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(P,) converge to the unique positive solution of the equation —Au + u = u?~! and as 4 — +oo,
after another rescaling the ground state solutions of (P,) converge to a particular solution of the
critical Emden-Fowler equation —Au = u*> ~!. We establish a sharp asymptotic characterization
of such rescalings, which depends in a non-trivial way on the space dimension N = 3 and
N = 4. We also discuss a connection of our results with a mass constrained problem associated
to (P;) with normalization constraint /mw lul*> = c2. As a consequence of the main results, we
obtain the existence, non-existence and asymptotic behavior of positive normalized solutions
of such a problem. In particular, we obtain the exact number and their precise asymptotic
expressions of normalized solutions if ¢ > 0 is sufficiently large or sufficiently small. Our results
also show that in the space dimension N = 3, there is a striking difference between the cases
b =0 and b # 0. More precisely, if b # 0, then both p, := 10/3 and p, := 14/3 play a role
in the existence, non-existence, the exact number and asymptotic behavior of the normalized
solutions of the mass constrained problem, which is completely different from those for the
corresponding nonlinear Schrédinger equation and which reveals the special influence of the
nonlocal term.

1. Introduction and notations

We consider the following Kirchhoff equation

—(a+b/ [Vul?) Au + du = u]"u+ [u’~2u  in RV, )
RN

* Corresponding author.
E-mail addresses: shiwangm@nankai.edu.cn (S. Ma), v.moroz@swansea.ac.uk (V. Moroz).

https://doi.org/10.1016/j.na.2023.113423
Received 19 April 2023; Accepted 15 October 2023

Available online 6 November 2023
0362-546X/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:shiwangm@nankai.edu.cn
mailto:v.moroz@swansea.ac.uk
https://doi.org/10.1016/j.na.2023.113423
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2023.113423&domain=pdf
https://doi.org/10.1016/j.na.2023.113423
http://creativecommons.org/licenses/by/4.0/

S. Ma and V. Moroz Nonlinear Analysis 239 (2024) 113423

where N > 3,2 <qg<p<2*= %, a>0,b>0and 4 > 0 are parameters. For a fixed A > 0, the corresponding to (P,) action
functional is given by

a 2 A 2 b 22 1/ 1/ 2%
Lw=2 [ |vuP+2 2 vu?) - = L , 1.1
=2 [ e d [ e ([ ) =2 [ oo [ GBY

and critical points of I, in H!'(RN) correspond to solutions of (P;). By a ground state solution of (P,) we understand a solution
u;, € H'(RN) such that I,(u,) < I,(u) for every nontrivial solution u of (P,).

In this paper we are interested in the limit asymptotic profile of the ground states u, of the problem (P,), and in the precise
asymptotic behavior of different norms of u;, as 4 — 0 and 1 — co. Of particular importance is the L?>-mass of the groundstates

M) = [lull3. 1.2)

which plays a key role in the analysis of stability of the standing wave solution of the time-dependent NLS, cf. Lewin and Nodari [11,
Section 3.2] for a discussion in the context of the local combined power NLS.

For the local prototype of (P,) with b = 0 the asymptotic profiles of the ground states were studied in [1,2], where the authors
considered the following nonlinear Schrédinger equation with focusing combined powers nonlinearity:

— Au+ Au=|ul"%u+ |u”u, in RV, (1.3)

where N >3 and2<g<p<2*. Whenp=2*and g€ 2+ 1,2*), Akahori et al. in [2] proved that for small 1 > 0 the positive
ground state of (1.3) is unique and non-degenerate, and as 4 — 0 the unique positive ground state u; converges after an explicit
rescaling to the unique positive solution of the limit equation —4u + u = u9~! in RV. In [1], after a suitable implicit rescaling the
authors establish a uniform decay estimate for the positive ground states u,, and then prove the uniqueness and nondegeneracy of
ground states u, for N > 5 and large 4 > 0, and show that for N > 3, as 1 - o, u, converges to a particular solution of the critical
Emden-Fowler equation. Recently, for p = 2*, Coles and Gustafson [5] proved that the radial ground state u, is also unique and
non-degenerate for all large 4 > 0 when N = 3 and q € (4,2%). In [17], the authors studied a related problem and its connection
with a mass constrained problem by using a rescaling argument and the concentration-compactness principle. See also [16] for a
nonlinear Choquard type equation.

The techniques in this work (as well as in [16,17]) is inspired by [18], where the second author and C. Muratov studied the
asymptotic properties of ground states for a combined powers Schrodinger equations with a focusing exponent p > 2 and a defocusing
exponent g > p,

— Au+ Au=|u’2u—|u|7%u, in RV, 1.4

and obtained a sharp asymptotic characterization of the limit profiles of positive ground states u, of (1.4) as A — 0. Later, in [11], M.
Lewin and S. Rota Nodari proved a general result about the uniqueness and non-degeneracy of positive radial solutions of (1.4). The
non-degeneracy of the unique positive solution allowed them to refine the asymptotic results in [18] and, amongst other things, to
establish the exact asymptotic behavior of M (1) = |lu; ||§. In particular, this implied the uniqueness of normalized energy minimizers
at fixed masses in certain regimes. See also [14], where Zeng Liu and the second author extended the results in [18] to a class of
Choquard type equation.

In the present paper, we study the limit asymptotic profiles of the ground states u,; of the Kirchhoff problem (P,) by using a
rescaling argument and the concentration—compactness principle, and obtain an explicit asymptotic expression of different norms of
ground states for fixed frequency problem (P,). To do so, we adapt the technique developed in [17]. However, additional difficulties
arise since (P,) contains five terms and as a consequence, the PohoZaev-Nehari algebraic relations cannot be resolved, in general.
Fortunately, we succeed to overcome this difficulty in the case p = 2*, but the method does not work any more for p < 2*. In the
latter case, we shall use a suitable scaling to reduce (P,) to the local Eq. (1.3) (cf. (5.2)). The disadvantage of such a rescaling is
that for b # 0, the rescaled family of ground states for (P,) should not necessarily be a ground state for (1.3). Besides, to obtain a
precise estimate of the least energy, the scaling should transform a ground state for (P,) into a ground state of the local Eq. (1.3).
Generally speaking, this is not the case, which prevents us from deriving a precise energy estimate of the ground state p < 2*, see
Section 5 for a discussion.

Alternatively to the study of fixed frequency solutions of (P;), one can search for solutions to (P,) with a prescribed mass, that is
for a fixed ¢ > 0 to search for u € H'(RV) and 1 € R that satisfy
—(a+b fon IVul))Au+ du= plul"2u+ |ulP~u in RV, 15

ue H'RN), f]RN lul® = ¢2, '
where p > 0 is a new parameter and the frequency A € R becomes a part of the unknown. The solutions of (1.5) are usually denoted
by a pair (u, 1) and referred to as normalized solutions. Normalized solutions can be obtained by searching critical points of the
energy functional

a 2 b 2 2 U 1
Ew=2 v 2 v -£ a_ = » 1.
u®) 2 /RN A 4(/]RN Vel ) q /]RN . p /JRN ul” (1.6)

subject to the constraint

S, :={ueH1(RN):/ lul? = %},
RN
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where 4 € R appears a posteriori as a Lagrange multipliers.
In the local case b = 0, by rescaling we also assume a = 1. Then equation (P,) reduces to the classical non linear Schrédinger
equation

— Au+ Au= plul®%u+ |ulP"%u, in RN, 1.7

Normalized solutions of (1.7) were studied by T. Cazenave and P.-L. Lions [4], N. Soave [20,21], L. Jeanjean et al. [7,8], L. Jeanjean
and T. Le [9]. The additional parameter u > 0 is often introduced to control the unknown Lagrange multipliers 4 € R. Some of the
results on normalized solutions to (1.7) are summarized in [12]. The asymptotic behavior of normalized solution as u varies in its
range is studied in [9,20-23]. We mention that in the case N > 4,2 < g <2+ % and p = 2%, L. Jeanjean and T. Le [9] obtained
a normalized solution u, of mountain pass type for small ¢ > 0 and proved that lim,_ || Vu |2 = S¥/2 and lim_¢ E,(u,) = %SN 2,
where S is the best Sobolev constant.

In the above results, the number p, :=2+ %, called the L?-critical exponent, is crucial for the existence and asymptotic behavior
of normalized solutions of (1.7). However, it is showed in [26,27] that when b # 0, p, =2+ % is the L2-critical exponent for the
minimization problem

E,(c) = uiensf‘e E,(w). (1.8)

in the sense that for each ¢ > 0, E,(c) > —c0 if 2 < p < p, and E,(c) = —0 if p, < p < 2*. In particular, when N =3, the L2-critical
exponent for the problem (1.5) is given by

10/3, if b=0,
- 1.
Po { 14/3, if b#0. (1.9

In [12], Li, Luo and Yang consider the existence and multiplicity of normalized solutions of (1.5) when N = 3 and prove that if
2<g< % and 1—34 < p <6, then for small > 0, E, |5, has a local minimizer at a negative energy level m(c, u) < 0, and has a second
critical point of mountain pass type at a positive energy level o(c, ) > 0. If 2 < g < % < p = 6, then for small 4 > 0 a ground state
solution is obtained. If % < g < p < 6, then for any u > 0, a critical point of mountain pass type is also obtained. Furthermore,
as the parameter 4 — 0%, the asymptotic behavior of energy m(c, ) and the normalized solution is also investigated. To our best
knowledge, the existence of normalized solutions to (1.5) with 13—0 <g<p< l% is still unknown.

When y = 0, then the equation (P;) reduces to the following Kirchhoff equation with a homogeneous nonlinearity

—(a+b/ |Vul*) du+ Ju = |u|P"%u, in R, (1.10)
RN

Amongst other things, Li and Ye [27] studied the existence and concentration behavior of minimizers for (1.10) and obtained precise
asymptotic behavior of normalized solutions to (1.10) with 2 < p <2+ % asc¢ - +oo. For 2 < p <2+ %, Zeng and Zhang [28]
proved the existence and uniqueness of the minimizer to the minimization problem Ey(c) := inf,cg, Ey() for any c¢ > 0, while for
2+ % <p<2+ % the authors proved that there exists a threshold mass ¢, > 0 such that for any ¢ € (0, ¢,) there is no minimizer and
for ¢ > ¢, there is a unique minimizer. Moreover, a precise formula for the minimizer and the threshold value c, is given according
to the mass c. In the case 2 < p < 2*, Qi and Zou [19] obtain the exact number and expressions of the positive normalized solutions
for (1.10) and then answer an open problem concerning the exact number of positive solutions to the Kirchhoff equation with fixed
frequency. Recently, Qihan He et al. [6] studied the existence and asymptotic behavior of normalized solutions of (1.10) with |u|?~%u
replaced by a general subcritical nonlinearity g(u) of mass super-critical type. In particular, g(u) contains the nonlinearity in (1.5)
with 2 + % < g < p < 2* as a special case. Under some suitable assumptions, they obtain the existence of ground state normalized
solutions for any given ¢ > 0. After a detailed analysis via the blow up method, they also described the asymptotic behavior of these
solutions as ¢ — 0%, as well as ¢ - +o0.

