Hindawi

International Journal of Intelligent Systems
Volume 2023, Article ID 5708085, 32 pages
https://doi.org/10.1155/2023/5708085

Review Article

Metaheuristics in the Balance: A Survey on Memory-Saving
Approaches for Platforms with Seriously Limited Resources

WILEY | Q@) Hindawi

Souheila Khalfi (,"”* Fabio Caraffini®,’> and Giovanni Iacca

'Department of Fundamental Informatics and Its Applications, Constantine 2 University, Constantine, Algeria
’Department of Mathematics and Computer Science, Mila University Center, Mila, Algeria

*Department of Computer Science, Computational Foundry, Swansea University, Swansea SA1 8EN, UK
*Department of Information Engineering and Computer Science, University of Trento, Trento, Italy

Correspondence should be addressed to Fabio Caraffini; fabio.caraffini@swansea.ac.uk
Received 12 March 2023; Revised 24 September 2023; Accepted 18 October 2023; Published 4 November 2023
Academic Editor: Said El Kafhali

Copyright © 2023 Souheila Khalfi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the last three decades, the field of computational intelligence has seen a profusion of population-based metaheuristics applied to
a variety of problems, where they achieved state-of-the-art results. This remarkable growth has been fuelled and, to some extent,
exacerbated by various sources of inspiration and working philosophies, which have been thoroughly reviewed in several recent
survey papers. However, the present survey addresses an important gap in the literature. Here, we reflect on a systematic
categorisation of what we call “lightweight” metaheuristics, i.e., optimisation algorithms characterised by purposely limited
memory and computational requirements. We focus mainly on two classes of lightweight algorithms: single-solution meta-
heuristics and “compact” optimisation algorithms. Our analysis is mostly focused on single-objective continuous optimisation.
We provide an updated and unified view of the most important achievements in the field of lightweight metaheuristics,
background concepts, and most important applications. We then discuss the implications of these algorithms and the main open

questions and suggest future research directions.

1. Introduction

Hardware and software technologies are advancing at a fast
pace and provide complex computing systems. In recent
decades, strong competition among manufacturers has
caused intense pressure to completely change the face of
commercial electronics [1], leading to the ongoing de-
velopment of computing devices with ever smaller di-
mensions but higher performance. These devices can range
from extremely small form factor devices (e.g., micro-
controllers, wearable devices, wireless sensors, and actu-
ators) to larger devices such as hand-helds or tablets. A
major concern in the design of these devices is that they
usually perform computations under stringent physical,
weight, and cost limitations, as well as real-time constraints
and limited power capacities (e.g., with batteries that might
be difficult or even impossible to replace/recharge). A
categorisation of this kind of device, with its specific

limitations, can be found, for example, in [2]. The general
goal of manufacturers is to design optimal products that
meet the requirements of the market without violating any
hardware-dependent constraints. However, this is difficult
in practise, given the impact these restrictions have on
memory capacity, computational performance, and
battery life.

Most computational problems that arise in such devices
can be formulated in the form of an optimisation problem,
i.e,, one in which the optimal value of the given decision
variables must be found with respect to a given objective
function (in the remainder of the paper, we consider bound-
constrained (also misleadingly referred to as “un-
constrained”) single-objective continuous optimisation
problems of the form:

min f(x),

1
st.xeds. (1)

https://orcid.org/0000-0002-5033-8937
https://orcid.org/0000-0001-9199-7368
https://orcid.org/0000-0001-9723-1830
mailto:fabio.caraffini@swansea.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5708085

where x = (x,%,,...,xp) is a candidate solution to the
D-dimensional optimisation problem defined through the
objective function f(-) (without loss of generality, we as-
sume this to be minimised) and & is the search space
delimited by the upper bound vector a = (a,,a,,...,ap)
and the lower bound vector b= (b;,b,,...,bp), s.t
a,<x;<bVie{1,2,...,D}).

Note that due to the lack of a mathematical formulation
or complexity of the problem, etc., these are challenging
zeroth-order optimisation scenarios, where no assumption
can be made on the properties of f (). Typical examples are
self-tuning the parameters of machine learning algorithms
on board a device [3], dynamically adjusting the hardware
settings (e.g., camera, microphones, battery consumption,
etc.), characterising a user profile or providing customised
recommendations [4].

To deal with such scenarios, a metaheuristic [5, 6], i.e.,
general purpose “generate and test” black-box optimisation
methods, is the most logical choice. Metaheuristics do not
guarantee convergence to the theoretical optimum but offer
high applicability without needing any information on the
problem at all but rather learn the problem landscape to
search for solutions. Their success in solving various nu-
merical and real-world problems [7, 8] made them popular
and the subject of continuous investigations. There are many
algorithms of this kind in the literature, and choosing the
most suitable for a specific problem is not an easy task [9].
Analysing the problem and tailoring a metaheuristic solver
to it is the right approach, when possible. Similarly, tuning
the parameters of the optimisation algorithm plays an im-
portant role. This can be a time-consuming task, especially
when using modern algorithms, which are often based on
a hybrid structure [10], and thus have even more parameters
to adjust [11]. The latter are usually difficult to implement
(which makes them more susceptible to errors) and un-
derstand, with some operators not contributing to the final
performance on many problems [12], simplifying them
would at least reduce their algorithmic overhead.

In this light, many modern metaheuristics are not
suitable or thought for optimisation on severely constrained
devices, as previously discussed. Memory limitations of the
environment hosting them and minimising their compu-
tational overhead are not factors that are usually taken into
consideration during the development phase. However,
there are application domains where such devices are re-
quired to be equipped with a quick and simple optimisation
routine, e.g., in the Internet of Things (IoT), where cost is
usually an issue [13], or in the manufacturing sector, where
fast, smaller, and energy-efficient systems are a priority. As
the current availability does not seem to stop, with the most
effective processing artificial intelligence (AI) technology
having thousands and thousands of parameters to tune, we
argue that minimising algorithmic overhead and memory
consumption in optimisation algorithms would be a priority
in several constructs in the years to come.

Most metaheuristics in the literature are population-
based algorithms operating on a set of candidate solu-
tions, a framework that has been shown to have some
benefits [14]. However, single-solution algorithms also exist,

International Journal of Intelligent Systems

and the importance of memory consumption in the study of
population-based metaheuristics has been addressed in
some recent studies. In [15], the authors adjust the imple-
mentation of three different Genetic Algorithms (GA) to
embed them in an ATmega328P microcontroller. In their
experiments, with 128 individuals represented in 32 bits,
approximately 80% of the available data memory (2 KB) was
consumed. This leaves no room for other background/
parallel processes. Execution time can also be problematic, as
shown in [16]. Here, evolutionary and swarm computing
algorithms are integrated and run on multiple embedded
systems, such as a smartphone and three different Raspberry
Pimodels (and on a PC to use as a baseline for comparisons),
on 10 well-known benchmark functions with D = 10 and
population size N =10. The execution time increases
significantly in embedded systems and, worryingly, in the
smartphone, where each algorithm is at least 10 times slower
than on the PC. This shows that an ad hoc algorithm/
implementation should be used in such a device to keep
execution time realistic. Other authors experimented with
other hardware technologies, such as Field Programmable
Gate Arrays (FPGAs) [17-19] or Graphical Processing Units
(GPUs). For the sake of completeness, it is worth adding that
these concepts can be extended to other optimisation sce-
narios, such as, e.g., multi-objective problems. In this regard,
we point to [20] where a Multi-Objective Genetic Algorithm
(MOGA) is implemented and executed on a low-end
microcontroller.

As a summary of what has been previously discussed,
there are important domains where optimisation algorithms
that 1. can attain good solutions with much less memory use
and 2. can be easily embedded into limited hardware
platforms. In the remainder of this article, we will refer to
these algorithms as “lightweight metaheuristics” [21] or
“memory-saving algorithms” [22].

Given that the nature of the problem imposes the
number of “design variables” x;(i = 1,2, ..., D), reducing
the need to store a population of solutions is the main goal of
a memory-saving algorithm. We assume that the solutions
are represented correctly, i.e., without unnecessary long
encodings or redundant design variables. Also, we are
selecting simple algorithms with linear O(D) memory
complexity like genetic algorithms, as opposed to those
requiring memory and computationally more expensive
features such as eigenvalue decomposition, manipulation of
covariance, or Hessian matrices, etc., to function, see e.g.,
[23-26]. The degenerate case Np = 1 results in a “single-
solution metaheuristic” (also referred to as “trajectory
methods,” “solo search,” or “single-agent-based algo-
rithms”). Here, we must pay attention to the working logic of
the algorithm. Despite being less common, memory-
consuming single-solution algorithms do exist. Examples,
such as the Rosenbrock algorithm [23], the Powell method
[24], and SPAM [27], make use of D x D matrices stored in
memory to perturb the only candidate solution on which
they operate, making it difficult to use in memory-
constrained environments. In coherence with the algo-
rithms mentioned above, the Nelder-Mead method (also
known as the simplex method) [28] was introduced as

International Journal of Intelligent Systems

a derivative-free optimisation algorithm. It starts with an
initial solution and iteratively uses a set of solutions forming
the vertices of a simplex to move it. This method teeters on
the brink of two opposing perspectives, as it may be thought
of as a single-solution approach, yet it cannot be considered
lightweight in our case because a simplex of D + 1 points is
required for it to function. A similar approach can be taken
with Estimation of Distribution Algorithms (EDAs) [29, 30],
which evolve a probabilistic model and draw solutions from
it. In this case, sampling only one solution is not enough if
a memory-saving probabilistic model is not used. This model
can be a simplification of existing models to perform a so-
called uncorrelated search that does not require storing
cross-correlation values between the design variables. The
compact algorithm class [31] is an established framework for
obtaining memory-saving EDAs.

If properly designed, single-solution and compact al-
gorithms can perform well and return satisfactory results in
several contexts that require a very low memory footprint.
These scenarios are abundant in some application fields
including bioinformatics [32-34], deep learning [35, 36],
evolving hardware [37], and robotics [38, 39].

The goal of this article is to present a unified survey of
research in the field of lightweight algorithms, as the existing
literature appears inadequate to offer a comprehensive
perspective on this class of optimisers. Our work sheds light
on what is currently available for dealing with optimisation
problems in an environment plagued by various limitations
and provides readers with a wide range of application do-
mains. This will benefit both practitioners and algorithm
designers exploring hybrid algorithmic solutions. Indeed, it
is clear that most of these algorithms are currently not as well
known as population-based ones, and it is not rare to en-
counter statements such as “To the best of our knowledge, SA
(Simulated Annealing), VNS (Variable Neighbourhood
Search), and TS (Tabu Search) . . .are the only existing single-
solution metaheuristics in the literature” [40], suggesting that
advances in this field are somehow ignored. Hence, here, we
combine relevant research lines and place greater emphasis
on approaches such as the compact algorithm paradigm in
[31] and holistic analysis in [6, 41] to overcome these
problems. We gather relevant literature and provide in-
teresting perspectives on modern and historical lightweight
heuristics, reporting key notions that give a global view of
these algorithms, including the current state of the art that is
not included in [6, 31, 41] and is becoming fragmented.
Furthermore, we review and report some significant ap-
plications of these algorithms, giving examples to practi-
tioners having to deal with these scenarios and facilitating
the search for reactive algorithmic solutions that are already
present in the literature in one document. For benchmarking
and other performance-related numerical results, we refer to
[42-44] and most of the articles included in this survey.

The remainder of this paper is organised as follows:

(i) Section 2 describes classes of algorithms based on
the number of processed candidate solutions and
introduces the concept of “lightweight” algorithms
for systems having limited resources.

(ii) Section 3 focusses on population-based algorithms
and discusses the use of micropopulations.

(iii) Section 4 introduces the Estimation of Distribution
Algorithms and discusses their ~memory
requirements.

(iv) Section 5 surveys the existing literature to report
and comment on memory-saving algorithms (for
both discrete and continuous optimisation) by
grouping them into the two main categories of
single-solution and compact algorithms.

(v) Section 6 reports relevant application scenarios.

(vi) Section 7 concludes this work and discusses open
issues in the field of lightweight optimisation
research.

(vii) Section 8 systematically points out areas of im-
provement to address in the future.

2. Metaheuristics in the Balance

When the environment hosting, the optimiser requires
a thrifty use of resources, even between algorithms with
linear memory complexity, there might be some that are
preferable over others that, on the contrary, require un-
wanted memory slots (a vector of real values, for example,
floating or doubles, of the same size D as the problem) to
function. In this context, metaheuristics with linear memory
footprint can be further classified by considering number of
solutions stored in memory during the search for optima, as
an indicator of the resources needed to run the optimisation
process.

For the sake of clarity, we remark that this shall be done
only for algorithms that are already “lightweight” in their
nature, i.e., metaheuristics that do not require the storage of
auxiliary variables for representing or manipulating the
candidate solutions (e.g., covariance matrices, etc.). These
classes of algorithms are usually developed in an attempt to
obtain high performance in offline problems, but in the
context of real-time and onboard optimisation, they are
often infeasible choices and are considered, within the scope
of this article, “heavyweight” algorithms as opposed to those
with linear memory occupation with D. Note that, as pre-
viously discussed, these heavy-working mechanisms can
take place in both population-based and single-solution
algorithms. In this work, we go even further and carefully
select truly lightweight algorithms from those having a linear
memory footprint considering the number of memory slots
required for them to operate, as graphically depicted in
Figure 1.

It is important to note that lightweight algorithms
consist of algorithms with approximately two memory slots
(one best solution plus an additional auxiliary solution to
produce a new solution). Approaches with this feature are
from the previously introduced classes of single-solution and
compact algorithms, which we refer to as “sMeta” and
“cMeta” in the remainder of this paper for brevity. In line
with this notation, we also use the expressions “pMeta” and
“u Meta” for population-based algorithms and population-

International Journal of Intelligent Systems

Algorithms

Linear memory footprint

Lightweight

FIGURE 1: Metaheuristics in the balance: heavyweight and linear memory footprint.

based algorithms working with so-called micropopulations
of only a few individuals, respectively.

Note that we not only report algorithms that have
a modest memory footprint but also select the most suc-
cessful design strategies that allow satisfactory performance
despite using a small number of memory slots. As most
computation algorithms mimic the behaviour of popular
pMeta algorithms, for the sake of completeness, we next
discuss key points on pMeta algorithms. This allows us to
better introduce the y Meta algorithm surveyed in this work.
These represent the simplest way to obtain a lightweight
algorithm and can be found to exist in some memory-
constrained environments.

3. Populations and u Populations

Population-based algorithms have been the go-to solution
for solving a large number of (constrained or unconstrained,
single-objective, or multi-objective) optimisation problems
for many years now. These methods have been proven to be
a key to solving many real-world problems and are now
being developed in continuous development. For more
information on the many paradigms existing in the litera-
ture, the most established being Evolutionary Computing
(EC), Swarm Intelligence (SI), and Hyperheurstics/Memetic
Computing, we point to relevant books [6, 45-47] and
surveys [48-54]. Modern hybrid structures employing
machine learning components also populate the literature
[55, 56]. Note that most surveys either focus on a specific
algorithmic family or classify wide ranges of metaheuristics
based on their inspiring metaphors. Such metaphors have
been very useful to the research community, developing the
first nature-inspired algorithms. However, there is a clear
recent trend in designing optimisation heuristics simply by
using an inspiring metaphor as the main driving force and
motivation. This is generating a plethora of algorithms
whose contributions to the field are arguable and that are
often poorly benchmarked and compared to similar strat-
egies that were already available in the literature. This is
evident from recent metaheuristic surveys, many of which
focus on such metaphor-led algorithms and their variants
[57-60]. In this survey, we mention some of these algo-
rithms, depending on the relevance of the message of the

corresponding article, as it is important to survey the totality
of the current literature. However, we recommend that one
always checks the literature to avoid reproposing similar
ideas under different names, uses a more theoretical or
empirically informed approach, and follows good practises
[61-63] when designing novel algorithms. Proper bench-
marking should also be performed. In summary, we are in
favour of making progress in algorithm design and using
metaphors as a means of conveying complex information,
but we share the same doubts/opinions of [10, 64-66]. In-
terestingly, there are surveys on the performance of a wide
range of metaheuristics on specific artificial testbed prob-
lems and real-world scenarios [67-72]. These suggest
practical insights on applying algorithms and highlight the
importance of performing a thorough parameter tuning
phase (and self-adaptive algorithms might also have some
parameters to tune).

Adapting algorithm parameters to ensure optimal per-
formance can be a challenging task [73], with the exception
of the population size value. We now know that high values
are not necessarily recommended, but in most cases, the
common belief from the literature seems to be that in-
creasing this parameter is beneficial over noisy, highly
multimodal, and large-scale problems. For example, the
study in [74] suggests N = 10 - D for Differential Evolution
(DE), which can be impractical for large-scale or real-world
time-expensive problems. Moreover, this is not necessarily
correct in all scenarios. Some DE variants with micro-
populations of a maximum of five individuals have been
shown to perform well on a very large-scale problem with
thousands of design variables [75], where exploration is
partial under the fixed computational budget, and the de-
cision to focus more on exploitation seems to yield better
results. Similar results are obtained with other micro-
population evolutionary and swarm intelligence algorithms
[76, 77].

3.1. Micropopulations. As a general rule, the pMeta algo-
rithms with 5< N, <20 can be referred to as y Meta al-
gorithms. However, 20 solutions are often considered too
many and are not used when the full benefit of having a small
population size; that is, rapid convergence, is sought. Po-
tentially, less than five solutions can be tested but only if the

International Journal of Intelligent Systems

working logic of the algorithms allows for it or is not
damaged. For example, a classic DE with rand mutation uses
4 individuals (the target plus three randomly selected in-
dividuals chosen from the population) to generate a new
offspring solution (see [54] for details on DE). Hence, less
than four individuals is not a feasible setting, and exactly
four individuals would mean that they will be always in-
volved in all the perturbations. At least 5 or 6 of them are
preferred to be able to implement the benefit of having
a population while increasing exploitation and minimising
memory usage. Note that DE is specifically suitable for
working with micropopulations as diversity can still be high
in the initial phases of the search process [78]. An analysis of
the effect of DE and PSO (Particle Swarm Optimisation)
micropopulations on various problems with different
characteristics is available at [79].

The first investigations of micropopulations date back to
the introduction of the micro-Genetic Algorithm (u4 GA)
[80] and its variants [81, 82]. Since then, several micro-
population Evolutionary Algorithms (4 EAs) followed, such
as, e.g., [83]. After understanding the potential of a classic
micro-Differential Evolution (4 DE) over large-scale prob-
lems, several 4 DE schemes, self-adaptive variants (such as y
JADE), and hybrid memetic alterations were proposed
[75, 78, 84-91]. Analogously, Swarm Intelligence algorithms
have been shown to have similar advantages when run with
micropopulations. The results worth mentioning are those
obtained with micro-Particle Swarm Optimisation (4 PSO)
algorithms [76, 92, 93]. Further successful examples are
those of micro-Artificial Immune System (u AIS) [94],
micro-Bacterial Foraging Algorithm (¢ BFA) [95], and other
metaphor-led algorithms such as those in [77, 96, 97] (which
are indeed very similar to the more established framework
such as DE and PSO, thus returning similar results). Finally,
other important roles played by 4 EAs are to perform a local
search within memetic algorithms [98] and to act as
microalgorithms for multi-objective optimisation [99, 100].

4. Estimation of Distribution
Algorithms (EDAs)

The EDAs family forms a significant subset of EC algorithms
where the concept of population plays a different role
compared to other pMeta algorithms. This family is in
continuous evolution and investigation, with frameworks
such as Bayesian Optimisation (BO), also known as efficient
global optimisation [101], currently finding its place in
several time-consuming optimisation contexts, while orig-
inally simply referred to as Probabilistic Model-Building
Genetic Algorithms (PMBGAs) [102]. This is because the
first algorithms of this kind were a modification of previous
EAs to drive the search through probabilistic models to
achieve better performance on those nonseparable problems
characterised by high epistasis [103, 104], which are chal-
lenging for many ES and SI strategies.

An EDA builds and samples promising candidate so-
lutions from an explicit probabilistic model (which implicitly
represents the population). The optimisation process is then
the iterative evolution/update of the model, usually starting

with an exploratory distribution and ending with one
generating (near) optimal solution. Some EDAs draw
populations from the corresponding distributions (¢ in-
dividuals are sampled per iteration), while others need fewer
or a candidate solution to be drawn (as in most compact
algorithms). Over the years, many algorithms appeared
based on different models of all ranges of complexity, such as
Population-Based Incremental Learning (PBIL) [105],
Mutual Information Maximising Input Clustering (MIMIC)
[106], Bivariate Marginal Distribution Algorithm (BMDA)
[107], Factorised Distribution Algorithm [108], and many
others such as several Extended Compact Genetic Algo-
rithms [109-114]. Multivariate factorisation is also a widely
used method, and since some evolution strategies in-
corporate multivariate normal models, these can be seen as
EDAs. Among them, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [25, 115] is considered by
many as a great example of EDA algorithm, see [116], which
became soon a benchmark for optimisation due to its
performances and properties, such as invariance to rotations
of the problems and many other peculiarities which,
according to the authors, do not necessarily match the key
characteristic of a “pure” EDA. Indeed, CMA-ES estimates
the distribution of expected steps, while EDAs model them,
etc. (see [115] for more details). However, the CMA
mechanism is based on a complex probabilistic model with
time complexity O(D?) and memory complexity O(D?),
which can be seen as a heavyweight computational re-
quirement, as it can be relaxed by assuming that there is no
cross-correlation (as done in compact optimisation). The
resulting covariance matrix will prevent the normal distri-
bution from rotating, while still allowing for adaptation
along each coordinate axis if D variances are evolved (one
per axis). Instead, if the same constant variance value, which
acts as a sort of step size, is kept the same along all axes, one
obtains a symmetric normal distribution, which can only
move within the square space when its mean value gets
updated. The latter is the simplest case, which is also less
memory-expensive.

