimi, N., 2017. A new feature selection and hybrid forecast engine 

for day-ahead price forecasting of electricity markets. J Intell Fuzzy Syst. 32(6): 
4031-4045. http://doi.org/10.3233/JIFS-152073 

Gürtler, M., Paulsen, T., 2018. Forecasting performance of time series models on 
electricity spot markets: a quasi-meta-analysis. Int J Energy Sect Ma. 12(1): 103-
129. http://doi.org/10.1108/IJESM-06-2017-0004 

He, H., Lu, N., Jiang, Y., et al., 2020. End-to-end probabilistic forecasting of 
electricity price via convolutional neural network and label distribution learning. 
Energy Rep. 6: 1176-1183. http://doi.org/10.1016/j.egyr.2020.11.057 

He, K., Yu, L., Tang, L., 2015. Electricity price forecasting with a BED (Bivariate 
EMD Denoising) methodology. Energy. 91: 601-609. 
http://doi.org/10.1016/j.energy.2015.08.021 

Heydari, A., Majidi Nezhad, M., Pirshayan, E., et al., 2020. Short-term electricity 
price and load forecasting in isolated power grids based on composite neural 
network and gravitational search optimization algorithm. Appl Energ. 277: 
115503. http://doi.org/10.1016/j.apenergy.2020.115503 

Hu, B., Xu, J., Xing, Z.X., et al., 2022. Short-Term Combined Forecasting Method of 
Park Load Based on CEEMD-MLR-LSSVR-SBO. Energies. 15(8). 
http://doi.org/10.3390/en15082767 

Huang, G., Zhu, Q., Siew, C., 2006. Extreme learning machine: Theory and 
applications. Neurocomputing. 70(1-3): 489-501. 
http://doi.org/10.1016/j.neucom.2005.12.126 

Huang, N.E., Shen, Z., Long, S.R., et al., 1998. The empirical mode decomposition 
and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 
Proceedings of the Royal Society of London. Series A: Mathematical, Physical 
and Engineering Sciences. 454(1971): 903-995. 
http://doi.org/10.1098/rspa.1998.0193 

Irfan, M., Raza, A., Althobiani, F., et al., 2022. Week Ahead Electricity Power and 
Price Forecasting Using Improved DenseNet-121 Method. Computers, Materials 
& Continua. 72(3): 4249-4265. http://doi.org/10.32604/cmc.2022.025863 

Iwabuchi, K., Kato, K., Watari, D., et al., 2022. Flexible electricity price forecasting 
by switching mother wavelets based on wavelet transform and Long Short-Term 
Memory. Energy and AI. 10: 100192. http://doi.org/10.1016/j.egyai.2022.100192 

J., K., R., E., 1995. Particle swarm optimization. 4: 1942-1948. 
http://doi.org/10.1109/ICNN.1995.488968 

Jasiński, T., 2020. Use of new variables based on air temperature for forecasting day-
ahead spot electricity prices using deep neural networks: A new approach. Energy. 
213: 118784. http://doi.org/10.1016/j.energy.2020.118784 

Jiang, P., Ma, X., 2016. A hybrid forecasting approach applied in the electrical power 
system based on data preprocessing, optimization and artificial intelligence 
algorithms. Appl Math Model. 40(23): 10631-10649. 
http://doi.org/https://doi.org/10.1016/j.apm.2016.08.001 

Keles, D., Scelle, J., Paraschiv, F., et al., 2016. Extended forecast methods for day-

http://doi.org/10.1016/j.esr.2016.06.005
http://doi.org/10.3233/JIFS-152073
http://doi.org/10.1108/IJESM-06-2017-0004
http://doi.org/10.1016/j.egyr.2020.11.057
http://doi.org/10.1016/j.energy.2015.08.021
http://doi.org/10.1016/j.apenergy.2020.115503
http://doi.org/10.3390/en15082767
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.32604/cmc.2022.025863
http://doi.org/10.1016/j.egyai.2022.100192
http://doi.org/10.1109/ICNN.1995.488968
http://doi.org/10.1016/j.energy.2020.118784
http://doi.org/https:/doi.org/10.1016/j.apm.2016.08.001


ahead electricity spot prices applying artificial neural networks. Appl Energ. 162: 
218-230. http://doi.org/10.1016/j.apenergy.2015.09.087 

Kingma, D.P., Ba, J., 2015. Adam: A Method for Stochastic Optimization. CoRR. 
abs/1412.6980. 