If b # 0, then (P;) become a nonlocal equation with a non-homogeneous nonlinearity. It is much more challenging and interesting
to investigate the existence and qualitative properties of solutions of (1.5). Some existence results concerning the normalized
solutions of (1.5) have been obtained over the past few years, see [12,30] and reference therein for Kirchhoff equations with
combined powers nonlinearity. However, less progress is made on the asymptotic behavior of these solutions whenever the associated
parameter varies in a suitable range. The technique used in [19,27-29] for the asymptotic study of Eq. (1.10) is not applicable any
more, and any explicit expression of normalized solution in terms of the mass ¢ is not available for the nonlocal problem (P,).

Our main purpose in this paper is to study the effect of the nonlocal term in the case b # 0 on the existence, non-existence,
multiplicity and properties of normalized solutions of (1.5) and to understand the role of the L?-critical exponent p, in the existence
and asymptotic behavior of normalized solutions of (1.5) as the parameter ¢ varies. As a direct consequence of our main results on
the fixed frequency problem (P,) in this paper, we are able to obtain an explicit asymptotic expression of different norms of positive
normalized solutions, and to give a complete description on the existence, multiplicity and precise asymptotic behavior of positive
normalized solutions of (1.5). In particular, we prove that both p, = ? and p, = % play a key role in the existence, multiplicity
and the asymptotic behavior of normalized solutions of (1.5) if b # 0.

Organization of the paper. In Section 2, we state the main results in this paper. In Section 3, we give a proof of Theorem 2.1 for
small 4 > 0. Section 4 is devoted to the proof of Theorem 2.1 for large 4 > 0. In Section 5, we prove Theorem 2.2, and in the last
section, as an application of our main results, we present some results concerning the existence, non-existence, and exact number
of normalized solutions of the associated mass constrained problem.

Basic notations. Throughout this paper, we assume N > 3.
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+ C®(R") denotes the space of smooth functions with compact support in RV.

LP(RN) with 1 < p < oo is the Lebesgue space with the norm |lull, = (g~ |u|”)l/”.

1/2
).

H'(RV) is the usual Sobolev space with the norm ||ull ;1 gny = (fan [Vul? + |u)?
H!RN)={ue H'RYN) : u is radially symmetric}.
DY2RN) = {ue LY RN) : |Vu| € LARN)}.

For any ¢ € (2,2*) where 2* = %, we define

/RN |Vu|2

2
5%

in
uEDI,Z(RN)\(O) (/ . |u|2*) 3
R

Jan IVul® + ul®

S = 3
(/RN |u|q)5

(1.11)

) .= inf
ue H1 (RN)\{0}

W, is the Talenti function given by

N=-2

N2 1 2
Wi(x) :==[N(N =-2)] 4 < 2)
1+ x|

B, denotes the ball in RN with radius r > 0 and centered at the origin, |B,| and B¢ denote its Lebesgue measure and its
complement in RV, respectively.
As usual, C, c, etc., denote generic positive constants.

Asymptotic notations. For 1 > 0 and nonnegative functions f(4) and g(4), we write:

(1) f(2) S g(d) or g(A) 2 f(A) if there exists a positive constant C independent of A such that f(1) < Cg(2).

(2) f(D) ~ g if £(A) S gD and f(4) 2 g(A).

If | f(A)] < 1g(A)], we write f(4) = O(g(4)). We also denote by © = ©(4) a generic positive function satisfying C; 4 < ©(4) < C,4
for some positive numbers C;, C, > 0, which are independent of A. Finally, if lim f(4)/g(4) = 1 as 2 - A, then we write f(4) ~ g(4)
as A — Ag.

2. Main results

The existence of ground state solutions established in [15] for Kirchhoff equations with a general nonlinearity and in [25,
Theorem 2.1] for Kirchhoff equations with critical nonlinearites applies to (P,) directly or after a suitable scaling. In this paper,
we are interested in the asymptotic behavior of ground state solutions of (P;). Our main results are the following two theorems. In
the first one, we consider (P;) with p = 2* in dimensions N = 3,4. In the second one, we consider (P,) in dimension N = 3.

Theorem 2.1. Let p=2* and {u,} be a family ground states of (P;). If N = 3,4, and q € (2,2*), then for small A > 0, u, satisfies
1
u3(0) = 442 (V5(0) + o(1)),

2N—gN-2) ( N(g—2) N2 -L 2N—g(N-2)
IIVu,lllgle 242 {%a TS 00 WD )},

4-N@=2 (N —g(N =2) N -4 2N—g(N-2)
nwﬁ=znw>{——{%——%zy2+ouzwn)}

2N—g(N-2) N iz
gl =2 2> {ﬂs;* +0(1)}.

o N[2N—g(N-2)] N o
g3 = 40 {aF V3 + o)}

and the least energy m, of the ground state satisfies

2N—g(N-2) g-2 N qu 2N—g(N-2)
my=1(u;) =4 26D % a2 S/ +0( WD )¢, @1

Moreover, for small A > 0, the rescaled family of ground states
. 1
v(x) =4 a2 u,l(/l_fx) (2.2)
satisfies

2 2% 2
V012 ~ o2 ~ Hoglld ~ llol2 ~ 1,

X

Va

and as 4 — 0, v, converges in H'(RN) to vy, where vy(x) = V(=) and V; is the unique positive solution of the equation

—AV +V =V inRN.
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IfN=4,qg€ 2,4 and bS?> <1 or N =3 and q € (4,6), then for large 1 > 0, u, satisfies

2

(AInDTZ, if N=4,
1

u;(0) ~
A2 if N=3,
2 _dmg
1aisz —IVuyll; ~ (Aln )~ a2, if N =4,
3
bS3 + S2VH2S3 + 4 _b=_
o Vw3~ 455, if N =3,
252 _4—q X
llu ”2* _ A-b572 + O((AlnA) «2), lf N =4,
Allgs = 1 _ 6
%(bS2+S§ Vb2S3 +4a) + O(4” %9), if N =3,
2 _dmg
5 A 2(nd) 2, if N =4,
luilly ~9 o
A 2Aed if N=3,
4
. (AlnA)" 2, if N=4,
luallg ~ 6
YRR if N=3.

Moreover, there exists ¢, € (0,+o0) verifying
1
(AlnA) «2, if N=4,
e 1
P if N=3,

such that for large A > 0, the rescaled family of ground states
N-2

wy(x) =, 7 uy(E;x) (2.3)
satisfies
In A, if N=4,

2 2% 2
IVw,lly ~ lwallye ~ lwillf ~ 1 Nlwylly ~ 64 )
AXa=9, if N =3,

and as 4 — oo, w, converges in D'2(RY) and LIRYN) to w,,, where w,,(x) = W;(ynx), W, is the Talenti function and y is given by
YN = (2.4
Uk S S
bS2 +Vb2S3+4a

Moreover, the least energy m, of the ground state satisfies

=

4—,
(AlnA) a2, if N =4,
Moy — My ~ 6oa (2.5)
AT, if N=3,
where m, is given by

a25?
2(1-b52)°

3
Mo =9 1a(bS>+51Vb2S3 +4a) if N=3. (2.6)
3
+ 5 b(bS® + STVB2S3 + 40,

if N=4,

Theorem 2.2. Let N =3, b>0,2<q<p<2*and {u;} be a family ground states of (P,). If p = q, then for any A > 0, u, is the unique
positive solution of (P,) and satisfies

1
u;(0) = (4/2)72 Wy(0),
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”Vu/l”% - ﬂ.’(l’ 2) 3(P 2) /_ S /2 *2
= 9(,, 27 2
AP (S, /2)1’ 2 4+ @(/1 ) as A— oo, 2.7)
= 6
270D <a2(S /)P + 00T 2>)> A0,
) -3 3 a
lal} = 4% L\ fm) (S,/2)7
14-3p 30236 P _6=p
A HEe2 6o ("854) 6 ”)(SI,/Z)P*2 +06(4 p72)>, as A — oo, (2.8)
= 103 (o 3 p 6-p
A7 ((CLa3(5,/2)77 +O0(%) ), as A—0,
lually = PErEs 2>(\/ D (8,/2) "‘
14-3p
A2 <—27” (=27 (s, /2):7 -2 4+ 04 ﬂ—2)> as  A— oo, (2.9)
= 6=p_ o 6
A2 (ai(sp /27 + @(/12<p—2>)> , as A0,
Moreover, for any 4 > 0, there holds
_1
uy(x) = (A/Z)P =) Wo(/lzw 2x), (2.10)
where
3b(p—2) ;50 £ 9b%(p — 2)
Vo, = L2355 (S, /2) 72 4 4] —2 (s /275 4 2.11
w; 4 72 (S,/2)? 162 ( /)" a, ( )
and S, = ||WO||§_2, W, € H'(R?) is the unique positive solution of the equation
—AW +W =WP! inRV,
If ¢ < p and 4 > 0 is sufficiently small, then u, is the unique positive solution of (P;) and satisfies
1
u;(0) = 4972 (V5(0) + o(1)),
6-q 1 L r=q
A% <3<‘;—;2>ai 857 - @(AH)) . i g>2p—6,
1V lI3 = 6a L (2.12)
A% 3“;;%55 0(,12<q 5 )) it g<2p-6,
03¢ (3 %2 = )
A2a-2) (—qqaZSq" —@(/1‘1-2)>, if  g>2p—6,
lusll3 =1 ios . 2.13)
122 (6_—;1055 + 04 %= 2>)> if g<2p-—6,
e =g .
A2D (a2 S —O(442 )> R if g>2p-—6,
Nl =9 o0 } 5 - (2.14)
12D <a§ + O(A 26~ 2))) if g<2p-6.
Moreover, as A — 0, the rescaled family of groundstates
1
= A 2w, (A7 [ ), = +b/ Vu, |2, 2.15
0;(x) =2 uy( wyx), W, =a o [Vu,| (2.15)
converge in H'(R?) to the unique positive solution V;, of the equation
-4V +V =Vil inRY,
If ¢ < p and 4 > 0 is sufficiently large, then u, is the unique positive solution of (P,;) and satisfies
e
uy(0) = 472 (W((0) + o(1)),
2 (opa? 75 =]
A2 fTS;_ +0(4 »2) ), if g>2p-6,
1V lI3 = ) (2.16)
822 oppap o5z -5
A2 _f,,z S, 404 7)), if g<2p-6.
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14-3p 3 3 4
Y= <—27b L2 ©D S 4 o™ ﬂ)), it ¢>2p-6,
llu l1? = . L . (2.17)
= <27b (pl;: (6—p>Sp2+0( )), if qg<2p-6,
p=q
/1 p_ <z7b38<p3 2)3 S”’ = )> it g>2p-6,
) 2.18
leally = 20 0732 73 J o
= g—p%SF +0(A if q<2p—6.

Moreover, as A — oo, the rescaled family of groundstates
1
= A P2u, (V2 [, = +b/ Vu, |, 2.19
w (x) u;( w,X), W,=a . [Vu,| ( )
converge in H'(R?) to the unique positive solution W), of the equation
—AW +W =WP! inRV,

Assume M € C'((0, ), R), we denote M(0) := lim,_, M(4) and M(co) := lim,_, ., M (). The following lemma is proved in [16,
Lemma 1.1].

Lemma 2.1. Let n > 0 is a constant. Then the following statements hold true:
(1) If M(A) ~ A" as A — 0, then there is Ay > 0 such that M'(2) > 0 for 1 € (0, Ay).
(2) If M(A) ~ 27" as A — 0, then there is Ay > 0 such that M'(1) < 0 for A € (0, ).
(3) If M(A) ~ A7 as A — oo, then there is A, > 0 such that M'(1) < 0 for 1 € (4, ).
(4) If M(A) ~ A" as A — oo, then there is A, > 0 such that M'(A) > 0 for 1 € (4,

The following corollary is a direct consequence of Theorems 2.1-2.2 and Lemma 2.1.