For an overview of the many models available for EDAs,
we refer to [116-118]. Note that models and updated rules
for control parameters, such as, for example, variances,
mean values, or other measures of central tendency and
spread, can be very complex, with the simplest being those
proposed for compact optimisation (details in Section 3.1).

5. Lightweight Metaheuristics: A Taxonomy

We propose a lightweight metaheuristic taxonomy struc-
tured as in Figure 2. This gives a graphical overview of the
two main classes of algorithms we survey in this work, i.e.,
sMeta and cMeta, and offers a granularity level, further
classifying relevant subfamilies and variants of the same
framework. Milestone algorithms and their more recent
variations are considered in the taxonomy, as well as a few
examples of modern metaphor-led algorithms to comment
on current practises. While doing this, we summarise their
working logic and report relevant successful applications
and application domains for such algorithms.

International Journal of Intelligent Systems

_[Simulated Annealing H: nuSA [167]
variants Q-SA [168]
- ISPO [170]
L AdpISPO [173]
HISPO variants H
I ISPO-restart [177]
L VISPO [177]
- RIS [185]
{Memenc Computing]__ 3SOME [180]
approaches
L MTS [178]
{Single-solution]_
algorithms {State—esﬁmation—based]_[ssSKE [189]
algorithms SAFIRO [191]
(1+1)-ES with 1/5 Success
Methods based on Evolution Rule
Strategies
(1+1)-CMA-ES [163]
GD [164]
-{Methods based on Gradient)—I:
SPSA [162]
- SNUM [21]
I MSMS [179]
-[Other algorithms]—
L Vs [192]
~ rcGA [197, 198]
L SEO [40]
L UCGA [211]
-(rcGA variants)—
| cross-rcGA [273]
Lightweight
metaheuristics - cSNUM [21]
[cpmpact Evolutionary Algo-] ~ DE [199]
rithms
| DECDE [274]
| cODE [275]
-(cDE variants)—
L CDE-CLS [276]
I cDE-light [279]
L CScDE [277]
~ cPSO [42]
‘(CPSO variants)—- rcSPSO [281]
L cAPSO [282]
I cBFO [283]
cABC [304]
-(cABC variants)—[
EcABC [207)
{Compact optimisation]_ [cBA [208]
algorithms | cFAs 38, 285, 286]
L cCso [287)
compact Swarm
Intelligence algorithms - cPIO [291]
I cFPA (209, 290]
L cCS [296]
L cSCA [292]
L cEO [295]
L cTLBO [288]
L cHHO [289]
ComPact metaphor-inspired CHSA [297]
algorithms
L Re-sampled Inheritance

compact algorithms [43]

F1GURE 2: Overall taxonomy of lightweight metaheuristics for continuous optimisation.

5.1. Single-Solution Optimisation Algorithms for Combina-
torial Problems. Hill Climbing (HC) [119], a.k.a. Iterative
Descent, is a basic local search algorithm. Starting from an
initial point, incremental perturbations are applied

iteratively to enhance the value of the cost function. There
are four main HC variants, namely, the iterative best im-
provement method, the iterative first improvement method,
the randomised iterative improvement method, and the

International Journal of Intelligent Systems

probabilistic iterative improvement method; see [120] for
details. Note that the first two strategies are greedy, while the
others accept worsening moves, that is, candidate solutions
with a worse objective function value than the current one.
Applications of HC are abundant in the literature. An ex-
ample of a timetabling problem is in [121].

Iterated Local Search (ILS), presented in [122], is
a simple multistart method that iteratively performs a per-
turbation step to explore a new starting point to then
perform the local search step. When starting, the initial point
must be provided or generated randomly, thus not requiring
perturbation, and local search is immediately applied. These
two iterated phases can be seen as alternating exploratory
and exploitative searches. ILS is used successfully in other
scheduling problems, such as the University Course
Timetabling Problem [123]. Some notable ILS alterations are
the hybrid adaptive ILS with Path-Relinking designed to
solve the capacitated vehicle routing problem in [124], the
ILS with ejection chains for open vehicle routing problems
with time windows [125], and the two-phase ILS for the Set-
Union Knapsack Problem [126]. For a detailed review of this
algorithm, we refer the reader to [127].

Breakout Local Search (BLS) [128] is a variant of ILS that
merges the steepest descent local search with adaptive
perturbation strategies. BLS dynamically adjusts di-
versification by varying perturbation moves and types based
on search history information. BLS is used successfully to
address the Vertex Separator Problem (VSP) [128], the
quadratic assignment problem [129], the maximum clique
problem [130], and to solve the Assembly Sequence Planning
Problem [131]. The hybrid BLS algorithm based on re-
inforcement learning from [132] shows improved perfor-
mance over VSP.

Large Neighbourhood Search (LNS) [133] is a meta-
heuristic in which the two operators repair and destroy
alternate to obtain a new solution in a neighbourhood of the
candidate solution. The destroy operator is responsible for
perturbing random components of the candidate solution,
which then undergoes a feasibility check where the repair
operator fixes the components to ensure that the new so-
lution is in the socket space. Adaptive LNS algorithms for
Vehicle Routing Problems (VRPs) can be found in
[134, 135], and a hybrid adaptive LNS for the large-scale
heterogeneous container loading problem is proposed in
[136]. These are amongst the latest techniques proposed for
these kinds of scheduling problems.

Great Deluge (GD) [137] operates by setting a threshold
that acts as an upper limit for the admissible values of the
objective function of the newly generated solution. When-
ever the new candidate solution is accepted (i.e., in an
imitation context, it must have a function value inferior to
the upper limit), the upper limit value is decreased according
to the adopted decay rate. In this way, most points are
accepted at the beginning, but the algorithm becomes more
selective after interaction, GD for a real-world examination
timetabling problem [138]. In [139], an adaptive version is
proposed, called the Flex-Deluge algorithm, to solve the
timetabling problems of university exams. Other hybrid
variants also populate the literature, such as those in

[140, 141], which are proposed to address VRP and task
scheduling in grid computing, respectively.

Varijable Neighbourhood Search (VNS) [142] is based on
the idea of systematically changing the neighbourhood. This
occurs in two phases, in a local search phase which chooses
the best neighbour improving the current solution to find
the local optima and in a shaking phase to escape from the
corresponding valley. Details on its extensions and appli-
cations in which VNS has proven to be very successful can be
found in [143].

Greedy Randomised Adaptive Search (GRASP) [144] is
an iterative process that combines a construction heuristic
step with a sequential local search step. In the first step,
a feasible solution is created using a randomised greedy
heuristic. This solution serves as the starting point for the
local search, which can be either a descent local search or
a more advanced method. The best solution found is
returned after the search process. Variations of GRASP and
its applications are discussed in [145].

Similarly to the other algorithm, Guided Local Search
(GLS) is built on top of the LS technique. To use GLS, one
must first define a suitable set of features for the problem. Each
feature has a cost and a penalty assigned by GLS. When the LS
gets stuck at a local optimum, some features are selected and
penalised. More details can be found in [146]. The authors in
[147, 148] provide a list of GLS variants/extensions, guidelines
on how to use this algorithm in practical applications, along
with a variety of problems in which it was applied.

Descent-Based Local Search (DB-LS) [149] moves from
the current solution to a neighbouring one according to
a given neighbourhood structure in such a way that each
movement leads to a better solution. This iterative process
continues until no improvement is found, in which case the
current solution corresponds to a local optimum. This
technique was combined with the reinforcement learning
technique and applied to graph colouring [149].

The Tabu Search (TS) method was used in a nontrivial
number of combinatorial optimisation problems; see [150]. It
was first presented in [151]. The TS algorithm explicitly le-
verages the history of the search not only to escape local
optima but also to implement an exploration strategy. TS, like
simulated annealing, allows for lower-quality solutions when
a local optimum is discovered. A detailed presentation of this
method and its fundamental concepts can be found in [150].

Simulated Annealing (SA) was proposed in [152]. SA
accepts nonimprovement solutions in order to increase the
chance of exploring the search space and escape from local
optima. The algorithm starts with an initial solution and
generates a random neighbour using a predefined neigh-
bourhood structure at each iteration. If the newly generated
solution is better than the best, it is accepted; otherwise,
a solution of poor quality is accepted with a probability
specified by the Boltzmann distribution. In particular, al-
though SA was introduced for combinatorial optimisation, it
has also been used to tackle real-valued problems. An ex-
haustive review of the literature is provided in [153].

Threshold Accepting (TA) [154] follows the same
principle as SA, but it differs in the criterion used to accept
candidate solutions. SA allows a nonimproving solution only

with a given probability, whereas TA accepts it if the deg-
radation does not reach a progressively decreasing
threshold.

All of these search methods have a similar structure. In
addition, each has its own mechanism to diversify the ex-
ploration of the search space by escaping local optima. Other
local searches are detailed in [6, 41].

Finally, hyperheuristics are prominent in dealing with
discrete optimisation and are widely adopted for combi-
natorial problems. As first described in [155], these can be
seen as “heuristics for choosing heuristics.” The selection
method is arbitrary but often consists of using a learning
mechanism to optimally activate the right operator.
Therefore, once a set of heuristics/metaheuristics is pro-
vided, hyperheuristics work on the low-level operator space
other than the solution space and can be defined in [156] as
“a search method or learning mechanism to select or gen-
erate heuristics to solve computational search problems.”
For details on milestone methods and recent advances, the
relevant sources are [157-159], from which it can be seen
that this optimisation paradigm is highly recommended to
solve scheduling, timetabling, and other discrete problems.
Comprehensive lists of successful hyperheuristic applica-
tions are available in [157, 160]. Furthermore, one can see
that most of the low-level operators involved in this
framework are sMeta algorithms. This makes this framework
very suitable for designing efficient single-solution memory-
saving algorithms. Most importantly, single-solution opti-
misation plays a key role in designing hyperheuristics (even
population-based ones), as the use of local searchers based,
e.g., on hill climbing methods is very frequent [158, 159].

5.2. Single-Solution Optimisation Algorithms for Continuous
Optimisation. When it comes to metaheuristics, most
people immediately think of pMeta algorithms because
using a set of multiple candidate solutions, i.e., the so-called
population, is currently a stable practice. This is particularly
true in the continuous domain, where manipulating
a population of points is always seen as beneficial, see, e.g.,
[14], while sMeta algorithms are considered to result in
poorer performances [161]. However, in line with [9], this
cannot always be the case, and some sMeta, such as Si-
multaneous Perturbation Stochastic Approximation (SPSA)
methods [162], offered ideas and played an important role in
applied sciences such as physics and engineering in the past.
Other algorithms, obtained as degenerate variants of existing
pMeta algorithms with some adjustments to have N, = 1,
also provided interesting results. Other ideas, such as
memetic single solution algorithms and hyperheuristics for
the continuous domain, displayed highly competitive per-
formances. We report on all of these classes of algorithms,
including relevant historical and modern methods. We
remark that sMeta is not a synonym for simplicity or
minimal material consumption. Let us consider the elegant
single solution evolution algorithm Cholesky (1+1)-
CMA-ES [163], which reduces the computational effort of
CMA-ES from O(D?) to O(D?) and requires only one
candidate solution (plus an additional one for a temporary

International Journal of Intelligent Systems

new solution). Its working mechanism is theoretically sound
and consists of manipulating a matrix D x D, thus not
belonging to the list of lightweight algorithms provided.

In the continuous domain, it is possible to take ad-
vantage of the notion of a gradient to guide the search.
Gradient Descent (GD) [164] is a first-order single solution-
based method that relies on the objective function differ-
entiability for its proper functioning. Depending on the
function to be optimised, it iteratively adjusts the current
solution, moving it in the direction of the steepest ascent or
descent. In the SPSA algorithm previously mentioned, this is
done by approximating the classic finite-difference gradient
methods stochastically. As in this case, if Hessian matrices
are not required, the method can be quite efficient, in
particular, if the problem is not highly multimodal, despite
being memory-saving. Other methods, such as those de-
riving from the classic Hooke-Jeeves direct search method
[165], perform this indirectly by looking at objective
function values in opposite orientated directions on the
same line, per component/axis (we present moderate vari-
ations in the remainder of this section). This also resembles
a continuous counterpart logic to the methods seen for the
discrete domain based on neighbouring operators. In this
case, the neighbourhood is obtained with either a fixed or an
adaptive exploratory radius from the candidate solution.
Solis and Wets [166] present a very simple randomised
search of this kind.

Non-Uniform Simulated Annealing (nuSA) [167] is an
improved version of SA for continuous optimisation. It uses
a nonuniform mutation which gradually shrinks neigh-
bourhood size during the search. Quaternion SA (Q-SA)
[168] instead uses a quaternion representation of candidate
solutions to improve neighbourhood exploration and pre-
vent premature convergence by widening the initial search
space. Q-SA explores the quaternion space rather than the
Euclidean space and does not employ specific parameters to
alter the neighbourhood range. Finally, the Single Non-
Uniform Mutation-based (SNUM) algorithm [21] is a sim-
plification of the nonuniform mutation strategy of nuSA.
SNUM has only one parameter, which makes it quite easy to
use. Its performance does not depend significantly on the
value of this parameter.

There are also historical evolutionary sMeta algorithms
specifically designed for the continuous domain. A worth
mentioning one is the (1+1)-Evolution Strategy with 1/5
Success Rule [169], which decreases the standard deviation
of the extended normal perturbation if the number of
successful mutations is less than 1/5. Other methods from
the EC and SI families are described in the following.

Intelligence Single Particle Optimiser (ISPO) [170], and
its first formulation, referred to as IPO in [171], is a simple
sMeta variant of the Particle Swarm Optimisation (PSO)
metaheuristic [172]. Its working logic operates per com-
ponent, ie., each design variable, is perturbed a prefixed
number of times sequentially to complete one iteration.
Therefore, it is suitable for separable problems. ISPO adjusts
the velocity vector depending on a learning factor based on
the number of successful updates of the particle during the
search. Four parameters are required in total, but

International Journal of Intelligent Systems

performances depend mainly on two (namely, the diversity
factor and the descend factor), which are the only problem-
dependent parameters according to [170, 171]. As tuning
them can be challenging, the AdpISPO algorithm [173] is
designed as a self-adaptive version of ISPO whose adaption
logic has been shown to work well in many testbed problems.
This outperforms ISPO on such problems and is free of
problem-dependent parameters. This feature makes it
suitable for hybridisation with other algorithms whose
implementations depend on the parameter setting. Exam-
ples of Memetic Computing (MC) algorithms that use PSO
variants and AdpISPO to perform local computations are
available in [174-176]. To improve performance, in par-
ticular, over multimodal and large-scale domains, two
multistart variants called ISPO-Restart and Very Intelligent
Simple Particle Optimiser (VISPO) are presented in [177].
Both ISPO-Restart and VISPO perform a “jump” in the
search space before restarting the search, but the newly
generated starting point is first uniformly sampled within
the domain and then mixed with the “elite” solution stored
in memory by inheriting some of its promising design
variables. This inheritance is obtained by binomial crossover
(from DE [54]) with a low crossover rate to preserve ran-
domness at the new starting point. ISPO-Restart and VISPO
perform similarly, with VISPO being preferable to only a few
benchmark problems tested in [177]. The only difference
between the two is that the first variant restarts after
a number of prefixed functional calls, while the second has
a simple learning mechanism based on the number of
successful continuous intervals per dimension to automat-
ically decide when to restart.

Multiple Trajectory Search (MTS) [178] is another in-
teresting lightweight sMeta that performs well on separable
and large-scale problems (for which it was designed specif-
ically). It can be seen as the coordination of three iterated local
searchers algorithms where the first one perturbs all di-
rections one at a time along one axis (as the Hook-Jeeves local
searcher operator), the second one differs from the first one in
that only searches one-fourth of the available dimensions, and
the third one takes three small steps along each dimension
according to find a candidate solution heuristically. The three
operators are activated according to a grading system based
on their successes, and if no improvement is registered, the
search range is cut to one-half. The Multiple-Search Multi-
Start (MSMS) framework in [179] is based on the simple idea
of implementing a few search algorithms, but it features
a multistart operator to keep changing the initial point in an
attempt to approach premature convergence.

Three-Stage Optimal Meta-memetic Exploration
(3SOME) [180] is a simple MC technique characterised by
the activation of three operators (memes) that perturb
a single solution. These three components, namely, long (L),
middle (M), and short (S) distance exploration, are arranged
in a bottom-up structure and coordinated in such a way that
the exploitation pressure increases as the algorithm con-
verges to a promising area of the search space. Most of the
calls to objective functions are used for the local search
operator S [181], which implements the same strategy as the
first local search of MTS. The coordination logic of the three

memes is very simple but allows for competitive results when
compared to established algorithms, including pMeta al-
gorithms, and in particular on separable problems. Fol-
lowing these results, several variants have been proposed. An
improved M operator dynamically narrowing the space
around the solution in the attempt to provide a better quality
starting point to S is available at [182], and many modifi-
cations (not all necessarily preserving the memory-saving
nature of 3SOME) proposed in [183] allow for handling
nonseparable problems/rotated problems. The analysis in
[181] highlighted the importance of the coordination logic in
the operator implementation itself and identified the least
activated operations (and the most expensive in terms of the
calls of the objective function) during several optimisation
processes. This led to simplified variants, resulting in sig-
nificantly different algorithms with operators making fewer
functional calls before local refinement. A very simple one,
having only two stages, is the Resampling Search algorithm
[184], which can be seen as a sort of multistart ILS algorithm
for continuous optimisation, which was subsequently im-
proved in the Resampled Inheritance Search (RIS) [185]
framework. Further variants have been designed to deal with
specific real-world applications; see, e.g., [186].

RIS [185] is a simple MC approach that performs
a restarted iterated local search with a low level of in-
heritance of the previous best solution design variables after
each restart. The S operator is run multiple times until
a condition on the length of its exploratory radius is met (the
option of fixing the number of S steps is also left available to
the user). When a restart occurs, a point is drawn uniformly
within the search space, and some of its design variables are
crossed over to retain promising elite components. Both
binomial and exponential DE crossover strategies are tested,
see [54] for details, with exponential being the default choice.
RIS is simple yet effective and competes (often outperforms)
pMeta algorithms on several benchmark functions. It can be
seen as an optimisation framework in which an algorithm,
such as crossover strategy and local search, can be replaced
with more appropriate combinations depending on the
problem if necessary. To obtain a more robust framework,
the Parallel Memetic Structure (PMS) [187] followed as
a general idea of having multiple searches performing
complementing perturbations, thus increasing the diversity
of possible moves within the search space. PMS maintains
the restart mechanism with inheritance and runs two local
searchers moving along the axis (S is used for this purpose)
and diagonally in the search space (Rosenbrock is used). This
framework was proposed with the idea of including an
adaptation system that allocates more budget to the local
community performing the most successful move dynam-
ically during the search, see, e.g., [27, 188]. Note that the
original implementation of PMS executes Rosenbrock to
perform the diagonal move. Obviously, this adds a quadratic
memory footprint to the algorithm as a whole. To have
a memory-saving variant of PMS, this meme has to be
replaced with a lightweight sMeta.

To reduce the number of parameters of the Simulated
Kalman Filter (SKF) algorithm, the work in [189] proposes
a single-solution SKF (ssSKF) version using only one agent.

10

The working mechanism of ssSKF does not differ signifi-
cantly from that of SKF, which goes through the three steps
of prediction, measurement, and estimation. As these are
performed by a single agent, working with a single solution,
ssSKF 1is lightweight and easier to tune, which is an im-
portant aspect given the impact of setting parameters on SKF
[190]. A similar idea led to the Single-Agent Finite Impulse
Response Optimiser (SAFIRO) [191]. In this case, an agent is
also responsible for measuring and estimating the optimal
solution.

Several other nature-inspired sMeta algorithms have
been proposed over the years for continuous optimisation.
However, most methods proposed in the last years are not
trying to approximate gradient or exploit any specific feature
of the problem. Some examples such as the Social Engi-
neering Optimiser (SEO) [40], the Vortex Search algorithm
(VS) [192], and the Simulated Raindrop Algorithm (SRA)
[193], are based on inspiring metaphors that are imple-
mented heuristically.

5.3. Compact Optimisation. The majority of the algorithms
in this survey fall into this class. First, we comment on the
methodology used to review the reported articles. Sub-
sequently, we provide a comprehensive description of the
compact optimisation literature.

5.3.1. Methodology and Research Questions. In scholarly
writing within a specific domain, authors conventionally
incorporate prevalent terminologies of that field into their
research paper titles and keywords. This practice improves
visibility and discoverability among a broad readership.
When conducting a survey, employing the same keywords is
intuitive for paper retrieval. Nevertheless, this approach may
lack precision in the selection of pertinent papers. Hence, it
is imperative to adopt a systematic methodology for the
acquisition and meticulous selection of relevant literature.

After reviewing the Centre for Reviews and Dissemi-
nation (CRD) guidelines proposed in [194], we feel like we
adhered sincerely and inadvertently to almost the same step-
by-step procedure when compiling the research to ensure
rigour and foster comprehensiveness. This approach facil-
itated the identification and evaluation of candidate publi-
cations, thus improving the quality and reliability of the
survey results and their implications within the scientific
community. There are also other guidelines for performing
a bibliometric analysis, such as the one proposed in [195]. It
elucidates the distinctions between systematic and biblio-
metric surveys, outlining the specific scenarios in which each
method is applicable. This falls outside of the scope of this
work; please refer to the previous reference for more details.

The survey we propose is motivated by the following
Research Questions (RQs):

RQI: What characteristics of an algorithm can be used
as useful classification criteria? In recent times, there
has been a strong emphasis on classifying heuristics
based on their inspiring metaphor, but we argue that
other characteristics, as we picked the number of

International Journal of Intelligent Systems

processed solutions, are more useful in practice. This
RQ is addressed in Sections 2-5.

RQ2: How many kinds of “lightweight” algorithms are
available in the literature? Answering this question is
useful to show practitioners what a memory-saving
algorithm is for which application domain a specific
class of these algorithms can be used. This RQ is
addressed in Sections 1 and 2.