Kostrzewski, M., Kostrzewska, J., 2019. Probabilistic electricity price forecasting 
with Bayesian stochastic volatility models. Energ Econ. 80: 610-620. 
http://doi.org/10.1016/j.eneco.2019.02.004 

Kou, P., Liang, D., Gao, L., et al., 2015. Probabilistic electricity price forecasting with 
variational heteroscedastic Gaussian process and active learning. Energ Convers 
Manage. 89: 298-308. http://doi.org/10.1016/j.enconman.2014.10.003 

Lago, J., De Ridder, F., De Schutter, B., 2018. Forecasting spot electricity prices: 
Deep learning approaches and empirical comparison of traditional algorithms. 
Appl Energ. 221: 386-405. http://doi.org/10.1016/j.apenergy.2018.02.069 

Lago, J., De Ridder, F., Vrancx, P., et al., 2018. Forecasting day-ahead electricity 
prices in Europe: The importance of considering market integration. Appl Energ. 
211: 890-903. http://doi.org/10.1016/j.apenergy.2017.11.098 

Lago, J., Marcjasz, G., De Schutter, B., et al., 2021. Forecasting day-ahead electricity 
prices: A review of state-of-the-art algorithms, best practices and an open-access 
benchmark. Appl Energ. 293: 116983. 
http://doi.org/10.1016/j.apenergy.2021.116983 

Lei, M., Feng, Z., 2012. A proposed grey model for short-term electricity price 
forecasting in competitive power markets. Int J Elec Power. 43(1): 531-538. 
http://doi.org/10.1016/j.ijepes.2012.06.001 

Li, K., Cursio, J.D., Sun, Y., et al., 2019. Determinants of price fluctuations in the 
electricity market: a study with PCA and NARDL models. Economic research - 
Ekonomska istraživanja. 32(1): 2404-2421. 
http://doi.org/10.1080/1331677X.2019.1645712 

Liu, H., Shi, J., 2013. Applying ARMA–GARCH approaches to forecasting short-
term electricity prices. Energ Econ. 37: 152-166. 
http://doi.org/10.1016/j.eneco.2013.02.006 

Liu, L., Bai, F., Su, C., et al., 2022. Forecasting the occurrence of extreme electricity 
prices using a multivariate logistic regression model. Energy. 247: 123417. 
http://doi.org/10.1016/j.energy.2022.123417 

Loi, T.S.A., Ng, J.L., 2018. Anticipating electricity prices for future needs – 
Implications for liberalised retail markets. Appl Energ. 212: 244-264. 
http://doi.org/10.1016/j.apenergy.2017.11.092 

Loutfi, A.A., Sun, M., Loutfi, I., et al., 2022. Empirical study of day-ahead electricity 
spot-price forecasting: Insights into a novel loss function for training neural 
networks. Appl Energ. 319: 119182. 
http://doi.org/10.1016/j.apenergy.2022.119182 

Lu, H., Ma, X., Ma, M., et al., 2021. Energy price prediction using data-driven 
models: A decade review. Comput Sci Rev. 39: 100356. 
http://doi.org/10.1016/j.cosrev.2020.100356 

Maciejowska, K., Nitka, W., Weron, T., 2021. Enhancing load, wind and solar 

http://doi.org/10.1016/j.apenergy.2015.09.087
http://doi.org/10.1016/j.eneco.2019.02.004
http://doi.org/10.1016/j.enconman.2014.10.003
http://doi.org/10.1016/j.apenergy.2018.02.069
http://doi.org/10.1016/j.apenergy.2017.11.098
http://doi.org/10.1016/j.apenergy.2021.116983
http://doi.org/10.1016/j.ijepes.2012.06.001
http://doi.org/10.1080/1331677X.2019.1645712
http://doi.org/10.1016/j.eneco.2013.02.006
http://doi.org/10.1016/j.energy.2022.123417
http://doi.org/10.1016/j.apenergy.2017.11.092
http://doi.org/10.1016/j.apenergy.2022.119182
http://doi.org/10.1016/j.cosrev.2020.100356


generation for day-ahead forecasting of electricity prices. Energ Econ. 99: 105273. 
http://doi.org/10.1016/j.eneco.2021.105273 

