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A B S T R A C T

Data-driven discovery of governing laws for complex nonlinear structural dynamic systems
remains a challenging issue of paramount importance. This work addresses the above issue
by leveraging the available noisy data and integrating sparse Bayesian machine learning (ML)
techniques to discover the governing equations. The problem of discovery is re-cast as the
automatic relevance determination of models (model selection) from the library of potential
candidate basis terms and their coefficients are determined (parameter identification) using
sparse Bayesian linear regression. Two sparsity promoting ML algorithms based on relevance
vector machines have been employed. Both these approaches use Bayesian statistics and
quantify the uncertainty associated with the model predictions. Results from four representative
numerical examples of nonlinear structural dynamics illustrate excellent performance of both
proposed approaches. The results have been validated with the true governing equations and
time response data. Comparison has also been made with a recent and popular sparse discovery
approach. Finally, the proposed framework is applied to real datasets that were generated from
an in-house designed experimental setup of a quasi zero stiffness device and good performance
has been observed.

. Introduction

The rapid advancement of computational prowess and technology for data collection have led to significant interest in discovering
hysics from available data, in order to develop robustly validated models [1]. Moreover, misrepresentation of exact physics of the
ystem due to elusive laws and unknown model form have accelerated the need to discover the governing equations. Determining the
nderlying equations of motion is of prime importance as they provide the mathematical representation of the system characteristics
nd hence, useful insights can be derived about the physical phenomena. The equation discovery (ED) problem involves the solution
f two sub-problems, identification of the functional form of the equations of motion (i.e., model selection) and determination of the
nknown parameters of the selected model (i.e., parameter identification). The ED problem is also commonly referred to as system
dentification and their extensive review in dynamical systems can be found in [2–5].
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Conventional approaches primarily rely on hypothesizing a set of relevant models based on the domain knowledge and expert
udgement. The optimal model is selected based on the trade-off between the model accuracy and complexity determined by
nformation-theoretic conditions, for example, Akaike and Bayesian information criteria and minimum description length [6].
owever, the effectiveness of these classical techniques may often be restricted in cases of limited prior information and complex

unctional form of the model, both of which are common scenarios for practical applications. Due to the expeditious progress
f data-driven modelling and simulation, recent model selection approaches have depended less on human intuition and domain
xpertise and more heavily on data. Deep neural networks have been utilized for the identification of non-linear dynamic systems [7–
0]. However, the deep learning approaches were employed as black-box models, limiting their use only for forecasting in unseen
nvironments and thus, ensuring generalizability. In addition to the desirable predictive ability, the goal of an ED problem is also
o determine the governing physics as a function of a small or only relevant number of terms, resulting in better understanding
f the physical effects and manifestations and thus, ensuring interpretability/explainability. For an excellent discussion on the above

foundational principles, the recent review by Kutz and Brunton [5] is recommended.
The seminal work on data-driven ED can be traced back to [11,12], where symbolic regression was employed to search across

a dictionary of candidate basis terms. Despite the success of the method, its reliance on genetic programming led to an imbalance
between generalizability and interpretability. A cost-effective computational alternative of the symbolic regression problem was
proposed recently by leveraging from sparse regression and compressive sensing [13]. This approach is abbreviated as SINDy, which
stands for Sparse Identification of Nonlinear Dynamics and its open-source implementation can be found in [14]. Due to SINDy’s lucid
framework and effectiveness, it has gained wide popularity and has been implemented in variety of applications. They include, but
are not limited to, biology [15], chemical reactions [16], plasma dynamics [17], fluid dynamics [18–20], multi-scale systems [21],
predictive control [22], structural identification with hysteretic behaviour [23], aerodynamics [24], nonlinear energy sinks [25],
sparse selection using integral terms [26], ED using short impulse time response data [27], identification of partial differential
equations [28], robust learning of noisy and limited data [29] and stochastic dynamics [30,31], among others. Lately, SINDy has
been integrated with deep learning for further enhancement [32–35].

To ensure interpretability and promoting sparsity, classical penalization or thresholding approaches through a constrained
optimization over the standard least square cost function to identify only the relevant features are deployed [36]. Examples include
ridge regression, least absolute shrinkage and selection operator (LASSO), least angle regression, elastic net, matching pursuit, and
sequential thresholded least squares (STLS) among other compressive sensing techniques. SINDy employs the STLS algorithm due to
its ability to scale well in high dimensions. However, the above methods are deterministic in nature and hence, do not quantify the
model predictive uncertainty. Bayesian inference [37,38] can be a natural choice to overcome this issue. In addition to yielding the
posterior distribution, a Bayesian approach has the following advantages over the deterministic methods, (i) the prior distributions
seamlessly apply penalization of the parameters, and, (ii) the penalty parameter can be estimated without additional steps, for
example, cross-validation.

Therefore, the proposed approach in this work employs sparse Bayesian learning using Relevance Vector Machines (RVM) for
the data-driven discovery of nonlinear structural dynamic systems. The RVM was originally developed as a Bayesian treatment of
Support Vector Machines for kernel-based learning [39] and followed the principle of 𝓁1 regression for promoting sparsity. The
RVM is based on a Student’s-t prior distribution which is sharply peaked around zero. A survey of different sparsity promoting
priors can be found in [40]. In general, the literature concerning the sparse Bayesian frameworks for ED is found to be scarce
and only a handful of very recent investigations are available. In this regard, the spike-and-slab [41], the Student’s-t prior [42]
and the Gaussian process [43] were employed for the ED of nonlinear structural dynamic systems. The schematic of the proposed
framework is presented in Fig. 1. The general problem setup and dictionary/library construction is discussed in Section 2 and the
mathematical formulation of sparse Bayesian learning using RVM is discussed in Section 3. Although this work demonstrates two
variants of RVM, one of the approaches has an overlap with the above recent work [42] and therefore, the authors’ do not claim
novelty on the methodology in itself. The real strength of this work lies in the physical insights gained from the numerical examples
solved (Section 4) and practical application (Section 5). To further elucidate, the significance of the present work, particularly in
relation to the solved problems, is outlined as follows:

• In contrast to considering only single degree of freedom (two state) systems, coupled systems involving the third state
parameter have been considered, for example, representation of the rate-independent hysteretic phenomena using Bouc–Wen
oscillator. Additionally, as a case study, we assumed that the third state variable was unmeasured, simulating a specific real-life
scenario. Thus, the identification is performed on an equivalent 2D system (refer Section 4.3).

• The numerical examples solved include the Valanis model, one of the powerful models for capturing the complex dynamics of
nonlinear frictional contact interfaces such as a bolted lap joint. It also consists of the third state as mentioned above and is
represented by the nonlinear restoring (frictional) force. Four separate models of the restoring force of varying complexities
have been considered, including simulating the switching behaviour (refer Section 4.4.4).

• Besides considering complex nonlinear simulated examples, a unique and highlighting feature of this work is the sparse
Bayesian data-driven discovery of a Quasi Zero Stiffness (QZS) device based on the real experimental data. The data has
been collected from a recent in-house designed experimental rig (refer Section 5). The ED of QZS devices is new, challenging
and useful considering their wide-spread popularity as vibration absorbers and nonlinear energy sinks.
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Fig. 1. A schematic flow diagram of the proposed sparse Bayesian framework for the discovery of nonlinear structural dynamic systems. The figure highlights
the computational framework comprising of four blocks (each indicated by the dotted rectangles) and inter-connected with arrows. The first block takes in noisy
measured time response data as input which is then passed on to the second block for constructing the library of potential candidate bases and the forcing term.
The third block performs the sparse Bayesian regression via the Relevance Vector Machines and yields the posterior statistics of the unknown coefficients. Finally,
the fourth block uses the unknown coefficients (from the previous block) to obtain the identified set of differential equations, thus leading to the discovery of
the governing physics and yielding a representative nonlinear model.

2. Sparse discovery of nonlinear structural dynamics

The discretized mathematical model of a forced continuous dynamical system can be expressed by the following state space
representation,

𝐘̇ = 𝑔(𝐘,𝐅) where, 𝐘 =

[

𝐲
𝐲̇

]

(1)

where 𝐘 is the state space vector comprising the displacement vector 𝐲 and velocity vector 𝐲̇, 𝑔(⋅) denotes the generalized functional
form of the system dynamics and 𝐅 represents the external force vector acting on the structure.

Generally speaking, the sparse discovery of nonlinear structural dynamics aims to discover the governing equations (i.e., deter-
mine the function 𝑔) based on the state space vector 𝐘 and its first derivative 𝐘̇ comprising the measured (or approximated) time
domain data sets 𝐲(𝑡), 𝐲̇(𝑡) and 𝐲̈(𝑡). To do so, a library Φ(𝐘) consisting of the candidate basis functions is constructed. The underlying
idea of constructing these bases is to include potential models and nonlinearity information which represent the measurement data
in hand. Therefore, for a system with unknown system dynamics 𝑔 (which is the case in most scenarios), a large pool of candidate
terms are included to ensure that the nonlinear data patterns are adequately captured. Typically, Φ(𝐘) consists of constant, linear,
polynomial, other nonlinear functions (such as, trigonometric, modulus function, etc.) of the state vector and forcing information,
for instance, as shown in Eq. (2).