Corollary 2.1. Let2 < g < p <6, then

0, if g<10/3 and ¢<p<6,
3 4
M(©0) = 62—4 18,7, if  ¢=10/3 and 10/3<p<6, (2.20)
00, if g>10/3 and ¢<p<6,
and
0, if p<14/3 and g¢<p,
47‘)
M(0) = 27b3(Pl—6—33(6—P)Spﬂ-2, if p=14/3 and g <p, (2.21)
0, if p>14/3 and q <p.

Moreover, there exists a small A, > 0 such that for any A € (0, 4),

M'()>0, if ¢<10/3 and ¢<p<6,
M'(A) <0, if ¢=10/3 and 10/3 < p < 14/3, (2.22)
M'(1) <0, if qg>10/3 and q <p,

and there exists a large A, > 0 such that for any A € (A, +),

!’ o <
{ M'(2) <0, if p<14/3 and ¢ <p, (2.23)

M'(Q) >0, if p>14/3 and ¢q <p.

Remark 2.1. In the Sobolev critical case p = 2*, a similar result as above also holds and in particular, we have M(0) = c and
M(c0) =0if N =4and q € (3,4),or N =3 and q € (4,6); M(0) = M(c0) =0if N =4 and q € (2,3); M(0) = oo if N = 3 and
q € (10/3,4], and M(0) =0 if N =3 and g € (2,10/3). The sign of M’(4) can also be determined for small 1 > 0 or for large 1 > 0,
and we omitted the details. We mention that in the subcritical case, the sign of M’(4) is still open in the following cases:

D g= g,pe( 6)and/1>05mall 2 p= —,qe(2 —)and/1>01arge

According to Corollary 2.1 and results concerning the case b 0 given in Section 5, we draw the following figures which reveal
the variations of M (4) for small A > 0 and large A > 0 when (p, q) belongs to different regions in the (p, g) plane. Plainly, there exists
a dramatic change between b = 0 and b # 0. This observation results in a striking different feature in the existence, non-existence
and exact number of normalized solutions of (1.5).
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q q
g=2p-6
6 6
N
o
N
©,0 .0
( ) 14/3 ( )
(,0)
4 4 4 4
] ]
10/3 E 10/3 ;
o i & i
O (0,0) E L (0,%) (0,0) i
(0,%) i i
2 : P 2 : P
10/3 6 14/3 6
Fig. 1. Left: =0 and (-,-) = (M(0), M(c0)); right: b> 0 and (-,-) = (M(0), M(c0)).
3. Proof of Theorem 2.1 as 1 —» 0
Let
. 1
v(x) =4 2u(A"2x). (3.1
Then the equation (P,) reduces to
el 2) 2 —1 AL
—adv+v— b~ 2D |Vo|*dxAv = 097" + 12 p= L, ()
RN
The energy functional for (Q,) is defined by
a 2,1 2, b, 0D 2)?
L@ = fn V0P fo P+ 227507 (fon V0 52
2~ " .
— 2 Jan 101 = 52 o 1o
The formal limit equation for (Q,) as 4 — 0 is given by
—adv+v=0v""" inRY. (Qp)

The energy functional for (Q,) is given by

a 2 1 2 1/
Iow=2] P+ -1 ‘.
o(0) 2/RN|U| Z/RNM NG

Lemma 3.1. Let A>0, u€ H'(RN) and v is the rescaling (3.1) of u. Then:

2N-g(N-2) 2N—q(N-2)
(@) |IVull} = /1 2” n IIVUII ||u||q e ||v||
N[2N—q(N-2)]
() llull3 =2 IIUII2 lull2, = A2 =22 ||o]12,,
2N—g(N-2)

() Ijwy=A 22 J,(v).

The above lemma is easily proved and the details will be omitted. In particular, it follows from Lemma 3.1(c) that the rescaling
v of the ground state u of (P,) corresponds to a ground state of (Q,).

Lemma 3.2. The rescaled family of ground-states {v,} is bounded in H'(RN) for small A > 0.

Proof. It is standard to see that ground-states of (Q,) satisfy the Nehari identity

) ) 2N—g(N-2) 2~ 2%
a/ [Vo,| +/ lv,]° + bA = (/ Vo, ?)? = / |U/1|"+Aq—2/ [v;]
RN RN RN

and the Pohozaev identity

a 2,1 2 WoaNoD) 2 1 2 2*
> [Vu,| +5/ v, + —,1 2(¢-2) (/ |Vv,1| ) = / Iv,llq+2—*l 4-2 / o7 .
RN RN RN
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Therefore, it follows that

1_1 2o (1_ L q
(3-%) [oee=(2-5) [ e (33
and hence
*_ 2% 2*(g=2)
q ZTq 1 *
o[ et [ e,

1 2
ﬁ/ |U/1|2=
]RN
1 242 2% —g 1/ 2(g=2)
1 <224 [ v, ps. 3.4
N(/]Rvam <T20 [ e 3.4)

which implies that
To prove the boundedness of {v,} in H'(RY), it suffices to show that {v,} is bounded in D'?(RN).
Let v, be the unique positive solution of the equation (Q,), then by the PohoZaev’s identity, we have

1 2 a 2 1 2 1/
Z < = \v, 4= == q, 3.5
Z/vaol 2 /NI vol 2/N|U0| P N|U0| (3.5)

which implies that for small 4 > 0, there is a unique 7, > 0 such that

2
[v,17 <

IN-g(N-2) -
2»t2 /]RN |VUO| +3 f]RN |U0| + 5 NAL =D (/]RN [Vogl™)

(3.6)
_;/]RN|U0| /1"2 /RN|U0|
If N=3andr, > 1, then
. . 2N—g(N-2) 5
6, < 554 Jpn Vool +55 04 20-D *E{RN [Vool»)?
= Jan [00l9=3 fon 1o+ 352 472 o lugl*"
2N—g(N-2)
_afon IVoglP4ba @D (fon [Vipl?)?
= —
a fpn [VoglP+4 4 E=1 Jan lvol®*
< C<oo.
If N=4and; > 1, then
2 = i*‘J/KN [Vupl?
AT 2%—q 2N—g(N-2)
L Jan 100l9=5 fon 100+ 52 402 fon logl =32 X0 (fun Vugl2?
_ a /RN |VU0|2
- 2¥—q 2N—g(N-2)
a fon IVoo P42 072 fon lugl?” —ba i (/ Voo 1?)2
< C<oo.
Let (vg),(x) := vy(x/1) for 1 > 0, then by Lemma 3.3 below, we obtain
m; < osupso J;((vg)) . .
N-g(N-2)
_ 1 b 2(N=2) 3 3oz
= supsg 5V fan Vool + 31N fow gl + 32N 22T T ([ (Vi)
2"—q .
1 1 =1 *
—'IN /]RN [vg|? — —fNﬁ -2 fRN |Uo|2 3.7)
—gN
b 2AN-2) , 5152
< suppsg Jo((vg)) + +517 IR (fy IVl - —M Lo 0ol
2N—g(N-2)
< my+Ci XD
This prove that m; < C < +oo for all small 1> 0.
On the other hand, we have
my =J,0) = 5 [gn Vo, * + 3 /RN |U4|2+ /1 Ten (/RN Vo, 1%)?
_'_/RN log? = —A a- 2 _/]RN |U,1|
2 oD 22
= (- ZT)a/IRN [Vo,|” + (71 - 2—*)131L 24-2) (/]RN [Vo,l7)
> NﬂfRN |VU/1|2~
This yields the boundedness of ||Vv,||, for small 4 > 0 and completes the proof. []
Lemma 3.3. Set
v(%) if t>0,
v (x) = ! f
0 if t=0.
Then for small A > 0, there holds
my = inf sup J,(tv) = inf sup J,(v,). (3.8)

veHRN\(0} 120 veH'RN)\(0} 120
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In particular, we have m; = J;(v;) = sup,,o J,(tv;) = sup,5o J,((v;),).

The proof of Lemma 3.3 is similar to that of [16, Lemma 3.2] and is omitted. Next we obtain an estimation of the least energy.

Lemma 3.4. Let N =3 or 4, and u, is a ground state solution of (P,), then
2N—g(N-2)
my—my=0(4 24D ), (3.9)
as A — 0, where my :=inf HI®N)\ {0} SUPsx0 Jo(10) is the ground state energy for (Qy).
Proof. By (3.7), we have
2N—g(N-2)

my <my+CA 22

On the other hand, by Lemma 3.3, we have

IN

mg Sup,sq Jo(tv,) = Jo(t,0,)
2N—q(N-2 2%
J _ b MR Vo2 + L2 2+
< supgsg J,(t0y) = 51 Jrn VO + 515 Jen 104l

where 1, > 0 satisfies

A

q-2 a [N |VU;1|2+fRN v;1?
t = —q
4 SN 1vl
_ lloall®
- 2N—q(N-2) 2%
lozl24ba~ 262 (fon (Vo 22-4 4= k=3 Jan 0"
= 1+ R4y,

2= . i
IRy (A, 0| < CA2 |l |* 2 < Caa2 .
Therefore, we get
2N—g(N-2)

my<m;+CA 22

The proof is complete. []

Lemma 3.5. Let N =3 or 4, and u, is a ground state solution of (P,), then

2N—g(N-2)

/ Ivalq=/ [vpl? + 04 22 ), (3.10)
RN RN

2 2 2N-q(N-2)
/N [0l =/ [vg]” +O(4 22 ), (3.11)
R RN

N ) 2N-g(N-2)
/ Vo, =/ Voo +0G" 70T, 3.12)
RN RN

as A - 0.

Proof. Let u; be a ground state solution of (P,;) and

A4=/ Vo, 12, Bg=/ o, 2. ci=/ 0,19, D1=/ o, (3.13)
RN RN RN RN

Then the Nehari and Pohozaev identities imply that

2N—g(N-2) 2%~
aA;+ B, +bA D A2 = CA+A<1—2 D,,
2N—g(N-2) 25—
LA +5B 2 D A2 = —CA+ Ly p,.

From which, we conclude that

NQ2*—q) N(qg-2) WN_gi-D)
B, =———C,, Ayj=—C,+0(4 22 ), 3.14
) 2%q 1 aAa; 2 p) ( ) ( )
Therefore, we obtain
1 1 1 2N—q(N-2)
my = 3aA;+3B;—1Ci+0( %7 )
2N—q(N-2)
Ng-2) NQ2*—q) T e
= ( s 22*44 )C’1 +O( )
2N—, q(N—Z)

= 2 A+0(,1W).