Memarzadeh, G., Keynia, F., 2021. Short-term electricity load and price forecasting 
by a new optimal LSTM-NN based prediction algorithm. Electr Pow Syst Res. 
192: 106995. http://doi.org/10.1016/j.epsr.2020.106995 

Meng, A., Wang, P., Zhai, G., et al., 2022. Electricity price forecasting with high 
penetration of renewable energy using attention-based LSTM network trained by 
crisscross optimization. Energy. 254: 124212. 
http://doi.org/10.1016/j.energy.2022.124212 

Moreno, B., García-Álvarez, M.T., Ramos, C., et al., 2014. A General Maximum 
Entropy Econometric approach to model industrial electricity prices in Spain: A 
challenge for the competitiveness. Appl Energ. 135: 815-824. 
http://doi.org/10.1016/j.apenergy.2014.04.060 

Moreno, B., López, A.J., García-Álvarez, M.T., 2012. The electricity prices in the 
European Union. The role of renewable energies and regulatory electric market 
reforms. Energy. 48(1): 307-313. http://doi.org/10.1016/j.energy.2012.06.059 

Mosquera-López, S., Nursimulu, A., 2019. Drivers of electricity price dynamics: 
Comparative analysis of spot and futures markets. Energ Policy. 126: 76-87. 
http://doi.org/10.1016/j.enpol.2018.11.020 

Mosquera-López, S., Uribe, J.M., Manotas-Duque, D.F., 2017. Nonlinear empirical 
pricing in electricity markets using fundamental weather factors. Energy. 139: 
594-605. https://doi.org/10.1016/j.energy.2017.07.181 

Neupane, B., Woon, W., Aung, Z., 2017. Ensemble Prediction Model with Expert 
Selection for Electricity Price Forecasting. Energies. 10(1): 77. 
http://doi.org/10.3390/en10010077 

Nowotarski, J., Weron, R., 2018. Recent advances in electricity price forecasting: A 
review of probabilistic forecasting. Renewable and Sustainable Energy Reviews. 
81: 1548-1568. http://doi.org/10.1016/j.rser.2017.05.234 

Osório, G., Lotfi, M., Shafie-khah, M., et al., 2019. Hybrid Forecasting Model for 
Short-Term Electricity Market Prices with Renewable Integration. Sustainability-
Basel. 11(1): 57. http://doi.org/10.3390/su11010057 

Panapakidis, I.P., Dagoumas, A.S., 2016. Day-ahead electricity price forecasting via 
the application of artificial neural network-based models. Appl Energ. 172: 132-
151. http://doi.org/10.1016/j.apenergy.2016.03.089 

Pany, P.K., Ghoshal, S.P., 2015. Dynamic electricity price forecasting using local 
linear wavelet neural network. Neural Computing and Applications. 26(8): 2039-
2047. http://doi.org/10.1007/s00521-015-1867-2 

Papler, D., Bojnec, S., 2012. Determinants of Costs and Prices for Electricity Supply 
in Slovenia. Eastern Eur Econ. 50(1): 65-77. http://doi.org/10.2753/EEE0012-
8775500104 

Paschen, M., 2016. Dynamic analysis of the German day-ahead electricity spot 
market. Energ Econ. 59: 118-128. 
http://doi.org/https://doi.org/10.1016/j.eneco.2016.07.019 