Φ(𝐘) =
⎡

⎢

⎢

⎢

⎣

| | | | | | |

𝟏 𝐘 𝐘𝑃2 𝐘𝑃3 sin𝐘 |𝐘| ... 𝐅
| | | | | | |

⎤

⎥

⎥

⎥

⎦

(2)

where the constant term 1 is included to consider bias in the regression approach. The sampled time data are stored in the following
arrangements,

y =

⎛

⎜

⎜

⎜

⎜

𝑦1(𝑡1) 𝑦2(𝑡1) ⋯ 𝑦𝑠(𝑡1)
𝑦1(𝑡2) 𝑦2(𝑡2) ⋯ 𝑦𝑠(𝑡2)
⋮ ⋮ ⋱ ⋮

⎞

⎟

⎟

⎟

⎟

tim
e

state

ẏ =

⎛

⎜

⎜

⎜

⎜

𝑦̇1(𝑡1) 𝑦̇2(𝑡1) ⋯ 𝑦̇𝑠(𝑡1)
𝑦̇1(𝑡2) 𝑦̇2(𝑡2) ⋯ 𝑦̇𝑠(𝑡2)
⋮ ⋮ ⋱ ⋮

⎞

⎟

⎟

⎟

⎟

tim
e

state

(3)
3

⎝

𝑦1(𝑡𝑚) 𝑦2(𝑡𝑚) ⋯ 𝑦𝑠(𝑡𝑚)
⎠ ⎝

𝑦̇1(𝑡𝑚) 𝑦̇2(𝑡𝑚) ⋯ 𝑦̇𝑠(𝑡𝑚)
⎠
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Using Eq. (3), the linear term 𝐘 can be obtained as,

𝐘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑦1(𝑡1) 𝑦2(𝑡1) ⋯ 𝑦𝑠(𝑡1) 𝑦̇1(𝑡1) 𝑦̇2(𝑡1) ⋯ 𝑦̇𝑠(𝑡1)

𝑦1(𝑡2) 𝑦2(𝑡2) ⋯ 𝑦𝑠(𝑡2) 𝑦̇1(𝑡2) 𝑦̇2(𝑡2) ⋯ 𝑦̇𝑠(𝑡2)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑦1(𝑡𝑚) 𝑦2(𝑡𝑚) ⋯ 𝑦𝑠(𝑡𝑚) 𝑦̇1(𝑡𝑚) 𝑦̇2(𝑡𝑚) ⋯ 𝑦̇𝑠(𝑡𝑚)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4)

𝐘𝑃𝑛 in Eq. (2) denotes the 𝑛th order polynomial nonlinearity. For example, the quadratic nonlinear terms represented by 𝐘𝑃2 can
be arranged as,

𝐘𝑃2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑦12(𝑡1) 𝑦1(𝑡1)𝑦2(𝑡1) ⋯ 𝑦𝑠2(𝑡1) 𝑦̇21(𝑡1) 𝑦̇1(𝑡1)𝑦̇2(𝑡1) ⋯ 𝑦̇2𝑠 (𝑡1)

𝑦12(𝑡2) 𝑦1(𝑡2)𝑦2(𝑡2) ⋯ 𝑦𝑠2(𝑡2) 𝑦̇21(𝑡2) 𝑦̇1(𝑡2)𝑦̇2(𝑡2) ⋯ 𝑦̇2𝑠 (𝑡2)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑦12(𝑡𝑚) 𝑦1(𝑡𝑚)𝑦2(𝑡𝑚) ⋯ 𝑦𝑠2(𝑡𝑚) 𝑦̇21(𝑡𝑚) 𝑦̇1(𝑡𝑚)𝑦̇2(𝑡𝑚) ⋯ 𝑦̇2𝑠 (𝑡𝑚)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5)

Thus, the library matrix Φ(𝐘) is constructed from the measured or approximated data sets and each of the columns represents
candidate basis term for mapping the system dynamics (as represented by function 𝑔 in Eq. (1)). Subsequently, the equation

iscovery problem is solved by transforming it to a linear regression framework as,

𝐘̇ = Φ(𝐘)𝐂 (6)

here the motive is to determine the unknown coefficients 𝐂. As previously mentioned, a large number of the candidate features
ay have to be included in Φ due to the unknown nature of the system dynamics. Therefore, to prevent the potential ill-conditioning

nd ensure the uniqueness of solution, sparse regression by compressive sensing can be leveraged. The underlying assumption is
hat the nonlinear dynamics can be satisfactorily captured by a handful of basis terms in the library matrix Φ so that a sparse set
f unknown coefficients (whose majority entries are zero) can be recovered, which has been observed to be true for most physical
ystems. This is also known as the automatic relevance determination and leads to a low-dimensional or parsimonious representation
f the governing dynamics.

The unique sparse solution of 𝐂̂ = [𝑐1, 𝑐2,… , 𝑐𝑛] can be obtained by LASSO and is expressed as follows, for the individual (𝑖th)
egression problem,

𝑐𝑖 = argmin
𝑐𝑖

‖𝐘̇𝑖 −Φ(𝐘)𝑐𝑖‖22 + 𝜆𝑖‖𝑐𝑖‖1 (7)

here ‖ ⋅ ‖2 and ‖ ⋅ ‖1 denote the 𝓁2-norm and 𝓁1-norm, respectively. 𝐘̇𝑖 represents the 𝑖th column of matrix 𝐘̇ and, 𝜆𝑖 is the
egularization factor. Note that Eq. (7) corresponds to conventional least squares for the case 𝜆𝑖 = 0 and 𝐂̂ becomes sparser with the
ncrease of 𝜆𝑖. Hence, with the proper selection of 𝜆𝑖, over-fitting can be avoided when the number of features in the basis matrix
s high, by the trade-off between model accuracy and complexity. Standard information-theoretic criteria are employed for this
urpose [6]. Upon solving the optimization problem in Eq. (7), the coefficient matrix 𝐂̂ is determined which results in the sparse
ecovery of the underlying governing equation. This illustrates the overall framework of SINDy. SINDy employs the sequential
hresholding least squares approach to solve the LASSO problem in Eq. (7) for computational gains. In the next section, two sparse
ayesian machine learning techniques have been proposed (in contrast to the deterministic thresholding approach described in this
ection) to solve the data-driven identification problem.

. Proposed sparse Bayesian discovery of nonlinear structural dynamics

The machine learning technique known as relevance vector machines (RVM) [39], employing a probabilistic sparse kernel, is
sed to impart the sparse Bayesian feature for the discovery of nonlinear dynamics. In the following sub-sections, sparse Bayesian
earning via RVM is summarized along with a step-by-step pseudo-code.

.1. Model specification

For notational convenience, Eq. (6) can be re-stated as,

𝐭 = Φ𝐂 + 𝜖 (8)

here the measurements 𝐘̇ on the left side of Eq. (6) is now represented as the target data 𝐭, Φ is of dimensions (𝑚 × 𝑏) and 𝜖
enotes the error/noise. The crucial feature in the RVM formulation is the prior distribution of the coefficients which is given as

𝑝(𝐂|𝜶) = (2𝜋)−𝑏∕2
𝑏

∏

𝑖=1
𝛼𝑖

1∕2exp(−
𝛼𝑖𝑐𝑖2

2
) (9)

where 𝜶 = {𝛼1, 𝛼2,… , 𝛼𝑏} is a vector of 𝑏 hyperparameters, which yield essential information on the relevance of the basis
terms. It is the prior which is responsible for rendering sparsity to the model. Detailed description of the estimation procedure
of hyperparameters 𝜶, such that the prior distribution 𝑝(𝐂|𝜶) is peaked around zero, can be found in [39]. A multivariate Gaussian
4
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likelihood function is considered and is given by

𝑝(𝐭|𝐂, 𝜎2) = (2𝜋)−𝑚∕2𝜎−𝑚exp(−
‖𝐭 −Φ𝐂‖2

2𝜎2
) (10)

3.2. Posterior inference

Subsequently, the posterior distribution over the coefficients can be obtained as the product of the prior in Eq. (9) and likelihood
in Eq. (10) according to Bayes theorem as

𝑝(𝐂|𝐭,𝜶, 𝜎2) = 𝑝(𝐭|𝐂, 𝜎2) 𝑝(𝐂|𝜶)
𝑝(𝐭|𝜶, 𝜎2)

(11)

This results in a Gaussian posterior  (𝝁, 𝜹) with the mean and variance are given as, respectively,

𝝁 = 𝜎−2𝜹Φ𝑇 𝐭 (12)

𝜹 =
(

𝐃 + 𝜎−2Φ𝑇Φ
)−1 (13)

where 𝐃 = diag(𝛼1,… , 𝛼𝑏). It is worth noting that Eqs. (12) and (13) reflect the classic setting of a Bayesian framework where the
prior of the parameters is updated based on the measured/observed data, which in this case is contained in 𝐭 and 𝐃.

3.3. Maximization of the marginal likelihood

The marginal likelihood can be obtained by integrating out the unknown coefficients 𝐂 as,

𝑝(𝐭|𝜶, 𝜎2) = ∫ 𝑝(𝐭|𝐂, 𝜎2)𝑝(𝐂|𝜶)𝑑𝐂 (14)

The log marginal likelihood can be obtained from the analytical solution of the above integration as,

log𝑝(𝐭|𝜶, 𝜎2) = −1
2

[

𝑚log(2𝜋) + log|Ω| + 𝐭𝑇Ω−1𝐭
]

(15)

where Ω = 𝜎2𝐈+Φ𝐃−1Φ𝑇 . Alternatively, Eq. (15) can be expressed in terms of the posterior statistics 𝝁, 𝜹 (Eqs. (12) and (13)) as,

log𝑝(𝐭|𝜶, 𝜎2) = −1
2

[

𝑚log(2𝜋𝜎2) +
(

𝜎−2𝐭𝑇 𝐭 − 𝝁𝑇 𝜹−1𝝁
)

+ log|𝜹| −
𝑏
∑

𝑖=1
log𝛼𝑖

]

(16)

he objective is to maximize the marginal likelihood, as represented by Eq. (15) or its logarithmic equivalent in Eq. (16) with respect
o the hyperparameters 𝜶 and 𝜎2. This is known as the type-II maximum likelihood approach and is used to achieve the sparse
ayesian learning. This essentially involves the optimization of the hyperparameters 𝜶 which controls the sparsity and estimation

of the signal noise 𝜎2 and while updating the posterior statistics 𝝁, 𝜹 in parallel. This is an iterative process until convergence where
the hyperparameters 𝜶 and 𝜎2 are set to their initial values, the posterior statistics 𝝁, 𝜹 are computed using Eqs. (12) and (13) and
subsequently the new estimates for 𝜶 and 𝜎2 which maximize the marginal likelihood, are obtained. For a detailed breakdown of
the iterative re-estimation procedure, the readers can refer to [39].