RQ3: What are the main characteristics of lightweight
algorithms? We report a mathematical and algorithmic
description of the general framework to use for
obtaining most of the existing memory-saving variants.
This RQ is addressed in Section 5.

RQ4: What are the application domains of memory
saving optimisation? There are numerous and obvious
domains where these algorithms can be used, but we
dig deeper and indicate specific cases to show which
strategies and variants have been more successful. This
RQ is addressed in Section 6.

RQ5: What potential future impact can lightweight
algorithms have? There are open challenges to face, for
example, in combining machine/reinforcement learn-
ing, where the use of fats and memory-saving algo-
rithms can be preferred. This RQ is addressed in
Sections 7 and 8.

The primary keywords used to review the literature and
address the RQs are “memory-saving metaheuristics,”
“lightweight metaheuristics,” “single solution meta-
heuristics,” “compact metaheuristics,” and all combinations
where “metaheuristics” are replaced by “optimisation” or
“algorithms.” The results are refined by incorporating the
names of the seminal algorithms, e.g., “cGA” and “rcGA,” in
the search, as well as relevant authors such as, e.g., “Harik” or
“Minnino.” It is highly improbable for a new paper on
compact optimisation (discrete or continuous) to be pub-
lished without referencing any of these influential works.
This is known as the forward snowball technique to expand
the search. We then looked at the references in these papers
to find other relevant pieces of research. The latter approach
is known as backward snowballing.

We produced a comprehensive list of articles published
in the proceedings of established conferences and presti-
gious publishers. This list includes some old milestone
methods and several recently proposed algorithms. Each
article was evaluated for alignment with the research
questions of this survey, leading to its inclusion or exclusion
in the article. In particular, the participation of a single
researcher in this process can introduce bias, oversight, and
inconsistencies. To address these concerns, the validity of the
study was protected through a secondary review conducted
by a second author. Although predefining the survey scope
and managing paper selection could appear subjective, all
conclusions and recommendations stem from the latest
insights to ensure clarity of the scope of the paper scope and
effective communication of its core message.

Toward the inclusion and exclusion criteria that guided
the selection process in accurately categorising lightweight

International Journal of Intelligent Systems

algorithms, we set the following ones. Papers published in
languages other than English were excluded. The full text of
the paper was scanned in many cases, not just the title and/or
abstract. That is because the latter was not enough since it is
not rare to find a paper that talks about compact algorithm/
method/approach, but after reading the paper, we realise
that it is about something different from the definition of
“compactness” adopted in this survey. Similarly, algorithms
that operate on single solutions may not necessarily be
memory savings. In addition, duplicate instances of the
retrieved papers were omitted, as well as other papers that
have been published at a conference (with limited experi-
mental setup), and then an extended version appears in
ajournal paper (for example, with cTLBO and ¢cBAT). Lastly,
lightweight algorithms hybridised with other components
that lead to improvement but do not preserve the concept of
lightweight were also removed or ultimately retained due to
some considerations. Another case appeared concerning
a particular algorithm, the Mean-Variance Mapping Opti-
misation (MVMO), in which we had different points of view:
it was considered by one author as sMeta but not by another.
Since we encountered difficulty in making a conclusive
decision, we decided to exclude it from the taxonomy. This
thorough review filtered out and pruned down the number
of articles to a more manageable one. The resulting com-
pilation was deemed representative of presenting a diverse
range of lightweight algorithms serving as the basis for the
proposed taxonomy.

5.3.2. Compact Optimisation Algorithms. Compact algo-
rithms are among the simplest expressions of EDA algo-
rithms, see Section 4, thus featuring fewer memory and
computationally onerous algorithmic structure. For this
reason, they have become popular since the publication of
the compact Genetic Algorithm (cGA) [196], which was
shown to perform similarly to the popular Simple GA with
uniform crossover over discrete domains.

After ¢GA, counterparts for the continuous domain
appeared in [197, 198], where the real compact Genetic
Algorithm (rcGA) is presented. This concept was then ex-
panded to obtain other EC approaches, such as compact DE
(cDE) [199], compact PSO (cPSO) [42], and, in a more
general sense, a compact optimisation framework [31]. A
general template that illustrates the structure of a compact
algorithm is depicted in Algorithm 1.

5.4. Probabilistic Models. The binary and Gaussian proba-
bilistic models in [196, 198] are the most widely used ones in
compact optimisation depending on the discrete or con-
tinuous/real-valued nature of the search space. Taking into
account the original notation in [196], compact algorithms
require a “Probability Vector” PV to probability values.
However, this is true for the original binary case. In the
continuous domain, PV has been kept as a legacy variable,
but it contains (Gaussian) distribution parameters (mean
values and standard deviation), thus being a two-
dimensional array. Note that a “virtual” population size
Np has to be indicated. This is used within the module to

11

mimic the coverage behaviour that larger or smaller pop-
ulations have in the search space.

Note that other models have been proposed in the lit-
erature. We describe them in the following subsections.

5.4.1. Binary Model. In this model, PV is a vector of length
equal to the dimension of problem D, where each i element
is the probability of sampling 1 for that design variable. All
elements of PV are initialised with a value of 0.5 to have an
initial uniformly distributed solution. Relevant examples of
algorithms using this model are, e.g., [37, 200-204].

5.4.2. Gaussian Model. In the Gaussian model, PV is the
2 x D matrix PV = [y, 6], where p and o are the mean and
standard deviation vectors of an uncorrelated and truncated
Gaussian Probability Distribution Function (PDF) [198]
with domain [-1, +1]. Mathematically, this is formulated as
in equation,

((xi_n“[)z/zaiz) \2/m

e m

PDF (x;, p, 07) = o; (erf (u; + 1/V2 ;) — exf (u; = 1/V2 0;))
(2)

where y; and o; are the mean and standard deviation along
the i axis, and erf () is the error function.

When the algorithm is initialised, these parameters are
initialised so that y; =0 and 0, = A(i = 1,2, 3, ..., D) where
A is a positive constant (usually A=10) large enough to
approximate a uniform distribution in [-1,1].

For the Cumulative Distribution Function (CDF), this is
formulated in equation

1

CDF(x;, 4;,0;) = J PDF (x;, u;, 0;)dx;. 3)
-1

To compute this CDF, which does not have a closed
analytical expression, it is approximated using Chebyshev
polynomials [205] to be used within the algorithm.

(1) Sampling. The polynomial approximation of the CDF is
used to generate solutions within the search space. To do
this, a uniform random number r =rand(0,1) is first
generated.

Subsequently, the inverse function of the CDF of each it
axis must be computed to be evaluated at r. This returns the
value of the it" design variable that forms the new candidate
solution x; = CDF ™! (r,u;, 0,) € [-1,1].

Note that this model operates in the [-1,1] domain.
Therefore, when dealing with a generic [a;,b;] domain, the
obtained value of x; has to be scaled back to the original
decision space simply by performing x; = ((x; + 1)/2) (b; —
a;) + a;. Conversely, this also means that before feeding
a solution to the algorithm, one should normalise it within
[-1,1], unless that is the domain of the original problem.

(2) Selection and update. When the newly generated indi-
vidual competes with the current individual, the fittest (i.e.,

12

International Journal of Intelligent Systems

update PV

elite — x
end if
end while

input: probabilistic model PV, problem size D

output: best solution elite

sample elite by means of PV

while termination criterion is not met do
sample a candidate solution x by means of PV
compare fitness of elite and x

if elite condition replacement is satisfied then

ArcoriTHM 1: High-level template of compact optimisation algorithms.

the one with a lower objective function value in a mini-
misation context) is referred to as the winner, while the other
is declared as loser. The winner influences PV as its design
variables are used in the update rule of both p and o as
shown in equations (4) and (5), respectively, where j in-
dicates the iteration counter and winner; and loser; are the it
components of winner and looser, respectively.

; ; 1
wlth =+ N (winner; — loser;), (4)
P

JZH = \j<0§t)z +(‘u?)2 —(/4{'“)2 + I\%(winneri2 - loseriz).
(5

For more details, see [198].

Algorithms using this model are, e.g., the real-valued
compact algorithms rcGA [198], ¢cDE [199], cPSO [42],
cABC [206], etc., see Section 5.6 for more details.

5.4.3. Enhanced Gaussian Model. An improved model using
two PDFs that share the same parameters p and ¢ is pro-
posed in [207].

When this model is used, the normalised search space is
seen as xgl [-1,4;]U [y;, +1], and two PDFs, namely, Q —
PDF(x;) and R — PDF(x;), are defined as

2/m o (- (ximm)1207)
oierf (y; + l/ﬁai)

Q- PDF(x;, p;,0;) =
for—1<x;<u;,
(6)

-V2/m
oserf (u; — 1/V2 0;)

R - PDF (xi,yi, Ui) = e (‘(xi—#,-)z/z"?)

forp; <x;<1.
(7)
Algorithm 2 shows the sampling mechanism, where the

parameter & controls the probability of employing equation
(6) other than equation (7)

If & is set to 0.5, then this model is expected to perform as
the original Gaussian model [207]. Recent studies using this
model reported, such as [207-209].

5.4.4. Uniform Model. The work in [210] proposes a model
based on the Uniform PDFs defined in the following
equation:

T if x; € [a;,b;],
U-PDF(x)={ ' (8)

0, otherwise,

where a; and b; are the lower and upper bounds of the
uniform distribution (note that these are different from the
search space bounds and change during the optimisation
process). By integrating U-PDF, one can easily obtain the
following:

1 a; .
b—a b —a if x; € [a,b,],
U=CDF(x) =19, if x,> b,
L 0, otherwise.
9)
The inverse U — CDF™! is given by
U -CDF ' (r) = (b; - a,)r +a. (10)

Unlike the Gaussian model, the bounds a; and b; of U-
PDF vary if the mean and standard deviation vary, according
to equations.

a; = \/§Ui+yi, (11)

b; = u; — V3o, (12)

After calculating a; and b;, a uniform random number
r € [0,1] must be generated to obtain a generic design
variable x; through equation (10)

Examples of algorithms that employ these models are
those in [38, 211].

International Journal of Intelligent Systems

13

output: a new trial solution x
for i€ {1,2,...,D} do

if < ¢ then
else

end if
end for

input: the vectors p, o and parameter &

generate a random number r € [0, 1] according to the uniform distribution
generate x; € [-1, ;] according to Q-PDF described in equation (6)

generate x; € [y;, 1] according to R-PDF described in equation (7)

ALGORITHM 2: Sampling mechanism used with the enhanced Gaussian model.

5.5. Binary/Discrete Compact Optimisation Algorithms.
The first compact algorithm, ie., cGA, was designed for
discrete optimisation. Since then, several other cMeta al-
gorithms appeared in the literature for solving discrete
problems. Alternative mutation operators for cGA are
proposed in [37, 200, 203, 212], and an evolutionary strategy
for the survival of the offspring is proposed in [213]. A study
on elitism for GAs in [201] led to two variants with strong
and weak elitism that outperformed the original nonelitist
¢GA and the popular (1 + 1)-ES. Elitism has also been used in
[37,203, 214, 215]. It should be noted that selection pressure
can also be ensured by using a larger tournament selection
[196].

Other studies try to improve the updated process of PV.
A moving average strategy is presented in [202], and weights
are used in [216]. Learning mechanisms for choosing among
multiple evolved probability vectors are also available
[217, 218]. Note that by doing this, the algorithm might
achieve better performance, but it would require more
memory usage to store multiples PV. Hence, these might no
longer be considered lightweight according to the classifi-
cation of this survey. However, if such memory is available
on the device, these strategies can be used, as well as some
u-population algorithms that might have the same memory
footprint. Unlike [219], some degree of inheritance is in-
cluded in the probabilistic model, while the study [215]
replaces PV with the belief vector BV to store probability
values belonging to a Gaussian distribution with a given
mean and variance. As in the continuous case, BV is not
areal vector and is more memory-intensive than the original
model. We would like to highlight that these advances
available in the literature often perform better than the
original methods. However, we argue that they are all based
on adding complexity. This often leads to higher memory
footprints and/or higher time overheads. This is a well-
known problem in stochastic optimisation, where a trade-
off between performances and other criteria (asymptotic
complexity, overheads, smallest use of memory slots, etc.)
must be taken according to the optimisation scenario. For
the sake of completeness, we report a wide range of studies in
this survey and provide these considerations to the reader.

Adaptation is an interesting feature of an optimisation
algorithm. In [204, 220], adaptation to the problem is ob-
tained by adding information on the frequencies and

continuity of the update probabilities in the updated rules.
Most importantly, parameter adaptation schemes are pro-
posed in [221] to have parameterless cGAs capable of tuning
the population size to remove unfavourable implications of
genetic drift.

Multistart schemes also help in compact optimisation.
After each restart, the initial point changes, and usually, PV
is reinitialised. In [222], the restart occurs if no improvement
in the objective function values is registered within a fixed
number of consecutive generations. This can be seen as an
enhanced exploration phase, where the cMeta is used to
refine the new initial point. This can also be done with an
opposite approach where the cMeta provides solutions that
are refined with a local searcher as, e.g., steepest descent
[223], or problem-specific local search operators
[222, 224, 225].

For the sake of completeness, we report on the use of
combinatorial cMeta used in systems that allow for paral-
lelisation. Here, the problem of keeping the number of
memory slots at a minimum level is less evident, while the
simplicity of the models is important to a feasible and error-
free implementation in devices such as FPGAs. The possi-
bility of constructing parallel versions of cGA is discussed in
[226-230], as well as in [231] (which considers multi-FPGA
partitioning), while a memetic variant of cGA was presented
in [232], along with a mechanism for fine-grained
parallelism.

Other works employed cGA on various hardware devices
[37, 233-237]. More recently, a GPU-enabled imple-
mentation of cGA was presented in [238], to solve a “seri-
ously” large-scale (up to 10 million variables) Integer Linear
Programming problem taken from [239], as well as con-
tinuous and discrete versions of the OneMax benchmark
problem of up to one billion variables.

The use of cGA was also analysed in the context of noisy
optimisation in [240]. This study showed that cGA can
handle noise efficiently by adjusting its step size according to
the level of noise. This method was called graceful noise
scaling.

From a theoretical perspective, the runtime of a discrete
cGA is studied in multiple works. In particular, it was
analysed on the jump functions in [241-243]. In [244], lower
and upper cGA runtime bounds have been derived for
pseudo-Boolean functions, such as OneMax. Other studies

14

have investigated how the size of the virtual population
influences the performance of cGA [245, 246].

On a historical note, it is worth mentioning the Selfish
Gene Algorithm (SGA) [247], which is very similar to cGA
and was presented almost contemporaneously. SGA (not to be
confused with the Simple GA) is based on the “selfish gene”
theory in biological evolution [248]. Similarly to cGA, SGA
evolves a pool of genes that is updated by means of a virtual
population. Recently, a new variant of SGA dubbed the
“replacement and never penalising” SGA, which was proposed
in [249]. Instead of penalising the genes of the loser, this
variant replaces them with those of the winner. This algorithm
was applied to optimise the gymnastic movements of a hu-
manoid robot. Two elitist variants (with persistent and
nonpersistent elitism) of this algorithm are presented in [250].
These seem to significantly outperform the original SGA. For
details on SGAs, we refer to [251].

Finally, we should stress that there are several compact
binary variants of other metaheuristics besides cGA and SGA.
An algorithm known as cBinDE, which stands for compact
Binary Differential Evolution, was introduced in [252]. This
algorithm follows the same principle as cGA, but it uses the
binary versions of mutation and crossover of the Differential
Evolution algorithm combined with a simple local search.
This algorithm was successfully used to maximise the func-
tional coverage percentage in the verification of digital sys-
tems. Binary cDE was also studied in [253, 254]. Other works
instead investigated binary versions of compact PSO [255],
compact Firefly Algorithm [33], compact Co-Firefly Algo-
rithm [256, 257], compact Memetic Algorithms [258], and
other kinds of compact EAs [259, 260]. We argue that po-
tentially all metaheuristics can be made “compact.” However,
finding the most useable or suitable solution for a problem is
a real challenge. This either requires a time-consuming em-
pirical phase, or a more informed approach, which can be
possible only in some cases. This is a fundamental research
question in the field to be prioritised in the future.

The most interesting areas of application of compact
optimisation in the discrete domain include the Travelling
Salesman Problem (TSP) [224, 261]; determining minimum
set primers in Polymerase Chain Reaction (PCR) [262]; task
scheduling in grid computing environments [263]; protein
folding [264]; object recognition [265, 266]; soft decision
decoding [267, 268]; minimising the number of coding op-
erations required in multicast based on network coding [222];
estimating the parameters of the maximum log-likelihood
function of a first-order moving average model MA [269] and
a mixed model ARMA (1, 1) [223]; optimising the aggrega-
tion of multiple similarity measures to obtain a single simi-
larity metric for ontology matching [270]; optimising
ontology alignment [271]; designing multiple input multiple
output wireless communication systems [272].

5.6. Real-Valued Compact Optimisation Algorithms. In
Sections 5.6.1 and 5.6.2, we report on EC and SI cMeta for
the continuous domain, respectively.

International Journal of Intelligent Systems

5.6.1. Compact Evolutionary Algorithms (cEAs). The real-
valued compact Genetic Algorithm [198] is the first compact
algorithm for continuous optimisation. It uses the Gaussian
model described in Section 5.4.2 and only requires storing
the elite individual, a temporary solution, and PV to perform
the search. A similar variant is proposed in [273], which,
despite being named a compact PSO algorithm, displays the
same working mechanism of rcGA (we will refer to it as
cross-rcGA). The peculiarity of this variant is that it per-
forms a decomposition of the problem into three sub-
problems. For each subproblem, a local best solution is
needed, as well as a local PV (in this context, it is similar to
a PSO). We point out that this algorithm is based on an
interesting idea but ends up requiring three local best so-
lutions, three temp solutions, a global best slot, and three PV
matrices, thus having a similar memory footprint of pMeta
with a small population size. Another variant is presented in
[21], where rcGA is hybridised with SNUM and is called
c¢SNUM. Here, after generating an offspring solution with
the rcGA mechanism, the SNUM operator is applied to
a randomly selected design variable. cSNUM deals well with
separable problems of different dimensionalities. Similarly,
the Single/Multi Non-Uniform Mutation (¢SM) algorithm
[44] is a hybrid algorithm that combines an rcGA-like
structure with the nonuniform mutation (NUM) operator.
This is very similar to ¢SNUM but perturbs all variables
instead of just one. An interesting solution is the Uniform
compact Genetic Algorithm (UcGA) [211], which is based
on the uniform model and features a virtual population size
that decreases linearly. Furthermore, it employs a local
search operator.

The c¢DE algorithm [199] generates new trial solutions
using the fundamental logic of DE, but rather than selecting
them from a population, it samples them from a probabi-
listic model. Potentially, it can be used with all possible DE
mutation strategies, crossover operators, and elitism
schemes. However, depending on the use of a specific
mutation operator, one may need to sample more in-
dividuals, thus requiring more memory. The simplest mu-
tation, i.e., “rand/1,” requires sampling three points to
generate the so-called mutant vector. Compared to rcGA,
a performance gain is recorded in most benchmark prob-
lems [199]. This might be due to the fact that DE is designed
for continuous optimisation, and, therefore, cDE maintains
the very same encoding and working logic as DE. This is not
the case for GA, which is usually used over discrete domains
and requires a real population to perform selection mech-
anisms such as fitness-proportionate or tournament selec-
tion (which can only be used with a size of two individuals in
the memory-saving context). For these reasons, rcGA ends
up performing worse than its population-based counterpart
in many cases, particularly for mid- and high-dimensional
problems (> 10), while cDE is comparable to its population-
based counterpart. Moreover, in the continuous domain,
cDE usually outperforms rcGA (but requires at least 3 in-
dividuals for the mutation, on top of the elite solution and
a temporary vector). Similar considerations also apply to

International Journal of Intelligent Systems

other cMeta algorithms, see [31] for details, as population-
based algorithms that perform selection based on pairwise
comparisons can be successfully and straightforwardly
encoded into a compact scheme, while the other might display
substantial performance degradation. In this light, there are
many cDE-based algorithms in the literature. We remark that
some of them might require the same amount of memory
slots of population-based algorithms with small populations,
but most are still characterised by simple and memory-cheap
algorithmic structures. For example, the Disturbed Exploi-
tation compact Differential Evolution (DEcDE) algorithm in
[274] is a simple memetic approach based on a ¢cDE algorithm
that employs two DE exploitative search strategies. The first is
the classic DE/rad/1/exp configuration. The second config-
uration instead has the trigonometric mutation (see [54] for
details on DE). These exploitative DE operators are coun-
terbalanced by a periodic stochastic alteration of the virtual
population, which is meant to introduce exploration elements
in the search. Despite its simplicity, the algorithm out-
performs other compact algorithms in the benchmark
functions tested. Similar results are obtained by using gen-
eralised Opposition-Based Learning (OBL) within cDE. The
resulting cODE (compact Opposition-Based DE) [275] is
competitive with its population-based counterpart. Differ-
ently, [276] proposes a memory-saving solution called
Concise DE-based Chaotic Local Search (CDE-CLS) where
alocal searcher is added purposely to achieve fast convergence
on a real-world problem. An adaptive version is instead the
Compound Sinusoidal cDE (CScDE) proposed in [277]. Here,
the compound sinusoidal heuristic is used to self-adapt the
crossover rate and the mutation scale factor. CScDE out-
performs most state-of-the-art compact algorithms on vari-
ous benchmark problems. Other methods to improve upon
exploration include the use of multiple cDE running together,
as, e.g., [278]. However, these methods are not memory-
saving, as they end up requiring a similar amount of memory
slots to a small population-based algorithm, which may be
preferred.