10
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In a similar way, we can show that
q-—2
my = Cy.
0 2 O

Thus, we obtain

2N—g(N-2)

-2 g
L= - =my—mg+ 0G5 ),
q

which together with Lemma 3.4 implies that

IN—g(N-2)
cj—c():/ |uj|‘1—/ lopl? = O(A~ Za=2 ).
RN RN

Since
NQ* —q) Nig-2)
BO = TCQ, aAO = TCO (3.15)
it follows from (3.14) and (3.15) that
_ 2N-g(N-2) 2N-g(N-2)
A== e, _cpron T y=0G T ),
2aq
NQ* — 2N—g(N-2)
B, - B, = %(q ~C) =00 T2 ),
q

from which (3.11) and (3.12) follows. The proof is complete. []

Proof of Theorem 2.1 for small A. Observe that v, — v, in H!(R") with v, being the unique ground state solution of (Q,). For
small A > 0, Theorem 2.1 follows from Lemmas 3.1-3.5 and the details will be omitted. []

4. Proof of Theorem 2.1 as 1 — oo
4.1. Rescalings

For 4 > 0, define the rescaling

1 2*¥-2
v(x) = A 2u(A D). (4.1)
Rescaling (4.1) transforms (P;) into the equivalent equation
_2=q _2=q .
—(a+b/ Vol )Ao+ 2" 2 v=2" 2 097 407! in RN, (R))
RN

The corresponding energy functional is given by

2
a 2 A7° 2 b 2 Vi 1 0%
J.vy=2 v 4 2 v _4 a_ - , 4.2
A®) 2 /]RN Vel + 2 /RN ol 4 <./]RN Vel ) q /]RN o 2% /]RN o “2)

here and in what follows, we set
_2—q

q-2"

The formal limit equation for (R,) as 4 — o is given by the equation
—(a+b/ IVol*)dv =¥ inRV. (Ry)
RN

The corresponding functional is given by

2
b 1 "
J () = %’/RN Vol + 1 (/}RN |Vu|2> - F/RN [v]>. (4.3)

We denote their corresponding Nehari manifolds as follows:
Ny o= {U e H'®Y)\ (0) | / A Vol + 1~ ol? + b(/ Vo) = / o + 470 } :
RN RN RN

N, ::{UGDI*Z(RN)\{O} |/ a|Vv|2+b(/ |vU|2)2:/ [o]* }
RN RN ]RN

m, ;= inf J,(v), my = inf J_(v
A VEN 1) © VEN (V)

Then

are well-defined and positive.

11
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Let w :=w(@)=a+b /RN |Vu|?, then w(v) is invariant respect to the rescaling

B0 =n"T v(x). (4.4)
That is, @w(0) = w(v).
Set
w(x) = v(y/wx), (4.5)

then the equation (R,,) reduces to
- Aw = w*", (4.6)
Moreover, w satisfies the equation
N2 )
w=a+w 2 b/ |Vwl|*.
RN

If N =3, then

Vo b fen IVl +/02(fon IVWPPP +da 65 | /753 1 ag
w = = .

2 2

If N =4 and bS? < 1, then

a a

w = 7= 5"
1—b fon [Vw| 1-b8

It is easy to see that m,, is attained on N, by v,(x) := W;(—=) and the family of its rescalings

NE
_N=2
v,(x) 1=p 7 v1(x/p), p>0, (4.7)
where W is the Talenti function
N-2
N2 1 E
W (x) = [N(N =2)] 3 (—2>
1+ x|

Furthermore, a direct computation shows that
Jen IVo,I° 0 fn IV

e 10,20 F (o W4121)

Lemma 4.1. Let A>0, u€ H'(RN) and v is the rescaling (4.1) of u. Then:

(4.8)

H N

@ [IVull2 = IVl (ullZ = [loliZ,

®) Az = lloll3, A7 llulig = llollg,
(c) I;(w) = J;(v).

In particular, if v, is the rescaling (4.1) of the ground state u,, then
Jy;) =1,(uy)

and hence v, is the ground state of (R;). Moreover, v, satisfies the PohoZaev’s identity [3]:

2
a AT 2 b / 2 /‘l_a/ 1 / o
el \vJ + — + — \vJ = q + — . 4.9
2 Jan Vol 3 /RN [0 2 Uan Vol 7 Jan [v;] 2 Jon [v;1 (4.9)

Define the PohoZaev manifold

P, :={ve H'®RY)\ {0} | P,(v) =0},

2
a 2 ATC 2 b 2 A7C 1 o
P =L Vol + 2— + =2 v, -z q_ . 4.10
1) 2% /RN Vel 2 /RN ol 2% </RN Vel ) q ‘/RN vl 2% ,/IRN vl ( )

Clearly, v, € P,. Moreover, we have the following minimax characterizations for the least energy level m,:

where

my = inf sup J,(tv) = inf sup J,(v)). (4.11)
veH RN)\(0) 120 veH' RN)\(0} 120
In particular, we have m; = J,(v;) = sup,so J,(tv;) = sup,so J,((v,),).

Lemma 4.2. The rescaled family of ground-states {v,} is bounded in H'(RN) for large 4 > 0.

12
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Proof. The Nehari identity

a/ |sz|2+r“/ |v4|2+b(/ |Vzu|2>2=r”/ |v4|"+/ o, ¥
RN RN RN RN RN

and the Pohozaev identity

a 2, 1,4 2 b 2.2 1 _(,/ 1 / 9%
= v + -4 + — \% =-1 T+ — .
> Jon [Vu,l 3 /}RN [0 2*(,/]RN [Vo;17) p o [v;] 7 Jon v

imply that

11 (1oL
(3-3) [yl =(55) Lo “12)

1 2% —gq 2" —¢ g | Lo
—/ o, = 2 / 7 < 229 R [ v
N RN 2 q RN 2 q RN S RN

which implies that

R T 2(g-2)
e < T2 [ vy,
N Jan 24 'S Jan

So, to prove the boundedness of {v,} in H!(RY), it suffices to show that {v,} is bounded in D*(RV). It is easy to see that
g_/RN |VU/1|2 + %/1_6 /]RN |U/1|2 + f‘i(/{RN |VUA|2)2
=227 o 10417 = 35 faw 10
(3 = 300 fan 10,17 + (G = )b V0,192
%af]RN Vo, |2

On the other hand, it follows from Lemma 4.3 below that m; < C < +co for large 4 > 0, and hence {v,} is bounded in D'?(RV) and
H'®RY). O

Hence

my = J,(v,)

\%

Next we obtain an estimation of the least energy.

Lemma 4.3. There exists a constant C = C(q) > 0 such that for all large 1 > 0,

—q

4.
my, —C(AlnA) 2 if N =4,

m, < (4.13)

_ b
me, —CA 249 if N=3andq>4.

Proof. Let p >0, R> 1 be a large parameter and 7 € C(‘)"’(]R) is a cut-off function such that nz(r) =1 for |r| < R, 0 < ng(r) < 1 for
R < |r| <2R, ng(r) =0 for |r| > 2R and |7}, (r) <2/R.
For ¢ > 1, a straightforward computation shows that

N oy _
/ VoW =53 + 0Ny = { ST 0T i N =4 (4.14)
RN S7 +0@™YH) if N=3.

/ Wi 1% = ST+ 0N, (4.15)
RN

2 [ e +o(l) if N =4,
/RN Ine Wil = { fl+o(l) if N=3 (4.16)

Let W (x) := W;(yx) with y = yy being given by (2.4). Put W,(x) := p_NT_z W,(x/p) for p > 0, then by (4.11), we find

ma < SUp ()0 = 3O, (4.17)

arN=2 22 bAN-D) =2, N oo
< —_— V(ngW, V(ingW, - = W,
<sup (5= [ w4 = [ v P - [

_ 1 = 1 < 2
— iy [/]RN ElﬂRVV,Jq— §|'1RVV,,| ]

=) - AU,

where ¢, > 0 is the unique solution of the following equation

112 b 12
o7 o IV + st o 19 W,
" g
1 (2 -3 [1 5 1 7,12
= & fow WP+ 27 [L fon lne W1 = 4 fo Ina W]

13
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Since

s

=)
. . S
IngW, | < A INA :

RN RN RN

it follows that

1 14 1 212 2%-2
;/RN [1rW,| —§/RN [nr W, | = 1 g-2 202 — g\
Vi ST T T i oy

Sz [ngW,| x>0 14 (2*—q) \ q(2*-2)

Set £ = R/p, then

= 2 —(N—
Jan IV WD) D fon IV, W)

= ;N5 4o
= Jan VWAL + OV,

We also deduce that

~ 2% _ % _ N _ ~ 0% _
/ lnW1° =7 N/ lne,Wi1* =y ™NS7 + 0 N)=/ Wi~ +0@™),
RN ]RN RN

/melr’:rN/ mnyVllq:rN/ |W]|"+o<1>=/ WAL + o),
RN RN RN RN

S0y 2 [ @G +o(l) if N=4,
/RN lnWAI" =y /]RN ey Wil _{ (2 +o(1)) if N=3.

Therefore, we have

a2 pRN-D)

. .Y N I
supso (25— S IV W + 252 o 190 WD = 5 fox I W)
— 2 12 - ~ 2
at = LyN=2 [V )P + b = 12D 1V WO,

where 1, > 0 is given by

()

o = 2 — = 2 = 2%
a2 [ v+ o= [
RN RN RN

If N =4, then t =1, satisfies

_ 2 o2 -
azz/ IV, W) +bz4</ IV, W) >2=r4/ Wil
RN RN RN

Hence, we have

2 = a fon IV WD
¢ S Ine Wil =b(fun IV e WP
7,12
VW,
- .a/le 1\ — +O(f_2)
Jan AT =bfon IV P
= 2 +0@7).

y48%2 4+ 0(~*) — b(y72S? + 0(¢~2))?
y~452(1 - bS?H) + 0(¢72).

Jan |'15’W1|4 = b(fpn |V(’I1¢’W1)|2)2

Therefore, we obtain

S0 g alfon 1V W2
n = <2 [VaWDI" = 3 = .
N7 Jan V0 Wy 4 Lo Ine WA T =bfon 1V W12

2 _ 282+0H)?

4 y=4S2(1-bSH)+0(£72)

_ a’s? )

= 1065y + 0 %).

a_ alfen VWP

4 LN Wb fn 19152

me, +O(£72).

+0(7%)

If N =3, then t =1, satisfies
2 7,16 = 112\2 = 2
! [, Wi l™ = bi( IV, WDl —a [V, WpI™ = 0.
RN RN RN

14
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Therefore, we get

= 2 7 2 7 2 7,16
BUfn IV WD\ 0 Lo IV WP +a S IV WO fan I Wi
16
2 fon Ine Wil
= 12 = 12 2 .6
by IV P2+ B2 Lo IV P4 [y VWAL fon HA

= - +0(¢!
2 fon IW11° @)

t, =

= 1, +0&).
Thus, we obtain
~ 2 ~ 2 ~
(D = supsg 5t fon IVO WL + 22(fon IV WD = 528 fn In W,
= 2 = 2 ~ 2%
= Lty fan VO WD + 22(fan IV WD = 56 fon Ing W
=2 =2 = 2% —
= Sto fan VWAL + 22 (fon VWP = 523, fon IWALT + 07

o
|

o) 2% 00
= sup;yo Jo((W)) + 0™
= my+0@).
On the other hand, we have
= 212
A P ST AL Y A
1 2N-g(N-2) - 1 - 2
_ [;p S o WAL = 02 f In W ]
2N—q(N-2)

Let h(p) := ép 2 fan W1t - %pz Jen 0w, |*. Then h(p) take its maximum value (p,) at the unique point p, > 0, and

sup,so hlp) = hipy)
1
2N-g(N-2) C sty N\ =5
_ (@=2(N-2) [2N—q(N-2)] @D(N=2) (IWWMIZ( )>"2
= W) 2N—g(V—2) —
4 24 llng W 15

Then we obtain

_22% g
q-2 >

_4=q
C,n¢) =2 if N=4,
6

(a1 =1 h(ps) = 2C,lIn,W; o
Cc, 2 if N=3

I,

For the rest of the proof we consider separately the cases N =4 and N = 3.