However, as pointed out in [44], the aforementioned updating scheme experiences delayed convergence due to the following
reasons, (i) the Bayesian learning depends on heuristic re-estimation of the hyperparameters and is not a mathematically rigorous
iterative approach, (ii) the guarantee to attain a local maxima of the marginal likelihood is not well discussed and (iii) the algorithm
starts with all 𝑏 basis terms and trims the library matrix Φ iteratively, as a result, the initial iterations are computationally expensive.

his approach has been used for numerical illustration in this work and will be referred to as slow-RVM (S-RVM) from now onwards.
To address these drawbacks, an accelerated expectation maximization (EM) algorithm was proposed in [44]. A distinctive feature

f this algorithm is that the basis terms can be added and deleted sequentially so as to increase the marginal likelihood. This more
fficient approach has also been used for numerical illustration and will be referred to as fast-RVM (F-RVM) from now onwards.
pecifically, the efficiency is realized by the expression of Ω employed in the marginal likelihood function in Eq. (15). As illustrated
reviously, Ω is expressed as 𝜎2𝐈 +Φ𝐃−1Φ𝑇 in [39], while in [44], Ω is re-written to obtain the explicit contribution of 𝛼𝑖 as,

Ω = 𝜎2𝐈 +
∑

𝑗≠𝑖
𝛼−1𝑗 𝝓𝑗𝝓𝑇

𝑗 + 𝛼−1𝑖 𝝓𝑖𝝓𝑇
𝑖

= Ω−𝑖 + 𝛼−1𝑖 𝝓𝑖𝝓𝑇
𝑖

(17)

where Ω−𝑖 represents Ω without the contribution of the 𝑖th basis vector. Utilizing matrix determinant and inverse identities and
Eq. (17), the determinant and the inverse of Ω can be computed, respectively, as

|Ω| = |Ω−𝑖||1 + 𝛼−1𝑖 𝝓𝑇
𝑖 Ω

−1
−𝑖𝝓𝑖| (18)

Ω−1 = Ω−1
−𝑖 −

Ω−1
−𝑖𝝓𝑖𝝓𝑇

𝑖 Ω
−1
−𝑖

𝑇 −1
(19)
5

𝛼𝑖 + 𝝓𝑖 Ω−𝑖𝝓𝑖
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Eq. (15) can be re-written by substituting Eqs. (18) and (19) as,

log𝑝(𝐭|𝜶, 𝜎2) = −1
2

[

𝑚log(2𝜋) + log|Ω−𝑖| + 𝐭𝑇Ω−1
−𝑖 𝐭−

log𝛼𝑖 + log(𝛼𝑖 + 𝝓𝑇
𝑖 Ω

−1
−𝑖𝝓𝑖) −

(𝝓𝑇
𝑖 Ω

−1
−𝑖 𝐭)

2

𝛼𝑖 + 𝝓𝑇
𝑖 Ω

−1
−𝑖𝝓𝑖

] (20)

log𝑝(𝐭|𝜶, 𝜎2) = log𝑝(𝐭|𝛼−𝑖, 𝜎2) +
1
2

[

log𝛼𝑖 − log(𝛼𝑖 + 𝑘𝑖) +
𝑙2𝑖

𝛼𝑖 + 𝑘𝑖

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓 (𝛼𝑖)

(21)

here log𝑝(𝐭|𝛼−𝑖, 𝜎2) is the log marginal likelihood without the contribution of the 𝑖th basis vector 𝝓𝑖. The quantities 𝑘𝑖 and 𝑙𝑖 are,

𝑘𝑖 = 𝝓𝑇
𝑖 Ω

−1
−𝑖𝝓𝑖 (22)

𝑙𝑖 = 𝝓𝑇
𝑖 Ω

−1
−𝑖 𝐭 (23)

Instead of performing the inversion of Ω−1
−𝑖 in Eqs. (22) and (23) and save the associated cost, 𝑘′𝑖 and 𝑙′𝑖 can be determined by using

the Woodbury matrix identity as,

𝑘′𝑖 = 𝝓𝑇
𝑖 Ω

−1𝝓𝑖

= 𝝓𝑇
𝑖 𝐇𝝓𝑖 − 𝝓𝑇

𝑖 𝐇Φ𝜹Φ𝑇𝐇𝝓𝑖
(24)

𝑙′𝑖 = 𝝓𝑇
𝑖 Ω

−1𝐭
= 𝝓𝑇

𝑖 𝐇𝐭 − 𝝓𝑇
𝑖 𝐇Φ𝜹Φ𝑇𝐇𝐭

(25)

and subsequently using Eqs. (24) and (25), 𝑘𝑖 and 𝑙𝑖 can be computed as follows:

𝑘𝑖 =
𝛼𝑖𝑘′𝑖

𝛼𝑖 − 𝑘′𝑖
(26)

𝑙𝑖 =
𝛼𝑖𝑙′𝑖

𝛼𝑖 − 𝑘′𝑖
(27)

where 𝐇 = 𝜎−2𝐈. It is to be noted that when 𝛼𝑖 = ∞, 𝑘𝑖 = 𝑘′𝑖 and 𝑙𝑖 = 𝑙′𝑖 .
The stationary points of the marginal likelihood can be obtained when the derivative

𝑑𝑓 (𝛼𝑖)
𝛼𝑖

=
𝛼−1𝑖 𝑘2𝑖 − (𝑙2𝑖 − 𝑘𝑖)

2(𝛼𝑖 + 𝑘𝑖)2
(28)

is equated to zero. Since 𝛼𝑖 is an inverse variance and is always positive, the following two solution case scenarios hold,

𝛼𝑖 =
𝑘2𝑖

𝑙2𝑖 − 𝑘𝑖
; if 𝑙2𝑖 > 𝑘𝑖 (29)

𝛼𝑖 = ∞; if 𝑙2𝑖 ≤ 𝑘𝑖 (30)

Note that Eqs. (29) and (30) provide an explicit closed-form solution for 𝛼𝑖, depending on whether a particular basis function is
included or not and the given hyperparameter values [45]. From Eqs. (29) and (30), it is implied that

• If 𝝓𝑖 is in the model (i.e., 𝛼𝑖 < ∞) and 𝑙2𝑖 ≤ 𝑘𝑖, then 𝝓𝑖 is to be deleted (which means 𝛼𝑖 is set as ∞).
• If 𝝓𝑖 is not included in the model (i.e., 𝛼𝑖 = ∞) and 𝑙2𝑖 > 𝑘𝑖, then 𝝓𝑖 is to be added (which means 𝛼𝑖 is set to some optimal

finite value).
• If 𝝓𝑖 is in the model (i.e., 𝛼𝑖 < ∞) and 𝑙2𝑖 > 𝑘𝑖, then 𝛼𝑖 is to be updated using Eq. (29).

Thus, an efficient algorithm can be realized by carrying out these operations in a sequential manner for every basis vector. A detailed
pseudo-code for the sequential EM algorithm employed in RVM has been presented in Algorithm 1 to enhance understanding and
promote reproducibility.

3.4. Convergence

In this sub-section, the convergence criteria for the EM algorithm is briefly discussed. The EM algorithm aiming to maximize
the marginal likelihood commences with an empty basis vector and selects the particular basis vector 𝝓 which corresponds to
6
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the maximum change in the marginal likelihood (𝜶, 𝜎2) ((𝜶, 𝜎2) denotes log𝑝(𝐭|𝜶, 𝜎2) of Eq. (15) and is used for notational
onvenience) within each iteration. For computational efficiency of the EM algorithm, the basis matrix Φ and the posterior statistics
𝜹 and 𝝁) consist of only 𝑏′ (where 𝑏′ ≤ 𝑏) basis functions which are currently included in the model (i.e., 𝝓𝑖 corresponding to 𝛼𝑖 < ∞).

Similarly, the diagonal matrix 𝐃 contains 𝑏′ entries of the hyperparameter 𝛼𝑖 (i.e., 𝛼𝑖 corresponding to 𝛼𝑖 < ∞). From Eq. (15), the
hange in the marginal likelihood can be represented as,

2𝛥 = 2((𝜶̃, 𝜎2) − (𝜶, 𝜎2))

= log(Ω
Ω̃

+ 𝐭T(Ω−1 − Ω̃−1)𝐭)
(31)

where 𝜶̃ and Ω̃ denote the new updates of 𝜶 and Ω, respectively. Note that the resulting Eq. (31) will vary depending upon 𝛼𝑖 being
added, deleted or re-estimated and is illustrated as follows:

• Addition:
Ω = Ω−𝑖 and Ω̃ = Ω−𝑖 + 𝛼−1𝑖 𝝓𝑖𝝓T

𝑖 ;

2𝛥𝑖 =
𝑙′𝑖
2 − 𝑘′𝑖
𝑘′𝑖

+ log
𝑘′𝑖
𝑙′𝑖

(32)

• Deletion:
Ω = Ω−𝑖 + 𝛼−1𝑖 𝝓𝑖𝝓T

𝑖 and Ω̃ = Ω−𝑖 ;

2𝛥𝑖 =
𝑙′𝑖
2

𝑘′𝑖 − 𝛼𝑖
− log(1 −

𝑘′𝑖
𝛼𝑖
)

(33)

• Re-estimation:
Ω = Ω−𝑖 + 𝛼−1𝑖 𝝓𝑖𝝓T

𝑖 and Ω̃ = Ω−𝑖 + 𝛼−1𝑖 𝝓𝑖𝝓T
𝑖 ;

2𝛥𝑖 =
𝑙′𝑖
2

𝑘′𝑖 + (𝛼−1𝑖 − 𝛼−1𝑖 )−1
− log(1 + 𝑘′𝑖(𝛼

−1
𝑖 − 𝛼−1𝑖 ))

(34)

he iterations will continue until either the maximum number of iterations have been reached or the estimates have converged,
s illustrated in step 5 of Algorithm 1. To ensure a local maximum of the marginal likelihood has been attained, the convergence
riteria include (i) |𝛥log𝛼| < 10−6, where |𝛥log𝛼| denotes the logarithmic change in 𝛼𝑖 and is defined in step 30 of Algorithm
and (ii) all other 𝑙𝑖2 − 𝑘𝑖 ≤ 0, which essentially means that any basis vector 𝝓𝑖 excluded from the model from the current

teration will not be included in the model for the next iteration [44]. The above criteria have been illustrated in steps 30 to 41 of
lgorithm 1.

.5. Prediction step

For making predictions on unseen (test) data 𝐭∗ with the posterior model of the coefficients 𝐂 given by Eqs. (12) and (13), the
istribution 𝑝(𝐭∗|𝐭,𝜶, 𝜎2) is to be determined. The prediction model results in a multivariate Gaussian as

𝑝(𝐭∗|𝐭,𝜶, 𝜎2) =  (𝐭|𝝁∗,Ω∗) (35)

ith mean and covariance as, respectively,

𝝁∗ = Φ𝝁 (36)

Ω∗ = 𝜎2𝐈 +Φ𝑇 𝜹Φ (37)

ote that the predictive variance in Eq. (37) is the result of the sum of two terms, one arising from the estimated signal noise 𝜎2

nd the other from Φ𝑇 𝜹Φ due to the predictive uncertainty associated with the coefficients.

.6. Implementation

The computations in this work have been performed using MATLAB® R2023a. The MATLAB® codes of RVM implemented in
this work are freely available for download from the original author’s webpage (Link: <https://www.miketipping.com/sparsebayes.
htm>). In addition, for this work, a more recent framework proposed in [46] was also combined with the above for the multi-
output extension of RVM. The MATLAB® codes of this implementation can be found at <https://uk.mathworks.com/matlabcentral/
fileexchange/49131-fast-multi-output-relevance-vector-regression>. The MATLAB® codes for SINDy used here are available for
download from <https://faculty.washington.edu/kutz/page26/>.

