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In the last three decades, the field of computational intelligence has seen a profusion of population-based metaheuristics applied to
a variety of problems, where they achieved state-of-the-art results. This remarkable growth has been fuelled and, to some extent,
exacerbated by various sources of inspiration and working philosophies, which have been thoroughly reviewed in several recent
survey papers. However, the present survey addresses an important gap in the literature. Here, we reflect on a systematic
categorisation of what we call “lightweight” metaheuristics, i.e., optimisation algorithms characterised by purposely limited
memory and computational requirements. We focus mainly on two classes of lightweight algorithms: single-solution meta-
heuristics and “compact” optimisation algorithms. Our analysis is mostly focused on single-objective continuous optimisation.
We provide an updated and unified view of the most important achievements in the field of lightweight metaheuristics,
background concepts, and most important applications. We then discuss the implications of these algorithms and the main open

questions and suggest future research directions.

1. Introduction

Hardware and software technologies are advancing at a fast
pace and provide complex computing systems. In recent
decades, strong competition among manufacturers has
caused intense pressure to completely change the face of
commercial electronics [1], leading to the ongoing de-
velopment of computing devices with ever smaller di-
mensions but higher performance. These devices can range
from extremely small form factor devices (e.g., micro-
controllers, wearable devices, wireless sensors, and actu-
ators) to larger devices such as hand-helds or tablets. A
major concern in the design of these devices is that they
usually perform computations under stringent physical,
weight, and cost limitations, as well as real-time constraints
and limited power capacities (e.g., with batteries that might
be difficult or even impossible to replace/recharge). A
categorisation of this kind of device, with its specific

limitations, can be found, for example, in [2]. The general
goal of manufacturers is to design optimal products that
meet the requirements of the market without violating any
hardware-dependent constraints. However, this is difficult
in practise, given the impact these restrictions have on
memory capacity, computational performance, and
battery life.

Most computational problems that arise in such devices
can be formulated in the form of an optimisation problem,
i.e,, one in which the optimal value of the given decision
variables must be found with respect to a given objective
function (in the remainder of the paper, we consider bound-
constrained (also misleadingly referred to as “un-
constrained”) single-objective continuous optimisation
problems of the form:

min  f(x),

1
st.xeds. (1)
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where x = (x,%,,...,xp) is a candidate solution to the
D-dimensional optimisation problem defined through the
objective function f(-) (without loss of generality, we as-
sume this to be minimised) and & is the search space
delimited by the upper bound vector a = (a,,a,,...,ap)
and the lower bound vector b= (b;,b,,...,bp), s.t
a,<x;<bVie{1,2,...,D}).

Note that due to the lack of a mathematical formulation
or complexity of the problem, etc., these are challenging
zeroth-order optimisation scenarios, where no assumption
can be made on the properties of f (). Typical examples are
self-tuning the parameters of machine learning algorithms
on board a device [3], dynamically adjusting the hardware
settings (e.g., camera, microphones, battery consumption,
etc.), characterising a user profile or providing customised
recommendations [4].

To deal with such scenarios, a metaheuristic [5, 6], i.e.,
general purpose “generate and test” black-box optimisation
methods, is the most logical choice. Metaheuristics do not
guarantee convergence to the theoretical optimum but offer
high applicability without needing any information on the
problem at all but rather learn the problem landscape to
search for solutions. Their success in solving various nu-
merical and real-world problems [7, 8] made them popular
and the subject of continuous investigations. There are many
algorithms of this kind in the literature, and choosing the
most suitable for a specific problem is not an easy task [9].
Analysing the problem and tailoring a metaheuristic solver
to it is the right approach, when possible. Similarly, tuning
the parameters of the optimisation algorithm plays an im-
portant role. This can be a time-consuming task, especially
when using modern algorithms, which are often based on
a hybrid structure [10], and thus have even more parameters
to adjust [11]. The latter are usually difficult to implement
(which makes them more susceptible to errors) and un-
derstand, with some operators not contributing to the final
performance on many problems [12], simplifying them
would at least reduce their algorithmic overhead.

In this light, many modern metaheuristics are not
suitable or thought for optimisation on severely constrained
devices, as previously discussed. Memory limitations of the
environment hosting them and minimising their compu-
tational overhead are not factors that are usually taken into
consideration during the development phase. However,
there are application domains where such devices are re-
quired to be equipped with a quick and simple optimisation
routine, e.g., in the Internet of Things (IoT), where cost is
usually an issue [13], or in the manufacturing sector, where
fast, smaller, and energy-efficient systems are a priority. As
the current availability does not seem to stop, with the most
effective processing artificial intelligence (AI) technology
having thousands and thousands of parameters to tune, we
argue that minimising algorithmic overhead and memory
consumption in optimisation algorithms would be a priority
in several constructs in the years to come.

Most metaheuristics in the literature are population-
based algorithms operating on a set of candidate solu-
tions, a framework that has been shown to have some
benefits [14]. However, single-solution algorithms also exist,
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and the importance of memory consumption in the study of
population-based metaheuristics has been addressed in
some recent studies. In [15], the authors adjust the imple-
mentation of three different Genetic Algorithms (GA) to
embed them in an ATmega328P microcontroller. In their
experiments, with 128 individuals represented in 32 bits,
approximately 80% of the available data memory (2 KB) was
consumed. This leaves no room for other background/
parallel processes. Execution time can also be problematic, as
shown in [16]. Here, evolutionary and swarm computing
algorithms are integrated and run on multiple embedded
systems, such as a smartphone and three different Raspberry
Pimodels (and on a PC to use as a baseline for comparisons),
on 10 well-known benchmark functions with D = 10 and
population size N =10. The execution time increases
significantly in embedded systems and, worryingly, in the
smartphone, where each algorithm is at least 10 times slower
than on the PC. This shows that an ad hoc algorithm/
implementation should be used in such a device to keep
execution time realistic. Other authors experimented with
other hardware technologies, such as Field Programmable
Gate Arrays (FPGAs) [17-19] or Graphical Processing Units
(GPUs). For the sake of completeness, it is worth adding that
these concepts can be extended to other optimisation sce-
narios, such as, e.g., multi-objective problems. In this regard,
we point to [20] where a Multi-Objective Genetic Algorithm
(MOGA) is implemented and executed on a low-end
microcontroller.

As a summary of what has been previously discussed,
there are important domains where optimisation algorithms
that 1. can attain good solutions with much less memory use
and 2. can be easily embedded into limited hardware
platforms. In the remainder of this article, we will refer to
these algorithms as “lightweight metaheuristics” [21] or
“memory-saving algorithms” [22].

Given that the nature of the problem imposes the
number of “design variables” x;(i = 1,2, ..., D), reducing
the need to store a population of solutions is the main goal of
a memory-saving algorithm. We assume that the solutions
are represented correctly, i.e., without unnecessary long
encodings or redundant design variables. Also, we are
selecting simple algorithms with linear O(D) memory
complexity like genetic algorithms, as opposed to those
requiring memory and computationally more expensive
features such as eigenvalue decomposition, manipulation of
covariance, or Hessian matrices, etc., to function, see e.g.,
[23-26]. The degenerate case Np = 1 results in a “single-
solution metaheuristic” (also referred to as “trajectory
methods,” “solo search,” or “single-agent-based algo-
rithms”). Here, we must pay attention to the working logic of
the algorithm. Despite being less common, memory-
consuming single-solution algorithms do exist. Examples,
such as the Rosenbrock algorithm [23], the Powell method
[24], and SPAM [27], make use of D x D matrices stored in
memory to perturb the only candidate solution on which
they operate, making it difficult to use in memory-
constrained environments. In coherence with the algo-
rithms mentioned above, the Nelder-Mead method (also
known as the simplex method) [28] was introduced as
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a derivative-free optimisation algorithm. It starts with an
initial solution and iteratively uses a set of solutions forming
the vertices of a simplex to move it. This method teeters on
the brink of two opposing perspectives, as it may be thought
of as a single-solution approach, yet it cannot be considered
lightweight in our case because a simplex of D + 1 points is
required for it to function. A similar approach can be taken
with Estimation of Distribution Algorithms (EDAs) [29, 30],
which evolve a probabilistic model and draw solutions from
it. In this case, sampling only one solution is not enough if
a memory-saving probabilistic model is not used. This model
can be a simplification of existing models to perform a so-
called uncorrelated search that does not require storing
cross-correlation values between the design variables. The
compact algorithm class [31] is an established framework for
obtaining memory-saving EDAs.