Peña, J.I., Rodríguez, R., 2019. Are EU's Climate and Energy Package 20-20-20 

http://doi.org/10.1016/j.eneco.2021.105273
http://doi.org/10.1016/j.epsr.2020.106995
http://doi.org/10.1016/j.energy.2022.124212
http://doi.org/10.1016/j.apenergy.2014.04.060
http://doi.org/10.1016/j.energy.2012.06.059
http://doi.org/10.1016/j.enpol.2018.11.020
https://doi.org/10.1016/j.energy.2017.07.181
http://doi.org/10.3390/en10010077
http://doi.org/10.1016/j.rser.2017.05.234
http://doi.org/10.3390/su11010057
http://doi.org/10.1016/j.apenergy.2016.03.089
http://doi.org/10.1007/s00521-015-1867-2
http://doi.org/10.2753/EEE0012-8775500104
http://doi.org/10.2753/EEE0012-8775500104
http://doi.org/https:/doi.org/10.1016/j.eneco.2016.07.019


targets achievable and compatible? Evidence from the impact of renewables on 
electricity prices. Energy. 183: 477-486. 
http://doi.org/10.1016/j.energy.2019.06.138 

Peng, L., Liu, S., Liu, R., et al., 2018. Effective long short-term memory with 
differential evolution algorithm for electricity price prediction. Energy. 162: 1301-
1314. http://doi.org/10.1016/j.energy.2018.05.052 

Pereira, J.P., Pesquita, V., Rodrigues, P.M.M., et al., 2019. Market integration and the 
persistence of electricity prices. Empir Econ. 57(5): 1495-1514. 
http://doi.org/10.1007/s00181-018-1520-x 

Peura, H., Bunn, D., 2021. Renewable Power and Electricity Prices: The Impact of 
Forward Markets. Manage Sci. 67. http://doi.org/10.1287/mnsc.2020.3710 

Qiao, W., Yang, Z., 2020. Forecast the electricity price of U.S. using a wavelet 
transform-based hybrid model. Energy. 193: 116704. 
http://doi.org/10.1016/j.energy.2019.116704 

Qiu, X., Suganthan, P.N., Amaratunga, G.A.J., 2017. Short-term Electricity Price 
Forecasting with Empirical Mode Decomposition based Ensemble Kernel 
Machines. Procedia Computer Science. 108: 1308-1317. 
http://doi.org/10.1016/j.procs.2017.05.055 

R., E., J., K., 1995. A new optimizer using particle swarm theory.: 39-43. 
http://doi.org/10.1109/MHS.1995.494215 

Rafiei, M., Niknam, T., Khooban, M.H., 2017. Probabilistic electricity price 
forecasting by improved clonal selection algorithm and wavelet preprocessing. 
Neural Computing and Applications. 28(12): 3889-3901. 
http://doi.org/10.1007/s00521-016-2279-7 

Sandhu, H.S., Fang, L., Guan, L., 2016. Forecasting day-ahead price spikes for the 
Ontario electricity market. Electr Pow Syst Res. 141: 450-459. 
http://doi.org/10.1016/j.epsr.2016.08.005 

Sapio, A., Spagnolo, N., 2016. Price regimes in an energy island: Tacit collusion vs. 
cost and network explanations. Energ Econ. 55: 157-172. 
http://doi.org/10.1016/j.eneco.2016.01.008 

Shao, Z., Yang, S., Gao, F., et al., 2017. A new electricity price prediction strategy 
using mutual information-based SVM-RFE classification. Renewable and 
Sustainable Energy Reviews. 70: 330-341. 
http://doi.org/10.1016/j.rser.2016.11.155 

Shao, Z., Zheng, Q., Liu, C., et al., 2021. A feature extraction- and ranking-based 
framework for electricity spot price forecasting using a hybrid deep neural 
network. Electr Pow Syst Res. 200: 107453. 
http://doi.org/10.1016/j.epsr.2021.107453 

Shi, W., Wang, Y., Chen, Y., et al., 2021. An effective Two-Stage Electricity Price 
forecasting scheme. Electr Pow Syst Res. 199: 107416. 
http://doi.org/10.1016/j.epsr.2021.107416 