The CPU time required by RVM and SINDy reported in the next sections are based on computations performed on a 12th Gen
ntel® CoreTM i9-12950HX 2.30 GHz CPU.
7
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Algorithm 1: Pseudo-code for the efficient sequential EM algorithm in RVM
Input:

1 State derivative vector Ẏ and the candidate basis (library) matrix 𝜱 ; Initialization:
2 Set an initial value to 𝜎2 ← 𝛾cov(𝐭), 0 < 𝛾 < 1;
3 Set 𝛼𝑖 ← ∞ for all basis vectors;
4 Set iteration number iter ← 1 and number of active basis vectors 𝑏′ ← 0;
Iteration:

5 while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟max or 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑁𝑜 do
/*Maximization*/:

6 for 𝑖 ← 1 𝑡𝑜 𝑏 do
7 update 𝑘′𝑖 , 𝑙

′
𝑖 using Eqs. (24), (25) and 𝑘𝑖 , 𝑙𝑖 using Eqs. (26), (27)

8 if 𝑙𝑖2 > 𝑘𝑖 then
9 if 𝛼𝑖 < ∞ then
10 𝑡𝑎𝑠𝑘(𝑖) ←′ 𝑟𝑒 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛′

11 𝛼𝑖 ←
𝑘𝑖

2

𝑙𝑖
2−𝑘𝑖

; ⊳ From Eq.(29)
12 Update 2𝛥𝑖 using Eq.(34)
13 else
14 𝑡𝑎𝑠𝑘(𝑖) ←′ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛′
15 Update 2𝛥𝑖 using Eq.(32)
16 end
17 else
18 if 𝛼𝑖 < ∞ then
19 𝑡𝑎𝑠𝑘(𝑖) ←′ 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛′
20 Update 2𝛥𝑖 using Eq.(33)
21 end
22 end
23 if imag(2𝛥𝑖) then
24 2𝛥𝑖 ← −∞ ; ⊳ If 2𝛥𝑖 is imaginary; replace with −∞
25 end
26 end
27 [∼, 𝑖] ← max𝑖(2𝛥𝑖) ; ⊳ 𝑖 gives maximum change of marginal likelihood
28 switch 𝑡𝑎𝑠𝑘(𝑖) do
29 case 𝑟𝑒 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 do
30 𝛥 log 𝛼 ← log 𝛼𝑖

𝛼𝑖
31 if |𝛥 log 𝛼| < 𝑡𝑜𝑙 then
32 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑦𝑒𝑠
33 for 𝑖 ← 1𝑡𝑜𝑏 do
34 if 𝛼𝑖 ← ∞ then
35 if 𝑙𝑖2 − 𝑘𝑖 > 0 then
36 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑛𝑜
37 break for loop
38 end
39 end
40 end
41 end
42 𝛼𝑖 ← 𝛼𝑖
43 end
44 case 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 do
45 𝛼𝑖 ←

𝑘𝑖
2

𝑙𝑖
2−𝑘𝑖

46 𝑏′ ← 𝑏′ + 1
47 end
48 case 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 do
49 𝛼𝑖 ← ∞
50 𝑏′ ← 𝑏′ − 1
51 end
52 end
53 if 𝑖𝑡𝑒𝑟 ≠ 1 then
54 update 𝜎2 ← ||𝐭−𝜱𝝁||2

𝑚−𝑏+
∑𝑏

𝑖=1 𝛼𝑖𝛿𝑖𝑖
; ⊳ 1 obtained by maximizing Eq.(16) w.r.t 𝜎2

55 end
/*Expectation*/:

56 Sequentially update 𝝁, 𝜹,𝜱 (which consist of 𝑏′ basis vectors that are currently included in the model) and D (consisting of 𝑏′ number of
hyperparameter 𝛼𝑖, currently included in the model).

57 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
58 end

Output:
59 Posterior statistics: 𝝁 and 𝜹

1 Setting the derivative of log marginal likelihood in Eq. (16) w.r.t 𝜎2 to 0, the updated expression for 𝜎2 [39] is obtained as 𝑑
𝑑𝜎−2

log𝑝(𝐭,𝜶, 𝜎2) =

1
[

𝑚 − ‖𝐭 −Φ𝝁‖2 𝑇
]

−2 𝑚−𝑏+
∑𝑏
𝑖=1 𝛼𝑖𝛿𝑖𝑖 and is used in Step 54 of Algorithm 1.
8
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Table 1
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Duffing oscillator. The model
predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented
for comparison. The true coefficients adopted in the actual equation is also presented for
validation.

True
[

𝑥̇
𝑥̈

]

=
[

𝑥̇
100 cos𝜔𝑡 − 𝑥̇ − 25𝑥 − 2500𝑥3

]

F-RVM
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎣

0.9995
(0.0028)

𝑥̇

99.8353
(2.7×10−4 )

cos𝜔𝑡 − 0.9853
(0.0028)

𝑥̇ − 25.3157
(0.0042)

𝑥 − 2493.8
(2.1×10−4 )

𝑥3

⎤

⎥

⎥

⎥

⎦

S-RVM
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎣

0.9995
(7.5×10−4 )

𝑥̇

99.8353
(0.0017)

cos𝜔𝑡 − 0.9853
(0.0174)

𝑥̇ − 25.3157
(0.0259)

𝑥 − 2493.8
(0.0013)

𝑥3

⎤

⎥

⎥

⎥

⎦

SINDy
[

𝑥̇
𝑥̈

]

=

[

0.9995𝑥̇

99.8381 cos𝜔𝑡 − 0.9857𝑥̇ − 25.3271𝑥 − 2493.8𝑥3

]

4. Numerical examples

4.1. Duffing oscillator

The governing equation for the Duffing oscillator is given by

𝑥̈ + 2𝜁𝜔𝑛𝑥̇ + 𝜔2
𝑛𝑥 + 𝜖𝜔2

𝑛𝑥
3 = 𝐹0 cos𝜔𝑡 (38)

where, 𝜔𝑛 represents the undamped linear natural frequency, 𝜁 is the linear damping ratio, 𝜖 controls the level of nonlinearity, 𝐹0
and 𝜔 are the amplitude and frequency of the harmonic forcing, respectively. The initial conditions are considered as 𝑥(𝑡 = 0) = 0
and 𝑥̇(𝑡 = 0) = 0. The following parameter values are adopted: 𝜔𝑛 = 5 rad/s, 𝜁 = 0.1, 𝜖 = 100 and 𝐹0 = 100 N.

The state space form of Eq. (38) can be represented as
[

𝑥̇

𝑥̈

]

=

[

𝑥̇

𝐹0 cos𝜔𝑡 − 2𝜁𝜔𝑛𝑥̇ − 𝜔2
𝑛𝑥 − 𝜖𝜔2

𝑛𝑥
3

]

(39)

ndependent simulations are performed at different excitation frequencies by varying the frequency ratio 𝜈 = 𝜔
𝜔𝑛

from 0.7 to 1.3 in
steps of 0.1 to construct the dataset. White Gaussian noise with 10% variation, relative to the standard deviation of the observations
has been added to the synthetically generated dataset to simulate the measurement error. Time 𝑡 is varied from 0 to 25 s with step
size 0.01, and thus, 2501 points are considered for each forcing frequency. The identification results are presented in Table 1 and
Fig. 2.

The discovered state space form of the Duffing oscillator in the form of selected models and identified parameters obtained by
F-RVM, S-RVM and SINDy have been presented in Table 1. In total, 11 candidate terms were included in the basis library considering
up to the third-order polynomials and the forcing term. The close proximity of the identified models with the true coefficients of the
actual terms reveal excellent accuracy achieved by all of the three approaches. The sparsity promoting feature in the approaches
proved to be effective with only the relevant terms present in the actual equation identified and no false discoveries were observed
from Table 1. Since, the RVM approaches are Bayesian in nature, the predictive uncertainty associated with the posteriors are
estimated and the coefficient of variation values are represented within parenthesis below their corresponding mean values. The
CPU time required for fast RVM, slow RVM and SINDy are 26.1550 s, 212.6206 s and 0.0174 s, respectively. Fig. 2 presents the
comparison of true and identified velocity and displacement time response plots obtained by F-RVM corresponding to four frequency
ratios (different to that used in the training) for validation. These plots further confirm the accuracy of the equation discovery results
in Table 1 and illustrate the effectiveness of the proposed approach on unseen data in mapping the complex nonlinear dynamic
behaviour.

4.2. Coulomb friction damping model

The governing equation for the Coulomb friction damping model is given by

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 + 𝑐𝐹 sgn(𝑥̇) = 𝐹0 cos𝜔𝑡 (40)

where, 𝑚, 𝑐 and 𝑘 are the mass, stiffness and linear damping coefficient, respectively. sgn represents the signum function. 𝑐𝐹 is the
nonlinear frictional damping coefficient. 𝐹0 and 𝜔 are the amplitude and frequency of the harmonic forcing, respectively. The initial
conditions are considered as 𝑥(𝑡 = 0) = 0 and 𝑥̇(𝑡 = 0) = 0. The following parameter values are adopted: 𝑚 = 1 kg, 𝑐 = 2 N s/m,
𝑘 = 1000 N/m, 𝑐 = 1 N and 𝐹 = 100 N.
9
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Fig. 2. Comparison of the true and identified velocity (in m/s) versus displacement (in m) time response for the Duffing oscillator corresponding to frequency
ratios 𝜔∕𝜔𝑛 equal to (a) 0.6, (b) 0.85, (c) 1.25 and (d) 1.4 (different to that used in the model training). The identified responses were generated using the
mean coefficient values obtained from the accelerated relevance vector machine approach.

The state space form of Eq. (40) can be represented as
[

𝑥̇

𝑥̈

]

=
⎡

⎢

⎢

⎣

𝑥̇
1
𝑚

(

𝐹0 cos𝜔𝑡 − 𝑐𝑥̇ − 𝑘𝑥 − 𝑐𝐹 sgn(𝑥̇)
)

⎤

⎥

⎥

⎦

(41)

The variation range of the excitation frequencies, time duration and noise level have been considered to be the same as in the
previous example (Section 4.1). The results of the discovered system are presented in Table 2 and Fig. 3.

In total, 8 candidate terms were included in the basis library considering up to the second order polynomials, nonlinear frictional
damping and the forcing term. The sparsity promoting feature in the approaches proved to be effective with only the 4 terms present
in the actual equation identified and no false discoveries were observed from Table 2. However, SINDy was found to be less accurate
compared to the RVM based approaches in identifying the nonlinear frictional damping coefficient, which is critical for this example.
The CPU time required for fast RVM, slow RVM and SINDy are 21.9345 s, 90.2491 s and 0.0108 s, respectively. The identified
displacement and velocity time response plots for various frequency ratios (different to that used in the training) obtained by fast
RVM are presented in Fig. 3.
10
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c
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Table 2
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Coulomb friction damping model.
The model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented
for comparison. The true coefficients adopted in the actual equation is also presented for
validation.