If properly designed, single-solution and compact al-
gorithms can perform well and return satisfactory results in
several contexts that require a very low memory footprint.
These scenarios are abundant in some application fields
including bioinformatics [32-34], deep learning [35, 36],
evolving hardware [37], and robotics [38, 39].

The goal of this article is to present a unified survey of
research in the field of lightweight algorithms, as the existing
literature appears inadequate to offer a comprehensive
perspective on this class of optimisers. Our work sheds light
on what is currently available for dealing with optimisation
problems in an environment plagued by various limitations
and provides readers with a wide range of application do-
mains. This will benefit both practitioners and algorithm
designers exploring hybrid algorithmic solutions. Indeed, it
is clear that most of these algorithms are currently not as well
known as population-based ones, and it is not rare to en-
counter statements such as “To the best of our knowledge, SA
(Simulated Annealing), VNS (Variable Neighbourhood
Search), and TS (Tabu Search) . . .are the only existing single-
solution metaheuristics in the literature” [40], suggesting that
advances in this field are somehow ignored. Hence, here, we
combine relevant research lines and place greater emphasis
on approaches such as the compact algorithm paradigm in
[31] and holistic analysis in [6, 41] to overcome these
problems. We gather relevant literature and provide in-
teresting perspectives on modern and historical lightweight
heuristics, reporting key notions that give a global view of
these algorithms, including the current state of the art that is
not included in [6, 31, 41] and is becoming fragmented.
Furthermore, we review and report some significant ap-
plications of these algorithms, giving examples to practi-
tioners having to deal with these scenarios and facilitating
the search for reactive algorithmic solutions that are already
present in the literature in one document. For benchmarking
and other performance-related numerical results, we refer to
[42-44] and most of the articles included in this survey.

The remainder of this paper is organised as follows:

(i) Section 2 describes classes of algorithms based on
the number of processed candidate solutions and
introduces the concept of “lightweight” algorithms
for systems having limited resources.

(ii) Section 3 focusses on population-based algorithms
and discusses the use of micropopulations.

(iii) Section 4 introduces the Estimation of Distribution
Algorithms and  discusses  their ~memory
requirements.

(iv) Section 5 surveys the existing literature to report
and comment on memory-saving algorithms (for
both discrete and continuous optimisation) by
grouping them into the two main categories of
single-solution and compact algorithms.

(v) Section 6 reports relevant application scenarios.

(vi) Section 7 concludes this work and discusses open
issues in the field of lightweight optimisation
research.

(vii) Section 8 systematically points out areas of im-
provement to address in the future.

2. Metaheuristics in the Balance

When the environment hosting, the optimiser requires
a thrifty use of resources, even between algorithms with
linear memory complexity, there might be some that are
preferable over others that, on the contrary, require un-
wanted memory slots (a vector of real values, for example,
floating or doubles, of the same size D as the problem) to
function. In this context, metaheuristics with linear memory
footprint can be further classified by considering number of
solutions stored in memory during the search for optima, as
an indicator of the resources needed to run the optimisation
process.

For the sake of clarity, we remark that this shall be done
only for algorithms that are already “lightweight” in their
nature, i.e., metaheuristics that do not require the storage of
auxiliary variables for representing or manipulating the
candidate solutions (e.g., covariance matrices, etc.). These
classes of algorithms are usually developed in an attempt to
obtain high performance in offline problems, but in the
context of real-time and onboard optimisation, they are
often infeasible choices and are considered, within the scope
of this article, “heavyweight” algorithms as opposed to those
with linear memory occupation with D. Note that, as pre-
viously discussed, these heavy-working mechanisms can
take place in both population-based and single-solution
algorithms. In this work, we go even further and carefully
select truly lightweight algorithms from those having a linear
memory footprint considering the number of memory slots
required for them to operate, as graphically depicted in
Figure 1.

It is important to note that lightweight algorithms
consist of algorithms with approximately two memory slots
(one best solution plus an additional auxiliary solution to
produce a new solution). Approaches with this feature are
from the previously introduced classes of single-solution and
compact algorithms, which we refer to as “sMeta” and
“cMeta” in the remainder of this paper for brevity. In line
with this notation, we also use the expressions “pMeta” and
“u Meta” for population-based algorithms and population-
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FIGURE 1: Metaheuristics in the balance: heavyweight and linear memory footprint.

based algorithms working with so-called micropopulations
of only a few individuals, respectively.

Note that we not only report algorithms that have
a modest memory footprint but also select the most suc-
cessful design strategies that allow satisfactory performance
despite using a small number of memory slots. As most
computation algorithms mimic the behaviour of popular
pMeta algorithms, for the sake of completeness, we next
discuss key points on pMeta algorithms. This allows us to
better introduce the y Meta algorithm surveyed in this work.
These represent the simplest way to obtain a lightweight
algorithm and can be found to exist in some memory-
constrained environments.

3. Populations and u Populations

Population-based algorithms have been the go-to solution
for solving a large number of (constrained or unconstrained,
single-objective, or multi-objective) optimisation problems
for many years now. These methods have been proven to be
a key to solving many real-world problems and are now
being developed in continuous development. For more
information on the many paradigms existing in the litera-
ture, the most established being Evolutionary Computing
(EC), Swarm Intelligence (SI), and Hyperheurstics/Memetic
Computing, we point to relevant books [6, 45-47] and
surveys [48-54]. Modern hybrid structures employing
machine learning components also populate the literature
[55, 56]. Note that most surveys either focus on a specific
algorithmic family or classify wide ranges of metaheuristics
based on their inspiring metaphors. Such metaphors have
been very useful to the research community, developing the
first nature-inspired algorithms. However, there is a clear
recent trend in designing optimisation heuristics simply by
using an inspiring metaphor as the main driving force and
motivation. This is generating a plethora of algorithms
whose contributions to the field are arguable and that are
often poorly benchmarked and compared to similar strat-
egies that were already available in the literature. This is
evident from recent metaheuristic surveys, many of which
focus on such metaphor-led algorithms and their variants
[57-60]. In this survey, we mention some of these algo-
rithms, depending on the relevance of the message of the

corresponding article, as it is important to survey the totality
of the current literature. However, we recommend that one
always checks the literature to avoid reproposing similar
ideas under different names, uses a more theoretical or
empirically informed approach, and follows good practises
[61-63] when designing novel algorithms. Proper bench-
marking should also be performed. In summary, we are in
favour of making progress in algorithm design and using
metaphors as a means of conveying complex information,
but we share the same doubts/opinions of [10, 64-66]. In-
terestingly, there are surveys on the performance of a wide
range of metaheuristics on specific artificial testbed prob-
lems and real-world scenarios [67-72]. These suggest
practical insights on applying algorithms and highlight the
importance of performing a thorough parameter tuning
phase (and self-adaptive algorithms might also have some
parameters to tune).