Case N =4,
In this case, we have

_4=g _4=q
m;, <mg + 02— C,A 2 (Ing) a2,

Take £ = AM, Then

4—q

_4g -
m; <me +0AM) — C,M a2 (AIn 1) 2.
If2M > ;%, then for large 4 > 0, we have

4—,

_4-q _4
my <my, — %CqM -2(Aln A) 2. (4.18)

Thus, if N =4, the result of Lemma 4.3 is proved by choosing

[
@ =SCM 2

5y

Case N = 3. In this case, we have

6—¢q 6—

m, <my + 0= C, A" 22,

=

Take ¢ = 671 A7. Then
64 _(14r)
My < mgy +80(7) = C,a2 4 a2,
6—q 6—q

Let 7> 0 be such that 7 = (1 +7) =], that is, 7 = =%

Since ¢ > 4, we have Z:—g < 1, we can choose a small § > 0 such that
1 0 _ =g
my S = 5C 82 A7

15
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and take

12

1 o=
w==C042,
274

which finished the proof in the case N =3. []

ol

Corollary 4.4. Let§, :=mg, —m,, then

=

“
2% ) ; —
=1 26,2 (’Ehzi) a if N=4,
A 25 if N=3andqe 46).

~ ~

Proof. Arguing as in the proof of Lemma 4.3, it is easy to show that

_2=q
6, S A 2,

which together with Lemma 4.3 yields the desired conclusion. []
4.2. Proof of Theorem 2.1 for large A

We recall the P.-L. Lions’ concentration—compactness lemma, which is at the core of our proof of Theorem 2.1 as 4 — co.
Lemma 4.5 (P.-L. Lions [13]). Let r > 0 and 2 < q < 2*. If (u,,) is bounded in H'(RN) and if

sup/ lu,| >0 asn— oo,
yeRN J B.(y)

then u, — 0 in LP(RN) for 2 < p < 2*. Moreover, if q = 2*, then u, — 0 in L2 (RV),

Using Lemma 4.5, we establish the following.

Lemma 4.6. If N =4 or N =3 then there exists ¢, € (0,+o0) such that ¢, — 0 and

v —é‘NT_zv@*l-)»o
A A 1\54

in D'2(RY) and L* (RN) as A — oo, where v, is given by (4.7).

Proof. Note that v, is a positive radially symmetric function, and by Lemma 4.2, {v,} is bounded in H'(RY). Then there exists
constant A € R and 0 < v, € H'(R") such that as 4 — oo, up to a subsequence, we have

/N |Vu,|* - A2,
R

v; = vy, weakly in H'(@RY), v, - v, in LP(RY) for any p € (2,2%), (4.19)
and

v;(x) = v (x) ae.onRY, v, -0, inL? (RV). (4.20)

loc
Moreover, v, verifies the equation
—(a+bANAv = 77!,

Observe that
i’ g A 2
Jo(0) = J4(0) + — o [01]7 =my +o(1) = mg, +o(1),
q Jrn 2 Jgw
and
I (v =T wv+ /1‘”/ [v,197 20,0 — ,1-"/ v0 = o(l).
RN RN

Therefore, {v,} is a (P.S) sequence for J, at level m,.

By Lemma 4.5 and an argument similar to that in [24], it is standard to show that there exists C/(Ij ) € (0, +0), v¥) € DI2RN)
with j = 1,2,...,k where k is a non-negative integer, such that
k . N-2 .
vy = U+ 2T 0@ ) o) + 5, (4.21)
j=1

16
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where 7, — 0 in D'2(RV), g;j ) - 0as 1 — oo, and vV are nontrivial solutions of the equation
—(a+ bADAv = ¥,

Moreover, we have

k
A = 106, + 20 10913 o (4.22)
=1

and
k
me =AW+ ) JAWD), (4.23)
j=1

where

bA? 1 .
JAwy =2 + 222 Vo> - — .
) (2 2 ) RNI vl > RNIUI

For any solution v of the equation —(a + bA2)Av = 1v*"~!, we have

(a+bA2)/ |Vu|2=/ o,
RN RN

Therefore, we obtain

JA @)

. .
&+ 25 o IV01? = & fow 10

2
= (% + %)IRN Vol - %(‘Z'FbAz)/RN Vol?
= yafan VoI’ + (G = 30642 fon Vo]
> 2a fon IVOP+ (5 = 3)b(fpn V02
= J,().

Since J,(vg,) > 0 and J,(vV) > my, for j =1,2,...,k, we conclude that JA(v,,) > 0 and JA@WY) > m, for all j =1,2,... k.
If N =4 or 3 then by (4.12) and Fatou’s lemma we have

22" —q)

q(2* = 2) Jgn

Note that v, ¢ L>(RY) whenever v, # 0, therefore, v, = 0 and hence k = 1. Thus, we obtain J,,(v"’) = m_, and hence vV = v, for

some p € (0, +o0). Therefore, we conclude that

2 E 2
g |12 < limin flo, 12 = |04 < c0.
A=

=& T uE -0

in D"2(RV) as 4 — oo, where v, is given by (4.7) and &, := pg’il) € (0,+o0) satisfying ¢, - o as 4 — 0. Moreover,
A2 =1img fon IVU1° = fon IVoD|?, we conclude that v! is a solution of the equation —(a +b fpn |VoP)dv=0*""1. O

We perform an additional rescaling

N-2

wx) =&, v(&;x), (4.24)

where ¢, € (0,+) is given in Lemma 4.6. This rescaling transforms (Q,) into an equivalent equation

2N—g(N-2)
—(a+ b/N VwPaw+ i Ew=17¢ > w™' +w” !, inR"Y, (R)
R

The corresponding energy functional is given by

L) = 5 fon alVwl + 4772wl + 2(fon [Vw|?)?
2N—g(N-2) (4.25)

1, 1 2%
_E}' 651 /RN |w|q - 2_*/.]RN |w| .

It is straightforward to verify the following.

1
2

Lemma 4.7. Let 4> 0, v is the rescaling of u € H'(RY) and w is the rescaling of v given in (4.1) and (4.24), respectively. Then:

@ [Vwl? = [Vol2 = [Vul2, wlZ = [0l2: = lul2,
2N—g(N-2)

(b) é‘jIIWIlg = ol = A" lull3, &, 2 Nwllg = llollg = 27 llull,
() J;(w) = J;() = I;(w).

17
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N-2
Let w,;(x) = ¢, 2 v,(&,x) where the v, is a ground-state of (R,). Then it follows from Lemma 4.7(c) that w), is a ground state of
(R,). By Lemma 4.6 we conclude that
IV(w; —vpll, = 0, lw; —v]lpx = 0 as A - oo. (4.26)
Note that the corresponding Nehari and PohoZaev identities read as follows

2
a fon IV, P + 4778 fon 10,1 +b (o IVw,)?)
o 2N—q(N-2)
= fRN |W},| +}-_J§A 2 fRN |w/1|qa

and

2, 1,- 2, b 2)2
55 Jon Vw1 + 52708 fon 1wy + 55 (fan 1V, 1)
. . ) 2N—g(N-2)
=5 /]RN [wyl* + ;/1755,1 2 /]RN [w, .

We conclude that

11 ) 2 (1 1 e
- — — —0 = = — — -0 q
(G-2)eg [l =(-)ae [

Thus, we obtain

N-2)g-2) . _
g / lw; > = M [w, 4. (4.27)
RN q(2* —2) RN

To control the norm ||w,||, from below, we give the following estimate:

Lemma 4.8. There exists a constant C > 0 such that
N

-2 _l -
w;(x) 2 Cw, 2 x| N Pexp(-w, 2471 IxD), x| 2 1, (4.28)

where @, = a+b fon [Vw,

Proof. It is easy to see that ;(x) = w,(y/w;x) satisfies the following
2N—g(N-2)
—Ai, + 408w, =408, alT +a? T >0
Arguing as in the proof in [18, Lemma 4.8], we show that

@(x) 2 Clx|™ NP exp(=A72 & IxD), x| = 1.

Therefore, we obtain

N-2 1
. X 5 —(N— -5 ,-2
w,(x) = w,( )2 Cw,* x| N 2)exp(—w/lzi 2&|x]), x| >1.

w,

The proof is complete. []

Since 0 < C; < w; < C, < +oo for some constants C,;, C, which are independent of 4 > 0, as consequences of the above lemma,
we have the following two lemmas.

Lemma 4.9. If N =3, then |lw, |l 2 ﬁé;l.

Lemma 4.10. If N =4, then [w,|| 2 —In(A=°&2).

To prove our main result, the key point is to show the boundedness of |[w,]|,.
Lemma 4.11. If N =3,4 and % <5 < 2% then |lw,||* ~ 1 as A — oco. Furthermore, w; — v, in L*(RN) as 4 — co.

Proof. By (4.26), we have w,; — v, in L? (RY). Then, as in [18, Lemma 4.6], using the embeddings L>"(B;) & L*(B,) we prove
that liminf ,_,  [lw,||$ > 0.
On the other hand, arguing as in [1, Proposition 3.1], we show that there exists a constant C > 0 such that for all large 1 > 0,
C

N
m, Vx eR N (4.29)

w,(x) <

which together with the fact that s > %2 implies that w, is bounded in L*(RV) uniformly for large 1 > 0, and by the dominated
convergence theorem w, — v; in L*(R") as 1 -» o. [J

18
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Proof of Theorem 2.1 for large A. We first note that for a result similar to Lemma 4.2 holds for w, and J ;- By (4.11), we obtain

Moy S SUPr>0 Joo ((W3)y) = T ((W));)
2N—q(N-2)

< supys S ((wy)) + 470t {é@ P e lwyl? - %5? Jan |W/1|2} (4.30)

| 2N=gN-)
Sm,1+/1_aliv;§,l o fen lwyld,

where 7, > 0 is such that (w,),, € N, and more precisely,

b fan 1V0; 242 fpn 1Ve03 Py 44a fyon 1w, fn 1V,

- , if N =3,
7= A
v
afgn VAl if N=4
Jon 1wy 1F =b(fpn [Vwy1?)?
and hence by (4.8) and (4.26), as 4 - o, we have
b(f 1IV01 PP+ B2 1011 +4a fon 1017 fon 1V N =
2 2 fon 1017 ’ ’
= afon Vo2 afon Vo2
RY 1 = RY 1 if N=4

Jan 10112 =b(fon IV 2 T (1-bS2) fon 1oy 2"
The above inequality implies that

2N—g(N-2)

N
& o / [wy|7 > 2% (my, —m,).
RN

Hence, by Corollary 4.4, we obtain

4
IN-g(N-2) (In /1)—;; if N =4,
R STTES (4.31)
N B Clos)
A @26 if N=3.
Therefore, by Lemma 4.11, we have
L £
InA) a2 if N =4,
gz A2 (4.32)
A" @2ehH  if N =3,
On the other hand, if N =3, then by (4.27) and Lemmas 4.9 and 4.11, we have
=2 1 o
23 S A2
T w2
Then, observing that ¢ = 2:%2" = Z:—g, for ¢ € (4,6) we obtain
- 6—q
&5 At = ) @D (4.33)
If N =4, then by (4.27) and Lemmas 4.10 and 4.11, we have
e 1o L cma,
lwyll; — —In(A=7&))
here we have used the fact that £; - 0 as 4 - +oo and for large 4 > 0,
~In(A°¢) =clni-2In¢, > olnA.
Thus, we obtain
1
& Sy a2, (4.34)
Thus, it follows from (4.30), (4.33), (4.34) and Lemma 4.11 that
2N—q(N-2) —d
(N~ = _
me, —m,; S A%, 2 p uhﬁ;} ! N =4,
A 2% if N =3,
and hence Corollary 4.4 yields that
2N—q(N-2) —d £
—a(N— S _
g —my~ A0 2~ AA N =4, (4.35)
A2 if N =3.
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Since
_ a 2, 1, g2 2, b 2)2
m,; = E/RN [Vw,|” + 34 (rf,lfRN lw; 1"+ 3 (/]RN [Vew,|?)
| 2N—g(N-2) | %
—5/1_661 2 _/]RN |w1|q - 2_*/RN |w/1| .
2, 1,- 2, b 2)2
%/}RN [Vw,|= + 5/1 65% /]RN |w,|= + o (/RN [Vw,| )
. 2N—g(N-2) . o
— — 2 )
- ;’1 6":,1 fRN |w/1|q + szRN |w},|
we get

11 11 :
S S Vw, > +b(> — — Vuw,|?) .
my = a3 2,6)/Mluul+(4 2*)</RN|W,1|>

Similarly, we have

11 11 2
_ 1 2 1 2
My, —a(2 _2*)/RN [Vwg,| +b(4 _2*)</RN [Vwg| ) .