True
[

𝑥̇
𝑥̈

]

=
[

𝑥̇
100 cos𝜔𝑡 − 2𝑥̇ − 1000𝑥 − sgn(𝑥̇)

]

F-RVM
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎣

0.9994
(5.2×10−4 )

𝑥̇

100.4889
(1.2×10−4 )

cos𝜔𝑡 − 2.0206
(3.5×10−4 )

𝑥̇ − 1000
(1.6×10−5 )

𝑥 − 1.0515
(0.0088)

sgn(𝑥̇)

⎤

⎥

⎥

⎥

⎦

S-RVM
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎣

0.9994
(7.6×10−4 )

𝑥̇

100.4890
(0.0055)

cos𝜔𝑡 − 2.0206
(0.0163)

𝑥̇ − 1000
(7.7×10−4 )

𝑥 − 1.0512
(0.4070)

sgn(𝑥̇)

⎤

⎥

⎥

⎥

⎦

SINDy
[

𝑥̇
𝑥̈

]

=

[

0.9994𝑥̇

100.4983 cos𝜔𝑡 − 2.0134𝑥̇ − 1000𝑥 − 1.2209 sgn(𝑥̇)

]

4.3. Bouc–Wen oscillator

The governing equation for the Bouc–Wen oscillator is given by

𝑚𝑥̈ + 𝑎𝑘𝑥 + (1 − 𝑎)𝑘𝑧 = 𝐹0 cos𝜔𝑡

𝑧̇ = 𝑥̇ − 𝛿𝑧|𝑧|𝛼−1|𝑥̇| − 𝛾|𝑧|𝛼 𝑥̇
(42)

where, 𝑚 and 𝑘 are the mass and stiffness, respectively. The parameters 𝛼, 𝛿 and 𝛾 control the shape of the hysteresis loop and
𝑎 controls the degree of hysteresis. 𝐹0 and 𝜔 are the amplitude and frequency of the harmonic forcing, respectively. The initial
conditions are considered as 𝑥(𝑡 = 0) = 0, 𝑥̇(𝑡 = 0) = 0 and 𝑧(𝑡 = 0) = 0. The following parameter values are adopted: 𝑚 = 1 kg, 𝑘 = 50
N/m, 𝑎 = 0, 𝛼 = 1, 𝛿 = 0.5, 𝛾 = 0.5 and 𝐹0 = 100 N. As derived in [23], the state space form of Eq. (42) can be represented as

⎡

⎢

⎢

⎢

⎣

𝑥̇

𝑥̈

𝑎̇𝑠

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇
1
𝑚

(

𝐹0 cos𝜔𝑡 − 𝑎𝑠
)

𝑘𝑥̇ − 𝛿𝑎𝑠|𝑥̇| − 𝛾|𝑎𝑠|𝑥̇

⎤

⎥

⎥

⎥

⎥

⎦

(43)

where, 𝑎𝑠 = 𝑘𝑧. Two cases have been simulated for the identification. The first case considers all the three states (in Eq. (43)) have
been measured and used in the identification. The second case considers only the first two system states (as given by the first two
states). This is to obtain an equivalent model and simulate a real-life scenario where the third state (𝑎𝑠) is not measured. Hence, the
identification is performed on an equivalent 2D system. For both of these individual cases, independent simulations are performed
at different excitation frequencies by varying the frequency ratio 𝜈 = 𝜔

𝜔𝑛
from 0.8 to 1.2 in steps of 0.1 to construct the dataset.

White Gaussian noise with 10% variation, relative to the standard deviation of the observations has been added to the synthetically
generated dataset to simulate the measurement error. Time duration 𝑡 = [0 25] s is considered with step size 0.01 s, and thus, 2501
points are considered for each forcing frequency. The results of the discovered system corresponding to the first case (all states
measured) are presented in Table 3 and Fig. 4. The results of the second case are presented in Table 4 and Fig. 5.

For the first and second case, 13 and 12 candidate terms were included in the basis library, respectively, considering up to
the second order polynomials, hysteretic nonlinearity and the forcing term. To obtain an equivalent model for the second case in
which the true model is unknown, a few combinations of hysteretic nonlinear terms were included in the library as evident from
the discovered equations presented in Table 4. It can be noted from Figs. 4 and 5 that the identified time response by F-RVM is
accurate on test datasets with different frequency ratios to that of the training regime. The CPU times required by fast RVM, slow
RVM and SINDy for the first case, are 28.7660 s, 122.2755 s and 0.0118 s, respectively. Whereas, for the second case, the CPU
times required by fast RVM, slow RVM and SINDy were 10.4534 s, 83.3005 s and 0.0078 s, respectively.

4.4. Valanis model

The governing equation for the Valanis model is given by

𝑚𝑥̈ + 𝑘𝑥 + 𝐹nl = 𝐹0 sin𝜔𝑡

̇𝐹nl =
(

𝐸1 +
𝑥̇
|𝑥̇|

(

𝑃 (𝑥, 𝑥̇) − 𝐸2𝐹nl
)

)

𝑥̇
(44)

where 𝑚 and 𝑘 are the mass and stiffness coefficient, respectively. 𝐹nl represents the nonlinear restoring force. 𝐸1 and 𝐸2 are
onstants. Four cases to simulate different hysteretic behaviour have been investigated by varying 𝑃 (𝑥, 𝑥̇) in the following sub-
ections. For details of the models and their physical interpretation, one is referred to [47]. 𝐹 and 𝜔 are the amplitude and frequency
11
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Fig. 3. Comparison of the true and identified velocity (in m/s) versus displacement (in m) time response for the Coulomb friction damping model corresponding
to frequency ratios 𝜔∕𝜔𝑛 equal to (a) 0.65, (b) 1.05, (c) 1.25 and (d) 1.4 (different to that used in the model training). The identified responses were generated
using the mean coefficient values obtained from the accelerated relevance vector machine approach.

of the harmonic forcing, respectively. The initial conditions are considered as 𝑥(𝑡 = 0) = 0 and 𝑥̇(𝑡 = 0) = 0. For the identification, data
from all the three system states are employed. Independent simulations are performed at different excitation frequencies by varying
the frequency ratio 𝜈 = 𝜔

𝜔𝑛
from 0.7 to 1.3 in steps of 0.1 to construct the dataset. White Gaussian noise with 10% variation, relative

to the standard deviation of the observations has been added to the synthetically generated dataset to simulate the measurement
error. Time duration 𝑡 = [0 25] s is considered with step size 0.01 s, and thus, 2501 points are considered for each forcing frequency.
The following parameter values are adopted: 𝑚 = 1 kg, 𝑘 = 100 N/m, and 𝐹0 = 1 N. The above details are applicable to all the
following four sub-cases considered, unless specified.

4.4.1. Case I: 𝑃 (𝑥, 𝑥̇) = 𝛼𝑥
Considering 𝑃 (𝑥, 𝑥̇) = 𝛼𝑥, the state space form of Eq. (44) can be represented as

⎡

⎢

⎢

⎢

⎣

𝑥̇

𝑥̈
̇𝐹nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇
1
𝑚

(

𝐹0 sin𝜔𝑡 − 𝑘𝑥 − 𝐹nl
)

(

10 + 𝑥̇
|𝑥̇|

(

5𝑥 − 20𝐹nl
)

)

𝑥̇

⎤

⎥

⎥

⎥

⎥

⎦

(45)

where 𝐸 = 10 N/m, 𝐸 = 20 1/m and 𝛼 = 5 N/m2. The results of the discovered system are presented in Table 5 and Fig. 6.
12
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Table 3
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Bouc–Wen oscillator for the
case where all the three system states are considered to be measured and identified. The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented
for comparison. The true coefficients adopted in the actual equation is also presented for
validation.

True
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝑎̇𝑠

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑥̇

100 cos𝜔𝑡 − 𝑎𝑠
50𝑥̇ − 0.5𝑎𝑠|𝑥̇| − 0.5|𝑎𝑠|𝑥̇

⎤

⎥

⎥

⎥

⎦

F-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝑎̇𝑠

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9993
(6.4×10−4 )

𝑥̇

100.0320
(1.4×10−4 )

cos𝜔𝑡 − 0.9962
(2.5×10−4 )

𝑎𝑠

49.9918
(3.8×10−5 )

𝑥̇ − 0.5015
(8.2×10−5 )

𝑎𝑠|𝑥̇| − 0.4997
(1.4×10−4 )

|𝑎𝑠|𝑥̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

S-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝑎̇𝑠

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9993
(8.8×10−4 )

𝑥̇

100.0320
(0.0014)

cos𝜔𝑡 − 0.9962
(0.0024)

𝑎𝑠

49.9918
(0.0012)

𝑥̇ − 0.5015
(0.0026)

𝑎𝑠|𝑥̇| − 0.4997
(0.0043)

|𝑎𝑠|𝑥̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

SINDy
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝑎̇𝑠

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0.9993𝑥̇

100.0320 cos𝜔𝑡 − 0.9962𝑎𝑠
49.9920𝑥̇ − 0.5015𝑎𝑠|𝑥̇| − 0.4997|𝑎𝑠|𝑥̇

⎤

⎥

⎥

⎥

⎦

Fig. 4. Comparison of the true and identified time response for the Bouc–Wen oscillator corresponding to values of frequency ratio 𝜔∕𝜔𝑛 = 0.7, 1.3 and 0.75.
Note that the third state (𝑎𝑠) is assumed to be measured and the identification considers all three states as per Eq. (43). The identified responses have been
generated from the mean coefficient values obtained using the accelerated relevance vector machine approach. The response quantities 𝑥̇, 𝑎𝑠 and, 𝑎̇𝑠 depicted in
the above plots are expressed in m/s, N and, N/s, respectively.

In total, 13 candidate terms were included in the basis library considering up to the second order polynomials, nonlinear restoring
force and the forcing term. Good accuracy has been achieved as evident from Table 5 and Fig. 6. The CPU times required for fast
RVM, slow RVM and SINDy are 61.4065 s, 189.9256 s and 0.0206 s, respectively. The identified time response behaviour for various
frequency ratios (different to that used in the training dataset) obtained by fast RVM have been presented in Fig. 6.

4.4.2. Case II: 𝑃 (𝑥, 𝑥̇) = 𝛼𝑥 + 𝛽𝑥2|𝑥̇|
Considering 𝑃 (𝑥, 𝑥̇) = 𝛼𝑥 + 𝛽𝑥2|𝑥̇|, the state space form of Eq. (44) can be represented as

⎡

⎢

⎢

⎢

⎣

𝑥̇

𝑥̈
̇𝐹nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇
1
𝑚

(

𝐹0 sin𝜔𝑡 − 𝑘𝑥 − 𝐹nl
)

(

10 + 𝑥̇
|𝑥̇|

(

30𝑥 + 1400𝑥2|𝑥̇| − 20𝐹nl
)

)

𝑥̇

⎤

⎥

⎥

⎥

⎥

⎦

(46)

where, 𝐸1 = 10 N/m, 𝐸2 = 20 1/m, 𝛼 = 30 N/m2 and 𝛽 = 1400 N s/m4. The results of the discovered system are presented in Table 6
and Fig. 7.