Adapting algorithm parameters to ensure optimal per-
formance can be a challenging task [73], with the exception
of the population size value. We now know that high values
are not necessarily recommended, but in most cases, the
common belief from the literature seems to be that in-
creasing this parameter is beneficial over noisy, highly
multimodal, and large-scale problems. For example, the
study in [74] suggests N = 10 - D for Differential Evolution
(DE), which can be impractical for large-scale or real-world
time-expensive problems. Moreover, this is not necessarily
correct in all scenarios. Some DE variants with micro-
populations of a maximum of five individuals have been
shown to perform well on a very large-scale problem with
thousands of design variables [75], where exploration is
partial under the fixed computational budget, and the de-
cision to focus more on exploitation seems to yield better
results. Similar results are obtained with other micro-
population evolutionary and swarm intelligence algorithms
[76, 77].

3.1. Micropopulations. As a general rule, the pMeta algo-
rithms with 5< N, <20 can be referred to as y Meta al-
gorithms. However, 20 solutions are often considered too
many and are not used when the full benefit of having a small
population size; that is, rapid convergence, is sought. Po-
tentially, less than five solutions can be tested but only if the
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working logic of the algorithms allows for it or is not
damaged. For example, a classic DE with rand mutation uses
4 individuals (the target plus three randomly selected in-
dividuals chosen from the population) to generate a new
offspring solution (see [54] for details on DE). Hence, less
than four individuals is not a feasible setting, and exactly
four individuals would mean that they will be always in-
volved in all the perturbations. At least 5 or 6 of them are
preferred to be able to implement the benefit of having
a population while increasing exploitation and minimising
memory usage. Note that DE is specifically suitable for
working with micropopulations as diversity can still be high
in the initial phases of the search process [78]. An analysis of
the effect of DE and PSO (Particle Swarm Optimisation)
micropopulations on various problems with different
characteristics is available at [79].

The first investigations of micropopulations date back to
the introduction of the micro-Genetic Algorithm (u4 GA)
[80] and its variants [81, 82]. Since then, several micro-
population Evolutionary Algorithms (4 EAs) followed, such
as, e.g., [83]. After understanding the potential of a classic
micro-Differential Evolution (4 DE) over large-scale prob-
lems, several 4 DE schemes, self-adaptive variants (such as y
JADE), and hybrid memetic alterations were proposed
[75, 78, 84-91]. Analogously, Swarm Intelligence algorithms
have been shown to have similar advantages when run with
micropopulations. The results worth mentioning are those
obtained with micro-Particle Swarm Optimisation (4 PSO)
algorithms [76, 92, 93]. Further successful examples are
those of micro-Artificial Immune System (u AIS) [94],
micro-Bacterial Foraging Algorithm (¢ BFA) [95], and other
metaphor-led algorithms such as those in [77, 96, 97] (which
are indeed very similar to the more established framework
such as DE and PSO, thus returning similar results). Finally,
other important roles played by 4 EAs are to perform a local
search within memetic algorithms [98] and to act as
microalgorithms for multi-objective optimisation [99, 100].

4. Estimation of Distribution
Algorithms (EDAs)

The EDAs family forms a significant subset of EC algorithms
where the concept of population plays a different role
compared to other pMeta algorithms. This family is in
continuous evolution and investigation, with frameworks
such as Bayesian Optimisation (BO), also known as efficient
global optimisation [101], currently finding its place in
several time-consuming optimisation contexts, while orig-
inally simply referred to as Probabilistic Model-Building
Genetic Algorithms (PMBGAs) [102]. This is because the
first algorithms of this kind were a modification of previous
EAs to drive the search through probabilistic models to
achieve better performance on those nonseparable problems
characterised by high epistasis [103, 104], which are chal-
lenging for many ES and SI strategies.

An EDA builds and samples promising candidate so-
lutions from an explicit probabilistic model (which implicitly
represents the population). The optimisation process is then
the iterative evolution/update of the model, usually starting

with an exploratory distribution and ending with one
generating (near) optimal solution. Some EDAs draw
populations from the corresponding distributions (¢ in-
dividuals are sampled per iteration), while others need fewer
or a candidate solution to be drawn (as in most compact
algorithms). Over the years, many algorithms appeared
based on different models of all ranges of complexity, such as
Population-Based Incremental Learning (PBIL) [105],
Mutual Information Maximising Input Clustering (MIMIC)
[106], Bivariate Marginal Distribution Algorithm (BMDA)
[107], Factorised Distribution Algorithm [108], and many
others such as several Extended Compact Genetic Algo-
rithms [109-114]. Multivariate factorisation is also a widely
used method, and since some evolution strategies in-
corporate multivariate normal models, these can be seen as
EDAs. Among them, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [25, 115] is considered by
many as a great example of EDA algorithm, see [116], which
became soon a benchmark for optimisation due to its
performances and properties, such as invariance to rotations
of the problems and many other peculiarities which,
according to the authors, do not necessarily match the key
characteristic of a “pure” EDA. Indeed, CMA-ES estimates
the distribution of expected steps, while EDAs model them,
etc. (see [115] for more details). However, the CMA
mechanism is based on a complex probabilistic model with
time complexity O(D?) and memory complexity O(D?),
which can be seen as a heavyweight computational re-
quirement, as it can be relaxed by assuming that there is no
cross-correlation (as done in compact optimisation). The
resulting covariance matrix will prevent the normal distri-
bution from rotating, while still allowing for adaptation
along each coordinate axis if D variances are evolved (one
per axis). Instead, if the same constant variance value, which
acts as a sort of step size, is kept the same along all axes, one
obtains a symmetric normal distribution, which can only
move within the square space when its mean value gets
updated. The latter is the simplest case, which is also less
memory-expensive.

For an overview of the many models available for EDAs,
we refer to [116-118]. Note that models and updated rules
for control parameters, such as, for example, variances,
mean values, or other measures of central tendency and
spread, can be very complex, with the simplest being those
proposed for compact optimisation (details in Section 3.1).

5. Lightweight Metaheuristics: A Taxonomy

We propose a lightweight metaheuristic taxonomy struc-
tured as in Figure 2. This gives a graphical overview of the
two main classes of algorithms we survey in this work, i.e.,
sMeta and cMeta, and offers a granularity level, further
classifying relevant subfamilies and variants of the same
framework. Milestone algorithms and their more recent
variations are considered in the taxonomy, as well as a few
examples of modern metaphor-led algorithms to comment
on current practises. While doing this, we summarise their
working logic and report relevant successful applications
and application domains for such algorithms.
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_[Simulated Annealing H: nuSA [167]
variants Q-SA [168]
- ISPO [170]
L AdpISPO [173]
HISPO variants H
I ISPO-restart [177]
L VISPO [177]
- RIS [185]
{Memenc Computing ]__ 3SOME [180]
approaches
L MTS [178]
{Single-solution ]_
algorithms {State—esﬁmation—based ]_[ ssSKE [189]
algorithms SAFIRO [191]
(1+1)-ES with 1/5 Success
Methods based on Evolution Rule
Strategies
(1+1)-CMA-ES [163]
GD [164]
-{Methods based on Gradient )—I:
SPSA [162]
- SNUM [21]
I MSMS [179]
-[Other algorithms ]—
L Vs [192]
~ rcGA [197, 198]
L SEO [40]
L UCGA [211]
-(rcGA variants )—
| cross-rcGA [273]
Lightweight
metaheuristics - cSNUM [21]
_[cpmpact Evolutionary Algo- ]_ ~ DE [199]
rithms
| DECDE [274]
| cODE [275]
-(cDE variants )—
L CDE-CLS [276]
I cDE-light [279]
L CScDE [277]
~ cPSO [42]
‘(CPSO variants )—- rcSPSO [281]
L cAPSO [282]
I cBFO [283]
cABC [304]
-(cABC variants )—[
EcABC [207)
{Compact optimisation ]_ [ cBA [208]
algorithms | cFAs 38, 285, 286]
L cCso [287)
compact Swarm
Intelligence algorithms - cPIO [291]
I cFPA (209, 290]
L cCS [296]
L cSCA [292]
L cEO [295]
L cTLBO [288]
L cHHO [289]
ComPact metaphor-inspired CHSA [297]
algorithms
L Re-sampled Inheritance

compact algorithms [43]

F1GURE 2: Overall taxonomy of lightweight metaheuristics for continuous optimisation.