Shrivastava, N.A., Panigrahi, B.K., 2014. A hybrid wavelet-ELM based short term 
price forecasting for electricity markets. Int J Elec Power. 55: 41-50. 
http://doi.org/10.1016/j.ijepes.2013.08.023 

http://doi.org/10.1016/j.energy.2019.06.138
http://doi.org/10.1016/j.energy.2018.05.052
http://doi.org/10.1007/s00181-018-1520-x
http://doi.org/10.1287/mnsc.2020.3710
http://doi.org/10.1016/j.energy.2019.116704
http://doi.org/10.1016/j.procs.2017.05.055
http://doi.org/10.1109/MHS.1995.494215
http://doi.org/10.1007/s00521-016-2279-7
http://doi.org/10.1016/j.epsr.2016.08.005
http://doi.org/10.1016/j.eneco.2016.01.008
http://doi.org/10.1016/j.rser.2016.11.155
http://doi.org/10.1016/j.epsr.2021.107453
http://doi.org/10.1016/j.epsr.2021.107416
http://doi.org/10.1016/j.ijepes.2013.08.023


Singh, N., Mohanty, S.R., Dev Shukla, R., 2017. Short term electricity price forecast 
based on environmentally adapted generalized neuron. Energy. 125: 127-139. 
http://doi.org/10.1016/j.energy.2017.02.094 

Tian, C., Hao, Y., Hu, J., 2018. A novel wind speed forecasting system based on 
hybrid data preprocessing and multi-objective optimization. Appl Energ. 231: 301-
319. http://doi.org/10.1016/j.apenergy.2018.09.012 

Tschora, L., Pierre, E., Plantevit, M., et al., 2022. Electricity price forecasting on the 
day-ahead market using machine learning. Appl Energ. 313: 118752. 
http://doi.org/10.1016/j.apenergy.2022.118752 

Voronin, S., Partanen, J., Kauranne, T., 2014. A hybrid electricity price forecasting 
model for the Nordic electricity spot market. Int T Electr Energy. 24(5): 736-760. 
http://doi.org/10.1002/etep.1734 

Vu, D.H., Muttaqi, K.M., Agalgaonkar, A.P., et al., 2019. Short-Term Forecasting of 
Electricity Spot Prices Containing Random Spikes Using a Time-Varying 
Autoregressive Model Combined with Kernel Regression. Ieee T Ind Inform. 
15(9): 5378-5388. http://doi.org/10.1109/TII.2019.2911700 

Wang, D., Gryshova, I., Kyzym, M., et al., 2022. Electricity Price Instability over 
Time: Time Series Analysis and Forecasting. Sustainability-Basel. 14(15): 9081. 
http://doi.org/10.3390/su14159081 

Wang, D.Y., Luo, H.Y., Grunder, O., et al., 2017. Multi-step ahead electricity price 
forecasting using a hybrid model based on two-layer decomposition technique and 
BP neural network optimized by firefly algorithm. Appl Energ. 190: 390-407. 
http://doi.org/10.1016/j.apenergy.2016.12.134 

Wang, J., Luo, Y.Y., Tang, L.Y., et al., 2018. A new weighted CEEMDAN-based 
prediction model: An experimental investigation of decomposition and non-
decomposition approaches. Knowl-Based Syst. 160: 188-199. 
http://doi.org/10.1016/j.knosys.2018.06.033 

Wang, J., Yang, W., Du, P., et al., 2020. Outlier-robust hybrid electricity price 
forecasting model for electricity market management. J Clean Prod. 249: 119318. 
http://doi.org/10.1016/j.jclepro.2019.119318 

Weron, R., 2014. Electricity price forecasting: A review of the state-of-the-art with a 
look into the future. Int J Forecasting. 30(4): 1030-1081. 
http://doi.org/10.1016/j.ijforecast.2014.08.008 

Windler, T., Busse, J., Rieck, J., 2019. One month-ahead electricity price forecasting 
in the context of production planning. J Clean Prod. 238: 117910. 
http://doi.org/10.1016/j.jclepro.2019.117910 

Xu, Y., Zhang, X., Meng, P., 2022. A Novel Intelligent Deep Learning-Based 
Uncertainty-Guided Network Training in Market Price. Ieee T Ind Inform. 18(8): 
5705-5711. http://doi.org/10.1109/TII.2021.3136564 

Yan, X., Chowdhury, N.A., 2014. Mid-term electricity market clearing price 
forecasting: A multiple SVM approach. Int J Elec Power. 58: 206-214. 
http://doi.org/10.1016/j.ijepes.2014.01.023 