From the memory point of view, the cheapest compact
DE framework is the compact Differential Evolution light
(cDE-light) algorithm proposed in [279]. This is a fast ap-
proach, as it requires sampling of only one candidate so-
lution per iteration instead of the three required to perform
the classic DE/rand/exp. Furthermore, it does not require
loops to implement the exponential crossover operator,
which is replaced with a counterpart of this operator capable
of predicting the number of design variables to be ex-
changed. The main idea to reduce the number of individuals
in the rand/1 mutation (which is a linear combination of
three randomly selected individuals) is to exploit the
property of the Gaussian distribution from which these
individuals need to be drawn (note that this is an approx-
imation as the distribution is truncated and not a theoretical
Gaussian function. However, the results are satisfactory).
Indeed, under the reasonable assumption of having statis-
tically independent individuals, the corresponding three
Gaussian distributions can be linearly combined to model
the Gaussian model of the resulting mutant vector. Without
having to sample an individual to generate the mutant, this

15

can simply be obtained from his Gaussian model. As for the
crossover “light,” the derivation of the formula predicting
the number of variables to be exchanged without requiring
a loop through two individuals is provided in [279]. This
algorithm is based on interesting design ideas, and, despite
the assumptions and approximations, it performs well and
behaves similarly to ¢cDE. As seen for a single-solution al-
gorithm, in this case, a performance gain is recorded when it
is equipped with the restart with the inheritance mechanism
described in Section 5.2. The study in [43] shows that most
compact algorithms can benefit from this scheme by
benchmarking restart variants of compact DE, PSO, and
other algorithms whose compact version is introduced in the
next section.

In the literature, there are examples of compact Evo-
lution Strategy (cES) algorithms, such as c(1 + 1)-ES and the
c(u, 1)-ES [280]. From the experimental analysis in [280], the
c(1+1)-ES algorithm appeared to be as effective as the
original (1+1)-ES. Conversely, c(u, A)-ES appeared to
perform worse than its population-based (¢, 1)-ES coun-
terpart, especially for high values of A.

5.6.2. Compact Swarm Intelligence Algorithms. Compact
Particle Swarm Optimisation (cPSO) [42] is the compact
counterpart of the PSO algorithm for the continuous do-
main. This is simply obtained by using the Gaussian model
to generate a new particle x, which is perturbed by the
velocity vector v as in the original PSO. However, to avoid
sampling the swarm, some adjustments are needed; the
concept of the local best particle cannot be replicated if
a single solution is employed at a time to maintain
a memory-saving framework. For this reason, the PSO
update formula for v only takes into account the actual
global best solution x,,, while the local best solution xy, is
drawn from the Gaussian model with the current PV values.
Note that there are variants of this algorithm using different
distributions for the model, as in the real-parameter com-
pact supervision for PSO (rcSPSO) [281], where a combi-
nation of Cauchy and Gaussian distributions are used. Self-
adaptive variants, like the one in [282], have also been
proposed.

The compact Bacterial Foraging Optimisation (cBFO)
algorithm [283] also employs the same chemotaxis scheme
of population-based BFO, but it models the population with
the Gaussian model of Section 5.4.2. Similarly to BFO, a new
solution is generated from the model at each chemotactic
step, and a mix of tumble/swim moves is attempted. When
generating new offspring (either using the sampling
mechanism or via a tumble/swim), its fitness value is
compared to that of the current best solution. The compact
implementation of the reproduction and elimination/dis-
persal steps is a bit different. Instead of preserving and
replicating the best S/2 bacteria as BFO does, cBFO moves
the PDF in favour of the elite and shrinks over it. As a result,
forcing a PDF update is an approximation of the sexual
reproduction step. Finally, the injection of new randomly
produced bacteria into the swarm is modelled using a per-
turbation of PV in the elimination/dispersal step.

16

The list of compact algorithms is large. As many
population-based algorithms can be made compact, the
literature keeps offering examples of a new compact version
to be used mainly in applied contexts. A compact Artificial
Bee Colony (cABC) is proposed in [206], and an Enhanced
cABC (EcABC) variant is proposed in [207]. A parallel
structure, abbreviated as pcABC, is presented in [284].
However, the latter is meant for hardware systems with
multiple cores/processors which do not suffer from memory
or computational limitations. Some compact Firefly Algo-
rithms (cFAs) [38] are also widely used. Note that these are
obtained with some simplifications of the original strategy,
which makes the compact version (in particular, the per-
sistent variant using the Gaussian distribution) follow the
same steps of rcGA except for an extra step before updating
PV. This is required to direct the loser toward the winner to
adhere to the original framework. Based on the method for
updating the elite solution, which can require using L'evy
flight movement, Opposition-Based Learning, and the use of
Gaussian or uniform distribution, 12 cFA variants can be
obtained. More are presented in [285, 286]. In this light, one
can see that making an algorithm compact can be simple.
However, the current trend of simplifying existing algo-
rithms just to present a new optimisation framework does
not necessarily help progress in understanding what good
practices are in the algorithmic design phase. This is par-
ticularly true when the design is driven only by inspiring
metaphors, which often results in new algorithms whose
working mechanism is either unclear or similar to other
existing heuristics. These metaphor-led compact algorithms
are now abundant in the literature for solving real-world
applications. We do report some one of these applied sce-
narios solved with, e.g., compact Cat Swarm Optimisation
(cCSO) [287], compact Teaching-Learning-Based Optimi-
sation (cTLBO) [288], compact Harris Hawks Optimisation
(cHHO) algorithm [289], compact Bat Algorithms [208],
compact Flower Pollination Algorithms [209, 290], compact
Pigeon-Inspired Optimisation (cPIO) [291], the compact
Sine Cosine Algorithm (cSCA/pcSCA) [292, 293] and
McSCA with Multi-group and Multi-strategy (based on
different DE mutations) [294], the compact Equilibrium
Optimiser algorithm (cEO/pcEO) [295], the compact
Cuckoo Search (cCS) [296], compact Harmony Search Al-
gorithms (cHSA) [297], and many others. We direct the
reader to these studies and argue that while the application
domain is interesting, it is difficult to understand what the
contribution of proposing such algorithms to solve such
problems is. In most cases, these are similar to existing
methods or just present insufficiently motivated combina-
tions of operators. Although we believe that progress in the
algorithmic design must be kept alive within the community,
by surveying the recent literature, we call for more emphasis
on analysing the algorithms to have a more informed design
phase in the future.

6. Lightweight Metaheuristics Applications

The main scenarios and motivations for using lightweight
algorithms are summarised as follows.

International Journal of Intelligent Systems

6.1. Embedded Systems. Lightweight algorithms can be used
in several low-cost, resource-limited computing devices that
are used nowadays in a wide range of miniaturised com-
mercially available devices, such as those used, for example,
in wet laboratories [32, 33], humanoid robots [38], flying
robots (microaerial vehicles) [298], and mobile robots [22].

6.2. Real-Time Optimisation. When applications require
a real-time optimisation problem to be solved, sMeta can be
a logical choice (as well as most compact algorithms as long
as the complex model is not used). In engineering, such
situations are abundant and in most cases do not require an
optimal solution but rather a solution of satisfactory quality
within some precision thresholds. Examples of these sce-
narios are nonlinear optimal control, receding horizon
control, and moving horizon estimation [299]. Other ap-
plications might involve solving large-scale optimisation
problems, such as optimising the parameters of black-box
models (e.g., a deep neural network or a hidden Markov
model), or solving inverse problems [186] on board an
embedded system.

6.3. Hybrid Optimisation Algorithms. Lightweight algo-
rithms, and in particular single-solution metaheuristics, are
useful “building blocks” for hybrid algorithms [211, 276].
Even in nonmemory-saving contexts, this is evident when
dealing with hyper-heuristics and memetic computing
approaches.

6.4. Other Situations. A universal metaheuristic does not
exist, and in many real-world scenarios, simple algorithms
perform better than more complex ones. Based on examples
in, for example, optimal control in industrial plants [42],
neural network training [288], and ontology mapping [300],
we recommend taking them into account as they might be
able to provide satisfactory results while keeping imple-
mentation difficulties relatively low.

Relevant application contexts where lightweight algo-
rithms are used are listed as follows:

(1) Wireless Sensor Networks (WSNs), e.g., Optimised
deployment [301], Minimised energy depletion
[302], Base station locations [303], Topology con-
trol scheme [304], Clustering formation
[208, 301, 302], and Node Localisation [282, 293];

(2) Embedded control systems [39, 185, 198,
199, 274, 305];

(3) Robotics, e.g., industrial robots [39, 274, 276, 279,
305, 306], mobile robots [22], humanoid robots
[38, 285, 286, 297], and unmanned aerial vehicles
[185, 296];

(4) Electronic design, e.g., of magnetic field sensors
[186], printed circuit boards [307], digital signal
processing elements [180, 308-311], and antennas
[312, 313];

(5) Computer vision, e.g., image segmentation [287],
clustering [179], and face recognition [173, 174];

International Journal of Intelligent Systems

(6) Power/energy systems [42, 314, 315] and renewable
energy systems [291, 295, 316];

(7) Transportation [292, 294] and civil engineering
(317, 318];

(8) Design of engineering/mechanical structures
(289, 319];

(9) Natural language processing [320];
(10) Machine learning [276, 288, 321-323];
(11) Ontology engineering [211, 273];

(12) Cloud computing security [324];
(13) Bioinformatics [175, 176].

Table 1 contains the aforementioned applications, re-
lated articles, and specific algorithms that are being used.

7. Discussion and Open Issues

Based on the survey of the literature on lightweight meta-
heuristics reported before, we can now draw the following
conclusions:

(i) Compact and single-solution algorithms are com-
monly expected to be outperformed by population-
based algorithms in terms of solution quality.
However, this is not always the case. Furthermore,
there might be applied contexts where these are the
only choices because of memory constraints or just
preferred for speed gain and simplicity in their
implementation.

(ii) Some well-known drawbacks of population-based
optimisation are premature convergence or stag-
nation. When the first occurs, the population loses
diversity, and the algorithm is stuck in a local op-
timum. In the second case, even though the pop-
ulation is still diverse, the search may stagnate,

17

(iv) Due to the fact that compact optimisation algo-

rithms by nature handle each variable in-
dependently, they perform exceptionally well on
separable problems. This is especially true for some
of the most recent algorithms, e.g., CScDE, SNUM,
and ¢cSNUM [21, 277]. However, it is possible to
endow both cMeta and sMeta with algorithmic
moves that handle multiple variables at the same
time. A concrete example is that recently proposed
in [44], where the ¢cSM approach was shown to be
successful, particularly in multimodal problems.

(v) Among compact algorithms, some (e.g., rcGA)

work well in lower dimensionalities, while others
(e.g., cPSO) perform especially well in larger di-
mensionalities (a similar observation can be made
for single-solution algorithms). This seems not only
to be a consequence of the inherent search logic
underlying each algorithm. Another possible ex-
planation has been provided in a recent study
provided in [326], which showed that the correla-
tion between pairs of variables appears to contin-
uously decrease as the size of the problem increases,
from the point of view of a stochastic search al-
gorithm. As a consequence, large-scale non-
separable high-dimensional problems can be
approached as if they are separable. According to
the same authors, this effect arises from the fact that
in high dimensionalities only a very limited portion
of the decision space can be explored with a rea-
sonable computational budget. Therefore, explora-
tion should be performed with any improvement
along each variable, which is consistent with simple
methods that use a limited computational budget to
focus mainly on exploitation. This is also compatible
with most multistart lightweight algorithms.

meaning that the operators cannot create offspring
that outperform their parent solutions. Premature
convergence also plagues lightweight algorithms.
Interestingly, the latter can be used to help
population-based algorithms overcome stagnation
by providing additional movement in the search
space [78] and premature convergence by adding
the population superfit individuals.

(iii) In relation to the previous point, most compact

optimisation methods have an intrinsic limitation
when dealing with multimodal functions [21, 277].
Indeed, since they lack an actual population of
candidate solutions, they cannot provide a sufficient
degree of diversity, particularly in the long term
after the Gaussian model has converged. As a result,
unless certain restart methods are introduced, these
types of algorithms excel at exploitation but fall
short of exploration, which is required to handle
multimodal functions effectively. Indeed, after the
Gaussian model converges, new solutions are
sampled from a relatively tiny subset of the search
space, resulting in a local search.

8. Future Research Directions

Promising research lines to improve upon the current state
of the art in light-weight optimisation algorithms which are
summarised as follows:

(i) Probabilistic models: Nearly the totality of compact
algorithms employs the Gaussian distribution,
which is simple to work with, but alternative
models might be more suitable and should be
investigated.

(ii) Multimodality: Poor performance in this class of
problems suggests the need to focus more on
exploratory operators or mechanisms in the al-
gorithmic design phase.

(iii) Scalability: The problem of dealing with increasing
dimensionality values without deterioration of
performance needs further attention, as truly
large-scale problems are becoming increasingly
frequent, even in low-resource devices.

(iv) Hybridisation: It will be interesting to explore
different combinations of multiple compact logics.

International Journal of Intelligent Systems

18

vao [807] SNSM Jo Suraisn)d
[s87] Supjem sjoqo1 [epadiq rewndo
\ES .
(98T “8¢] §30qoI prouewny ul juswasow eumndQo
Od1IL> [887] S[OpOW [eIpel pue [eINU UTel],
VSH? [£67] 10qo1 prouewny SuIpue)s-J[2§
odv?2 [Fog] SNSM Ul dwayds [onjuod £3ofodoy,
0Sdv> [z87] UONESI[BI0] I0SUS I[IGOIA
[11€] Sunyrewrsajem orpne paseq-uonesrwndQ
0Sd> [o1€] Sunjrewrajem orpne ur YNS rewndo
[cog] SNISM UI SUOLIBIO] UOTIB)S aseg
[27] 191109 € Jo USISap [01U0D JUIUQ
STO-4dd [942] J0qo1 afIqowr 10§ [ox3u0d [ewndo [eInau £zzng
WE-AQ@ [6£2] wayqoxd Summoroy yred
W8-9a ‘4a2aa 74T ‘6¢] UONESIWIUIW 32UBQINISIP 10qol 3oedg
wyjLIod[e o dNIWIW Y [sog] [onuos rewndo 30qoI UBISI)IEd [eLISnpU]
[12¢] $I0MJaU orpes ul sppow uorssardar rewndQ
qa [1og] SNISM Jo juswfordop pastundQ
[661] I3[[0I3U0D [eInau jo Sururen) dUUQ
JUeLIBA YD)OI-SSOID) [e22] yuowruSife £3oj0juo AyderdorpAy Surstundo
VDII (ISUI[P UON) [£1€] uI9)sAS I19M3s 10J Jo1U0D dANITPaId [9poIN
VDo1 (IsnI JudlsiszoduoN) Wmﬂ uona[dop AS1ous pastwrurr SNSMIS[[0nu0d paads 14 dnpummnue fewndo suruQ
SINSIN [6£1] swaqoxd y00qapod pue JurraisnD)
@IS/A@ds [Pe] Sunndwos pnop ur uoneSHIW $IOTAIS JO [BIUSP PANQINSIJ
wiLode OIS paypow v [61¢] uonjesturido paurensuod £ouanbaiy ssniy,
SIUBLIBA SA 92IY], [eTe] Yiomiou Jururesy jsej pestundQ
swyIoS[e SA paoueyud £109Y) SOBYD U], [90€] uonn[os Wajqo1d SNEWLUD 514U
[ozg] UOTJEOYIIUIPT JOYINE IX3],
HASA [o1€] 190 ey suerquiow dJueyoxe rewndo
poowr mopy 1omod e yIm wiyroS[e SA dAe[s-Ia)sew PLIGAY v [#1¢€] speo] 1omod JUBISUOD UM SHIOMIOU ANSISAI Ul Moy Jamod [ewndQ
[s1¢€] uonoejonbyy sed jueraduyer yuame A310U7g
SA [60€] uornddPes jusuodwod 1)y aanoe andofeuy
[80¢] Keop dnoid a3y Soreue oy jo uonesrundo
AISSS [szel worqoxd udrsap Sunds [eorPey
IISss [81¢€] wopqoxd udrsap ssnuyy req-so1y],
AISSS [20€] Surpqup sroy 3moa pajurid ur Junnoy
(TIOJS) uonerojdxa pajrelsar yym uonesrwndo spnred a8urg [981] srodip onpuSews e Jo UOIOJAP dWN)-TedY
HINOSE 44! joqox Suimoroy-yyed uo Surun) qId dUIUQ
HNOSE [081] uSisop 19y asuodsar asmnduur ayruyur rendiq
S [s81] joqo1 123dod1[oy & J0J wAIsAs [ox3u0d rewndo
0dSIdPY + 0SdTO Prgdy pue Odsidpy (71 ”mn: uonruSodar aoey 10§ sanjeay 1oqed ewmndo
(941 “5.1] uorssardwod aouanbas vNJ
OdSI [e1€ “T1€] suonjeoridde (q1y) uoneoynuaqy Lousnbaiy orper 1oy seuusjue fewndo
(0ds1dpy 03 yuspeambs st yorym OdsI payrduts) OJSIS [zze] uonudooax JIp 10J YIoM)oUu [eanau Jururely,
(s)wrypLIody Apmig uonesrddy

suryyrodre 1ySromiydy jo sproy uoneorddy i1 a1avy,

19

International Journal of Intelligent Systems

OHH?> [687] (111 drysiaq4> ur) uonesoqre isniyy ewndo
voon [117] Suryoyewr £3o1o3uo syderSorqiq rewndo
vsDod [¢67] UTeIId) [enioe (J¢ UI UOIIesI[ed0] IPON
VOSOIN [¥62] yojedsIp SaPIYaA Jisuer) orqng
VOS2 [z67] mopurm awr ym wafqoxd Sunnor spIya A
sjuerreA Qo pue Ogod [s67] uonerausd pajnqrusip jo uoneoore rewndo
§Do pasorduwr uy [967] qny sonsI30] dUOIp JO UOHEIOT
OI1d> [167] uonerduad 1omod oos[eoIpLy astundo

0SD? [£87] uoneyuswdas afewr Aein

Vddd [067] SN'SM UI UOTJESI[eD0] SPON
(s)wryLody Apnig uoneorddy

‘panunuo)) 1 414V],

(v) Adaptation and learning: Lightweight algorithms

with increased intelligence will be needed, that is,
algorithms that can self-adapt their parameters to
the problem at hand. Another possibility would be
to put multiple lightweight algorithms together,
using, for instance, a scheme similar to that in-
troduced in [327]: in this scheme, 6 algorithms are
arranged into three bags, each with two algorithms,
depending on the number of solutions used in the
optimisers. Once a bag is selected, its optimisers
are run according to a reinforcement learning
process based on its performance. As a result, if the
considered optimiser performs well (based on the
fitness improvement), it will be rewarded, while the
others will be penalised. The best-performing
optimiser will earn more probability to run in
the next iterations, while the other optimisers will
be activated less frequently, eventually until their
corresponding probability is null.

(vi) Noisy/dynamic optimisation: It will be useful to

investigate new compact optimisation schemes
(for instance, with new distributions or new
sampling mechanisms) to deal with noisy func-
tions or Dynamic Optimisation Problems (DOPs)
[328, 329] (i.e., problems where the search space
changes over time). Concerning noisy optimisa-
tion, apart from some works on cGA
[240, 330-332], the only few works dealing with
noise are based on rcGA [333], ¢cDE [334], and
a compact EDA framework [335]. In terms of
dynamic optimisation, a Hooke-Jeeves-based
Memetic Algorithm (HJMA) was presented in
[336], where experiments have been conducted on
the Moving Peaks (MP) problem (this benchmark
is defined in [337] as an artificial multidimensional
landscape comprising multiple peaks, each of
which has its height, width, and position slightly
altered whenever a change occurs in the envi-
ronment. Its complexity can be raised by in-
creasing the number of dimensions/peaks and by
adding noise over the whole landscape. A review of
the approaches that have been tested in the dy-
namic MP problem can be found in [338]. More
recently, some authors proposed the Deterministic
Distortion and Rotation Benchmark (DDRB)
[339], a method to generate Deterministic Dy-
namic Multimodal Optimisation Problems
(DMMOP) considering both dynamic and mul-
timodal characteristics, which can simulate more
diverse sets of challenges. In the same context,
another set of benchmark problems, as well as an
optimisation framework, called PopDMMO,
containing several population-based algorithms,
was designed in [340]). To address the need to
continuously adapt to landscape changes, some
improvements in ¢cGA have been proposed in
[341], based on techniques of hypermutation and
random immigrants. The results of a modified

International Journal of Intelligent Systems

version of the Moving Peaks Benchmark indicate
that both strategies improve the algorithm per-
formance for dynamic environments. Instead, the
compact adaptive mutation genetic algorithm
(amcGA) presented in [342] is based on an
adaptive mechanism where the mutation scheme is
directly linked to a change detection scheme so
that the change detection scheme regulates the
mutation rate (i.e., the degree of change de-
termines the probability of mutation). This method
was tested in [343] using a real-world dynamic
optimisation problem that includes designing and
optimising a PID controller for a torsional mass-
spring-damper system in a dynamic environment.
Other variants of amcGA can also be found in
[344]. However, more research in this direction is
needed.

(vii) Constrained and multi-objective problems: Bound-

constrained single-objective optimisation has been
the focus of most research on lightweight meta-
heuristics. In many application scenarios, however,
one needs to handle multiple objectives at the same
time and/or handle a set of equality/inequality
constraints. Therefore, future research on light-
weight algorithms for multi-objective and/or
constrained optimisation applications may be in-
teresting. Regarding sMeta, some multi-objective
variants of SEO have been adapted, for example, to
solve the problem of home healthcare routing and
scheduling [345], to optimise an integrated system
of water supply and waste collection [346], and to
optimise a municipal solid waste problem [347].
Instead, in [348], a multi-objective variant of the
VS algorithm is introduced. Regarding cMeta,
there are already some studies that go in this di-
rection which already exist; see, e.g., [349, 350].
These research papers show that Multi-Objective
compact Differential Evolution (MOcDE) and
Multi-Objective compact Particle Swarm Opti-
miser (MOCcPSO), respectively, can be used suc-
cessfully for solving unconstrained, continuous
multi-objective optimisation problems. In
[257, 351], the authors solve the ontology align-
ment problem using the compact multi-objective
Co-Firefly algorithm and cPSO, respectively. One
main drawback of cMeta and sMeta is that, without
an actual population or an archive, they cannot
keep a Pareto front in memory. Lack of diversity is
also an issue for multi-objective optimisation.
Therefore, more research is needed in this di-
rection. Regarding constrained optimisation, an
Improved SA (ISA) is introduced in [352], which is
capable of dealing with only linear constraints. ISA
is characterised by changing only one component
of the current solution at each iteration, without
penalty function. Another similar work [353]
proposed two variants based on a hybrid Simulated
Annealing-Hill Climbing algorithm, to solve

International Journal of Intelligent Systems

constrained optimisation problems. The first ver-
sion incorporates penalty methods for constraint
handling, whereas the second one eliminates the
need for imposing penalties in the objective
function by tracing feasible and infeasible solution
sequences independently. Also, more research
seems to be needed in this area.