5.1. Single-Solution Optimisation Algorithms for Combina-
torial Problems. Hill Climbing (HC) [119], a.k.a. Iterative
Descent, is a basic local search algorithm. Starting from an
initial point, incremental perturbations are applied

iteratively to enhance the value of the cost function. There
are four main HC variants, namely, the iterative best im-
provement method, the iterative first improvement method,
the randomised iterative improvement method, and the
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probabilistic iterative improvement method; see [120] for
details. Note that the first two strategies are greedy, while the
others accept worsening moves, that is, candidate solutions
with a worse objective function value than the current one.
Applications of HC are abundant in the literature. An ex-
ample of a timetabling problem is in [121].

Iterated Local Search (ILS), presented in [122], is
a simple multistart method that iteratively performs a per-
turbation step to explore a new starting point to then
perform the local search step. When starting, the initial point
must be provided or generated randomly, thus not requiring
perturbation, and local search is immediately applied. These
two iterated phases can be seen as alternating exploratory
and exploitative searches. ILS is used successfully in other
scheduling problems, such as the University Course
Timetabling Problem [123]. Some notable ILS alterations are
the hybrid adaptive ILS with Path-Relinking designed to
solve the capacitated vehicle routing problem in [124], the
ILS with ejection chains for open vehicle routing problems
with time windows [125], and the two-phase ILS for the Set-
Union Knapsack Problem [126]. For a detailed review of this
algorithm, we refer the reader to [127].

Breakout Local Search (BLS) [128] is a variant of ILS that
merges the steepest descent local search with adaptive
perturbation strategies. BLS dynamically adjusts di-
versification by varying perturbation moves and types based
on search history information. BLS is used successfully to
address the Vertex Separator Problem (VSP) [128], the
quadratic assignment problem [129], the maximum clique
problem [130], and to solve the Assembly Sequence Planning
Problem [131]. The hybrid BLS algorithm based on re-
inforcement learning from [132] shows improved perfor-
mance over VSP.

Large Neighbourhood Search (LNS) [133] is a meta-
heuristic in which the two operators repair and destroy
alternate to obtain a new solution in a neighbourhood of the
candidate solution. The destroy operator is responsible for
perturbing random components of the candidate solution,
which then undergoes a feasibility check where the repair
operator fixes the components to ensure that the new so-
lution is in the socket space. Adaptive LNS algorithms for
Vehicle Routing Problems (VRPs) can be found in
[134, 135], and a hybrid adaptive LNS for the large-scale
heterogeneous container loading problem is proposed in
[136]. These are amongst the latest techniques proposed for
these kinds of scheduling problems.

Great Deluge (GD) [137] operates by setting a threshold
that acts as an upper limit for the admissible values of the
objective function of the newly generated solution. When-
ever the new candidate solution is accepted (i.e., in an
imitation context, it must have a function value inferior to
the upper limit), the upper limit value is decreased according
to the adopted decay rate. In this way, most points are
accepted at the beginning, but the algorithm becomes more
selective after interaction, GD for a real-world examination
timetabling problem [138]. In [139], an adaptive version is
proposed, called the Flex-Deluge algorithm, to solve the
timetabling problems of university exams. Other hybrid
variants also populate the literature, such as those in

[140, 141], which are proposed to address VRP and task
scheduling in grid computing, respectively.

Varijable Neighbourhood Search (VNS) [142] is based on
the idea of systematically changing the neighbourhood. This
occurs in two phases, in a local search phase which chooses
the best neighbour improving the current solution to find
the local optima and in a shaking phase to escape from the
corresponding valley. Details on its extensions and appli-
cations in which VNS has proven to be very successful can be
found in [143].

Greedy Randomised Adaptive Search (GRASP) [144] is
an iterative process that combines a construction heuristic
step with a sequential local search step. In the first step,
a feasible solution is created using a randomised greedy
heuristic. This solution serves as the starting point for the
local search, which can be either a descent local search or
a more advanced method. The best solution found is
returned after the search process. Variations of GRASP and
its applications are discussed in [145].

Similarly to the other algorithm, Guided Local Search
(GLS) is built on top of the LS technique. To use GLS, one
must first define a suitable set of features for the problem. Each
feature has a cost and a penalty assigned by GLS. When the LS
gets stuck at a local optimum, some features are selected and
penalised. More details can be found in [146]. The authors in
[147, 148] provide a list of GLS variants/extensions, guidelines
on how to use this algorithm in practical applications, along
with a variety of problems in which it was applied.

Descent-Based Local Search (DB-LS) [149] moves from
the current solution to a neighbouring one according to
a given neighbourhood structure in such a way that each
movement leads to a better solution. This iterative process
continues until no improvement is found, in which case the
current solution corresponds to a local optimum. This
technique was combined with the reinforcement learning
technique and applied to graph colouring [149].

The Tabu Search (TS) method was used in a nontrivial
number of combinatorial optimisation problems; see [150]. It
was first presented in [151]. The TS algorithm explicitly le-
verages the history of the search not only to escape local
optima but also to implement an exploration strategy. TS, like
simulated annealing, allows for lower-quality solutions when
a local optimum is discovered. A detailed presentation of this
method and its fundamental concepts can be found in [150].

Simulated Annealing (SA) was proposed in [152]. SA
accepts nonimprovement solutions in order to increase the
chance of exploring the search space and escape from local
optima. The algorithm starts with an initial solution and
generates a random neighbour using a predefined neigh-
bourhood structure at each iteration. If the newly generated
solution is better than the best, it is accepted; otherwise,
a solution of poor quality is accepted with a probability
specified by the Boltzmann distribution. In particular, al-
though SA was introduced for combinatorial optimisation, it
has also been used to tackle real-valued problems. An ex-
haustive review of the literature is provided in [153].

Threshold Accepting (TA) [154] follows the same
principle as SA, but it differs in the criterion used to accept
candidate solutions. SA allows a nonimproving solution only



with a given probability, whereas TA accepts it if the deg-
radation does not reach a progressively decreasing
threshold.

All of these search methods have a similar structure. In
addition, each has its own mechanism to diversify the ex-
ploration of the search space by escaping local optima. Other
local searches are detailed in [6, 41].

Finally, hyperheuristics are prominent in dealing with
discrete optimisation and are widely adopted for combi-
natorial problems. As first described in [155], these can be
seen as “heuristics for choosing heuristics.” The selection
method is arbitrary but often consists of using a learning
mechanism to optimally activate the right operator.
Therefore, once a set of heuristics/metaheuristics is pro-
vided, hyperheuristics work on the low-level operator space
other than the solution space and can be defined in [156] as
“a search method or learning mechanism to select or gen-
erate heuristics to solve computational search problems.”
For details on milestone methods and recent advances, the
relevant sources are [157-159], from which it can be seen
that this optimisation paradigm is highly recommended to
solve scheduling, timetabling, and other discrete problems.
Comprehensive lists of successful hyperheuristic applica-
tions are available in [157, 160]. Furthermore, one can see
that most of the low-level operators involved in this
framework are sMeta algorithms. This makes this framework
very suitable for designing efficient single-solution memory-
saving algorithms. Most importantly, single-solution opti-
misation plays a key role in designing hyperheuristics (even
population-based ones), as the use of local searchers based,
e.g., on hill climbing methods is very frequent [158, 159].