Therefore, we obtain

a 2" -4 2 2 / 2 / 2
— +b \% + \% \% - \% .
T </RN|wm| /RN|wA|>]<M|wm| [ 19w

which together with (4.35) implies that

Moy — My =

4—q
AlnA) 2 if N =4,
IV I = Ve, |2 ~ meg —m, ~4 40D (4.36)
A 2a-4 if N =3.
Since

(o 1ol = fow 1)

= —(my, —my)

+ [% + f (Jfan IVwel® + fon |V“’i|2)] (Jon Vo I* = fan [V, ?)

( 2)(N 2) 2N—g(N-2)
q— - - 2 q
+ =TT S w14

It follows from (4.35) and (4.36) that

_4=g
« . O((Alnd) a2) if N =4,
lwell? = llw,lI% = e
O(A 2-4) if N =3.

Finally, by (4.27), (4.35) and Lemma 4.11, we obtain

InA if N =4,
llew,lI% ~ _6-q_
2 2275 if N =3,

Statements on u, follow from the corresponding results on v, and w,. This completes the proof of Theorem 2.1 for large 4. []
5. Proof of Theorem 2.2

In this section, we always assume N = 3. We divide this section into three subsections, in which we consider the cases (i) p = ¢,
(ii) ¢ < p, A > 0 large, and (iii) ¢ < p, 4 > 0 small, respectively. If 2 < ¢ < p < 2%, then the arguments used in Section 3 and Section 4
do not work any more, so we try to transform the nonlocal equation (P,) into the local Eq. (1.3) by using a suitable rescaling which
is dependent of the ground state solution. Unfortunately, if b # 0, such a rescaling does not necessarily transforms a ground state
solution into a ground state solution of a new equation, which prevents us from deriving a precise energy estimate of the ground
state.

5.1. The case p=gq

Let W € H'(R3) is the unique positive solution of the equation
—AW + W =WwP!,

and S, = ||W||§_2. Let u, be a ground state solution of (P,), then for any 4 > 0, there holds
1 1 1
uy(x) = (4/2)72 W(AZw, x), (5.1)
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where w, = a if =0, and if b # 0, then
1) 3bp-2) 52 £ o2 (p-2)2 , L 2
VoL = 5 Tﬂz(rZ)(Sp/Z)P*Z + TAP’Z(SP/Z)P’Z +4a

_6=p_ 3b(p-2) _p_ _6=p
A20-2) +p(Sp/2)1’-2+@(1 2y, as A — oo,

1 _6=p
a? + O(A%D), as A-0,
Clearly, we have
1
uy (0) = (A/2)72 W(0),

and a direct computation shows that for b # 0,

Va2 = A% 3 2)\/_(5 /2)7

L
-2

6

= <9b<1’ 27 (s, /2)n 5 00" p—2)> as A — oo,

1755 (20243 (5 /277 + 07D . A—0
a( »/2)772 +6( )), as -0,

P

I3 = AT 5 (@) (S,/2) 77

14-3p

3 3 A _6=p
p (W(Sp/z)u—z +03 »—2)>, as A - oo,

10-3p 6 3 A 6-p
2207 (%’ai(sp/z) 7 4 9(12(»—2») , as A—-0,

lgl? = 255 (@ (S,/2)7

26-p)

Ap _6=p
A <%(Sp/2)n—z +00A n—2)>, as A — oo,

_b=p_ 3 L 6=
A126-D az(Sp/z)p—Z +0O(A0-D) ), as A-0.

For b =0, we have

6-p -2 r_ 6-p -2 P
||Vu/1||§ = 15D 3w-2) [, (Sp/z)p72 Y ) M 3 (S /2)72
p p

(\/w_A)3 (5,/2) 7 = 4% 8 =P o3 (5, 72)72

10-3p
2 = 4% ©

P

6—p 3
lluslly = A3 () (S /2)72 = 20D a1 (S,/2)7

£
—2

5.2. The case q < p and A > 0 is sufficiently large

Let u, be a ground state solution of (P,), and
1 1
=1 7 2uy (A2 \[w,x), =a+b Vu, |2 5.2
w;(x) uy( w,X), wWy=a /RN [Vl (5.2)
Then w = w, satisfies
_r=g
—Aw+w=4 2w +wk!, in RV, (5.3)
The corresponding functional is given by

1 ) , 1 ,-p¢ 0.1 )
J(w) == IVw|* + |w|” — =4 »2 |w|T+ - [w|?.
g 2 Jrw q RN p JrN

Observe that

6—p 1
w, = a+ bA2r- 2>w/12 f]RN |Vw,1|2, if  b#0, (5.4)
a, if b5=0,
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it follows that

Lw = IVl + 51l + FUVally = llully = S llull;
6—p
B 220D (\[@ )3, (w) + K;(w)], if  b#0, (5.5
- 6-p 3
A% a2 J,(w), if  b=0.

where
a__ b, tn —3 1
K@) = S IVwll; + 2452 @, 2 [[Valy = 2 Vwll).
Clearly, for any ¢ € H!(RV), we have
/ 1 oo L 2
K (w))e = (aw; + b2 D, * ||Vw,|; - D/}RN Vw,Ve =0,

therefore, w = w), is a critical point of K,(w). Therefore, if u, is a critical point of I,, then w), is a critical point of J,.
On the other hand, assume w; is a critical point of J, and w, is given by (5.4), then

uy(x) = P wl(lé(\/wl)_lx) (5.6)

is a critical point of I,. These observation reduces the problem of finding critical point of I, to the corresponding problem of finding
critical point of J;.

For general 4 > 0, the ground state solutions of (5.3) should not be unique. But for large 4 > 0, this is not the case. Arguing
as in [10, Theorem 5.1] (see also [2]), by the implicit function theorem, we can show that for large 4 > 0, (5.3) admits a unique
positive ground state solution, therefore, (P,) has only one ground state solution for large 4 > 0. This also yields that w, is a ground
state solution of (5.3).

Let m, be the least energy of nontrivial solutions of (5.3). Put

A,1=/ [Vw,|?, B,1=/ lw,|?, cA4=/ [w, 4, D,1=/ [w,|?, (5.7)
RN RN RN RN

Then the Nehari and PohoZaev identities hold true:

_p=g
A+ B, =4 r2C; + D, (5.8)
1 1 =
2—*A/1+§B;L= 51 P CA+;DA7 (59)

As a consequence, it follows that

N(g-2) -2 Np-2)
=——-71 m2C;+ ——D
2q et 2p 4

NQ*-¢q) -4 NQ* - p)
B,=—"—" 2T rC,+——=D
2 g Ll Ol > !

A

Hence, we get

1 1 1,-E 1
my = EAA+EB}‘_;/1 ”_ZCA—;DA

_ Ny ,-= N(p-2) NQ@*-g) ;== NP p _ 1, =050
= A C,1+—4p D, + g A 2C; + 2 D, A r2C,

S

= 270+ 2D
= 3 at 5D
In a similar way, we show that

p—2 p—25
w="F5Do="5"5""

Thus, we get

-2 -2 _rg
m,l—moo=pT(D,1—D°°)+qT/l =X (5.10)
Arguing as in [17], it is shown that

_p=g
my—my;~ A r2, as A — . (5.11)

=

Therefore, from (5.11), we obtain
-2 _pr £ _pr=q
/ |w,|P = Dy, — = (mg —my) — Ay C,= Sy -0 ), (5.12)
RN p- p—
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fRN |Vw/1|2

Jan lw,l?

= M4 1o + M2 (D, — 25 (my — m»—,, 34 C)

_ N( 2) N@g-2) -
= ‘;—pr—;(mco—mA)—q—(———)/l PZCA

£ r=q

R\ = -
= PRS0,

. _ _p=g

= _N<2q">,1 =T A RE (D, - (g )—— 2C)
NQ*— INQ*— 2*—p)(g=2) _ 2*—q,~ %

- ( p)Sp 2 _ ( P) (mgy —m,) — N(( 2*1)/3’(112)) 2*qq)/1 mC,

¥ o, T2
—  NQ@'-p o2 ,2
= MCHS 100,

From (5.4) and (5.14), it follows that for b # 0,

Ne

6-p 6-p
: <b,12<p—2> Jan [Vw, 1> + \/bZ,w—z (Jan 1V, 1?2 +4a>

6-p _6-p

2200 fon [Vw,)? - % <b+ \/b2 +4ad” 772 (fpn |Vw,1|2)2)
_6-q_ _6=p

A2 fon [V, |* b+ 0772 ))

6-p 30-2) 2) _r=a _6=p
270 (2 s; +0 ) ) [b+0(r2)

=E 3b<p = -t .
A20-2) Slf +0(4 r2)), if g>2p-6,

v

6—p _b=p
A% <—3b<;p‘2> P 4047 )>, it g<2p-6.

Thus, by (5.6), (5.12), (5.13) and (5.14), for b # 0, we obtain

1Vu, 12

N 113

N 117

6—p
2200 [ fon [V, ?
o 6
A2 (b+ O 7)) (fn [V, 12

P—q

= - 30D g3 -
APZ(b+ O P (L2877 + 047 2)
6=p O _pr=g .
A2 <_9”<5p22> S+ 00 p—2)>, if  g>2p-6,
6

2 (onp2? 75 =
arr | PEEESE 06T ). i q<2p-6,

10-3p

200-2) 2
20D (@) fon 1w,

10-3p 3(6—q)

6—q
A2 - 220D (b+ O(4 - 2))3(/RN |Vw/1| )3 Jan 1w, P

a

W o 22))(3”’ 2)S" =) AGLS) P o

14-3p -9
= (27/1’(;: ~2)°(6- p)Sp = +0( )

u

- . if g>2p—6,

o

14-3p 3 3 _6-p
A (—m -2 (6 ")S"’ +O0( ) ), it g<2p-6,

16p*

N———

6-p
226070 (yJ@,)} /RN |w, |?
6-p 3(6—9) _6—¢q 5
A2073 - 226070 (b + O 7)) (fon IV, 1) fon lw, 1

—q

26-p) _6=q L _r=g £
A0+ 0 )RS £ 0TS, - 0T )

26=p)

Apz<27b3(_1’2)5!'2+0(,1 p2)>, if ¢>2p-6,

&

2(6- p) 3
PN <27b8(11}2) Sn— + 04 pz)> if  ¢g<2p-6.