In total, 14 candidate terms were included in the basis library considering up to the second order polynomials, nonlinear restoring
force and the forcing term. Close proximity of the identified and the true models as observed from Table 6 reveal excellent accuracy
achieved by all of the three approaches. The CPU times required for fast RVM, slow RVM and SINDy are 89.7748 s, 333.4480 s and
13
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Table 4
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Bouc–Wen oscillator for the case
where the third state is not considered to be measured and therefore, only the first two states
are identified. The model predictive uncertainty has been shown in the form of the coefficient
of variation within brackets below the mean coefficients. The equation discovered by SINDy has
been presented for comparison.

F-RVM
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.0012
(6.4×10−4 )

𝑥̇

−24.6415
(0.0025)

− 6.4423
(0.0052)

𝑥 − 2.2892
(5.9×10−4 )

𝑥̇ − 0.9961
(0.0031)

𝑥2 + 8.3936
(0.0048)

|𝑥| + 1.1851
(0.0057)

|𝑥̇| +…

0.2205
(0.0168)

𝑥|𝑥̇| − 0.1725
(0.0222)

|𝑥||𝑥̇| + 130.4215
(3.4×10−4 )

cos𝜔𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

S-RVM
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.0012
(9.1×10−4 )

𝑥̇

−24.6424
(0.0310)

− 6.4392
(0.0631)

𝑥 − 2.2892
(0.0073)

𝑥̇ − 0.9961
(0.0382)

𝑥2 + 8.3965
(0.0586)

|𝑥| + 1.1853
(0.0694)

|𝑥̇| +…

0.2200
(0.2051)

𝑥|𝑥̇| − 0.1729
(0.2701)

|𝑥||𝑥̇| + 130.4222
(0.0041)

cos𝜔𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

SINDy
[

𝑥̇
𝑥̈

]

=

⎡

⎢

⎢

⎢

⎣

1.0012𝑥̇
−21.7528 − 6.4999𝑥 − 2.3825𝑥̇ − 0.9166𝑥2 + 7.4717|𝑥| + 0.7333|𝑥̇| +…

0.2504𝑥|𝑥̇| − 0.1434|𝑥||𝑥̇| + 131.5459 cos𝜔𝑡

⎤

⎥

⎥

⎥

⎦

ig. 5. Comparison of the true and identified time response for the Bouc–Wen oscillator corresponding to test datasets with frequency ratio 𝜔∕𝜔𝑛 = 0.75, 1.25
nd 1.3. Note that the third state (𝑎𝑠) is not considered to be measured and therefore, not included in the identification to simulate a practical scenario. The
dentified responses have been generated from the mean coefficient values obtained using the accelerated relevance vector machine approach. The quantities
ime, velocity and acceleration depicted in the above plots are expressed in s, m/s and, m/s2, respectively.

.0175 s, respectively. The identified time response behaviour corresponding to various values of frequency ratio (different to that
sed in the model training) obtained by the fast RVM are presented in Fig. 7.

.4.3. Case III: 𝑃 (𝑥, 𝑥̇) = 𝛼𝑥 + 𝛽𝑒𝑥𝑥̇
Considering 𝑃 (𝑥, 𝑥̇) = 𝛼𝑥 + 𝛽𝑒𝑥𝑥̇, the state space form of Eq. (44) can be represented as

⎡

⎢

⎢

⎢

⎣

𝑥̇

𝑥̈
̇𝐹nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇
1
𝑚

(

𝐹0 sin𝜔𝑡 − 𝑘𝑥 − 𝐹nl
)

(

30 + 𝑥̇
|𝑥̇|

[

(5𝑥 + 3𝑒𝑥𝑥̇) × 104 − 500𝐹nl
]

)

𝑥̇

⎤

⎥

⎥

⎥

⎥

⎦

(47)

here, 𝐸1 = 30 N/m, 𝐸2 = 500 1/m, 𝛼 = 5 × 104 N/m2 and 𝛽 = 3 × 104 N s/m2. The results of the discovered system are presented
n Table 7 and Fig. 8.

In total, 14 candidate terms were included in the basis library considering up to the second order polynomials, nonlinear restoring
orce and the forcing term. The sparsity promoting feature in the RVM based approaches proved to be effective with only identifying
he relevant terms present in the actual equation and no false discoveries were observed from Table 7. SINDy was found to be
neffective in capturing the nonlinear dynamics from the noisy data with multiple false discoveries as evident from Table 7. The
PU times required for fast RVM, slow RVM and SINDy are 52.1649 s, 200.3144 s and 0.0210 s, respectively. The identified time
esponse behaviour corresponding to various values of frequency ratio (different to that used in the model training) obtained by
ast RVM are presented in Fig. 8.
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Table 5
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Valanis model (Case-I). The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented
for comparison. The true coefficients adopted in the actual equation is also presented for
validation.

True
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇

sin𝜔𝑡 − 100𝑥 − 𝐹nl

10𝑥̇ + 5 𝑥̇2

|𝑥̇|
𝑥 − 20 𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎦

F-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.0006
(0.0077)

𝑥̇

0.9983
(0.0110)

sin𝜔𝑡 − 99.9523
(0.0013)

𝑥 − 1.0524
(0.0361)

𝐹nl

10.0185
(0.0027)

𝑥̇ + 5.0051
(0.0092)

𝑥̇2

|𝑥̇|
𝑥 − 20.0376

(0.0030)
𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

S-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.0006
(7.5×10−4 )

𝑥̇

0.9983
(0.0108)

sin𝜔𝑡 − 99.9506
(0.0013)

𝑥 − 1.0529
(0.0355)

𝐹nl

10.0185
(8.2×10−4 )

𝑥̇ + 5.0051
(0.0028)

𝑥̇2

|𝑥̇|
𝑥 − 20.0376

(9.1×10−4 )

𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

SINDy
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1.0006𝑥̇

0.9997 sin𝜔𝑡 − 99.8679𝑥 − 1.0605𝐹nl

10.0186𝑥̇ + 5.0054 𝑥̇2

|𝑥̇|
𝑥 − 20.0378 𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎦

Table 6
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Valanis model (Case-II). The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented
for comparison. The true coefficients adopted in the actual equation is also presented for
validation.

True
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇

sin𝜔𝑡 − 100𝑥 − 𝐹nl

10𝑥̇ + 30 𝑥̇2

|𝑥̇|
𝑥 + 1400𝑥̇2𝑥2 − 20 𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎦

F-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9995
(0.0107)

𝑥̇

1.0079
(0.0107)

sin𝜔𝑡 − 99.8770
(0.0012)

𝑥 − 1.0046
(0.0123)

𝐹nl

9.9942
(0.0012)

𝑥̇ + 30.2019
(0.0031)

𝑥̇2

|𝑥̇|
𝑥 + 1399.4

(5×10−4 )
𝑥̇2𝑥2 − 19.9829

(5.1×10−4 )

𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

S-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9995
(7.5×10−4 )

𝑥̇

1.0079
(0.0077)

sin𝜔𝑡 − 99.8770
(8.2×10−4 )

𝑥 − 1.0046
(0.0088)

𝐹nl

9.9942
(0.0019)

𝑥̇ + 30.2019
(0.0047)

𝑥̇2

|𝑥̇|
𝑥 + 1399.4

(7.7×10−4 )
𝑥̇2𝑥2 − 19.9829

(8×10−4 )

𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

SINDy
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0.9995𝑥̇

1.0079 sin𝜔𝑡 − 99.9048𝑥 − 0.9964𝐹nl

9.9958𝑥̇ + 30.1965 𝑥̇2

|𝑥̇|
𝑥 + 1399.4𝑥̇2𝑥2 − 19.9829 𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎦

4.4.4. Case IV: 𝑃 (𝑥, 𝑥̇) = 𝛼1 sin 𝑥, 𝑥̇ ≥ 0 and 𝑃 (𝑥, 𝑥̇) = 𝛼2𝑥, 𝑥̇ < 0
Considering the above conditional form of 𝑃 (𝑥, 𝑥̇), 𝐹̇nl in Eq. (44) can be represented as

𝐹̇nl =
(

10 +
(

40 sin 𝑥 − 20𝐹nl
)

)

𝑥̇ 𝑥̇ ≥ 0

=
(

10 −
(

15𝑥 − 20𝐹nl
)

)

𝑥̇ 𝑥̇ < 0
(48)

The results of the discovered system are presented in Table 8 and Fig. 9.
In total, 12 candidate terms were included in the basis library considering up to the second order polynomials, nonlinear restoring

orce and the forcing term. Close proximity of the identified models with the true coefficients of the actual terms as observed from
able 8 reveal excellent accuracy achieved by both RVM based approaches. The sparsity promoting feature in RVM proved to be
ffective with only identifying the relevant terms present in the actual equation and no false discoveries were observed. SINDy
roved to be ineffective in capturing the nonlinear dynamics from the noisy data with multiple false discoveries as evident from
15

able 8. The CPU times required for fast RVM, slow RVM and SINDy are 96.1552 s, 280.5071 s and 0.0298 s, respectively. The
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Fig. 6. Comparison of the true and identified time response for the Valanis model (Case I) corresponding to various values of frequency ratio (different to that
used in the model training). The identified responses were generated using the mean coefficient values obtained from the accelerated relevance vector machine
approach. The quantities 𝑥, 𝑥̇ and 𝐹nl depicted in the above plots are expressed in m, m/s and, N, respectively.

identified time response behaviour corresponding to various frequency ratios (different to that used in the model training) obtained
by fast RVM have been presented in Fig. 9. These plots further confirm the accuracy of the equation discovery results in Table 8
and illustrate the effectiveness of the proposed approach on unseen data in mapping the complex nonlinear dynamic behaviour.

5. Application to experimental dataset: Discovery of a quasi zero stiffness device

This section identifies the property of the prototype Quasi Zero Stiffness (QZS) vibration isolator that is first described in [48],
with further analysis of the mechanism in [49]. The data used is presented in [50]. Small changes to system parameters can
have significant effects on these types of vibration isolator [51], making early detection of these changes through online dynamic
measurements advantageous. The device is adjustable, so that it can create an almost zero stiffness at the loaded equilibrium position.
Furthermore, it possesses stiffening nonlinearity that means that this does not come at the cost of an excessive static deflection.

5.1. Experimental setup and data generation

Fig. 10 shows the experimental set up; a mass is suspended via a length of low stretch cord from the isolator. The isolator has
been manually adjusted to achieve a linear dynamic stiffness as close to zero as possible. The base of the experiment is excited by
an APS113 electrodynamic shaker, with a control system that eliminates harmonics to ensure that the base motion is accurately
16
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Fig. 7. Comparison of the true and identified time response for the Valanis model (Case II) corresponding to various values of frequency ratio (different to that
used in the model training). The identified responses were generated using the mean coefficent values obtained from the accelerated relevance vector machine
approach. The quantities 𝑥, 𝑥̇ and 𝐹nl depicted in the above plots are expressed in m, m/s and, N, respectively.

represented by a sinusiodal motion of the desired amplitude. Both the base and payload motions are measured using piezoelectric
accelerometers and Omron ZX2-LD100 laser displacement sensors. Despite the isolator being a mult-element mechanism, Fig. 10(d)
shows how it can be simply represented as a nonlinear stiffness in parallel with some Coulomb friction representing the internal
friction of its joints.