(viii) The trend in designing novel algorithms solely by
following an inspiring metaphor and making their
compact versions available would not help un-
derstand how these simple methods work and can
be improved in the future. Even if good results can
be obtained with such algorithms over some ap-
plication domains, this does not seem to lead to
any progress in explaining the algorithmic be-
haviour and the well-known drawbacks of meta-
heuristics. Also, from the novelty point of view,
this approach is arguable [65, 66, 354]. Therefore,
we call for more fundamental research in the di-
rection of overcoming drawbacks to obtain an
improved self-adaptive algorithmic structure.

Data Availability

Original data were not collected or generated to support this
study. Instead, we have included comments on the refer-
ences surveyed in our article that contain links to data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Souheila Khalfi conducted conceptualisation, investigation,
writing of the original draft, writing of the review, editing,
and visualisation; Fabio Caraffini conducted con-
ceptualisation, writing of the original draft, writing of the
review, editing, and visualisation; Giovanni Iacca carried out
conceptualisation, investigation, and writing of the
original draft.

Acknowledgments

Open access funding was enabled by Swansea University and
organised through JISC.

References

[1] S. E. Thompson and S. Parthasarathy, “Moore’s law: the
future of SI microelectronics,” Materials Today, vol. 9, no. 6,
pp. 20-25, 2006.

[2] F. Pisani, F. M. C. de Oliveira, E. S. Gama, R. Immich,

L. F. Bittencourt, and E. Borin, “Fog computing on con-

strained devices: paving the way for the future iot,” Advances

in Edge Computing: Massive Parallel Processing and Appli-

cations, vol. 35, pp. 22-60, 2020.

L. P. Kaelbling, Learning in Embedded Systems, MIT press,

Cambridge, MA, USA, 1993.

&

21

[4] S. Schiaffino and A. Amandi, “Intelligent user profiling,” in
Artificial Intelligence an International Perspective, pp. 193-
216, Springer, Berlin, Germany, 2009.

[5] F. W. Glover and G. A. Kochenberger, Handbook of Met-

aheuristics, Springer Science and Business Media, Berlin,

Germany, 2006.

E.-G. Talbi, Metaheuristics: From Design to Implementation,

John Wiley and Sons, Hoboken, NJ, USA, 2009.

[7] K. Miettinen, Evolutionary Algorithms in Engineering and

Computer Science: Recent Advances in Genetic Algorithms,

Evolution Strategies, Evolutionary Programming, GE, John

Wiley and Sons, Inc, Hoboken, NJ, USA, 1999.

R. Chiong, F. Neri, and R. I. McKay, “Nature that breeds

solutions,” International Journal of Signs and Semiotic Sys-

tems, vol. 2, pp. 23-44, 2012.

[9] D. H. Wolpert and W. G. Macready, “No free lunch theo-
rems for optimization,” IEEE Transactions on Evolutionary
Computation, vol. 1, pp. 67-82, 1997.

[10] A. Tzanetos and G. Dounias, “Nature inspired optimization
algorithms or simply variations of metaheuristics?” Artificial
Intelligence Review, vol. 54, no. 3, pp. 1841-1862, 2021.

[11] T. Ting, X.-S. Yang, S. Cheng, and K. Huang, “Hybrid
metaheuristic algorithms: past, present, and future,” in Re-
cent Advances in Swarm Intelligence and Evolutionary
Computation, pp. 71-83, Springer, Berlin, Germany, 2015.

[12] A. P. Piotrowski and J. J. Napiorkowski, “Some meta-
heuristics should be simplified,” Information Sciences,
vol. 427, pp. 32-62, 2018.

[13] F. Wortmann and K. Fliichter, “Internet of things,” Business
and Information Systems Engineering, vol. 57, no. 3,
pp. 221-224, 2015.

[14] A. Priigel-Bennett, “Benefits of a population: five mecha-
nisms that advantage population-based algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 14, no. 4,
pp. 500-517, 2010.

[15] D. R. D. S. Medeiros, M. F. Torquato, and M. A. Fernandes,
“Embedded genetic algorithm for low-power, low-cost, and
low-size-memory devices,” Engineering Reports, vol. 2, 2020.

[16] 1. Fister, G. Vrbancic, T. Hozjan, and V. Podgorelec, “Per-
formance study of bat algorithm running on embedded
hardware,” in Proceedings of the 2019 23rd International
Conference Electronics, pp. 1-4, IEEE, Palanga, Lithuania,
June 2019.

[17] M. El-Shafei, I. Ahmad, and M. G. Alfailakawi, “Imple-
mentation of harmony search on embedded platform,”
Microprocessors and Microsystems, vol. 45, pp. 187-197,
2016.

[18] A. Hassanein, M. El-Abd, 1. Damaj, and H. Ur Rehman,
“Parallel hardware implementation of the brain storm op-
timization algorithm using fpgas,” Microprocessors and
Microsystems, vol. 74, Article ID 103005, 2020.

[19] A. Ortiz, E. Mendez, D. Balderas, P. Ponce, 1. Macias, and
A. Molina, “Hardware implementation of metaheuristics
through labview fpga,” Applied Soft Computing, vol. 113,
Article ID 107908, 2021.

[20] P. H. O. Santos, G. L. Soares, T. M. Machado-Coelho et al.,
“Multi-objective genetic algorithm implemented on a stm32f
microcontroller,” in Proceedings of the 2018 IEEE Congress
on Evolutionary Computation (CEC), pp. 1-7, IEEE, Rio de
Janeiro, Brazil, July 2018.

[21] S. Khalfi, G. Tacca, and A. Draa, “On the use of single non-
uniform mutation in lightweight metaheuristics,” Soft
Computing, vol. 26, no. 5, pp. 2259-2275, 2022.

[6

[8

22

[22] G. Iacca, F. Caraffini, and F. Neri, “Memory-saving memetic
computing for path-following mobile robots,” Applied Soft
Computing, vol. 13, no. 4, pp. 2003-2016, 2013.

[23] H. Rosenbrock, “An automatic method for finding the
greatest or least value of a function,” The Computer Journal,
vol. 3, pp. 175-184, 1960.

[24] M.]. Powell, “An efficient method for finding the minimum
of a function of several variables without calculating de-
rivatives,” The Computer Journal, vol. 7, no. 2, pp. 155-162,
1964.

[25] N. Hansen and A. Ostermeier, “Adapting arbitrary normal
mutation distributions in evolution strategies: the covariance
matrix adaptation,” in Proceedings of the IEEE International
Conference on Evolutionary Computation, pp. 312-317,
IEEE, Nagoya, Japan, May 1996.

[26] S.-M. Guo and C.-C. Yang, “Enhancing differential evolution
utilizing eigenvector-based crossover operator,” IEEE
Transactions on Evolutionary Computation, vol. 19, pp. 31-
49, 2014.

[27] F. Caraffini, F. Neri, and L. Picinali, “An analysis on sepa-
rability for memetic computing automatic design,” In-
formation Sciences, vol. 265, pp. 1-22, 2014.

[28] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” The Computer Journal, vol. 7, no. 4,
pp. 308-313, 1965.

[29] H. Miihlenbein and G. Paaf}, “From recombination of genes
to the estimation of distributions i. binary parameters,” in
Proceedings of the International conference on parallel
problem solving from nature, pp. 178-187, Springer, Berlin,
Germany, July 1996.

[30] P. Larrafiaga and J. A. Lozano, Estimation of Distribution
Algorithms: A New Tool for Evolutionary Computation,
Springer Science and Business Media, Berlin, Germany,
2001.

[31] F. Neri, G. Iacca, and E. Mininno, “Compact optimization,”

in Handbook of Optimization, pp. 337-364, Springer, Berlin,

Germany, 2013.

A. Soares, T. Lima, F. Soares et al., “Mutation-based compact

genetic algorithm for spectroscopy variable selection in

determining protein concentration in wheat grain,” Elec-

tronics Letters, vol. 50, no. 13, pp. 932-934, 2014.

L. C. de Paula, H. V. Nogueira, A. S. Soares, T. W. de Lima,

and C. J. Coelho, “A compact firefly algorithm for the

variable selection problem in pharmaceutical ingredient
determination,” in Proceedings of the 2016 IEEE Congress on

Evolutionary Computation (CEC), pp. 3832-3838, IEEE,

Vancouver, Canada, July 2016.

L. Dey and A. Mukhopadhyay, “Compact genetic algorithm-

based feature selection for sequence-based prediction of

dengue-human protein interactions,” IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics, vol. 19,

no. 4, pp. 2137-2148, 2022.

S. Soniya, S. Paul, and L. Singh, “Simultaneous structure and

parameter learning of convolutional neural network,” in

Computational Intelligence: Theories, Applications and Fu-

ture Directions-Volume II, N. K. Verma and A. K. Ghosh,

Eds., Springer Singapore, pp. 93-104, Singapore, 2019.

S. Soniya, S. Paul, and L. Singh, “Application and need-based

architecture design of deep neural networks,” International

Journal of Pattern Recognition and Artificial Intelligence,

vol. 34, no. 13, Article ID 2052014, 2020.

[37] J. C. Gallagher, S. Vigraham, and G. Kramer, “A family of
compact genetic algorithms for intrinsic evolvable

[32

(33

(34

(35

(36

International Journal of Intelligent Systems

hardware,” IEEE Transactions on Evolutionary Computation,
vol. 8, no. 2, pp. 111-126, 2004.

[38] L. Tighzert, C. Fonlupt, and B. Mendil, “A set of new
compact firefly algorithms,” Swarm and Evolutionary
Computation, vol. 40, pp. 92-115, 2018.

[39] G. Iacca, F. Caraffini, F. Neri, and E. Mininno, “Robot base
disturbance optimization with compact differential evolu-
tion light,” in Proceedings of the European Conference on the
Applications of Evolutionary Computation, pp. 285-294,
Springer, Berlin, Germany, October 2012.

[40] A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, and
R. Tavakkoli-Moghaddam, “The social engineering opti-
mizer (seo),” Engineering Applications of Artificial In-
telligence, vol. 72, pp. 267-293, 2018.

[41] I. Boussaid, J. Lepagnot, and P. Siarry, “A survey on opti-
mization metaheuristics,” Information Sciences, vol. 237,
pp. 82-117, 2013.

[42] F. Neri, E. Mininno, and G. Iacca, “Compact particle swarm
optimization,” Information Sciences, vol. 239, pp. 96-121,
2013.

[43] G. Iacca and F. Caraffini, “Re-sampled inheritance compact
optimization,” Knowledge-Based Systems, vol. 208, Article ID
106416, 2020.

[44] S.Khalfi, G. Iacca, and A. Draa, “A single-solution—compact
hybrid algorithm for continuous optimization,” Memetic
Computing, vol. 15, no. 2, pp. 155-204, 2023.

[45] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of
Evolutionary Computation, IOP Publishing Ltd, Bristol, UK,
1997.

[46] A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing, Springer, Berlin, Germany, 2003.

[47] M. Clerc, Particle Swarm Optimization, John Wiley and
Sons, Hoboken, NJ, USA, 2010.

[48] W. Tang and Q. Wu, “Biologically inspired optimization:
a review,” Transactions of the Institute of Measurement and
Control, vol. 31, no. 6, pp. 495-515, 2009.

[49] 1. Fister Jr, X.-S. Yang, 1. Fister, J. Brest, and D. Fister, “A
brief review of nature-inspired algorithms for optimization,”
Elektrotehniski Vestnik, vol. 80, pp. 116-122, 2013.

[50] F.Yang, P. Wang, Y. Zhang, L. Zheng, and J. Lu, “Survey of
swarm intelligence optimization algorithms,” in Proceedings
of the 2017 IEEE International Conference on Unmanned
Systems (ICUS), pp. 544-549, IEEE, Beijing, China, October
2017.

[51] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on
genetic algorithm: past, present, and future,” Multimedia
Tools and Applications, vol. 80, no. 5, pp. 8091-8126, 2021.

[52] R. D. Al-Dabbagh, F. Neri, N. Idris, and M. S. Baba, “Al-
gorithmic design issues in adaptive differential evolution
schemes: review and taxonomy,” Swarm and Evolutionary
Computation, vol. 43, pp. 284-311, 2018.

[53] E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan,
“Major advances in particle swarm optimization: theory,
analysis, and application,” Swarm and Evolutionary Com-
putation, vol. 63, Article ID 100868, 2021.

[54] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances
in differential evolution - an updated survey,” Swarm and
Evolutionary Computation, vol. 27, pp. 1-30, 2016.

[55] E.-G. Talbi, “Machine learning into metaheuristics: a survey
and taxonomy,” ACM Computing Surveys, vol. 54, no. 6,
pp. 1-32, 2021.

[56] E.-G. Talbi, “Automated design of deep neural networks:
a survey and unified taxonomy,” ACM Computing Surveys,
vol. 54, no. 2, pp. 1-37, 2021.

International Journal of Intelligent Systems

(571

(58]

[59

(60

(61]

(62

(63]

(64]

(65]

(66]

(67]

(68]

(69]

(70]

(71]

S. M Almufti, R. Boya Marqas, and V. Ashgi Saeed, “Tax-
onomy of bio-inspired optimization algorithms,” Journal of
Advanced Computer Science and Technology, vol. 8, no. 2,
p. 23, 2019.

R. A. Zitar, M. A. Al-Betar, M. A. Awadallah, I. A. Doush,
and K. Assaleh, “An intensive and comprehensive overview
of jaya algorithm, its versions and applications,” Archives of
Computational Methods in Engineering, vol. 29, no. 2,
pp. 763-792, 2022.

L. Abualigah, M. Shehab, M. Alshinwan, and H. Alabool,
“Salp swarm algorithm: a comprehensive survey,” Neural
Computing and Applications, vol. 32, no. 15, pp. 11195-
11215, 2020.

R. Solgi and H. A. Lodiciga, “Bee-inspired metaheuristics for
global optimization: a performance comparison,” Artificial
Intelligence Review, vol. 54, no. 7, pp. 4967-4996, 2021.

A. LaTorre, D. Molina, E. Osaba, J. Poyatos, J. Del Ser, and
F. Herrera, “A prescription of methodological guidelines for
comparing bio-inspired optimization algorithms,” Swarm
and Evolutionary Computation, vol. 67, Article ID 100973,
2021.

E. Osaba, E. Villar-Rodriguez, J. Del Ser et al., “A tutorial on
the design, experimentation and application of metaheuristic
algorithms to real-world optimization problems,” Swarm
and Evolutionary Computation, vol. 64, Article ID 100888,
2021.

A. H. Halim, I. Ismail, and S. Das, “Performance assessment
of the metaheuristic optimization algorithms: an exhaustive
review,” Artificial Intelligence Review, vol. 54, no. 3,
pp. 2323-2409, 2021.

A. E. Ezugwu, A. K. Shukla, R. Nath et al., “Metaheuristics:
a comprehensive overview and classification along with
bibliometric analysis,” Artificial Intelligence Review, vol. 54,
no. 6, pp. 4237-4316, 2021.

K. Sorensen, “Metaheuristics—the metaphor exposed,” In-
ternational Transactions in Operational Research, vol. 22,
no. 1, pp. 3-18, 2015.

C. L. Camacho-Villalén, M. Dorigo, and T. Stiitzle, “Ex-
posing the grey wolf, moth-flame, whale, firefly, bat, and
antlion algorithms: six misleading optimization techniques
inspired by bestial metaphors,” International Transactions in
Operational Research, vol. 30, no. 6, pp. 2945-2971, 2022.
T. Achary, S. Pillay, S. M. Pillai, M. Mqadi, E. Genders, and
A. E. Ezugwu, “A performance study of meta-heuristic
approaches for quadratic assignment problem,” Concur-
rency and Computation: Practice and Experience, vol. 33,
no. 17, 2021.

P. Agrawal, H. F. Abutarboush, T. Ganesh, and
A. W. Mohamed, “Metaheuristic algorithms on feature se-
lection: a survey of one decade of research (2009-2019),”
IEEE Access, vol. 9, pp. 26766-26791, 2021.

A. Singh, S. Sharma, and J. Singh, “Nature-inspired algo-
rithms for wireless sensor networks: a comprehensive sur-
vey,” Computer Science Review, vol. 39, Article ID 100342,
2021.

Y. Wu, “A survey on population-based meta-heuristic al-
gorithms for motion planning of aircraft,” Swarm and
Evolutionary Computation, vol. 62, Article ID 100844, 2021.
O. Zedadra, A. Guerrieri, N. Jouandeau, G. Spezzano,
H. Seridi, and G. Fortino, “Swarm intelligence-based algo-
rithms within iot-based systems: a review,” Journal of Par-
allel and Distributed Computing, vol. 122, pp. 173-187, 2018.

(72]

(73]

(74]

[75]

(76]

(77]

(78]

(79]

(80]

[81

—

(82]

(83]

(84]

(85]

(86]

23

F. Héliodore, A. Nakib, B. Ismail, S. Ouchraa, and L. Schmitt,
Metaheuristics for Intelligent Electrical Networks, Wiley
Online Library, Hoboken, NJ, USA, 2017.

C. Huang, Y. Li, and X. Yao, “A survey of automatic pa-
rameter tuning methods for metaheuristics,” IEEE Trans-
actions on Evolutionary Computation, vol. 24, no. 2,
pp. 201-216, 2020.

J. Liu and J. Lampinen, “A fuzzy adaptive differential evo-
lution algorithm,” in Proceedings of the 17th IEEE region 10
international conference on computer, communications,
control and power engineering, pp. 606611, IEEE, Beijing,
China, October 2002.

K. E. Parsopoulos, “Cooperative micro-differential evolution
for high-dimensional problems,” in Proceedings of the 11th
Annual conference on Genetic and evolutionary computation,
pp. 531-538, Association for Computing Machinery,
Montreal, Canada, July 2009.

K. E. Parsopoulos, “Parallel cooperative micro-particle
swarm optimization: a master-slave model,” Applied Soft
Computing, vol. 12, no. 11, pp. 3552-3579, 2012.

A. Rajasekhar, S. Das, and S. Das, “pabc: a micro artificial bee
colony algorithm for large scale global optimization,” in
Proceedings of the 14th annual conference companion on
Genetic and evolutionary computation, pp. 1399-1400, As-
sociation for Computing Machinery, Philadelphia, PA, USA,
October 2012.

F. Caraffini, F. Neri, and I. Poikolainen, “Micro-differential
evolution with extra moves along the axes,” in Proceedings of
the 2013 IEEE Symposium on Differential Evolution (SDE),
pp- 46-53, IEEE, Singapore, April 2013.

F. Viveros Jiménez, E. Mezura Montes, and A. Gelbukh,
“Empirical analysis of a micro-evolutionary algorithm for
numerical optimization,” International Journal of the
Physical Sciences, vol. 7, no. 8, pp. 1235-1258, 2012.

D. E. Goldberg, “Sizing populations for serial and parallel
genetic algorithms,” in Proceedings of the 3rd international
conference on genetic algorithms, pp. 70-79, Morgan Kauf-
mann Publishers Inc, Fairfax, VA, USA, December 1989.
K. Krishnakumar, “Micro-genetic algorithms for stationary
and non-stationary function optimization,” in Intelligent
Control and Adaptive Systems, pp. 289-296, International
Society for Optics and Photonics, Bellingham, WA, USA,
1990.

V. W. Tam, K.-Y. Cheng, and K.-S. Lui, “Using micro-
genetic algorithms to improve localization in wireless sen-
sor networks,” Journal of Communications, vol. 1, no. 4,
pp- 1-10, 2006.

F. Viveros-Jiménez, E. Mezura-Montes, and A. Gelbukh,
“Elitistic evolution: a novel micro-population approach for
global optimization problems,” in Proceedings of the 2009
Eighth Mexican International Conference on Artificial In-
telligence, pp. 15-20, IEEE, Guanajuato, Mexico, November
2009.

M. Olguin-Carbajal, J. C. Herrera-Lozada, J. Sandoval-
Gutierrez et al., “A micro-differential evolution algorithm for
continuous complex functions,” IEEE Access, vol. 7,
pp. 172783-172795, 2019.

S. Nesmachnow, H. Cancela, and E. Alba, “A parallel micro
evolutionary algorithm for heterogeneous computing and
grid scheduling,” Applied Soft Computing, vol. 12, no. 2,
pp. 626-639, 2012.

H. Salehinejad, S. Rahnamayan, H. R. Tizhoosh, and
S. Y. Chen, “Micro-differential evolution with vectorized
random mutation factor,” in Proceedings of the 2014 IEEE

24

(87

(88]

(89]

[90

[91

[92]

[93

[94]

(95]

(96

(97]

(98]

(99]

Congress on Evolutionary Computation (CEC), pp. 2055-
2062, TEEE, Beijing, China, July 2014.

S. Rahnamayan and H. R. Tizhoosh, “Image thresholding
using micro opposition-based differential evolution (micro-
ode),” in Proceedings of the 2008 IEEE Congress on Evolu-
tionary Computation (IEEE World Congress on Computa-
tional Intelligence), pp. 1409-1416, IEEE, Hong Kong, China,
June 2008.