For b = 0, noting that w, = g, by (5.6), (5.12), (5.13) and (5.14), we have

2 _b=a
||Vu,1||2—)»2<l’2)‘/_/ |Vw,1|2—zzw> <% ; +0(4 H)>,
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P P

oIw

D p

_6=p_ 3 _6=p_ 3 ,,%z _p=q
||”/1||5 = “(H)(\/W_A) /N [w,;|P =422 (a2 S -6 »2) .
R

5 A 10-3p 3 2 a 10-3p 6— p
u = A200-2) w w = A200-2) a
sl = 4265 ([ -

5.3. The case q < p and 4 > 0 is sufficiently small
Let u; be a ground state solution of (P,), and
I 1
=1 2 uy (472 [, x), =a+b Vu,|?.
w;(x) u;( w,X), Wy =a /]RNl u|
Then w = w, satisfies

p=q
—Aw+w=w"+ 12wl inRN.

S 40 2

3)),

Nonlinear Analysis 239 (2024) 113423

(5.15)

(5.16)

As before, we show that w, is the unique positive solution of (5.16) for small 4 > 0. Moreover, we have

3 ) p—q
/ Vi, | +/ 0,1 =/ |w1|"+m—2/ L, 17,
RN RN RN RN

1 1 1 1,24
7 |Vw,1|2+—/ |w,1|2=—/ |w,1|"+—lq*2/ lw, P,
2% JrN 2 Jrw q JrN p RN

Put
AA:/ [Vw, |2, BA:/ lw, %, CA:/ lw, 9, DA:/ [w, |,
RN RN RN RN
then
N(g-2 Np-2) r=4
a, =Nz  (NeZ2:5,,
2q 2p
NQ2* -¢q) NQ*—p) =
B, = C, + A2 D,
! 2q i > 7!
and hence
1 2,1 2 1 ¢ 1,5 »
m,; = E/RN [Vw,| +§fRN lw,| _;fRN lw,| —;“’2 Jan lw;]

q-2 p=2 r=q
= TC4+71‘7’2D4.

In a similar way, we show that

q-2 q-2 ) 4
my == c(,:TSq“, Co=8."".
Thus, we obtain
-2 -2 r
m,l—m0=qT(C,1—C0)+p Aa2 Dy,

On the other hand, as before, it is easy to show that

=
my—m, ~ A2, as A— 0.

=

Therefore, we obtain

2 P
Co—Cy=—=(my—my) +
0 ) q—2(m0 my)

-2 =g
_2/”_2DA ~ A2,
that is,
=g Tiz =
- |w;|?=Cy=Cy—0(442) =S/ —O(As2).

Therefore, we have

N(g—2 2 — =1 N(p-2) , =2

Jow Wwil? = BE2(C) = Z(mg—m)) = 5472 D) + X242 D,

= NV Ny Ne=D 11y,

= 2 Cy q(mo my) 5 (q p)/lq D,

_ N2 g2 =

= M5 -6,

2 N(@2*—q) 2 -2, =2 NQ@*

Jen lwal® = z*qq (€= 55 0mo —my) = ZTZM D+ 5

q
_  N@'-9) ¢g¢2 _ 2NQ*—9q) _ _ | N -9 (-2)
- 2%q Sq 2%4(g-2) (g = m;) [ 2%4(g-2)

24

=
=2 j42 p,
P

W =1
- 4552,

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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Notice that
@-9p=-2 @=-p _p=2(1_ 1\_(1_1\,p=qa(1_1)_,
2%q(g —2) 2%p g-2\q 2¢ p 2°) T q=2\p 2¢ ’
we conclude that

NQ2* - -+ r=q
/ lw,)* = %S = 0(Ae2). (5.25)
RN q

=R
|

Since
6—q
w/1=a+b/ |Vu,1|2= a+bA%aD VWA/]RN |Vw,1|2, if b#0,
RN a, if b5=0,
by (5.24), for b # 0, we have

6—q 6—q
1
Vo, = 3 <b,12<a—2> Jan 1Vw, |* + \/b2/14—2 (Jan IVw 1?2 + 4a

_6-q_ 6-q
= % <b,12<qz> + \/buH +4a(fpn |Vw,1|2)—2> Jen IV, I?
1 6—q
= a2 +0(A%D),
Thus, it follows from (5.15), (5.23), (5.24) and (5.25) that for b # 0,
2N—g(N-2)
2D (JaIN? fon [Vw,|?

6—q
22D [ fon [Vw,|?

6— a_ -
PE <3(‘;—‘2>a55;*2 - @(/1573)> , if g>2p—6,
q

1Vu, 12

R N S
A% <~(‘;—an S+ 0(/12<a—2>)> . if g<2p-6,

4-N(g-2) N )
A 26D (V@) fRN [w,|
10-3¢

A (ﬂa%s"%2 —@(,15%3)> it g>2p—6
Sla2 s, . q>2p—6,

N 12

10-3¢ (o 3 4 6—q
22D (2;‘1%5 857+ 0(,12«1—2))) , if g<2p—6,

IN=g(N=2) N
A 2D (/@) /IRN lw, |
6—q

e g "
A% | a2 S] - 0(A2) ), if g>2p-—6,

lluz 11

q

o (3 o Somq
2% (@28, + 0% D)), if  g<2p-6.
For b =0, by (5.23), (5.24) and (5.25), we have

=g b=¢ (3(qg-2) 1| b=y
IV 113 = 2262 \fa; /]R | Vst = 2% <%a S§7 - @w—2>> ,

2 10-3¢ 3 ) 10-3¢ 6—q 3 q% P=q
lglly = 4202 (V)? [l = 430 (=5 2a2 8y 0w ).
R

9q

6-q 6—q 3 =4
u, |4 = 426D (y/w 3/ w,|9=21%D (a2877 —0(12) ).
lloea 115 W@y ]RNl al q (

The proof of Theorem 2.2 is complete.
6. A connection with the mass constrained problem

It is clear that if u; € H'(R") is a ground state of (P,), and for some ¢ > 0 there holds
M) = lluyll5 = 2, (6.1)
then u, is a positive normalized solution of (1.5) with x4 = 1. We denote this normalized solution by a pair (u 2 4.). In what follows,

we always assume y = 1 in (1.5). As a consequence of Theorem 2.1, we have the following

Proposition 6.1. Let p=2*, 2 < g <2* and bS? < 1 if N = 4. Then the following statements hold true:

If N=4and q € (3,4), or N =3 and q € (4,6), then for any ¢ > 0 the problem (1.5) has at least one positive normalized solution
(uy,, A;) with A, > 0, lim,_g A, = oo and lim,_,,, 4, = 0. If N =3 and q € (10/3,4], then there exists a constant ¢, > 0 such that for any
¢ > ¢y, the problem (1.5) has at least one positive normalized solution (u,_, 4.) with A, > 0 and lim,_,, 4, = 0.
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If N =4 and q € (2,3), then there exists ¢, > 0 such that for any ¢ € (0,c,) the problem (1.5) has at least two positive normalized
solutions (uz(')’ /15’)) with /15') >0,i =1,2, lim,_, /15” =0 and lim,_ /19 = +o0. If N =3 and q € (2,10/3), then there exists ¢, > 0 such
that for any‘c € (0, ¢,) the problem (1.5) has at least one positive normalized solution (u 10 Ac) with A, > 0 and lim,_ 4, = 0.

1
Furthermore, if q # 2 + % and lim 4, = 0, then lim ¢4-N¥«-2 =0 and

2, N -1 425\?(2)2)
A~ —q a 28 q72C2 a ,
cT\2N—g(N-2) a
) = Vp(0) 2 i )T
~ JE— ,
Uy, 0 2N—q(N—2)a 4 c
2N—g(N-2
N(g-2) nv=2 L 2 N —--L :/—1\?((17—2))
IV, 2 X4Z2 R ge (205 w2 :
¢ 2q 4 2N —g(N -2) a
N ‘ N -4 (N-2)@-N(g—
T ra? |7 2 4 —78 2.2
s 18- = 0¥ W40 (o5, ,
s(_ 2 )
N L N - N (7=
g 19 2 a2 877 (a7 25,2c2) .
i 7 \2N—q(N-2) a

If N=4, g€ (2,4) and lim A, = oo, then limc =0, and

) 1 1
A(ni)72 ~ ey ”AC(O)N c—zlnlc,

S? - _4=g
Vu, |12 = lfbsz -0t i(na) 7)),
* a*5? - _4 N _4q
s B2 = 2 O T AT, gl ~ et Uina) T

if N =3, g€ (4,6) and lim A, = oo, then limc =0, and

ES

q—

J
Ae~e 12,y (0) ~ e D),
3
bS3 4+ 521/p283 + 4 Sba_
IVas 15 = > % -0,

* 1 _6-q_ _6-q_
lluy, 115. = %(bs2 +STVRS3 +4a) + 0T D), luy ||2 ~ XD
The same conclusions hold true for (u 0 /19),[ =1,2.
In what follows, we consider the problem (1.5) with subcritical nonlinearity. Let
gw)=wP +uwi!, w>0,

then for 2 < g < p < 6, g(u) satisfies all the assumptions (G1)-(G3) in [10]. For 0 < A; < A, < +o0, it follows from [10, Corollary
3.2] that

W/’:Iz ={we H! (R% : wis a nonnegative solution of (P)) with a=1, b=0, 1 €[4}, A,]}
is compact in H'(R?), and hence is compact in L>(R?) and D'*(R?). Set

St={we H!

rad

[R3) : w solves (Py) witha=1,b=0and w > 0}.

Then the map p : U, ApAy JSé — (0,+00) defined by p(w) = ||w||§ is compact. Therefore, there exist positive constants C; =
Ci(A},Ay),i=1,2 and D; = D;(A, Ay),i = 1,2 such that

0<Cy < lwl} £Cy <400, 0< Dy <[[Vwl3 £ Dy <400, Vv € Ujeiy, 4,15
Set

A 1
S, ={ueH,

rad

(R%) : u solves (P;) and u > 0}.

Then there exists an one-to-one correspondence through the rescaling
1
w(x) = u(y/wx), w=a+b/ Vul?> = a + bw? / [Vw|? (6.2)
R3 R3
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between 561 and S[f. Clearly, by (6.2), we have ||w||2 =w -3 ||u||2 and

b+ /2|IVwll; +4a

2

I—

w

Therefore, for any u € U4, 4,157, we have
(b+1/b2D3 +4a)’C, (b+1/02D3 +4a)’C,
< lull3 < :
8 8

Thus arguing as in [10], Theorem 2.2 implies the following result concerning the existence, non-existence and exact number of
normalized solutions of (1.5), and their precise asymptotic behavior as the parameter ¢ varies.