Note that the sensors capture the absolute motions 𝑟 and 𝑦 of the base and payload respectively; identification makes use of the
relative motion of the payload found by

𝑥 = 𝑦 − 𝑟 . (49)

Fig. 11 represents results of a stepped sine test of the system; it is a frequency domain representation of the time data used for
identification. During the upsweep, at low frequencies there is initially insufficient force to overcome friction, and the response is
dominated by regions where the isolator is locked. However as the frequency reaches nearly 1.5 Hz, the response jumps up to a
branch of high amplitude resonant responses, where the stiffness nonlinearities in the isolator will be significant. The up sweep
must be terminated manually, as this branch of response has no upper bound, and leads to excessive amplitudes that will break
the mechanism. The downsweep begins at a frequency well beyond the primary resonance of the isolator, where the motion of the
payload is small and the forces transmitted to the payload are dominated by the friction and damping forces within the isolator. As
the frequency falls, the amplitude rises until again there is a jump frequency where the response becomes resonant. As the frequency
falls further, it drops down from the high amplitude region and soon starts to encounter locking (or sticking) of the isolator. The
17
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l
T

Table 7
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Valanis model (Case-III). The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented
for comparison. The true coefficients adopted in the actual equation is also presented for
validation.

True
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇

sin𝜔𝑡 − 100𝑥 − 𝐹nl

30𝑥̇ + 5 × 104 𝑥̇2

|𝑥̇|
𝑥 + 3 × 104 𝑥̇3

|𝑥̇|
e𝑥 − 500 𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎦

F-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9996
(0.4680)

𝑥̇

0.9991
(0.0552)

sin𝜔𝑡 − 99.7381
(0.1462)

𝑥 − 0.9997
(0.05)

𝐹nl

28.8967
(0.0595)

𝑥̇ + 5.1739 × 104
(0.0233)

𝑥̇2

|𝑥̇|
𝑥 + 3.0114 × 104

(0.0031)
𝑥̇3

|𝑥̇|
e𝑥 − 502.7737

(0.0053)
𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

S-RVM
⎡

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9996
(7.6×10−4 )

𝑥̇

0.9991
(0.0013)

sin𝜔𝑡 − 99.7377
(0.0033)

𝑥 − 0.9997
(0.0011)

𝐹nl

28.8967
(0.0526)

𝑥̇ + 5.1740 × 104
(0.0206)

𝑥̇2

|𝑥̇|
𝑥 + 3.0114 × 104

(0.0027)
𝑥̇3

|𝑥̇|
e𝑥 − 502.7739

(0.0047)
𝑥̇2

|𝑥̇|
𝐹nl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

SINDy
⎡

⎢

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9996𝑥̇ + 1.3676𝑥𝑥̇

0.9994 sin𝜔𝑡 − 99.7443𝑥 − 0.9997𝐹nl + 49.8043𝑥2 − 7.5446𝑥𝑥̇ −…
11.2788 𝑥̇2

|𝑥̇|
𝑥

28.9692𝑥̇ + 5.2060 × 104 𝑥̇2

|𝑥̇|
𝑥 + 3.0116 × 104 𝑥̇3

|𝑥̇|
e𝑥 − 502.9504 𝑥̇2

|𝑥̇|
𝐹nl −…

3.5811𝑥 + 4.0966 × 103𝑥2 + 226.7527𝑥𝑥̇ − 12.8410𝑥𝐹nl + 9.9603𝑥̇2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 8
The discovered equation (i.e., the selected models and identified parameters) obtained by the
accelerated and conventional relevance vector machines for the Valanis model (Case-IV). The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented for
comparison. The true coefficients adopted in the actual equation is also presented for validation.

True
⎡

⎢

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥̇
sin𝜔𝑡 − 100𝑥 − 𝐹nl

10𝑥̇ − 20𝑥̇𝐹nl + 40𝑥̇ sin 𝑥 ; 𝑥̇ ≥ 0

10𝑥̇ − 15𝑥𝑥̇ + 20𝑥̇𝐹nl ; 𝑥̇ < 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

F-RVM
⎡

⎢

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9997
(0.0187)

𝑥̇

1.0033
(0.0107)

sin𝜔𝑡 − 99.9195
(0.0038)

𝑥 − 1.0076
(0.0295)

𝐹nl

10.0118
(0.0021)

𝑥̇ − 19.9631
(0.0027)

𝑥̇𝐹nl + 39.0006
(0.020)

𝑥̇ sin 𝑥 ; 𝑥̇ ≥ 0

9.9999
(0.0022)

𝑥̇ − 14.9991
(0.0505)

𝑥𝑥̇ + 20.0309
(0.0025)

𝑥̇𝐹nl ; 𝑥̇ < 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

S-RVM
⎡

⎢

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9997
(7.5×10−4 )

𝑥̇

1.0033
(0.0046)

sin𝜔𝑡 − 99.9216
(0.0016)

𝑥 − 1.0074
(0.0129)

𝐹nl

10.0118
(0.0016)

𝑥̇ − 19.9631
(0.0020)

𝑥̇𝐹nl + 39.0005
(0.0153)

𝑥̇ sin 𝑥 ; 𝑥̇ ≥ 0

9.9999
(0.0017)

𝑥̇ − 14.9991
(0.0402)

𝑥𝑥̇ + 20.0309
(0.0020)

𝑥̇𝐹nl ; 𝑥̇ < 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

SINDy
⎡

⎢

⎢

⎢

⎣

𝑥̇
𝑥̈
𝐹̇nl

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9997𝑥̇
1.0035 sin𝜔𝑡 − 99.5150𝑥 − 1.0374𝐹nl + 3.8197𝑥2

10.0133𝑥̇ − 19.9589𝑥̇𝐹nl + 232.1757𝑥̇ sin 𝑥 − 193.0051𝑥𝑥̇ ; 𝑥̇ ≥ 0

9.9997𝑥̇ − 15.0229𝑥𝑥̇ + 20.0323𝑥̇𝐹nl ; 𝑥̇ < 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

region of possible sticking is omitted from identification, as frictional locking poses some unique problems for an identification that
is linear in parameters.

5.2. Results and discussion

The relative displacement and acceleration data used for the identification of the base excited model have been obtained from the
aser sensors and accelerometers, respectively. The velocity has been obtained by the spectral derivative of measured displacement.
18

he sampling rate of the measured signals was originally 25.6 kHz; this was downsampled to 25.6 Hz in order to give a manageable
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Fig. 8. Comparison of the true and identified time response for the Valanis model (Case III) corresponding to various values of frequency ratio (different to that
used in the model training). The identified responses were generated using the mean coefficent values obtained from the accelerated relevance vector machine
approach. The quantities 𝑥, 𝑥̇ and 𝐹nl depicted in the above plots are expressed in m, m/s and, N, respectively.

data set size, especially in consideration of the slow variant of RVM. Prior to downsampling, a low pass filter was applied to prevent
aliasing.

For the identification, the dataset has been segregated in three different groups based on the low, high and mixed amplitude
regimes as represented in Fig. 12. This helps verify the discovered models in terms of interpretability and consistency with expected
or known physical behaviour in these particular amplitude regimes. The mixed amplitude dataset has been shown to test the
generalizability and robustness of the identification algorithms. It should also be noted that Fig. 11 only represents a subset of
the time data available. This is because the experiment features a feed-forward algorithm that automatically seeks a pure sinusoidal
base motion of the desired amplitude. The algorithm can take many forcing cycles to achieve this condition, and in addition must
also wait many cycles for each iteration to settle to a steady state response. While the time data includes all data including non
steady state and intermediate iterations to reach the desired base motion, Fig. 11 only includes the end results of this process. It
is a substantial advantage of time based identification methods that they make few specific requirements for settling or particular
excitation conditions, because these requirements can often mean that nonlinear vibration experiments are very time consuming.

Next, the models are trained up to a certain time of the dataset and tested to predict the future evolution. The construction
of training and testing dataset adopted corresponding to each amplitude regime is illustrated as follows. In particular, for the low
amplitude dataset, the models are trained using responses from 0 to 500 s and then tested from above 500 s until the end i.e., 830
s. For the high amplitude dataset, the models are trained using responses from 0 to 120 s and then tested from above 120 s until
19
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Fig. 9. Comparison of the true and identified time response for the Valanis model (Case IV) corresponding to various values of frequency ratio (different to that
used in the model training). The identified responses were generated using the mean coefficent values obtained from the accelerated relevance vector machine
approach. The quantities 𝑥, 𝑥̇ and 𝐹nl depicted in the above plots are expressed in m, m/s and, N, respectively.

the end i.e., 280 s. For the mixed amplitude dataset, the models are trained from 0 to 1000 s and then tested from above 1000 s
until the end i.e., 1720 s. The selection of the model training time duration and train test split for low and high amplitude datasets
was primarily based on a parametric study by varying the regularization (sparsity thresholding) parameter 𝜆, the polynomial order
of the state terms in the library and to achieve a reasonable test error with the identified models. The selection of the train test split
for the mixed amplitude dataset is discussed in the next paragraph.

The identified and true (measured) acceleration time response corresponding to individual amplitude regimes have been
presented in Fig. 13. The identified responses have been obtained using F-RVM. The train and test normalized mean squared error
(NMSE) obtained using NMSE =

∑

( ̂̈𝑥 − 𝑥̈)2∕
∑

𝑥̈2 for assessing the model fit on the training and test data based on the resulting
predictive models have been reported in the individual figure captions. The NMSE values obtained for the low and high amplitudes
range from 1.4–2.4%, which indicates good approximation accuracy. In the mixed amplitude case, it can be observed that the train
NMSE is around 2%, however, the test NMSE increases to 9%. This is because the training region mostly consists of low amplitude
data whereas the test region consists of higher amplitude data. In spite of this discrepancy, achieving a test accuracy within 10%
is worth noting and demonstrates strong generalizability on not only untrained but datasets with very different behaviour. A more
detailed comparison of the errors obtained using F-RVM, S-RVM and SINDy have been presented in Table 9. Table 9 illustrates that
all three identification algorithms have performed satisfactorily in terms of accuracy. For the mixed amplitude case, as mentioned
earlier, the model was required to be trained up to 1000 s so as to cover at least the first manual disturbance (indicated by the
sudden amplitude rise during the time period 900–1000 s of the signal in Fig. 13(c)). This vital information from the in-house
20
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Fig. 10. (a) The experimental set up. (b) Detail of the isolator. (c) Detail of the payload. (d) Assumed SDOF model of a base excited mass suspended by a
nonlinear spring in parallel with dry friction.