M. A. Sotelo-Figueroa, H. J. P. Soberanes, J. M. Carpio,
H.J. F. Huacuja, L. C. Reyes, and J. A. S. Alcaraz, “Evolving
bin packing heuristic using micro-differential evolution with
indirect representation,” in Recent Advances on Hybrid In-
telligent Systems, pp. 349-359, Springer, Berlin, Germany,
2013.

M. Olguin-Carbajal, J. C. Herrera-Lozada, J. Arellano-
Verdejo, R. Barron-Fernandez, and H. Taud, “Micro dif-
ferential evolution performance empirical study for high
dimensional optimization problems,” in Proceedings of the
International Conference on Large-Scale Scientific Comput-
ing, pp. 281-288, Springer, Berlin, Germany, June 2013.

H. Salehinejad, S. Rahnamayan, and H. R. Tizhoosh,
“Opposition-based ensemble micro-differential evolution,”
in Proceedings of the 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1-8, IEEE, Honolulu,
HI, USA, November 2017.

C. Brown, Y. Jin, M. Leach, and M. Hodgson, “4 JADE:
adaptive differential evolution with a small population,” Soft
Computing, vol. 20, no. 10, pp. 4111-4120, 2016.

J. C. F. Cabrera and C. A. Coello Coello, “Handling con-
straints in particle swarm optimization using a small pop-
ulation size,” in Mexican International Conference on
Artificial Intelligence, pp. 41-51, Springer, Berlin, Germany,
2007.

T.Huang and A. S. Mohan, “Micro-particle swarm optimizer
for solving high dimensional optimization problems (upso
for high dimensional optimization problems),” Applied
Mathematics and Computation, vol. 181, no. 2, pp. 1148-
1154, 2006.

J. C. Herrera-Lozada, H. Calvo, and H. Taud, “A micro
artificial immune system,” Polibits, vol. 43, pp. 107-111,
2011.

S. Dasgupta, A. Biswas, S. Das, B. K. Panigrahi, and
A. Abraham, “A micro-bacterial foraging algorithm for high-
dimensional optimization,” in Proceedings of the 2009 IEEE
Congress on Evolutionary Computation, pp. 785-792, IEEE,
Trondheim, Norway, May 2009.

A. Rajasekhar, S. Das, and P. N. Suganthan, “Design of
fractional order controller for a servohydraulic positioning
system with micro artificial bee colony algorithm,” in Pro-
ceedings of the 2012 IEEE Congress on Evolutionary Com-
putation, pp. 1-8, IEEE, Brisbane, Australia, June 2012.

A. O. Topal, O. Altun, and Y. E. Yildiz, “Micro bat algorithm
for high dimensional optimization problems,” International
Journal of Computer Application, vol. 122, no. 12, 2015.

S. A. Kazarlis, S. E. Papadakis, J. Theocharis, and V. Petridis,
“Microgenetic algorithms as generalized hill-climbing op-
erators for ga optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 5, no. 3, pp. 204-217, 2001.

C. A. Coello Coello and G. T. Pulido, “Multiobjective op-
timization using a micro-genetic algorithm,” in Proceedings
of the 3rd Annual Conference on Genetic and Evolutionary
Computation, pp. 274-282, Morgan Kaufmann Publishers
Inc, San Francisco, CA, USA, July 2001.

[100]

[101]

[102]

[103]

[104]

(105]

[106]

[107]

[108]

(109]

[110]

[111]

[112]

[113]

[114]

[115]

International Journal of Intelligent Systems

Q. Lin and J. Chen, “A novel micro-population immune
multiobjective optimization algorithm,” Computers and
Operations Research, vol. 40, no. 6, pp. 1590-1601, 2013.
D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of
Global Optimization, vol. 13, no. 4, pp. 455-492, 1998.

M. Pelikan, “Probabilistic model-building genetic algo-
rithms,” in Hierarchical Bayesian Optimization Algorithm:
Toward a New Generation of Evolutionary Algorithms,
pp- 13-30, Springer, Berlin, Germany, 2005.

Y. Davidor, “Epistasis variance: suitability of a representa-
tion to genetic algorithms,” Complex Systems, vol. 4,
pp. 369-383, 1990.

F. Caraffini and F. Neri, “A study on rotation invariance in
differential evolution,” Swarm and Evolutionary Computa-
tion, vol. 50, Article ID 100436, 2019.

S. Baluja, “Population-based incremental learning. a method
for integrating genetic search based function optimization
and competitive learning,” Technical report, Carnegie-
Mellon Univ Pittsburgh Pa Dept Of Computer Science,
Pittsburgh, PA, USA, 1994.

J. De Bonet, C. Isbell, and P. Viola, “Mimic: finding optima
by estimating probability densities,” Advances in Neural
Information Processing Systems, vol. 9, pp. 424-430, 1996.
M. Pelikan and H. Mihlenbein, “The bivariate marginal
distribution algorithm,” in Advances in Soft Computing,
pp. 521-535, Springer, Berlin, Germany, 1999.

H. Miihlenbein and T. Mahnig, “Fda-a scalable evolutionary
algorithm for the optimization of additively decomposed
functions,” Evolutionary Computation, vol. 7, no. 4,
pp. 353-376, 1999.

G. R. Harik, F. G. Lobo, and K. Sastry, “Linkage learning via
probabilistic modeling in the extended compact genetic
algorithm (ecga),” in Scalable Optimization via Probabilistic
Modeling, pp. 39-61, Springer, Berlin, Germany, 2006.
P.-C. Hung and Y.-P. Chen, “lecga: integer extended
compact genetic algorithm,” in Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
pp. 1415-1416, Association for Computing Machinery,
Seattle, WA, USA, July 2006.

L. Fossati, P. L. Lanzi, K. Sastry, D. E. Goldberg, and
O. Gomez, “A simple real-coded extended compact genetic
algorithm,” in Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, pp. 342-348, IEEE, Singapore,
September 2007.

P. L. Lanzi, L. Nichetti, K. Sastry, D. Voltini, and
D. E. Goldberg, “Real-coded extended compact genetic al-
gorithm based on mixtures of models,” in Linkage in Evo-
lutionary Computation, pp. 335-358, Springer, Berlin,
Germany, 2008.

Y.-P. Chen and C.-H. Chen, “Enabling the extended compact
genetic algorithm for real-parameter optimization by using
adaptive discretization,” Evolutionary Computation, vol. 18,
no. 2, pp. 199-228, 2010.

C.-Y. Chuang and S. F. Smith, “Diversity allocation for
dynamic optimization using the extended compact genetic
algorithm,” in Proceedings of the 2013 IEEE Congress on
Evolutionary Computation, pp. 1540-1547, IEEE, Cancun,
Mexico, June 2013.

N. Hansen, “The cma evolution strategy: a comparing re-
view,” in Towards a New Evolutionary Computation: Ad-
vances in the Estimation of Distribution Algorithms,
pp. 75-102, Springer, Berlin, Germany, 2006.

International Journal of Intelligent Systems

[116] J. A. Lozano, P. Larrafiaga, E. Bengoetxea, and I. Inza, To-
wards a New Evolutionary Computation: Advances on Es-
timation of Distribution Algorithms, Springer Science and
Business Media, Berlin, Germany, 2006.

[117] M. Hauschild and M. Pelikan, “An introduction and survey
of estimation of distribution algorithms,” Swarm and Evo-
lutionary Computation, vol. 1, no. 3, pp. 111-128, 2011.

[118] M. Pelikan, M. W. Hauschild, and F. G. Lobo, “Estimation of
distribution algorithms,” in Springer Handbook of Compu-
tational Intelligence, pp. 899-928, Springer, Berlin, Germany,
2015.

[119] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis,
“How easy is local search?” Journal of Computer and System
Sciences, vol. 37, no. 1, pp. 79-100, 1988.

[120] B. Chopard and M. Tomassini, An Introduction to Meta-
heuristics for Optimization, Springer, Berlin, Germany, 2018.

[121] M. A. Al-Betar, “A -hill climbing optimizer for examination
timetabling problem,” Journal of Ambient Intelligence and
Humanized Computing, vol. 12, no. 1, pp. 653-666, 2021.

[122] H. R. Lourengo, O. C. Martin, and T. Stiitzle, “Iterated local
search,” in Handbook of Metaheuristics, pp. 320-353,
Springer, Berlin, Germany, 2003.

[123] T. Song, S. Liu, X. Tang, X. Peng, and M. Chen, “An iterated
local search algorithm for the university course timetabling
problem,” Applied Soft Computing, vol. 68, pp. 597-608,
2018.

[124] V. R. Méximo and M. C. Nascimento, “A hybrid adaptive
iterated local search with diversification control to the
capacitated vehicle routing problem,” European Journal of
Operational Research, vol. 294, no. 3, pp. 1108-1119, 2021.

[125] J. Branddo, “Iterated local search algorithm with ejection
chains for the open vehicle routing problem with time
windows,” Computers and Industrial Engineering, vol. 120,
pp. 146-159, 2018.

[126] Z.Weiand].-K. Hao, “Iterated two-phase local search for the
set-union knapsack problem,” Future Generation Computer
Systems, vol. 101, pp. 1005-1017, 2019.

[127] H. R. Lourengo, O. C. Martin, and T. Stiitzle, “Iterated local
search: framework and applications,” in Handbook of Met-
aheuristics, pp. 129-168, Springer, Berlin, Germany, 2019.

[128] U. Benlic and J.-K. Hao, “Breakout local search for the vertex
separator problem,” in Proceedings of the Twenty-Third In-
ternational Joint Conference on Artificial Intelligence,
pp. 461-467, IJCAI/AAAI Beijing, China, August 2013.

[129] U. Benlic and J.-K. Hao, “Breakout local search for the
quadratic assignment problem,” Applied Mathematics and
Computation, vol. 219, no. 9, pp. 4800-4815, 2013.

[130] U. Benlic and J.-K. Hao, “Breakout local search for maxi-
mum clique problems,” Computers and Operations Research,
vol. 40, no. 1, pp. 192-206, 2013.

[131] S. Ghandi and E. Masehian, “A breakout local search (bls)
method for solving the assembly sequence planning prob-
lem,” Engineering Applications of Artificial Intelligence,
vol. 39, pp. 245-266, 2015.

[132] U. Benlic, M. G. Epitropakis, and E. K. Burke, “A hybrid
breakout local search and reinforcement learning approach
to the vertex separator problem,” European Journal of Op-
erational Research, vol. 261, no. 3, pp. 803-818, 2017.

[133] P. Shaw, “Using constraint programming and local search
methods to solve vehicle routing problems,” in Proceedings of
the International conference on principles and practice of
constraint programming, pp. 417-431, Springer, Berlin,
Germany, June 1998.

25

[134] D. Sacramento, D. Pisinger, and S. Ropke, “An adaptive large
neighborhood search metaheuristic for the vehicle routing
problem with drones,” Transportation Research Part C:
Emerging Technologies, vol. 102, pp. 289-315, 2019.

[135] C. Friedrich and R. Elbert, “Adaptive large neighborhood
search for vehicle routing problems with transshipment
facilities arising in city logistics,” Computers and Operations
Research, vol. 137, Article ID 105491, 2022.

[136] Y. Li, M. Chen, and J. Huo, “A hybrid adaptive large
neighborhood search algorithm for the large-scale hetero-
geneous container loading problem,” Expert Systems with
Applications, vol. 189, Article ID 115909, 2022.

[137] G. Dueck, “New optimization heuristics: the great deluge
algorithm and the record-to-record travel,” Journal of
Computational Physics, vol. 104, no. 1, pp. 86-92, 1993.

[138] M. Mohmad Kahar and G. Kendall, “A great deluge algo-
rithm for a real-world examination timetabling problem,”
Journal of the Operational Research Society, vol. 66, no. 1,
pp. 116-133, 2015.

[139] E.K.Burke and Y. Bykov, “An adaptive flex-deluge approach
to university exam timetabling,” INFORMS Journal on
Computing, vol. 28, no. 4, pp. 781-794, 2016.

[140] E. T. Yassen, M. Ayob, M. Z. A. Nazri, and N. R. Sabar, “An
adaptive hybrid algorithm for vehicle routing problems with
time windows,” Computers and Industrial Engineering,
vol. 113, pp. 382-391, 2017.

[141] K. Eng, A. Muhammed, M. A. Mohamed, and S. Hasan, “A
hybrid heuristic of variable neighbourhood descent and
great deluge algorithm for efficient task scheduling in grid
computing,” European Journal of Operational Research,
vol. 284, no. 1, pp. 75-86, 2020.

[142] N. Mladenovi¢ and P. Hansen, “Variable neighborhood
search,” Computers and Operations Research, vol. 24, no. 11,
pp. 1097-1100, 1997.

[143] P.Hansen, N. Mladenovié, and J. A. Moreno Pérez, “Variable
neighbourhood search: methods and applications,” Annals of
Operations Research, vol. 175, no. 1, pp. 367-407, 2010.

[144] T. A. Feo and M. G. Resende, “Greedy randomized adaptive
search procedures,” Journal of Global Optimization, vol. 6,
no. 2, pp. 109-133, 1995.

[145] P. Festa and M. G. Resende, “Grasp: basic components and
enhancements,” Telecommunication Systems, vol. 46, no. 3,
pp. 253-271, 2011.

[146] C. Voudouris, Guided local search for combinatorial opti-
misation problems, Ph.D. thesis, University of Essex, En-
gland, UK, 1997.

[147] C. Voudouris, E. P. Tsang, and A. Alsheddy, “Guided local

search,” in Handbook of Metaheuristics, pp. 321-361,

Springer, Berlin, Germany, 2010.

A. Alsheddy, C. Voudouris, E. P. K. Tsang, and A. Alhindi,

“Guided local search,” in Handbook of Heuristics, pp. 1-37,

Springer, Berlin, Germany, 2016.

[149] Y. Zhou, J.-K. Hao, and B. Duval, “Reinforcement learning
based local search for grouping problems: a case study on
graph coloring,” Expert Systems with Applications, vol. 64,
pp. 412-422, 2016.

[150] A. Amuthan and K. D. Thilak, “Survey on tabu search meta-
heuristic optimization,” in Proceedings of the 2016 In-
ternational Conference on Signal Processing, Communication,
Power and Embedded System (SCOPES), pp. 1539-1543,
IEEE, Paralakhemundi, India, October 2016.

[151] F. Glover, “Future paths for integer programming and links
to artificial intelligence,” Computers and Operations Re-
search, vol. 13, no. 5, pp. 533-549, 1986.

[148

26

[152] S.Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598,
pp. 671-680, 1983.

[153] K. A. Dowsland and J. Thompson, “Simulated annealing,” in
Handbook of Natural Computing, pp. 1623-1655, Springer,
Berlin, Germany, 2012.

[154] G. Dueck, T. Scheuer, and T. O. Accepting, “Threshold
accepting: a general purpose optimization algorithm
appearing superior to simulated annealing,” Journal of
Computational Physics, vol. 90, no. 1, pp. 161-175, 1990.

[155] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic
approach to scheduling a sales summit,” in Proceedings of the
International conference on the practice and theory of au-
tomated timetabling, pp. 176-190, Springer, Berlin, Ger-
many, September 2000.

[156] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “A classification of hyper-heuristic ap-
proaches,” in Handbook of Metaheuristics, pp. 449-468,
Springer, Berlin, Germany, 2010.

[157] N. Pillay and R. Qu, Hyper-heuristics: Theory and Applica-
tions, Springer, Berlin, Germany, 2018.

[158] E.K.Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “A classification of hyper-heuristic ap-
proaches: revisited,” in Handbook of Metaheuristics,
pp- 453-477, Springer, Berlin, Germany, 2019.

[159] J. H. Drake, A. Kheiri, E. Ozcan, and E. K. Burke, “Recent
advances in selection hyper-heuristics,” European Journal of
Operational Research, vol. 285, no. 2, pp. 405-428, 2020.

[160] M. Séanchez, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss,
H. Ceballos, H. Terashima-Marin, and I. Amaya, “A sys-
tematic review of hyper-heuristics on combinatorial opti-
mization problems,” IEEE Access, vol. 8, pp. 128068-128095,
2020.

[161] N. S. Jaddi and S. Abdullah, “Global search in single-solu-
tion-based metaheuristics,” Data Technologies and Appli-
cations, vol. 54, no. 3, pp- 275-296, 2020.

[162] J. C. Spall, “An overview of the simultaneous perturbation
method for efficient optimization,” Johns Hopkins APL
Technical Digest, vol. 19, pp. 482-492, 1998.

[163] C. Igel, T. Suttorp, and N. Hansen, “A computational effi-
cient covariance matrix update and a (1+ 1)-cma for evo-
lution strategies,” in Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pp. 453-460,
Association for Computing Machinery, Seattle, WA, USA,
July 2006.

[164] S. Ruder, “An overview of gradient descent optimization
algorithms,” 2016, https://arxiv.org/abs/1609.04747.

[165] R. Hooke and T. A. Jeeves, ““Direct Search” solution of
numerical and statistical problems,” Journal of the ACM,
vol. 8, no. 2, pp. 212-229, 1961.

[166] E.J.Solis and R.J.-B. Wets, “Minimization by random search
techniques,” Mathematics of Operations Research, vol. 6,
no. 1, pp. 19-30, 1981.

[167] Z. Xinchao, “Simulated annealing algorithm with adaptive
neighborhood,” Applied Soft Computing, vol. 11, no. 2,
pp. 1827-1836, 2011.

[168] A. El Afia, M. Lalaoui, and E.-G. Talbi, “Quaternion sim-
ulated annealing,” in Heuristics for Optimization and
Learning, pp. 299-314, Springer, Berlin, Germany, 2021.

[169] A. Auger, “Benchmarking the (1+ 1) evolution strategy with
one-fifth success rule on the bbob-2009 function testbed,” in
Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late

International Journal of Intelligent Systems

Breaking Papers, pp. 2447-2452, Association for Computing
Machinery, Québec, Canada, July 2009.

[170] Z. Ji, J.-R. Zhou, H.-L. Liao, and Q.-H. Wu, “A novel in-
telligent single particle optimizer,” Chinese Journal of
Computers, vol. 33, no. 3, pp. 556-561, 2010.

[171] Z. Ji, H. Liao, Y. Wang, and Q. Wu, “A novel intelligent

particle optimizer for global optimization of multimodal

functions,” in Proceedings of the 2007 IEEE Congress on

Evolutionary Computation, pp. 3272-3275, IEEE, Singapore,

September 2007.

J. Kennedy and R. Eberhart, “Particle swarm optimization,”

in Proceedings of ICNN’95-International Conference on

Neural Networks, pp. 1942-1948, IEEE, Perth, Australia,

November 1995.

[173] J. Zhou, Z. Ji, W. Huang, and T. Tian, “Face recognition

using gabor wavelet and self-adaptive intelligent single

particle optimizer,” in Proceedings of the 2010 Chinese

Conference on Pattern Recognition (CCPR), pp. 1-5, IEEE,

Chongging, China, October 2010.

J. Zhou, Z. Ji, L. Shen, Z. Zhu, and S. Chen, “Pso based

memetic algorithm for face recognition gabor filters selec-

tion,” in Proceedings of the 2011 IEEE Workshop on Memetic

Computing (MC), pp. 1-6, IEEE, Paris, France, April 2011.

Z. Zhu, J. Zhou, Z. Ji, and Y.-H. Shi, “Dna sequence com-

pression using adaptive particle swarm optimization-based

memetic algorithm,” IEEE Transactions on Evolutionary

Computation, vol. 15, no. 5, pp. 643-658, 2011.

[176] Z.7Ji,]. Zhou, Z. Zhu, and S. Chen, “Self-configuration single
particle optimizer for dna sequence compression,” Soft
Computing, vol. 17, no. 4, pp. 675-682, 2013.

[177] G. Iacca, F. Caraffini, F. Neri, and E. Mininno, “Single
particle algorithms for continuous optimization,” in Pro-
ceedings of the 2013 IEEE Congress on Evolutionary Com-
putation, pp. 1610-1617, IEEE, Cancun, Mexico, June 2013.

[178] L.-Y. Tsengand C. Chen, “Multiple trajectory search for large
scale global optimization,” in Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (IEEE World Con-
gress on Computational Intelligence), pp. 3052-3059, IEEE,
Hong Kong, June 2008.

[179] K.-C. Hu, C.-W. Tsai, and M.-C. Chiang, “A multiple-search
multi-start framework for metaheuristics for clustering
problems,” IEEE Access, vol. 8, pp. 96173-96183, 2020.

[180] G. Iacca, F. Neri, E. Mininno, Y.-S. Ong, and M.-H. Lim,
“Ockham’s razor in memetic computing: three stage optimal
memetic exploration,” Information Sciences, vol. 188,
pp. 17-43, 2012.

[181] F. Caraffini, G. Iacca, F. Neri, and E. Mininno, “The im-
portance of being structured: a comparative study on multi
stage memetic approaches,” in Proceedings of the 2012 12th
UK Workshop on Computational Intelligence (UKCI),
pp- 1-8, IEEE, Edinburgh, UK, September 2012.

[182] 1. Poikolainen, G. Iacca, F. Caraflini, and F. Neri, “Focusing
the search: a progressively shrinking memetic computing
framework,” International Journal of Innovative Computing
and Applications, vol. 5, no. 3, pp. 127-142, 2013.

[183] F. Caraffini, G. Iacca, F. Neri, and E. Mininno, “Three
variants of three stage optimal memetic exploration for
handling non-separable fitness landscapes,” in Proceedings of
the 2012 12th UK Workshop on Computational Intelligence
(UKCI), pp. 1-8, IEEE, Edinburgh, UK, September 2012.

[184] F. Caraffini, F. Neri, M. Gongora, and B. N. Passow, “Re-
sampling search: a seriously simple memetic approach with
a high performance,” in Proceedings of the 2013 IEEE

(172

(174

(175

https://arxiv.org/abs/1609.04747

International Journal of Intelligent Systems

Workshop on Memetic Computing (MC), pp. 52-59, IEEE,
Singapore, April 2013.