5.2. Single-Solution Optimisation Algorithms for Continuous
Optimisation. When it comes to metaheuristics, most
people immediately think of pMeta algorithms because
using a set of multiple candidate solutions, i.e., the so-called
population, is currently a stable practice. This is particularly
true in the continuous domain, where manipulating
a population of points is always seen as beneficial, see, e.g.,
[14], while sMeta algorithms are considered to result in
poorer performances [161]. However, in line with [9], this
cannot always be the case, and some sMeta, such as Si-
multaneous Perturbation Stochastic Approximation (SPSA)
methods [162], offered ideas and played an important role in
applied sciences such as physics and engineering in the past.
Other algorithms, obtained as degenerate variants of existing
pMeta algorithms with some adjustments to have N, = 1,
also provided interesting results. Other ideas, such as
memetic single solution algorithms and hyperheuristics for
the continuous domain, displayed highly competitive per-
formances. We report on all of these classes of algorithms,
including relevant historical and modern methods. We
remark that sMeta is not a synonym for simplicity or
minimal material consumption. Let us consider the elegant
single solution evolution algorithm Cholesky (1+1)-
CMA-ES [163], which reduces the computational effort of
CMA-ES from O(D?) to O(D?) and requires only one
candidate solution (plus an additional one for a temporary
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new solution). Its working mechanism is theoretically sound
and consists of manipulating a matrix D x D, thus not
belonging to the list of lightweight algorithms provided.

In the continuous domain, it is possible to take ad-
vantage of the notion of a gradient to guide the search.
Gradient Descent (GD) [164] is a first-order single solution-
based method that relies on the objective function differ-
entiability for its proper functioning. Depending on the
function to be optimised, it iteratively adjusts the current
solution, moving it in the direction of the steepest ascent or
descent. In the SPSA algorithm previously mentioned, this is
done by approximating the classic finite-difference gradient
methods stochastically. As in this case, if Hessian matrices
are not required, the method can be quite efficient, in
particular, if the problem is not highly multimodal, despite
being memory-saving. Other methods, such as those de-
riving from the classic Hooke-Jeeves direct search method
[165], perform this indirectly by looking at objective
function values in opposite orientated directions on the
same line, per component/axis (we present moderate vari-
ations in the remainder of this section). This also resembles
a continuous counterpart logic to the methods seen for the
discrete domain based on neighbouring operators. In this
case, the neighbourhood is obtained with either a fixed or an
adaptive exploratory radius from the candidate solution.
Solis and Wets [166] present a very simple randomised
search of this kind.

Non-Uniform Simulated Annealing (nuSA) [167] is an
improved version of SA for continuous optimisation. It uses
a nonuniform mutation which gradually shrinks neigh-
bourhood size during the search. Quaternion SA (Q-SA)
[168] instead uses a quaternion representation of candidate
solutions to improve neighbourhood exploration and pre-
vent premature convergence by widening the initial search
space. Q-SA explores the quaternion space rather than the
Euclidean space and does not employ specific parameters to
alter the neighbourhood range. Finally, the Single Non-
Uniform Mutation-based (SNUM) algorithm [21] is a sim-
plification of the nonuniform mutation strategy of nuSA.
SNUM has only one parameter, which makes it quite easy to
use. Its performance does not depend significantly on the
value of this parameter.

There are also historical evolutionary sMeta algorithms
specifically designed for the continuous domain. A worth
mentioning one is the (1+1)-Evolution Strategy with 1/5
Success Rule [169], which decreases the standard deviation
of the extended normal perturbation if the number of
successful mutations is less than 1/5. Other methods from
the EC and SI families are described in the following.

Intelligence Single Particle Optimiser (ISPO) [170], and
its first formulation, referred to as IPO in [171], is a simple
sMeta variant of the Particle Swarm Optimisation (PSO)
metaheuristic [172]. Its working logic operates per com-
ponent, ie., each design variable, is perturbed a prefixed
number of times sequentially to complete one iteration.
Therefore, it is suitable for separable problems. ISPO adjusts
the velocity vector depending on a learning factor based on
the number of successful updates of the particle during the
search. Four parameters are required in total, but
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performances depend mainly on two (namely, the diversity
factor and the descend factor), which are the only problem-
dependent parameters according to [170, 171]. As tuning
them can be challenging, the AdpISPO algorithm [173] is
designed as a self-adaptive version of ISPO whose adaption
logic has been shown to work well in many testbed problems.
This outperforms ISPO on such problems and is free of
problem-dependent parameters. This feature makes it
suitable for hybridisation with other algorithms whose
implementations depend on the parameter setting. Exam-
ples of Memetic Computing (MC) algorithms that use PSO
variants and AdpISPO to perform local computations are
available in [174-176]. To improve performance, in par-
ticular, over multimodal and large-scale domains, two
multistart variants called ISPO-Restart and Very Intelligent
Simple Particle Optimiser (VISPO) are presented in [177].
Both ISPO-Restart and VISPO perform a “jump” in the
search space before restarting the search, but the newly
generated starting point is first uniformly sampled within
the domain and then mixed with the “elite” solution stored
in memory by inheriting some of its promising design
variables. This inheritance is obtained by binomial crossover
(from DE [54]) with a low crossover rate to preserve ran-
domness at the new starting point. ISPO-Restart and VISPO
perform similarly, with VISPO being preferable to only a few
benchmark problems tested in [177]. The only difference
between the two is that the first variant restarts after
a number of prefixed functional calls, while the second has
a simple learning mechanism based on the number of
successful continuous intervals per dimension to automat-
ically decide when to restart.

Multiple Trajectory Search (MTS) [178] is another in-
teresting lightweight sMeta that performs well on separable
and large-scale problems (for which it was designed specif-
ically). It can be seen as the coordination of three iterated local
searchers algorithms where the first one perturbs all di-
rections one at a time along one axis (as the Hook-Jeeves local
searcher operator), the second one differs from the first one in
that only searches one-fourth of the available dimensions, and
the third one takes three small steps along each dimension
according to find a candidate solution heuristically. The three
operators are activated according to a grading system based
on their successes, and if no improvement is registered, the
search range is cut to one-half. The Multiple-Search Multi-
Start (MSMS) framework in [179] is based on the simple idea
of implementing a few search algorithms, but it features
a multistart operator to keep changing the initial point in an
attempt to approach premature convergence.

Three-Stage  Optimal Meta-memetic  Exploration
(3SOME) [180] is a simple MC technique characterised by
the activation of three operators (memes) that perturb
a single solution. These three components, namely, long (L),
middle (M), and short (S) distance exploration, are arranged
in a bottom-up structure and coordinated in such a way that
the exploitation pressure increases as the algorithm con-
verges to a promising area of the search space. Most of the
calls to objective functions are used for the local search
operator S [181], which implements the same strategy as the
first local search of MTS. The coordination logic of the three

memes is very simple but allows for competitive results when
compared to established algorithms, including pMeta al-
gorithms, and in particular on separable problems. Fol-
lowing these results, several variants have been proposed. An
improved M operator dynamically narrowing the space
around the solution in the attempt to provide a better quality
starting point to S is available at [182], and many modifi-
cations (not all necessarily preserving the memory-saving
nature of 3SOME) proposed in [183] allow for handling
nonseparable problems/rotated problems. The analysis in
[181] highlighted the importance of the coordination logic in
the operator implementation itself and identified the least
activated operations (and the most expensive in terms of the
calls of the objective function) during several optimisation
processes. This led to simplified variants, resulting in sig-
nificantly different algorithms with operators making fewer
functional calls before local refinement. A very simple one,
having only two stages, is the Resampling Search algorithm
[184], which can be seen as a sort of multistart ILS algorithm
for continuous optimisation, which was subsequently im-
proved in the Resampled Inheritance Search (RIS) [185]
framework. Further variants have been designed to deal with
specific real-world applications; see, e.g., [186].