Yang, H., Schell, K.R., 2021. Real-time electricity price forecasting of wind farms 
with deep neural network transfer learning and hybrid datasets. Appl Energ. 299: 

http://doi.org/10.1016/j.energy.2017.02.094
http://doi.org/10.1016/j.apenergy.2018.09.012
http://doi.org/10.1016/j.apenergy.2022.118752
http://doi.org/10.1002/etep.1734
http://doi.org/10.1109/TII.2019.2911700
http://doi.org/10.3390/su14159081
http://doi.org/10.1016/j.apenergy.2016.12.134
http://doi.org/10.1016/j.knosys.2018.06.033
http://doi.org/10.1016/j.jclepro.2019.119318
http://doi.org/10.1016/j.ijforecast.2014.08.008
http://doi.org/10.1016/j.jclepro.2019.117910
http://doi.org/10.1109/TII.2021.3136564
http://doi.org/10.1016/j.ijepes.2014.01.023


117242. http://doi.org/10.1016/j.apenergy.2021.117242 
Yang, H., Schell, K.R., 2022. GHTnet: Tri-Branch deep learning network for real-

time electricity price forecasting. Energy. 238: 122052. 
http://doi.org/10.1016/j.energy.2021.122052 

Yang, W., Sun, S., Hao, Y., et al., 2022. A novel machine learning-based electricity 
price forecasting model based on optimal model selection strategy. Energy. 238: 
121989. http://doi.org/10.1016/j.energy.2021.121989 

Yang, W., Wang, J., Niu, T., et al., 2019. A hybrid forecasting system based on a dual 
decomposition strategy and multi-objective optimization for electricity price 
forecasting. Appl Energ. 235: 1205-1225. 
http://doi.org/10.1016/j.apenergy.2018.11.034 

Yang, W., Wang, J., Niu, T., et al., 2020. A novel system for multi-step electricity 
price forecasting for electricity market management. Appl Soft Comput. 88: 
106029. http://doi.org/10.1016/j.asoc.2019.106029 

Yang, Z., Ce, L., Lian, L., 2017. Electricity price forecasting by a hybrid model, 
combining wavelet transform, ARMA and kernel-based extreme learning machine 
methods. Appl Energ. 190: 291-305. 
http://doi.org/10.1016/j.apenergy.2016.12.130 

Zhang, J., Tan, Z., Wei, Y., 2020. An adaptive hybrid model for short term electricity 
price forecasting. Appl Energ. 258: 114087. 
http://doi.org/10.1016/j.apenergy.2019.114087 

Zhang, J., Tan, Z., Yang, S., 2012. Day-ahead electricity price forecasting by a new 
hybrid method. Comput Ind Eng. 63(3): 695-701. 
http://doi.org/10.1016/j.cie.2012.03.016 

Zhang, T., Tang, Z., Wu, J., et al., 2022. Short term electricity price forecasting using 
a new hybrid model based on two-layer decomposition technique and ensemble 
learning. Electr Pow Syst Res. 205: 107762. 
http://doi.org/10.1016/j.epsr.2021.107762 

Zhang, X., Wang, J., Gao, Y., 2019. A hybrid short-term electricity price forecasting 
framework: Cuckoo search-based feature selection with singular spectrum analysis 
and SVM. Energ Econ. 81: 899-913. http://doi.org/10.1016/j.eneco.2019.05.026 

 
 

 

 

http://doi.org/10.1016/j.apenergy.2021.117242
http://doi.org/10.1016/j.energy.2021.122052
http://doi.org/10.1016/j.energy.2021.121989
http://doi.org/10.1016/j.apenergy.2018.11.034
http://doi.org/10.1016/j.asoc.2019.106029
http://doi.org/10.1016/j.apenergy.2016.12.130
http://doi.org/10.1016/j.apenergy.2019.114087
http://doi.org/10.1016/j.cie.2012.03.016
http://doi.org/10.1016/j.epsr.2021.107762
http://doi.org/10.1016/j.eneco.2019.05.026

	2. Literature query
	4. Electricity price forecasting with determinants of electricity price