[185] F. Caraffini, F. Neri, B. N. Passow, and G. Iacca, “Re-sampled
inheritance search: high performance despite the simplicity,”
Soft Computing, vol. 17, no. 12, pp. 2235-2256, 2013.

[186] G. Iacca, F. L. Bakker, and H. Wortche, “Real-time magnetic
dipole detection with single particle optimization,” Applied
Soft Computing, vol. 23, pp. 460-473, 2014.

[187] F. Carafhini, F. Neri, G. Tacca, and A. Mol, “Parallel memetic
structures,” Information Sciences, vol. 227, pp. 60-82, 2013.

[188] F. Caraffini, F. Neri, and M. Epitropakis, “Hyperspam: a study
on hyper-heuristic coordination strategies in the continuous
domain,” Information Sciences, vol. 477, pp. 186-202, 2019.

[189] N. H. Abdul Aziz, Z. Ibrahim, N. A. Ab Auziz,
M. S. Mohamad, and J. Watada, “Single-solution simulated
kalman filter algorithm for global optimisation problems,”
Sadhana, vol. 43, no. 7, p. 103, 2018.

[190] N. H. A. Aziz, Z. Ibrahim, N. A. Ab Aziz et al., “Parameter
tuning in the single-solution simulated kalman filter opti-
mizer,” in Symposium on Intelligent Manufacturing and
Mechatronics, pp. 48-56, Springer, Berlin, Germany, 2019.

[191] T. Ab Rahman, Z. Ibrahim, N. A. Ab Aziz, S. Zhao, and
N. H. Abdul Aziz, “Single-agent finite impulse response
optimizer for numerical optimization problems,” IEEE Ac-
cess, vol. 6, pp. 9358-9374, 2018.

[192] B.Dogan and T. Olmez, “A new metaheuristic for numerical
function optimization: vortex search algorithm,” In-
formation Sciences, vol. 293, pp. 125-145, 2015.

[193] A. Ibrahim, S. Rahnamayan, and M. V. Martin, “Simulated
raindrop algorithm for global optimization,” in Proceedings
of the 2014 IEEE 27th Canadian Conference on Electrical and
Computer Engineering (CCECE), pp. 1-8, IEEE, Toronto,
Canada, May 2014.

[194] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman, “Systematic literature reviews in
software engineering-a systematic literature review,” In-
formation and Software Technology, vol. 51, no. 1, pp. 7-15,
2009.

[195] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and
W. M. Lim, “How to conduct a bibliometric analysis: an
overview and guidelines,” Journal of Business Research,
vol. 133, pp. 285-296, 2021.

[196] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact
genetic algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 4, pp. 287-297, 1999.

[197] G. Shi and Q. Ren, “Research on compact genetic algorithm
in continuous domain,” in Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (IEEE World Con-
gress on Computational Intelligence), pp. 793-800, IEEE,
Hong Kong, June 2008.

[198] E. Mininno, F. Cupertino, and D. Naso, “Real-valued
compact genetic algorithms for embedded microcontroller
optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 12, no. 2, pp. 203-219, 2008.

[199] E. Mininno, F. Neri, F. Cupertino, and D. Naso, “Compact
differential evolution,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 32-54, 2011.

[200] C. Zhou, K. Meng, and Z. Qiu, “Compact genetic algorithm
mutated by bit,” in Proceedings of the 4th World Congress on
Intelligent Control and Automation (Cat. No. 02EX527),
pp- 1836-1839, IEEE, Shanghai, China, June 2002.

[201] C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact
genetic algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 4, pp. 367-385, 2003.

27

[202] S. Rimcharoen, D. Sutivong, and P. Chongstitvatana,
“Updating strategy in compact genetic algorithm using
moving average approach,” in Proceedings of the 2006 IEEE
Conference on Cybernetics and Intelligent Systems, pp. 1-6,
IEEE, Bangkok, Thailand, June 2006.

R. R. Silva, H. S. Lopes, and C. R. E. Lima, “A new mutation

operator for the elitism-based compact genetic algorithm,”

in Proceedings of the International Conference on Adaptive
and Natural Computing Algorithms, pp. 159-166, Springer,

Berlin, Germany, September 2007.

S. Phiromlap and S. Rimcharoen, “A frequency-based

updating strategy in compact genetic algorithm,” in Pro-

ceedings of the 2013 International Computer Science and

Engineering Conference (ICSEC), pp. 207-211, IEEE,

Nakhonpathom, Thailand, September 2013.

[205] W. J. Cody, “Rational Chebyshev approximations for the
error function,” Mathematics of Computation, vol. 23,
no. 107, pp. 631-637, 1969.

[206] T.-K. Dao, S.-C. Chu, C.-S. Shieh, and M.-F. Horng,
“Compact artificial bee colony,” in Proceedings of the In-
ternational Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, pp. 96-105,
Springer, Berlin, Germany, August 2014.

[207] A. Banitalebi, M. I. A. Aziz, A. Bahar, and Z. A. Aziz,
“Enhanced compact artificial bee colony,” Information Sci-
ences, vol. 298, pp- 491-511, 2015.

[208] T. T. Nguyen, J. S. Pan, and T. K. Dao, “A compact bat
algorithm for unequal clustering in wireless sensor net-
works,” Applied Sciences, vol. 9, no. 10, p. 1973, 2019.

[209] T.-K. Dao, T.-S. Pan, T.-T. Nguyen, S.-C. Chu, and J.-S. Pan,

“A compact flower pollination algorithm optimization,” in

Proceedings of the 2016 Third International Conference on

Computing Measurement Control and Sensor Network

(CMCSN), pp. 76-79, IEEE, Matsue, Japan, May 2016.

L. Tighzert, C. Fonlupt, O. Bruneau, and B. Mendil, “A new

uniform compact evolutionary algorithms,” in Proceedings of

the 2017 5th International Conference on Electrical Engi-
neering-Boumerdes (ICEE-B), pp. 1-6, IEEE, Boumerdes,

Algeria, October 2017.

[211] C.Jiang and X. Xue, “A uniform compact genetic algorithm
for matching bibliographic ontologies,” Applied Intelligence,
vol. 51, no. 10, pp. 7517-7532, 2021.

[212] C. W. Ahn and R. S. Ramakrishna, “Augmented compact
genetic algorithm,” in Proceedings of the International
Conference on Parallel Processing and Applied Mathematics,
pp- 560-565, Springer, Berlin, Germany, January 2003.

[213] J.-H. Seok and J.-]. Lee, “A novel compact genetic algorithm
using offspring survival evolutionary strategy,” Artificial Life
and Robotics, vol. 14, no. 4, pp. 489-493, 2009.

[214] F. Cupertino, E. Mininno, and D. Naso, “Elitist compact
genetic algorithms for induction motor self-tuning control,”
in Proceedings of the 2006 IEEE International Conference on
Evolutionary Computation, pp. 3057-3063, IEEE, Vancou-
ver, Canada, July 2006.

[215] J.-Y. Lee, M.-S. Kim, and J.-J. Lee, “Compact genetic algo-
rithms using belief vectors,” Applied Soft Computing, vol. 11,
no. 4, pp. 3385-3401, 2011.

[216] Q.-B.Zhang, T.-H. Wu, and B. Liu, “A weight based compact
genetic algorithm,” in Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation,
pp. 1057-1060, ACM, Shanghai, China, June 2009.

[217] B. Van Ha, R. Zich, M. Mussetta, P. Pirinoli, and C. N. Dao,
“Improved compact genetic algorithm for em complex
system design,” in Proceedings of the 2012 Fourth

[203

[204

[210

28

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

International Conference on Communications and Electronics
(ICCE), pp. 389-392, IEEE, Hue, Vietnam, August 2012.
B. Ha, M. Mussetta, P. Pirinoli, and R. Zich, “Modified
compact genetic algorithm for thinned array synthesis,”
IEEE Antennas and Wireless Propagation Letters, vol. 15,
pp. 1105-1108, 2016.

Z. Han, Y. Zhu, and S. Lin, “A dynamic co-evolution
compact genetic algorithm for e/t problem,” IFAC-Paper-
sOnLine, vol. 48, no. 28, pp. 1439-1443, 2015.

S. Rimcharoen, S. Phiromlap, and N. Leelathakul, “Analysis
of frequency-based compact genetic algorithm (fb-cga),”
Maejo International Journal of Science and Technology, vol. 9,
pp. 121-135, 2015.

B. Doerr and W. Zheng, “From understanding genetic drift
to a smart-restart parameter-less compact genetic algo-
rithm,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pp. 805-813, Association for
Computing Machinery, Mexico, June 2020.

H. Xing and R. Qu, “A compact genetic algorithm for the
network coding based resource minimization problem,”
Applied Intelligence, vol. 36, no. 4, pp. 809-823, 2012.

R. Dawoud Al-Dabbagh, A. Kinsheel, M. Sapiyan Baba, and
S. Mekhilef, “A combined compact genetic algorithm and
local search method for optimizing the arma (1, 1) model of
alikelihood estimator,” ScienceAsia, vol. 40, no. 1, pp. 78-86,
2014.

R. Baraglia, J. I. Hidalgo, and R. Perego, “A hybrid heuristic
for the traveling salesman problem,” IEEE Transactions on
Evolutionary Computation, vol. 5, no. 6, pp. 613-622, 2001.
J. 1. Hidalgo, J. Lanchares, A. Ibarra, and R. Hermida, “A
hybrid evolutionary algorithm for multi-fpga systems de-
sign,” in Proceedings Euromicro Symposium on Digital Sys-
tem Design. Architectures, Methods and Tools, pp. 60-67,
IEEE, Dortmund, Germany, September 2002.

J. 1. Hidalgo, M. Prieto, J. Lanchares, R. Baraglia, F. Tirado,
and O. Garnica, “Hybrid parallelization of a compact genetic
algorithm,” in Proceedings of the Eleventh Euromicro Con-
ference on Parallel, Distributed and Network-Based Pro-
cessing, 2003. Proceedings, pp. 449-455, IEEE, Genova, Italy,
February 2003.

Y. Jewajinda and P. Chongstitvatana, “A cooperative ap-
proach to compact genetic algorithm for evolvable hard-
ware,” in Proceedings of the 2006 IEEE International
Conference on Evolutionary Computation, pp. 2779-2786,
IEEE, Vancouver, Canada, July 2006.

K. Sastry, D. E. Goldberg, and X. Llora, “Towards billion-bit
optimization via a parallel estimation of distribution algo-
rithm,” in Proceedings of the 9th annual conference on Ge-
netic and evolutionary —computation, pp. 577-584,
Association for Computing Machinery, England, UK, June
2007.

K. E. Duncan, S. K. Boddhu, M. Sam, and J. C. Gallagher,
“Islands of fitness compact genetic algorithm for rapid in-
flight control learning in a flapping-wing micro air vehicle:
a search space reduction approach,” in Proceedings of the
2014 IEEE International Conference on Evolvable Systems,
pp- 219-226, IEEE, Orlando, FL, USA, December 2014.

J. C. Gallagher, “An islands-of-fitness compact genetic al-
gorithm approach to improving learning time in swarms of
flapping-wing micro air vehicles,” in Robot Intelligence
Technology and Applications 2012, pp. 855-862, Springer,
Berlin, Germany, 2013.

J. 1. Hidalgo, R. Baraglia, R. Perego, J. Lanchares, and
F. Tirado, “A parallel compact genetic algorithm for multi-

[232]

[233]

(234

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

International Journal of Intelligent Systems

fpga partitioning,” in Proceedings Ninth Euromicro Work-
shop on Parallel and Distributed Processing, pp. 113-120,
IEEE, Mantova, Italy, February 2001.

F. G. Lobo, C. F. Lima, and H. Martires, “An architecture for
massive parallelization of the compact genetic algorithm,” in
Genetic and Evolutionary Computation — Conference,
pp. 412-413, Springer, Berlin, Germany, 2004.

C. Aporntewan and P. Chongstitvatana, “A hardware
implementation of the compact genetic algorithm,” in
Proceedings of the 2001 Congress on Evolutionary Compu-
tation (IEEE Cat. No. 01TH8546), pp. 624-629, IEEE, Seoul,
South Korea, May 2001.

Y. Jewajinda and P. Chongstitvatana, “Fpga implementation
of a cellular compact genetic algorithm,” in Proceedings of the
2008 NASA/ESA Conference on Adaptive Hardware and
Systems, pp. 385-390, IEEE, Noordwijk, Netherlands, June
2008.

Y. Jewajinda and P. Chongstitvatana, “Cellular compact
genetic algorithm for evolvable hardware,” in Proceedings of
the 2008 5th International Conference on Electrical Engi-
neering/Electronics, Computer, Telecommunications and In-
formation Technology, pp. 1-4, IEEE, Krabi, Thailand, May
2008.

M. A. Moreno-Armendariz, N. Cruz-Cortés, and A. Ledn-
Javier, “A novel hardware implementation of the compact
genetic algorithm,” in Proceedings of the 2010 International
Conference on Reconfigurable Computing and FPGAs,
pp- 156-161, IEEE, Cancun, Mexico, December 2010.

M. A. Moreno-Armendariz, N. Cruz-Cortés,
C. A. Duchanoy, A. Ledn-Javier, and R. Quintero, “Hard-
ware implementation of the elitist compact genetic algorithm
using cellular automata pseudo-random number generator,”
Computers and Electrical Engineering, vol. 39, no. 4,
pp. 1367-1379, 2013.

A. Ferigo and G. Iacca, “A GPU-enabled compact genetic
algorithm for very large-scale optimization problems,”
Mathematics, vol. 8, no. 5, p. 758, 2020.

K. Deb and C. Myburgh, “Breaking the billion-variable
barrier in real-world optimization using a customized
evolutionary algorithm,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, pp. 653-660,
Association for Computing Machinery, Denver, CO, USA,
July 2016.

T. Friedrich, T. Kotzing, M. S. Krejca, and A. M. Sutton, “The
compact genetic algorithm is efficient under extreme
Gaussian noise,” IEEE Transactions on Evolutionary Com-
putation, vol. 21, pp. 1-490, 2016.

V. Hasenohrl and A. M. Sutton, “On the runtime dynamics
of the compact genetic algorithm on jump functions,” in
Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 967-974, Association for Computing Ma-
chinery, Kyoto, Japan, July 2018.

B. Doerr, “The runtime of the compact genetic algorithm on
jump functions,” Algorithmica, vol. 83, no. 10, pp. 3059-
3107, 2021.

B. Doerr, “An exponential lower bound for the runtime of
the compact genetic algorithm on jump functions,” in
Proceedings of the 15th ACM/SIGEVO Conference on
Foundations of Genetic Algorithms, pp. 25-33, Association
for Computing Machinery, Potsdam, Germany, August
2019.

S. Droste, “A rigorous analysis of the compact genetic al-
gorithm for linear functions,” Natural Computing, vol. 5,
no. 3, pp. 257-283, 2006.

International Journal of Intelligent Systems

[245]

[246

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256

[257]

[258]

[259]

[260]

J. Lengler, D. Sudholt, and C. Witt, “Medium step sizes are
harmful for the compact genetic algorithm,” in Proceedings
of the Genetic and Evolutionary Computation Conference,
pp. 1499-1506, Association for Computing Machinery,
Kyoto, Japan, July 2018.

J. Lengler, D. Sudholt, and C. Witt, “The complex parameter
landscape of the compact genetic algorithm,” Algorithmica,
vol. 83, no. 4, pp. 1096-1137, 2021.

F. Corno, M. S. Reorda, and G. Squillero, “The selfish gene
algorithm: a new evolutionary optimization strategy,” in
Proceedings of the 1998 ACM symposium on Applied Com-
puting, pp. 349-355, Association for Computing Machinery,
Atlanta, GA, USA, February 1998.

R. Dawkins, The Selfish Gene, Oxford University Press,
Oxford, UK, 1976.

L. Tighzert and B. Mendil, “Realization of gymnastic
movements on the bar by humanoid robot using a new
selfish gene algorithm,” in Modelling and Implementation of
Complex Systems, pp. 49-65, Springer, Berlin, Germany,
2016.

L. Tighzert, T. Aguercif, C. Fonlupt, and B. Mendil, “In-
telligent trajectory planning and control of a humanoid
robot using a new elitism-based selfish gene algorithm,” in
Proceedings of the 2017 6th International Conference on
Systems and Control (ICSC), pp. 514-519, IEEE, Batna,
Algeria, May 2017.

N. M. Ariff, N. E. A. Khalid, R. Hashim, and N. M. Noor,
“Selfish gene algorithm vs genetic algorithm: a review,” in
Proceedings of the IOP Conference Series: Materials Science
and Engineering, IOP Publishing, Melaka, Malaysia, No-
vember 2016.

A. M. Cruz, R. B. Fernandez, H. M. Lozano, M. A. Ramirez
Salinas, and L. A. Villa Vargas, “Automated functional test
generation for digital systems through a compact binary
differential evolution algorithm,” Journal of Electronic
Testing, vol. 31, no. 4, pp. 361-380, 2015.

X. Xue and J. Chen, “Matching biomedical ontologies
through compact differential evolution algorithm,” Systems
Science and Control Engineering, vol. 7, no. 2, pp. 85-89,
2019.

X. Xue and J. Chen, “Matching biomedical ontologies
through compact differential evolution algorithm with
compact adaption schemes on control parameters,” Neu-
rocomputing, vol. 458, pp. 526-534, 2021.

Y. Huang, X. Xue, and C. Jiang, “Semantic integration of
sensor knowledge on artificial internet of things,” Wireless
Communications and Mobile Computing, vol. 2020, Article
ID 8815001, 8 pages, 2020.

X. Xue and J. Chen, “Optimizing sensor ontology alignment
through compact co-firefly algorithm,” Sensors, vol. 20, no. 7,
p. 2056, 2020.

X. Xue and J. Chen, “A compact co-firefly algorithm for
matching ontologies,” in Proceedings of the 2019 IEEE
Symposium Series on Computational Intelligence (SSCI),
pp- 2629-2632, IEEE, Xiamen, China, December 2019.

X. Xue, P.-W. Tsai, and J. Wang, “Using compact memetic
algorithm for optimizing ontology alignment,” ICIC Express
Letters, vol. 11, pp. 53-58, 2017.

X. Xue and J.-S. Pan, “A compact co-evolutionary algorithm
for sensor ontology meta-matching,” Knowledge and In-
formation Systems, vol. 56, no. 2, pp. 335-353, 2018.

S.-C. Chu, X. Xue, J.-S. Pan, and X. Wu, “Optimizing on-
tology alignment in vector space,” Journal of Internet
Technology, vol. 21, pp. 15-22, 2020.

[261]

[262]

[263]

(264

[265]

[266]

[267]

[268]

[269

[270]

[271]

[272]

[273]

29

K. Suksen and P. Chongstitvatana, “Exploiting building
blocks in hard problems with modified compact genetic
algorithm,” in Proceedings of the 2018 15th International
Joint Conference on Computer Science and Software Engi-
neering (JCSSE), pp. 1-6, IEEE, Nakhonpathom, Thailand,
June 2018.

Y.-C. Huang, C.-F. Chang, C.-H. Chan et al., “Integrated
minimum-set primers and unique probe design algorithms
for differential detection on symptom-related pathogens,”
Bioinformatics, vol. 21, no. 24, pp. 4330-4337, 2005.

P. Kumar Singh and N. Sahli, “Task scheduling in grid
computing environment using compact genetic algorithm,”
International Journal of Science, Engineering and Technology
Research (IJSETR), vol. 3, pp. 107-110, 2014.

A. Badr, I. M. Aref, B. M. Hussien, and Y. Eman, “Solving
protein folding problem using elitism-based compact genetic
algorithm,” Journal of Computer Science, vol. 4, no. 7,
pp. 525-529, 2008.

R. R. Silva, H. S. Lopes, and C. R. E. Lima, “A compact
genetic algorithm with elitism and mutation applied to
image recognition,” in Proceedings of the International
Conference on Intelligent Computing, pp. 1109-1116,
Springer, Berlin, Germany, July 2008.

R. R. Da Silva, C. R. Erig Lima, and H. S. Lopes, “Template
matching in digital images using a compact genetic algo-
rithm with elitism and mutation,” Journal of Circuits, Sys-
tems, and Computers, vol. 19, no. 1, pp. 91-106, 2010.

H. Boualame, N. Tahiri, I. Chana, A. Azouaoui, and
M. Belkasmi, “An efficient soft decision decoding algorithm
using cyclic permutations and compact genetic algorithm,”
in Proceedings of the 2016 International Conference on Ad-
vanced Communication Systems and Information Security
(ACOSIS), pp. 1-6, IEEE, Marrakesh, Morocco, October
2016.

A. Berkani and M. Belkasmi, “A reduced complexity decoder
using compact genetic algorithm for linear block codes,” in
Proceedings of the 2016 International Conference on Ad-
vanced Communication Systems and Information Security
(ACOSIS), pp. 1-6, IEEE, Marrakesh, Morocco, October
2016.

R. D. Al-Dabbagh, M. S. Baba, S. Mekhilef, and A. Kinsheel,
“The compact genetic algorithm for likelihood estimator of
first order moving average model,” in Proceedings of the 2012
Second International Conference on Digital Information and
Communication Technology and it’s Applications (DICTAP),
pp- 474-481, 1IEEE, Bangkok, Thailand, May 2012.

X. Xue, J. Liu, P.-W. Tsai, X. Zhan, and A. Ren, “Optimizing
ontology alignment by using compact genetic algorithm,” in
Proceedings of the 2015 11th International Conference on
Computational Intelligence and Security (CIS), pp. 231-234,
IEEE, Shenzhen, China, December 2015.

X. Xue, X. Wu, and J. Chen, “Optimizing ontology alignment
through an interactive compact genetic algorithm,” ACM
Transactions on Management Information Systems (TMIS),
vol. 12, no. 2, pp. 1-17, 2021.