RIS [185] is a simple MC approach that performs
a restarted iterated local search with a low level of in-
heritance of the previous best solution design variables after
each restart. The S operator is run multiple times until
a condition on the length of its exploratory radius is met (the
option of fixing the number of S steps is also left available to
the user). When a restart occurs, a point is drawn uniformly
within the search space, and some of its design variables are
crossed over to retain promising elite components. Both
binomial and exponential DE crossover strategies are tested,
see [54] for details, with exponential being the default choice.
RIS is simple yet effective and competes (often outperforms)
pMeta algorithms on several benchmark functions. It can be
seen as an optimisation framework in which an algorithm,
such as crossover strategy and local search, can be replaced
with more appropriate combinations depending on the
problem if necessary. To obtain a more robust framework,
the Parallel Memetic Structure (PMS) [187] followed as
a general idea of having multiple searches performing
complementing perturbations, thus increasing the diversity
of possible moves within the search space. PMS maintains
the restart mechanism with inheritance and runs two local
searchers moving along the axis (S is used for this purpose)
and diagonally in the search space (Rosenbrock is used). This
framework was proposed with the idea of including an
adaptation system that allocates more budget to the local
community performing the most successful move dynam-
ically during the search, see, e.g., [27, 188]. Note that the
original implementation of PMS executes Rosenbrock to
perform the diagonal move. Obviously, this adds a quadratic
memory footprint to the algorithm as a whole. To have
a memory-saving variant of PMS, this meme has to be
replaced with a lightweight sMeta.

To reduce the number of parameters of the Simulated
Kalman Filter (SKF) algorithm, the work in [189] proposes
a single-solution SKF (ssSKF) version using only one agent.
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The working mechanism of ssSKF does not differ signifi-
cantly from that of SKF, which goes through the three steps
of prediction, measurement, and estimation. As these are
performed by a single agent, working with a single solution,
ssSKF 1is lightweight and easier to tune, which is an im-
portant aspect given the impact of setting parameters on SKF
[190]. A similar idea led to the Single-Agent Finite Impulse
Response Optimiser (SAFIRO) [191]. In this case, an agent is
also responsible for measuring and estimating the optimal
solution.

Several other nature-inspired sMeta algorithms have
been proposed over the years for continuous optimisation.
However, most methods proposed in the last years are not
trying to approximate gradient or exploit any specific feature
of the problem. Some examples such as the Social Engi-
neering Optimiser (SEO) [40], the Vortex Search algorithm
(VS) [192], and the Simulated Raindrop Algorithm (SRA)
[193], are based on inspiring metaphors that are imple-
mented heuristically.

5.3. Compact Optimisation. The majority of the algorithms
in this survey fall into this class. First, we comment on the
methodology used to review the reported articles. Sub-
sequently, we provide a comprehensive description of the
compact optimisation literature.

5.3.1. Methodology and Research Questions. In scholarly
writing within a specific domain, authors conventionally
incorporate prevalent terminologies of that field into their
research paper titles and keywords. This practice improves
visibility and discoverability among a broad readership.
When conducting a survey, employing the same keywords is
intuitive for paper retrieval. Nevertheless, this approach may
lack precision in the selection of pertinent papers. Hence, it
is imperative to adopt a systematic methodology for the
acquisition and meticulous selection of relevant literature.

After reviewing the Centre for Reviews and Dissemi-
nation (CRD) guidelines proposed in [194], we feel like we
adhered sincerely and inadvertently to almost the same step-
by-step procedure when compiling the research to ensure
rigour and foster comprehensiveness. This approach facil-
itated the identification and evaluation of candidate publi-
cations, thus improving the quality and reliability of the
survey results and their implications within the scientific
community. There are also other guidelines for performing
a bibliometric analysis, such as the one proposed in [195]. It
elucidates the distinctions between systematic and biblio-
metric surveys, outlining the specific scenarios in which each
method is applicable. This falls outside of the scope of this
work; please refer to the previous reference for more details.

The survey we propose is motivated by the following
Research Questions (RQs):

RQI: What characteristics of an algorithm can be used
as useful classification criteria? In recent times, there
has been a strong emphasis on classifying heuristics
based on their inspiring metaphor, but we argue that
other characteristics, as we picked the number of
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processed solutions, are more useful in practice. This
RQ is addressed in Sections 2-5.

RQ2: How many kinds of “lightweight” algorithms are
available in the literature? Answering this question is
useful to show practitioners what a memory-saving
algorithm is for which application domain a specific
class of these algorithms can be used. This RQ is
addressed in Sections 1 and 2.

RQ3: What are the main characteristics of lightweight
algorithms? We report a mathematical and algorithmic
description of the general framework to use for
obtaining most of the existing memory-saving variants.
This RQ is addressed in Section 5.

RQ4: What are the application domains of memory
saving optimisation? There are numerous and obvious
domains where these algorithms can be used, but we
dig deeper and indicate specific cases to show which
strategies and variants have been more successful. This
RQ is addressed in Section 6.

RQ5: What potential future impact can lightweight
algorithms have? There are open challenges to face, for
example, in combining machine/reinforcement learn-
ing, where the use of fats and memory-saving algo-
rithms can be preferred. This RQ is addressed in
Sections 7 and 8.

The primary keywords used to review the literature and
address the RQs are “memory-saving metaheuristics,”
“lightweight metaheuristics,” “single solution meta-
heuristics,” “compact metaheuristics,” and all combinations
where “metaheuristics” are replaced by “optimisation” or
“algorithms.” The results are refined by incorporating the
names of the seminal algorithms, e.g., “cGA” and “rcGA,” in
the search, as well as relevant authors such as, e.g., “Harik” or
“Minnino.” It is highly improbable for a new paper on
compact optimisation (discrete or continuous) to be pub-
lished without referencing any of these influential works.
This is known as the forward snowball technique to expand
the search. We then looked at the references in these papers
to find other relevant pieces of research. The latter approach
is known as backward snowballing.

We produced a comprehensive list of articles published
in the proceedings of established conferences and presti-
gious publishers. This list includes some old milestone
methods and several recently proposed algorithms. Each
article was evaluated for alignment with the research
questions of this survey, leading to its inclusion or exclusion
in the article. In particular, the participation of a single
researcher in this process can introduce bias, oversight, and
inconsistencies. To address these concerns, the validity of the
study was protected through a secondary review conducted
by a second author. Although predefining the survey scope
and managing paper selection could appear subjective, all
conclusions and recommendations stem from the latest
insights to ensure clarity of the scope of the paper scope and
effective communication of its core message.

Toward the inclusion and exclusion criteria that guided
the selection process in accurately categorising lightweight
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algorithms, we set the following ones. Papers published in
languages other than English were excluded. The full text of
the paper was scanned in many cases, not just the title and/or
abstract. That is because the latter was not enough since it is
not rare to find a paper that talks about compact algorithm/
method/approach, but after reading the paper, we realise
that it is about something different from the definition of
“compactness” adopted in this survey. Similarly, algorithms
that operate on single solutions may not necessarily be
memory savings. In addition, duplicate instances of the
retrieved papers were omitted, as well as other papers that
have been published at a conference (with limited experi-
mental setup), and then an extended version appears in
ajournal paper (for example, with cTLBO and ¢cBAT). Lastly,
lightweight algorithms hybridised with other components
that lead to improvement but do not preserve the concept of
lightweight were also removed or ultimately retained due to
some considerations. Another case appeared concerning
a particular algorithm, the Mean-Variance Mapping Opti-
misation (MVMO), in which we had different points of view:
it was considered by one author as sMeta but not by another.
Since we encountered difficulty in making a conclusive
decision, we decided to exclude it from the taxonomy. This
thorough review filtered out and pruned down the number
of articles to a more manageable one. The resulting com-
pilation was deemed representative of presenting a diverse
range of lightweight algorithms serving as the basis for the
proposed taxonomy.