Proposition 6.2. Let2<g<p<6, b>0 and

[oq : nis VIFG 6 2
m = (’z—q"ais;m Doy = Ww 2, (6.3)
If ¢ < 10/3 and p < 14/3, then for any ¢ > 0 the problem (1.5) has at least one positive normalized solution (u, , A.) with 2, > 0,
lim,_y 4, = 0 and lim,_,, A, = +o0. Moreover, for sufficiently small ¢ > 0 and for sufficiently large ¢ > 0, the problem (1.5) has exactly
one positive normalized solution.

If 10/3 < q < p < 14/3, then there exists ¢, > 0 such that for any ¢ > ¢, the problem (1.5) has two positive normalized solutions
(”A“)’A()) with /1(') > 0,i = 1,2, lim,_, /1(1) = 0 and lim__, o, /1( ) = +oo0. Moreover, if ¢ > 0 is sufficiently large, the problem (1.5) has
exactly two positive normalized solutions, and if ¢ > 0 is sufficiently small, the problem (1.5) has no normalized solution.

If ¢ < 10/3 and p > 14/3, then there exists ¢; > 0 such that for any ¢ € (0, ¢;) the problem (1.5) has two positive normalized solutions
(”A(‘)’ /1(')) with /1(') >0,i=1,2, lim,_ A(l) =0 and lim,_,, A = +00. Moreover, if ¢ > 0 is sufficiently small, the problem (1.5) has exactly
two positive normalized solutions, and if ¢ > 0 is sufficiently large, the problem (1.5) has no normalized solution.

If ¢ > 10/3 and p > 14/3, then for any ¢ > 0 the problem (1.5) has at least one positive normalized solution (u, , 4.) with 4, > 0,
lim,_ 4, = +o0 and lim,_, A, = 0. Moreover, for sufficiently small ¢ > 0 and for sufficiently large ¢ > 0, the problem (1.5) has exactly
one positive normalized solution.

If ¢ = 10/3 and p < 14/3, then there exists positive number ¢, € (0,m;) such thatfor any ¢ € (c¢;,m,), the problem (1.5) has at least
two normalized solutions (u ), A9y with 19 > 0, lim,_,,, A =0 and limc_,m] ? > 0, and for any ¢ > m,, the problem (1.5) has at least
one positive normalized soluaon (uy,. Ac) with A, > 0 and lim__,, A, = +oo. Moreover, if ¢ > 0 is sufficiently large, the problem (1.5) has
exactly one positive normalized soluaon, and if ¢ > 0 is sufficiently small, the problem (1.5) has no normalized solution.

If ¢ =10/3 and p > 14/3, then there exists a positive number ¢, > m; such that for any ¢ € (0, ¢c,), the problem (1.5) has at least one
positive normalized solution (u; , 4.) with 4, > 0, lim,_,,, 4. =0 and lim_ A, = +oo. Moreover, if ¢ > 0 is sufficiently small, the problem
(1.5) has exactly one positive normalized solution, and if ¢ > 0 is sufficiently large, the problem (1.5) has no normalized solution.

If ¢ < 10/3 and p = 14/3, then there exists ¢, > m, such that for any c € (0, c,), the problem (1.5) has at least one positive normalized
solution (u,_, 4;) with 4, > 0, lim._y 4, = 0 and lim__,,,, 4, = +oo. Moreover, if ¢ > 0 is sufficiently small, the problem (1.5) has exactly
one positive normalized solution, and if ¢ > 0 is sufficiently large, the problem (1.5) has no normalized solution.

If ¢ > 10/3 and p = 14/3, then there exists a positive number ¢, < m, such that for any ¢ > c,, the problem (1.5) has at least one
positive normalized solution (u, , A.) with 4, > 0, lim,_,,,, 4. = +o0 and lim__,, A, = 0. Moreover, if ¢ > 0 is sufficiently large, the problem
(1.5) has exactly one posmve normallzed solution, and if ¢ > 0 is sufficiently small, the problem (1.5) has no normalized solution.

Furthermore, if q ;é 1 and lim A, = 0, then limc 10 3¢ =0, and

2(¢-2) 5

2q 10-3g _3@-2 — 10‘7 44-2)

Ao 6 a 10-3¢ Sq 70103
q

2
u; (0) ~ ¢ 10-3¢

6—q )
3(g—-2 2 10-3¢ d_ 26-9)
llvuifll%:%(ﬁ) a 10~ 34S 10734 0103 |

29

6-g

10-3¢ _34¢=2 - 2(6—9)

[loez 11 = 24 a 105§, 107 105
e llq 6—¢q

_1_
Ifp# 13—4 and lim A, = +oo, then lim ¢ -3 = 400, and

p2

1604 43 - 4" 200-2)

Acﬁ(+) s, 3 T
27b°(p —2)°(6 — p)

2
uy (0) ~ ¢T3,
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9b(p —2)? 16p* Wh - e
1V 13 = —= < 3 ) $, e,
‘ 42 \276(p - 26 - p) ’
2763 (p - 2)3 16p* 21216:3‘2 A 46-p)
g 11y = =—=F < P > 5, T N,
or 8p? 2763 (p = 2)3(6 — p) ?

Ifq_ and lim A, = 0, then

—_ 3
lime = m, = 6 qaZqum 2l
2q
and
limu, (0) =1lim [|Vu, || = lim [lu,_ =0
Ifp= and lim A, = +oo, then
V213(p 236 —p) 2%
limc=m2:—(p r( P)Sp,,,z’
4p?
and

limu;, (0) = lim [|Vu,_ |5 = lim |lu, ||> = +co.

The same conclusions hold true for (u 0 /lﬁi)),i =1,2.
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Remark 6.1. In the case that » = 0 and 2 < ¢ < p < 6, Jeanjean, Zhang and Zhong [10] obtain the existence, non-existence
and multiplicity of positive normalized solutions to (P;). The authors in [10] also obtain some asymptotic behaviors of normalized
solutions as the Lagrange multiplier A — 0 or 4 — +o0. In fact, by the discussion in Section 5, a direct computation shows that if

b=0, p—q;é— then we have

2(p=2)
P 10-3p _30=2 2 A2
=\ a 103 (S, /2) 103 ¢ 103
(4
6-p
- 2 26-p)
||Vujc||§ —_ 3(p 2)(61’ )10_3,,a T 5 (S /2) T0-3 ¢ 103
p
» p 6-p _3(p-2) 2 2(6-p)
llet 15 = (6 — p) =3 g~ 105 (8,/2)" 103 ¢ 103,

1
Forb=0,qg<p# % and lim A, = +o0, then we have limc 1% = +o0 and

- — 2p _
20-2) _3(=2) - 4(p=2)
A, = (6_p) 103 g~ 10-3 ), 103 0 T03p |
3(p-2), 2p o A6=g)
1V 13 = XE2D 2y o s, T
p -p
bmp 302 - 26-p)
””A ||P~( 2p )10 g 10— %S, 10=3p . T0-3p

1
For b =0, % # ¢ < p and lim 4, = 0, then we have lim¢10-3¢ =0 and

2q 24-2) _34-2) _1274 4(g-2)
Ae = (6 — Y1034 g 103§, ¢ 103
2q
3(g—-2) 4 26-9)
2 103
||Vu/16||2 % (6 q)l() 3qa 10— qu =g
b= _3¢=) -2 26—

2q 26=9)
llu,, ||q~( )10 3¢ g 10— .S, 10-3¢ . 7034

We mention that Zeng et al. [29] extend the results in [10] to a Kirchhoff equation with general subcritical nonlinearity and obtain
some results concerning the existence, non-existence and multiplicity of normalized solutions, but the exact number and the precise

asymptotic expression of normalized solutions are not addressed there.
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M) = [l M) = [luy3

10) A O A

10
3

Fig. 2. Left:2<q<%,q§p<?; right: <q§p,?<p<6.

MY = fusl3 MO = 3

10) A O A

Fig. 3. Left: ¥<q5p<?; right: 2<¢ < %, %<p<6.

Remark 6.2. By Proposition 6.2 and Remark 6.1, we see that in the space dimension N = 3, there is a striking difference between
the cases b = 0 and b # 0 (see also Fig. 1). More precisely, if b = 0 then p, = '3—0 plays a key role in the existence, non-existence,
multiplicity and asymptotic behavior of normalized solutions of (1.5). However, if b # 0, then both p, = % and p, = 1 play a role in
the existence, non-existence, multiplicity and asymptotic behavior of normalized solutions of (1.5), which are completely different
from those for the corresponding nonlinear Schrédinger equation and which reveal the special influence of the nonlocal term. We
mention that the difference between the Kirchhoff equations with pure power nonlinearity and nonlinear Schrédinger equations has
also been observed by Qi and Zou [19]. But the difference between the Kirchhoff equations with combined powers nonlinearity and
nonlinear Schrédinger equations have not been addressed there.

Remark 6.3. Asymptotic behavior of M (1) similar to the cases depicted in Fig. 2 have been observed in nonlinear Schédinger
equations with a power nonlinearity, the cases depicted in Figs. 2 and 3 (right) have been observed in nonlinear Schrodinger
equations with general nonlinearity [10], while the cases depicted in Figs. 2 and 3 (left) have been observed in Kirchhoff equations
with a pure power nonlinearity [19]. If ¢ = 10/3 and p < 14/3, then there exists positive number ¢; € (0,m;) such that for any
¢ € (¢;,m;), the problem (1.5) has at least two normalized solutions, if ¢ > 0 is sufficiently large, the problem (1.5) has exactly
one positive normalized solution, and if ¢ > 0 is sufficiently small, the problem (1.5) has no normalized solution. This is new
phenomenon, which is not observed before in the literature and which does not shared by nonlinear Schrédinger equations and
Kirchhoff equations with pure power nonlinearity. Some new phenomenon is also observed in the case %) <g<p= ]?4. See the
diagrams of M(4) given below in Figs. 2-4, where m; and m, are given in (6.3).

We mention that when 2 < ¢ < 13—0 '3—4 < p < 6, a nontrivial variation of M(4) can also be observed in Fig. 3 (right), which affects
the existence, non-existence and multiplicity of normalized solutions of (1.5). This special behavior of M (1) is mainly caused by the
combined nonlinearity and have been observed in nonlinear Schrédinger equations and Kirchhoff equations with general subcritical
nonlinearity [6,10]. We also mention that this type of behavior of M (1) does not appear in the Kirchhoff equations with a pure

power nonlinearity [19]. Typically, the asymptotic behavior of M(4) depicted in Fig. 3 (left) is mainly caused by the appearance
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M) = [Juy|3 M) = [luy3
m? 2
0] A o \

Fig. 4. Left:q=13—0<p< %; right: %<q<p=%,

M) = [[upll3 M) = [[uy3
mj
mf m%

m%

) A o A

Fig. 5. Left: g = %), p= ]?4 and b > 0 is large; right: ¢ = ]TO’ p= ? and b > 0 is small.

of the nonlocal term b [5y |Vu|?, which has been reported by Qi and Zou [19] as a new phenomenon for Kirchhoff equation with
a pure power nonlinearity. The asymptotic behaviors of M (1) depicted in Fig. 4 are mainly caused by the combined effect of the
nonlocal term and the combined nonlinearity, which have not been reported before in the literature.

Besides, the value of b > 0 has also an effect on the existence, non-existence and the number of normalized solutions of (1.5),
which can be seen from Figs. 4 (right) and 5.
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