N. Tahiri, A. Azouaoui, and M. Belkasmi, “A novel detector
based on the compact genetic algorithm for mimo systems,”
in Proceedings of the 2018 International Conference on Ad-
vanced Communication Technologies and Networking
(CommNet), pp. 1-6, IEEE, Marrakech, Morocco, April 2018.
Y. Wang, H. Yao, L. Wan et al., “Optimizing hydrography
ontology alignment through compact particle swarm opti-
mization algorithm,” in Proceedings of the International

30

(274

[275]

[276]

[277

[278]

[279

[280

[281]

[282]

[283]

(284

[285]

[286]

(287]

Conference on Swarm Intelligence, pp. 151-162, Springer,
Berlin, Germany, January 2020.

F. Neri, G. Iacca, and E. Mininno, “Disturbed exploitation
compact differential evolution for limited memory optimi-
zation problems,” Information Sciences, vol. 181, no. 12,
pp. 2469-2487, 2011.

G. lacca, F. Neri, and E. Mininno, “Opposition-based
learning in compact differential evolution,” in Proceedings
of the European Conference on the Applications of Evolu-
tionary Computation, pp. 264-273, Springer, Berlin, Ger-
many, February 2011.

X. Wang and G. Xu, “Robot path planning based on chaos
concise differential evolution and rfnn control,” The Open
Automation and Control Systems Journal, vol. 6, no. 1,
pp. 69-76, 2014.

S. Khalfi, A. Draa, and G. lacca, “A compact compound
sinusoidal differential evolution algorithm for solving op-
timisation problems in memory-constrained environments,”
Expert Systems with Applications, vol. 186, Article ID 115705,
2021.

G. Tacca, R. Mallipeddi, E. Mininno, F. Neri, and
P. N. Suganthan, “Global supervision for compact differ-
ential evolution,” in Proceedings of the 2011 IEEE Symposium
on Differential Evolution (SDE), pp. 1-8, IEEE, Paris, France,
April 2011.

G. Tacca, F. Caraffini, and F. Neri, “Compact differential
evolution light: high performance despite limited memory
requirement and modest computational overhead,” Journal
of Computer Science and Technology, vol. 27, no. 5,
pp. 1056-1076, 2012.

A. Sergio, S. Carvalho, and M. Rego, “On the use of compact
approaches in evolution strategies,” ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal,
vol. 3, no. 4, pp. 13-23, 2014.

S. Khosravi and T. M.-R. Akbarzadeh, “Real-parameter
compact supervision for the particle swarm optimization
(respso),” in Proceedings of the 2014 Iranian Conference on
Intelligent Systems (ICIS), pp. 1-6, IEEE, Bam, Iran, February
2014.

W.-M. Zheng, N. Liu, Q.-W. Chai, and S.-C. Chu, “A
compact adaptive particle swarm optimization algorithm in
the application of the mobile sensor localization,” Wireless
Communications and Mobile Computing, vol. 2021, Article
ID 1676879, 15 pages, 2021.

G. Iacca, F. Neri, and E. Mininno, “Compact bacterial for-
aging optimization,” in Swarm and Evolutionary Compu-
tation, pp. 84-92, Springer, Berlin, Germany, 2012.

X. Cheng, Y. Jiang, D. Li, Z. Zhu, and N. Wu, “Optimal
operation with parallel compact bee colony algorithm for
cascade hydropower plants,” Journal of Network Intelligence,
vol. 6, pp. 440-452, 2021.

L. Tighzert and B. Mendil, “CFO: A new compact swarm
intelligent algorithm for global optimization and optimal
bipedal robots walking,” in Proceedings of the 2016 8th In-
ternational Conference on Modelling, Identification and
Control (ICMIC), pp. 487-492, IEEE, Algiers, Algeria, No-
vember 2016.

L. Tighzert, C. Fonlupt, and B. Mendil, “Towards compact
swarm intelligence: a new compact firefly optimisation
technique,” International Journal of Computer Applications
in Technology, vol. 60, no. 2, pp. 108-123, 2019.

M. Zhao, “A novel compact cat swarm optimization based on
differential method,” Enterprise Information Systems, vol. 14,
no. 2, pp. 196-220, 2020.

[288]

[289]

[290]

[291]

[292]

[293

[294]

[295]

[296]

[297]

[298]

[299]

[300]

[301]

(302]

International Journal of Intelligent Systems

Z.Yang, K. Li, Y. Guo, H. Ma, and M. Zheng, “Compact real-
valued teaching-learning based optimization with the ap-
plications to neural network training,” Knowledge-Based
Systems, vol. 159, pp. 51-62, 2018.

Z.Yu,]. Du, and G. Li, “Compact Harris hawks optimization
algorithm,” in Proceedings of the 2021 40th Chinese Control
Conference (CCC), pp. 1925-1930, IEEE, Shanghai, China,
July 2021.

J.-S. Pan, T.-K. Dao, T.-S. Pan, T.-T. Nguyen, S.-C. Chu, and
J. F. Roddick, “An improvement of flower pollination al-
gorithm for node localization optimization in wsn,” Journal
of Information Hiding and Multimedia Signal Processing,
vol. 8, pp. 486-499, 2017.

A.-Q. Tian, S.-C. Chu, J.-S. Pan, H. Cui, and W.-M. Zheng,
“A compact pigeon-inspired optimization for maximum
short-term generation mode in cascade hydroelectric power
station,” Sustainability, vol. 12, no. 3, p. 767, 2020.

J.-S. Pan, Q.-Y. Yang, S.-C. Chu, and K.-C. Chang, “Compact
sine cosine algorithm applied in vehicle routing problem
with time window,” Telecommunication Systems, vol. 78,
no. 4, pp. 609-628, 2021.

S. Zhang, F. Fan, W. Li, S.-C. Chu, and J.-S. Pan, “A parallel
compact sine cosine algorithm for tdoa localization of
wireless sensor network,” Telecommunication Systems,
vol. 78, no. 2, pp. 213-223, 2021.

M. Zhu, S.-C. Chu, Q. Yang, W. Li, and J.-S. Pan, “Compact
sine cosine algorithm with multigroup and multistrategy for
dispatching system of public transit vehicles,” Journal of
Advanced Transportation, vol. 2021, Article ID 5526127,
16 pages, 2021.

X. W. Xu, T. S. Pan, P. C. Song, C. C. Hy, and S. C. Chu,
“Multi-cluster based equilibrium optimizer algorithm with
compact approach for power system network,” Journal of
Network Intelligence, vol. 6, pp. 117-142, 2021.

J.-S. Pan, P.-C. Song, S.-C. Chu, and Y.-J. Peng, “Improved
compact cuckoo search algorithm applied to location of
drone logistics hub,” Mathematics, vol. 8, no. 3, p. 333, 2020.
F. Lachouri, A. Khelifi, L. Tighzert, T. Aguercif, and
B. Mendil, “Self-stunding up of humanoid robot using a new
intelligent algorithm,” in Proceedings of the 2016 8th In-
ternational Conference on Modelling, Identification and
Control (ICMIC), pp. 903-908, IEEE, Algiers, Algeria, No-
vember 2016.

K. M. Timmerman, “A hardware compact genetic algorithm
for hover improvement in an insect-scale flapping-wing
micro air vehicle,” Master’s thesis, Wright State Univer-
sity, USA, 2012.

H. J. Ferreau, S. Almér, R. Verschueren et al., “Embedded
optimization methods for industrial automatic control,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 13194-13209, 2017.
X. Xue and J. Liu, “Collaborative ontology matching based
on compact interactive evolutionary algorithm,” Knowledge-
Based Systems, vol. 137, pp. 94-103, 2017.

T.-T. Nguyen, S.-C. Chu, T.-K. Dao, T.-D. Nguyen, and
T.-G. Ngo, “An optimal deployment wireless sensor network
based on compact differential evolution,” Journal of Network
Intelligence, vol. 2, pp. 263-274, 2017.

T.-S. Pan, T.-T. Nguyen, T.-K. Dao, and S.-C. Chu, “An
optimal clustering formation for wireless sensor network
based on compact genetic algorithm,” in Proceedings of the
2015 Third International Conference on Robot, Vision and
Signal Processing (RVSP), pp. 294-299, IEEE, Kaohsiung,
Taiwan, November 2015.

International Journal of Intelligent Systems

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

(313]

[314]

[315]

[316]

J.-S. Pan, T.-K. Dao, T.-T. Nguyen, and T.-S. Pan, “Compact
particle swarm optimization for optimal location of base
station in wireless sensor network,” in Proceedings of the
Genetic and Evolutionary Computing: Proceedings of the
Tenth International Conference on Genetic and Evolutionary
Computing, pp. 54-62, Springer, Fuzhou City, China, No-
vember 2016.

T.-K. Dao, T.-S. Pan, T.-T. Nguyen, and S.-C. Chu, “A
compact artificial bee colony optimization for topology
control scheme in wireless sensor networks,” Journal of
Information Hiding and Multimedia Signal Processing, vol. 6,
pp. 297-310, 2015.

F. Neri and E. Mininno, “Memetic compact differential
evolution for cartesian robot control,” IEEE Computational
Intelligence Magazine, vol. 5, no. 2, pp. 54-65, 2010.

M. Toz, “Chaos-based vortex search algorithm for solving
inverse kinematics problem of serial robot manipulators
with offset wrist,” Applied Soft Computing, vol. 89, Article ID
106074, 2020.

N. H. A. Aziz, Z. Tbrahim, N. A. Ab Aziz, Z. M. Yusof, and
M. S. Mohamad, “Single-solution simulated kalman filter
algorithm for routing in printed circuit board drilling
process,” in Intelligent Manufacturing and Mechatronics,
pp. 649-655, Springer, Berlin, Germany, 2018.

B. Dogan and A. Yiiksel, “Analog filter group delay opti-
mization using the vortex search algorithm,” in Proceedings
of the 2015 23nd Signal Processing and Communications
Applications Conference (SIU), pp. 288-291, IEEE, Malatya,
Turkey, May 2015.

B. Dogan and T. Olmez, “Vortex search algorithm for the
analog active filter component selection problem,” AEU-
International Journal of Electronics and Communications,
vol. 69, no. 9, pp. 1243-1253, 2015.

M. Zhao, J.-S. Pan, and S.-T. Chen, “Optimal snr of audio
watermarking by wavelet and compact pso methods,”
Journal of Information Hiding and Multimedia Signal Pro-
cessing, vol. 6, pp. 833-846, 2015.

Y. X. Zhao, F. Tang, Q. Ga et al., “High fat diet exacerbates
vascular endothelial dysfunction in rats exposed to con-
tinuous hypobaric hypoxia,” Biochemical and Biophysical
Research Communications, vol. 457, no. 3, pp. 485-491, 2015.
H. Li, X. Mou, Z.Ji, H. Yu, Y. Li, and L. Jiang, “Miniature rfid
tri-band cpw-fed antenna optimised using ispo algorithm,”
Electronics Letters, vol. 47, no. 3, pp. 161-162, 2011.

H. Li, X. Mou, Z. Ji, H. Yu, Y. Li, and L. Jiang, “A novel
minijature four-band cpw-fed antenna optimized using ispo
algorithm,” in Proceedings of the International Wireless In-
ternet Conference, pp. 576-581, Springer, Berlin, Germany,
July 2011.

O. D. Montoya, W. Gil-Gonzélez, and L. F. Grisales-Norena,
“Vortex search algorithm for optimal power flow analysis in
dc resistive networks with cpls,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 8,
pp. 1439-1443, 2020.

W. Ali, M. A. Qyyum, K. Qadeer, and M. Lee, “Energy
optimization for single mixed refrigerant natural gas lig-
uefaction process using the metaheuristic vortex search al-
gorithm,” Applied Thermal Engineering, vol. 129,
pp. 782-791, 2018.

A. Fathy, M. A. Elaziz, and A. G. Alharbi, “A novel approach
based on hybrid vortex search algorithm and differential
evolution for identifying the optimal parameters of pem fuel
cell,” Renewable Energy, vol. 146, pp. 1833-1845, 2020.

[317]

[318]

[319]

[320]

[321]

[322]

[323]

(324

[325]

[326]

[327]

(328

(329]

[330]

31

A. Zimmer, A. Schmidt, A. Ostfeld, and B. Minsker,
“Evolutionary algorithm enhancement for model predictive
control and real-time decision support,” Environmental
Modelling and Software, vol. 69, pp. 330-341, 2015.

H. Fauzi and U. Batool, “A three-bar truss design using
single-solution simulated kalman filter optimizer,” Meka-
tronika, vol. 1, no. 2, pp. 98-102, 2019.

C. Millan-Paramo, E. Millin-Romero, and F. J. Wilches,
“Truss optimization with natural frequency constraints using
modified social engineering optimizer,” International Jour-
nal of Engineering Research and Technology, vol. 13, no. 11,
pp. 3950-3963, 2020.

F. S. Gharehchopogh, I. Maleki, and Z. A. Dizaji, “Chaotic
vortex search algorithm: metaheuristic algorithm for feature
selection,” Evolutionary Intelligence, vol. 15, no. 3,
pp. 1777-1808, 2021.

S. Iliya, E. Goodyer, J. Gow, J. Shell, and M. Gongora,
“Application of artificial neural network and support vector
regression in cognitive radio networks for rf power pre-
diction using compact differential evolution algorithm,” in
Proceedings of the 2015 federated conference on computer
science and information systems (FedCSIS), pp. 55-66, IEEE,
Lodz, Poland, September 2015.

J. Zhou, Z. Ji, and L. Shen, “Simplified intelligence single
particle optimization based neural network for digit rec-
ognition,” in Proceedings of the 2008 Chinese Conference on
Pattern Recognition, pp. 1-5, IEEE, Beijing, China, October
2008.

X. Li, P. Niu, and J. Liu, “Combustion optimization of
a boiler based on the chaos and levy flight vortex search
algorithm,” Applied Mathematical Modelling, vol. 58,
pp. 3-18, 2018.

S. Bhagat and S. K. Pasupuleti, “Simulated raindrop algo-
rithm to mitigate ddos attacks in cloud computing,” in
Proceedings of the Sixth International Conference on Com-
puter and Communication Technology 2015, pp. 412-418,
Association for Computing Machinery, Allahabad, India,
September 2015.

M. A. Azzam, U. Batool, and H. Fauzi, “Design of an helical
spring using single-solution simulated kalman filter opti-
mizer,” Mekatronika, vol. 1, no. 2, pp. 93-97, 2019.

F. Caraffini, F. Neri, and G. Tacca, “Large scale problems in
practice: the effect of dimensionality on the interaction
among variables,” in Proceedings of the European Conference
on the Applications of Evolutionary Computation, pp. 636-
652, Springer, Berlin, Germany, June 2017.

Z. Laboudi, A. Moudjari, A. Saighi, A. Draa, and S. Hadjadj,
“An adaptive context-aware optimization framework for
multimedia adaptation service selection,” Neural Computing
and Applications, vol. 34, no. 17, pp. 14239-14251, 2022.
C. Cruz, J. R. Gonzélez, and D. A. Pelta, “Optimization in
dynamic environments: a survey on problems, methods and
measures,” Soft Computing, vol. 15, no. 7, pp. 1427-1448,
2011.

T. Macias-Escobar, B. Dorronsoro, L. Cruz-Reyes,
N. Rangel-Valdez, and C. Gémez-Santillan, “A survey of
hyper-heuristics for dynamic optimization problems,” in
Intuitionistic and Type-2 Fuzzy Logic Enhancements in
Neural and Optimization Algorithms: Theory and Applica-
tions, pp. 463-477, Springer, Berlin, Germany, 2020.

D. E. Goldberg, K. Sastry, and X. Llora, “Toward routine
billion-variable optimization using genetic algorithms,”
Complexity, vol. 12, no. 3, pp. 27-29, 2007.

32

[331]

[332]

[333]

(334

(335

(336

(337

[338]

[339]

[340]

[341]

[342]

[343]

[344]

S. Tturriaga and S. Nesmachnow, “Solving very large opti-
mization problems (up to one billion variables) with a par-
allel evolutionary algorithm in cpu and gpu,” in Proceedings
of the 2012 Seventh International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, pp. 267-272, IEEE,
Victoria, Canada, November 2012.

J. E. Rowe, “The benefits and limitations of voting mecha-
nisms in evolutionary optimisation,” in Proceedings of the
15th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms, pp. 34-42, Association for Computing Ma-
chinery, Potsdam, Germany, August 2019.

F. Neri, E. Mininno, and T. Kirkkiinen, “Noise analysis
compact genetic algorithm,” in Proceedings of the European
Conference on the Applications of Evolutionary Computation,
pp. 602-611, Springer, Berlin, Germany, February 2010.

G. Iacca, F. Neri, and E. Mininno, “Noise analysis compact
differential evolution,” International Journal of Systems
Science, vol. 43, no. 7, pp. 1248-1267, 2012.

S. Rojas-Galeano and N. Rodriguez, “A memory efficient and
continuous-valued compact eda for large scale problems,” in
Proceedings of the 14th annual conference on Genetic and
evolutionary computation, pp. 281-288, Association for
Computing Machinery, Philadelphia, PA, USA, July 2012.
I. Moser and R. Chiong, “A hooke-jeeves based memetic
algorithm for solving dynamic optimisation problems,” in
Proceedings of the International Conference on Hybrid Ar-
tificial Intelligence Systems, pp. 301-309, Springer, Berlin,
Germany, December 2009.

J. Branke, “Memory enhanced evolutionary algorithms for
changing optimization problems,” in Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), pp. 1875-1882, IEEE, Washington, DC, USA,
July 1999.

I. Moser and R. Chiong, “Dynamic function optimization:
the moving peaks benchmark,” in Metaheuristics for Dy-
namic Optimization, pp. 35-59, Springer, Berlin, Germany,
2013.

A. Ahrari, S. Elsayed, R. Sarker, D. Essam, and
C. A. C. Coello, “A novel parametric benchmark generator
for dynamic multimodal optimization,” Swarm and Evolu-
tionary Computation, vol. 65, Article ID 100924, 2021.

X. Lin, W. Luo, P. Xu, Y. Qiao, and S. Yang, “Popdmmo:
a general framework of population-based stochastic search
algorithms for dynamic multimodal optimization,” Swarm
and Evolutionary Computation, vol. 68, Article ID 101011,
2022.

G. R. Kramer and J. C. Gallagher, “Improvements to the
*CGA enabling online intrinsic evolution in compact EH
devices,” in Proceedings of the NASA/DoD Conference on
Evolvable Hardware, 2003. Proceedings, pp. 225-231, IEEE,
Chicago, IL, USA, July 2003.

C. J. Uzor, M. Gongora, S. Coupland, and B. N. Passow,
“Adaptive mutation in dynamic environments,” in Pro-
ceedings of the 2014 14th UK Workshop on Computational
Intelligence (UKCI), pp. 1-7, IEEE, Bradford, UK, September
2014.

C. J. Uzor, M. Gongora, S. Coupland, and B. N. Passow,
“Real-world dynamic optimization using an adaptive-
mutation compact genetic algorithm,” in Proceedings of
the 2014 IEEE Symposium on computational intelligence in
dynamic and uncertain environments (CIDUE), pp. 17-23,
IEEE, Orlando, FL, USA, December 2014.

C. J. Uzor, M. Gongora, S. Coupland, and B. N. Passow,
“Adaptive-mutation compact genetic algorithm for dynamic

International Journal of Intelligent Systems

environments,” Soft Computing, vol. 20, no. 8, pp. 3097-
3115, 2016.

[345] A. M. Fathollahi-Fard, A. Ahmadi, F. Goodarzian, and

N. Cheikhrouhou, “A bi-objective home healthcare routing

and scheduling problem considering patients’ satisfaction in

a fuzzy environment,” Applied Soft Computing, vol. 93,

Article ID 106385, 2020.

A. M. Fathollahi-Fard, A. Ahmadi, and S. M. Al-e Hashem,

“Sustainable closed-loop supply chain network for an in-

tegrated water supply and wastewater collection system

under uncertainty,” Journal of Environmental Management,

vol. 275, Article ID 111277, 2020.

M. Mojtahedi, A. M. Fathollahi-Fard, R. Tavakkoli-Mog-

haddam, and S. Newton, “Sustainable vehicle routing

problem for coordinated solid waste management,” Journal

of Industrial Information Integration, vol. 23, Article ID

100220, 2021.

[348] A. Ozkis and A. Babalik, “A novel metaheuristic for multi-
objective optimization problems: the multi-objective vortex
search algorithm,” Information Sciences, vol. 402, pp. 124—
148, 2017.

[349] J. M. O. Velazquez, C. A. Coello Coello, and A. Arias-
Montano, “Multi-objective compact differential evolution,”
in Proceedings of the 2014 IEEE Symposium on Differential
Evolution (SDE), pp. 1-8, IEEE, Orlando, FL, USA, De-
cember 2014.

[350] J. J. Montiel, C. A. Coello Coello, and M. G. C. Tapia, “A
proposal of a multi-objective compact particle swarm op-
timizer,” in Proceedings of the 2019 IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 2269-2278, 1EEE,
Xiamen, China, December 2019.

[351] X. Xue, X. Wu, and J. Chen, “Optimizing biomedical on-
tology alignment through a compact multiobjective particle
swarm optimization algorithm driven by knee solution,”
Discrete Dynamics in Nature and Society, vol. 2020, Article
1D 4716286, 10 pages, 2020.

[352] M.Ji, Z.Jin, and H. Tang, “An improved simulated annealing
for solving the linear constrained optimization problems,”
Applied Mathematics and Computation, vol. 183, no. 1,
pp. 251-259, 2006.

[353] C. S. Pedamallu and L. Ozdamar, “Investigating a hybrid

simulated annealing and local search algorithm for con-

strained optimization,” European Journal of Operational

Research, vol. 185, no. 3, pp. 1230-1245, 2008.

C. Villaldn, T. Stiitzle, and M. Dorigo, “Cuckoo search=(y +

A)-evolution strategy,” Technical Report, IRIDIA, Carlsbad,

CA, USA, 2021.

(346

(347

(354