5.3.2. Compact Optimisation Algorithms. Compact algo-
rithms are among the simplest expressions of EDA algo-
rithms, see Section 4, thus featuring fewer memory and
computationally onerous algorithmic structure. For this
reason, they have become popular since the publication of
the compact Genetic Algorithm (cGA) [196], which was
shown to perform similarly to the popular Simple GA with
uniform crossover over discrete domains.

After ¢GA, counterparts for the continuous domain
appeared in [197, 198], where the real compact Genetic
Algorithm (rcGA) is presented. This concept was then ex-
panded to obtain other EC approaches, such as compact DE
(cDE) [199], compact PSO (cPSO) [42], and, in a more
general sense, a compact optimisation framework [31]. A
general template that illustrates the structure of a compact
algorithm is depicted in Algorithm 1.

5.4. Probabilistic Models. The binary and Gaussian proba-
bilistic models in [196, 198] are the most widely used ones in
compact optimisation depending on the discrete or con-
tinuous/real-valued nature of the search space. Taking into
account the original notation in [196], compact algorithms
require a “Probability Vector” PV to probability values.
However, this is true for the original binary case. In the
continuous domain, PV has been kept as a legacy variable,
but it contains (Gaussian) distribution parameters (mean
values and standard deviation), thus being a two-
dimensional array. Note that a “virtual” population size
Np has to be indicated. This is used within the module to
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mimic the coverage behaviour that larger or smaller pop-
ulations have in the search space.

Note that other models have been proposed in the lit-
erature. We describe them in the following subsections.

5.4.1. Binary Model. In this model, PV is a vector of length
equal to the dimension of problem D, where each i element
is the probability of sampling 1 for that design variable. All
elements of PV are initialised with a value of 0.5 to have an
initial uniformly distributed solution. Relevant examples of
algorithms using this model are, e.g., [37, 200-204].

5.4.2. Gaussian Model. In the Gaussian model, PV is the
2 x D matrix PV = [y, 6], where p and o are the mean and
standard deviation vectors of an uncorrelated and truncated
Gaussian Probability Distribution Function (PDF) [198]
with domain [-1, +1]. Mathematically, this is formulated as
in equation,

((xi_n“[)z/zaiz) \2/m

e m

PDF (x;, p, 07) = o; (erf (u; + 1/V2 ;) — exf (u; = 1/V2 0;))
(2)

where y; and o; are the mean and standard deviation along
the i axis, and erf () is the error function.

When the algorithm is initialised, these parameters are
initialised so that y; =0 and 0, = A(i = 1,2, 3, ..., D) where
A is a positive constant (usually A=10) large enough to
approximate a uniform distribution in [-1,1].

For the Cumulative Distribution Function (CDF), this is
formulated in equation

1

CDF(x;, 4;,0;) = J PDF (x;, u;, 0;)dx;. 3)
-1

To compute this CDF, which does not have a closed
analytical expression, it is approximated using Chebyshev
polynomials [205] to be used within the algorithm.

(1) Sampling. The polynomial approximation of the CDF is
used to generate solutions within the search space. To do
this, a uniform random number r =rand(0,1) is first
generated.

Subsequently, the inverse function of the CDF of each it
axis must be computed to be evaluated at r. This returns the
value of the it" design variable that forms the new candidate
solution x; = CDF ™! (r,u;, 0,) € [-1,1].

Note that this model operates in the [-1,1] domain.
Therefore, when dealing with a generic [a;,b;] domain, the
obtained value of x; has to be scaled back to the original
decision space simply by performing x; = ((x; + 1)/2) (b; —
a;) + a;. Conversely, this also means that before feeding
a solution to the algorithm, one should normalise it within
[-1,1], unless that is the domain of the original problem.

(2) Selection and update. When the newly generated indi-
vidual competes with the current individual, the fittest (i.e.,



12

International Journal of Intelligent Systems

update PV

elite — x
end if
end while

input: probabilistic model PV, problem size D

output: best solution elite

sample elite by means of PV

while termination criterion is not met do
sample a candidate solution x by means of PV
compare fitness of elite and x

if elite condition replacement is satisfied then

ArcoriTHM 1: High-level template of compact optimisation algorithms.

the one with a lower objective function value in a mini-
misation context) is referred to as the winner, while the other
is declared as loser. The winner influences PV as its design
variables are used in the update rule of both p and o as
shown in equations (4) and (5), respectively, where j in-
dicates the iteration counter and winner; and loser; are the it
components of winner and looser, respectively.

; ; 1
wlth =+ N (winner; — loser;), (4)
P

JZH = \j<0§t)z +(‘u?)2 —(/4{'“)2 + I\%(winneri2 - loseriz).
(5

For more details, see [198].

Algorithms using this model are, e.g., the real-valued
compact algorithms rcGA [198], ¢cDE [199], cPSO [42],
cABC [206], etc., see Section 5.6 for more details.

5.4.3. Enhanced Gaussian Model. An improved model using
two PDFs that share the same parameters p and ¢ is pro-
posed in [207].

When this model is used, the normalised search space is
seen as xgl [-1,4;]U [y;, +1], and two PDFs, namely, Q —
PDF(x;) and R — PDF(x;), are defined as

2/m o (- (ximm)1207)
oierf (y; + l/ﬁai)

Q- PDF(x;, p;,0;) =
for—1<x;<u;,
(6)

-V2/m
oserf (u; — 1/V2 0;)

R - PDF (xi,yi, Ui) = e (‘(xi—#,-)z/z"?)

forp; <x;<1.
(7)
Algorithm 2 shows the sampling mechanism, where the

parameter & controls the probability of employing equation
(6) other than equation (7)

If & is set to 0.5, then this model is expected to perform as
the original Gaussian model [207]. Recent studies using this
model reported, such as [207-209].

5.4.4. Uniform Model. The work in [210] proposes a model
based on the Uniform PDFs defined in the following
equation:

T if x; € [a;,b;],
U-PDF(x)={ ' (8)

0, otherwise,

where a; and b; are the lower and upper bounds of the
uniform distribution (note that these are different from the
search space bounds and change during the optimisation
process). By integrating U-PDF, one can easily obtain the
following:

1 a; .
b—a b —a if x; € [a,b,],
U=CDF(x) =19, if x,> b,
L 0, otherwise.
9)
The inverse U — CDF™! is given by
U -CDF ' (r) = (b; - a,)r +a. (10)

Unlike the Gaussian model, the bounds a; and b; of U-
PDF vary if the mean and standard deviation vary, according
to equations.

a; = \/§Ui+yi, (11)

b; = u; — V3o, (12)

After calculating a; and b;, a uniform random number
r € [0,1] must be generated to obtain a generic design
variable x; through equation (10)

Examples of algorithms that employ these models are
those in [38, 211].
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output: a new trial solution x
for i€ {1,2,...,D} do

if < ¢ then
else

end if
end for

input: the vectors p, o and parameter &

generate a random number r € [0, 1] according to the uniform distribution
generate x; € [-1, ;] according to Q-PDF described in equation (6)

generate x; € [y;, 1] according to R-PDF described in equation (7)

ALGORITHM 2: Sampling mechanism used with the enhanced Gaussian model.

5.5. Binary/Discrete Compact Optimisation Algorithms.
The first compact algorithm, ie., cGA, was designed for
discrete optimisation. Since then, several other cMeta al-
gorithms appeared in the literature for solving discrete
problems. Alternative mutation operators for cGA are
proposed in [37, 200, 203, 212], and an evolutionary strategy
for the survival of the offspring is proposed in [213]. A study
on elitism for GAs in [201] led to two variants with strong
and weak elitism that outperformed the original nonelitist
¢GA and the popular (1 + 1)-ES. Elitism has also been used in
[37,203, 214, 215]. It should be noted that selection pressure
can also be ensured by using a larger tournament selection
[196].