Fig. 11. Response of the suspended mass to sinusoidal base motion of 4.5 mm.

designed experiment helped to facilitate the model training and limit the test NMSE to below 10%. For training the models up to
the specified time duration as reported in Table 9, the time required to train F-RVM, S-RVM and SINDy, respectively were 5.3097 s,
20.8211 s and 1.965 × 10−4 for the low amplitude regime, 1.8154 s, 8.9556 s and 0.0051 s for the high amplitude regime, 69.9780
s, 515.4777 s and 0.0087 s for the mixed amplitude regime.

The selected models and the identified parameters obtained by F-RVM, S-RVM and SINDy are presented in Tables 10–12,
corresponding to the low, high and mixed amplitude regimes, respectively. As shown in Table 10, the resulting model is comprised
of linear state response, base excitation and Coulomb damping ′ sgn(𝑥̇)′, which is the expected behaviour of QZS systems in the low-
amplitude regime [50]. As an additional exercise, higher order state terms up to the third order were considered in the library to
21
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Fig. 12. Measured state data corresponding to different amplitude regimes of the experimental dataset. The displacement and velocity are expressed in m and
m/s, respectively. The low, high and mixed amplitude data have been individually used for identification later.

Table 9
The normalized mean squared error (NMSE) corresponding to the mean train and mean test acceleration obtained by accelerated
RVM, conventional RVM and SINDy based on predictive models trained up to a certain time and tested to predict the future
evolution. The NMSEs are reported as train error/test error.
Dataset Training duration (s) F-RVM S-RVM SINDy

Low amp 500 0.0224/0.0240 0.0224/0.0240 0.0224/0.0240
High amp 120 0.0142/0.0169 0.0142/0.0169 0.0149/0.0167
Mixed amp 1000 0.0190/0.0907 0.0190/0.0907 0.0194/0.0938

Table 10
The discovered expression (i.e., the selected models and identified parameters) for the accel-
eration response of the quasi zero stiffness device corresponding to the low amplitude regime
of the dataset obtained by the accelerated and conventional relevance vector machines. The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented for
comparison. Linear polynomial terms with Coulomb damping were considered and satisfactory
approximation accuracy was achieved. Note that the candidate basis functions were normalized
w.r.t their maximum values to obtain the identified coefficients.
F-RVM 𝑥̈ = −0.7623

(0.1740)
𝑥 − 0.6331

(0.0584)
𝑥̇ − 0.0622

(0.3217)
sgn(𝑥̇) − 0.4919

(0.2593)
𝑟̈

S-RVM 𝑥̈ = −0.7623
(0.0214)

𝑥 − 0.6331
(0.0072)

𝑥̇ − 0.0622
(0.0395)

sgn(𝑥̇) − 0.4919
(0.0318)

𝑟̈

SINDy 𝑥̈ = −0.7621𝑥 − 0.6330𝑥̇ − 0.0623 sgn(𝑥̇) − 0.4921𝑟̈

capture the low amplitude dataset. It was found that most of the nonlinear higher terms did not have any contribution and resulted in
close to 5% test NMSE (which is twice the present error obtained with the linear state terms). In contrast to the previous behaviour,
Table 11 illustrates the dominance of higher-order nonlinear terms and elimination of Coulomb damping, which is expected in
the high-amplitude regime [50]. Thus, such interpretability of the identified models help to gain physical insights on the system
behaviour. The results illustrate sparse representation of the nonlinear behaviour of the QZS device (along with the model predictive
uncertainty in the case of RVM based approaches). In addition to the present datasets, other datasets including few decay cases
were also analysed and similar results were obtained from most, and found to be consistent with those reported. However, further
investigation is required to understand cases of complex interaction which pose practical challenges causing significant change in
the system behaviour due to small perturbations in damping and friction.

Note that the overestimated predictive variances obtained in some of the examples studied here (in Sections 4 and 5) is consistent
with the literature and can be attributed to the fact that the resulting sparse probabilistic model using RVM implies degeneracy of
priors over functions. This issue has been illustrated in [52] and has been improved to some extent with the help of an augmented
covariance function by adding a new basis function. However, the enhancement comes at the cost of non-sparseness and higher
22
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Fig. 13. Comparison of the true and identified acceleration response (m/s2) vs time (s) for the quasi zero stiffness device corresponding to the freqsweep45-
down dataset. The identified acceleration response has been generated from the mean coefficent values obtained using the accelerated relevance vector machine
approach. The models are trained up to a certain time and tested on the same dataset to predict the future response behaviour. The normalized mean squared
error (NMSE) corresponding to the mean test predictions is provided for each sample plots. For a detailed comparison of test NMSE, refer Table 9. The selected
models and identified coefficients obtained for generating the plots have been presented in Tables 10–12.
23
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Table 11
The discovered expression (i.e., the selected models and identified parameters) for the acceler-
ation response of the quasi zero stiffness device corresponding to the high amplitude regime
of the dataset obtained by the accelerated and conventional relevance vector machines. The
model predictive uncertainty has been shown in the form of the coefficient of variation within
brackets below the mean coefficients. The equation discovered by SINDy has been presented for
comparison. Polynomials up to the third order were considered in the candidate library. Note
that the candidate basis functions were normalized w.r.t their maximum values to obtain the
identified coefficients.
F-RVM 𝑥̈ = −0.6049

(0.3215)
𝑥 − 2.1243

(0.1833)
𝑥̇ + 0.1875

(0.2892)
𝑥𝑥̇ − 0.1839

(0.7174)
𝑥̇2 − 2.2597

(0.1185)
𝑥3 +…

0.3990
(0.5347)

𝑥𝑥̇2 + 0.6654
(0.3916)

𝑥̇3 − 0.2978
(1.0149)

𝑟̈

S-RVM 𝑥̈ = −0.6047
(0.0560)

𝑥 − 2.1255
(0.0319)

𝑥̇ + 0.1875
(0.0503)

𝑥𝑥̇ − 0.1838
(0.1247)

𝑥̇2 − 2.2602
(0.0206)

𝑥3 +…

0.3988
(0.0931)

𝑥𝑥̇2 + 0.6656
(0.0681)

𝑥̇3 − 0.2990
(0.1763)

𝑟̈

SINDy 𝑥̈ = −0.6321𝑥 − 2.1983𝑥̇ + 0.1733𝑥𝑥̇ − 2.2075𝑥3 + 0.4248𝑥𝑥̇2 +…

0.7979𝑥̇3 − 0.2214𝑟̈

Table 12
The discovered expression (i.e., the selected models and identified parameters) for the accel-
eration response of the quasi zero stiffness device corresponding to the mixed (high and low)
amplitude regime of the dataset obtained by the accelerated and conventional relevance vector
machines. The model predictive uncertainty has been shown in the form of the coefficient of
variation within brackets below the mean coefficients. The equation discovered by SINDy has been
presented for comparison. Polynomials up to the third order were considered in the candidate
library. Note that the candidate basis functions were normalized w.r.t their maximum values to
obtain the identified coefficients.
F-RVM 𝑥̈ = −0.9473

(0.1321)
𝑥 − 1.7042

(0.0534)
𝑥̇ − 1.2727

(0.1086)
𝑥3 − 0.3258

(0.1506)
𝑥2𝑥̇ + 0.1059

(1.3339)
𝑥𝑥̇2 −…

1.4196
(0.2482)

𝑥̇3 − 0.6296
(0.0950)

𝑟̈

S-RVM 𝑥̈ = −0.9473
(0.0167)

𝑥 − 1.7042
(0.0068)

𝑥̇ − 1.2727
(0.0138)

𝑥3 − 0.3258
(0.0191)

𝑥2𝑥̇ + 0.1059
(0.1690)

𝑥𝑥̇2 −…

1.4196
(0.0315)

𝑥̇3 − 0.6296
(0.0120)

𝑟̈

SINDy 𝑥̈ = −0.9617𝑥 − 1.7911𝑥̇ − 1.2574𝑥3 − 0.3334𝑥2𝑥̇ + 0.1207𝑥𝑥̇2 −…

1.1905𝑥̇3 − 0.6231𝑟̈

computational complexity. As the present study primarily focuses on an engineering application of nonlinear structural system
identification, readers interested in a detailed and insightful discussion on mathematics of the resulting predictive variance by RVM
are referred to [53].

6. Summary and conclusions

Considering the relatively new field of deterministic data-driven discovery of physical laws using compressive sensing has gained
onsiderable attention over the past few years, their extension to Bayesian frameworks were found to be handful and very recent
from 2021). To address this gap, two sparse Bayesian frameworks have been investigated for the data-driven discovery of nonlinear
tructural dynamic systems. For incorporating (i) the sparsity promoting feature and (ii) Bayesian nature of the proposed frameworks,
machine learning approach called, relevance vector machine (RVM) has been employed to determine the governing equation of
otion. Out of the two RVM algorithms, the faster version employs an efficient expectation maximization routine and has the
rovision of sequential addition and deletion of the candidate library terms and thus, is cost-effective compared to the slower
ersion. For comparison, the popular SINDy approach has also been used.

To demonstrate the performance of the proposed approaches, four representative numerical examples of nonlinear structural
ynamical systems have been solved. Finally, a major contribution of the present work, the data-driven discovery of a quasi zero
tiffness (QZS) device was performed using the time response data generated from an in-house designed experimental setup. The
mportance of such complex nonlinear system identification lies in its prognostics, as QZS systems have been known to be notoriously
ifficult to capture. Even slight changes in damping and friction can have a significant effect on their vibration isolation ability.
t is worth noting that even under these complex real-life scenarios, the proposed approaches (and SINDy) were able to achieve
atisfactory level of accuracy for capturing untrained/unseen behaviour by incorporating potential candidate basis terms. In addition,
he model predicted equation of motion yields physically interpretable behaviour. To illustrate the point of interpretability, the
esponse and forcing datasets for the QZS system were divided in different categories based on the amplitude. It was shown that
he discovered model could yield physically consistent behaviour such as, identifying linear state response and Coulomb damping
n the low amplitude and higher-order nonlinear stiffness and damping terms with no friction in the high amplitude regime. The
roposed approaches quantify the model predictive uncertainty due to their Bayesian nature and has been statistically represented
24

y the associated coefficient of variation.
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Based on the findings of the study, it would be reasonable to consider the proposed approaches as potential for investigating
urther complex case scenarios in QZS systems and nonlinear structural dynamics in general. An important future goal will be
o reinforce the sparsity criterion for computational tractability, with suitable non-degenerate process models for robust variance
rediction in equation discovery applications.
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