Other studies try to improve the updated process of PV.
A moving average strategy is presented in [202], and weights
are used in [216]. Learning mechanisms for choosing among
multiple evolved probability vectors are also available
[217, 218]. Note that by doing this, the algorithm might
achieve better performance, but it would require more
memory usage to store multiples PV. Hence, these might no
longer be considered lightweight according to the classifi-
cation of this survey. However, if such memory is available
on the device, these strategies can be used, as well as some
u-population algorithms that might have the same memory
footprint. Unlike [219], some degree of inheritance is in-
cluded in the probabilistic model, while the study [215]
replaces PV with the belief vector BV to store probability
values belonging to a Gaussian distribution with a given
mean and variance. As in the continuous case, BV is not
areal vector and is more memory-intensive than the original
model. We would like to highlight that these advances
available in the literature often perform better than the
original methods. However, we argue that they are all based
on adding complexity. This often leads to higher memory
footprints and/or higher time overheads. This is a well-
known problem in stochastic optimisation, where a trade-
off between performances and other criteria (asymptotic
complexity, overheads, smallest use of memory slots, etc.)
must be taken according to the optimisation scenario. For
the sake of completeness, we report a wide range of studies in
this survey and provide these considerations to the reader.

Adaptation is an interesting feature of an optimisation
algorithm. In [204, 220], adaptation to the problem is ob-
tained by adding information on the frequencies and

continuity of the update probabilities in the updated rules.
Most importantly, parameter adaptation schemes are pro-
posed in [221] to have parameterless cGAs capable of tuning
the population size to remove unfavourable implications of
genetic drift.

Multistart schemes also help in compact optimisation.
After each restart, the initial point changes, and usually, PV
is reinitialised. In [222], the restart occurs if no improvement
in the objective function values is registered within a fixed
number of consecutive generations. This can be seen as an
enhanced exploration phase, where the cMeta is used to
refine the new initial point. This can also be done with an
opposite approach where the cMeta provides solutions that
are refined with a local searcher as, e.g., steepest descent
[223], or problem-specific local search operators
[222, 224, 225].

For the sake of completeness, we report on the use of
combinatorial cMeta used in systems that allow for paral-
lelisation. Here, the problem of keeping the number of
memory slots at a minimum level is less evident, while the
simplicity of the models is important to a feasible and error-
free implementation in devices such as FPGAs. The possi-
bility of constructing parallel versions of cGA is discussed in
[226-230], as well as in [231] (which considers multi-FPGA
partitioning), while a memetic variant of cGA was presented
in [232], along with a mechanism for fine-grained
parallelism.

Other works employed cGA on various hardware devices
[37, 233-237]. More recently, a GPU-enabled imple-
mentation of cGA was presented in [238], to solve a “seri-
ously” large-scale (up to 10 million variables) Integer Linear
Programming problem taken from [239], as well as con-
tinuous and discrete versions of the OneMax benchmark
problem of up to one billion variables.

The use of cGA was also analysed in the context of noisy
optimisation in [240]. This study showed that cGA can
handle noise efficiently by adjusting its step size according to
the level of noise. This method was called graceful noise
scaling.

From a theoretical perspective, the runtime of a discrete
cGA is studied in multiple works. In particular, it was
analysed on the jump functions in [241-243]. In [244], lower
and upper cGA runtime bounds have been derived for
pseudo-Boolean functions, such as OneMax. Other studies
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have investigated how the size of the virtual population
influences the performance of cGA [245, 246].

On a historical note, it is worth mentioning the Selfish
Gene Algorithm (SGA) [247], which is very similar to cGA
and was presented almost contemporaneously. SGA (not to be
confused with the Simple GA) is based on the “selfish gene”
theory in biological evolution [248]. Similarly to cGA, SGA
evolves a pool of genes that is updated by means of a virtual
population. Recently, a new variant of SGA dubbed the
“replacement and never penalising” SGA, which was proposed
in [249]. Instead of penalising the genes of the loser, this
variant replaces them with those of the winner. This algorithm
was applied to optimise the gymnastic movements of a hu-
manoid robot. Two elitist variants (with persistent and
nonpersistent elitism) of this algorithm are presented in [250].
These seem to significantly outperform the original SGA. For
details on SGAs, we refer to [251].

Finally, we should stress that there are several compact
binary variants of other metaheuristics besides cGA and SGA.
An algorithm known as cBinDE, which stands for compact
Binary Differential Evolution, was introduced in [252]. This
algorithm follows the same principle as cGA, but it uses the
binary versions of mutation and crossover of the Differential
Evolution algorithm combined with a simple local search.
This algorithm was successfully used to maximise the func-
tional coverage percentage in the verification of digital sys-
tems. Binary cDE was also studied in [253, 254]. Other works
instead investigated binary versions of compact PSO [255],
compact Firefly Algorithm [33], compact Co-Firefly Algo-
rithm [256, 257], compact Memetic Algorithms [258], and
other kinds of compact EAs [259, 260]. We argue that po-
tentially all metaheuristics can be made “compact.” However,
finding the most useable or suitable solution for a problem is
a real challenge. This either requires a time-consuming em-
pirical phase, or a more informed approach, which can be
possible only in some cases. This is a fundamental research
question in the field to be prioritised in the future.

The most interesting areas of application of compact
optimisation in the discrete domain include the Travelling
Salesman Problem (TSP) [224, 261]; determining minimum
set primers in Polymerase Chain Reaction (PCR) [262]; task
scheduling in grid computing environments [263]; protein
folding [264]; object recognition [265, 266]; soft decision
decoding [267, 268]; minimising the number of coding op-
erations required in multicast based on network coding [222];
estimating the parameters of the maximum log-likelihood
function of a first-order moving average model MA [269] and
a mixed model ARMA (1, 1) [223]; optimising the aggrega-
tion of multiple similarity measures to obtain a single simi-
larity metric for ontology matching [270]; optimising
ontology alignment [271]; designing multiple input multiple
output wireless communication systems [272].

5.6. Real-Valued Compact Optimisation Algorithms. In
Sections 5.6.1 and 5.6.2, we report on EC and SI cMeta for
the continuous domain, respectively.
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5.6.1. Compact Evolutionary Algorithms (cEAs). The real-
valued compact Genetic Algorithm [198] is the first compact
algorithm for continuous optimisation. It uses the Gaussian
model described in Section 5.4.2 and only requires storing
the elite individual, a temporary solution, and PV to perform
the search. A similar variant is proposed in [273], which,
despite being named a compact PSO algorithm, displays the
same working mechanism of rcGA (we will refer to it as
cross-rcGA). The peculiarity of this variant is that it per-
forms a decomposition of the problem into three sub-
problems. For each subproblem, a local best solution is
needed, as well as a local PV (in this context, it is similar to
a PSO). We point out that this algorithm is based on an
interesting idea but ends up requiring three local best so-
lutions, three temp solutions, a global best slot, and three PV
matrices, thus having a similar memory footprint of pMeta
with a small population size. Another variant is presented in
[21], where rcGA is hybridised with SNUM and is called
c¢SNUM. Here, after generating an offspring solution with
the rcGA mechanism, the SNUM operator is applied to
a randomly selected design variable. cSNUM deals well with
separable problems of different dimensionalities. Similarly,
the Single/Multi Non-Uniform Mutation (¢SM) algorithm
[44] is a hybrid algorithm that combines an rcGA-like
structure with the nonuniform mutation (NUM) operator.
This is very similar to ¢SNUM but perturbs all variables
instead of just one. An interesting solution is the Uniform
compact Genetic Algorithm (UcGA) [211], which is based
on the uniform model and features a virtual population size
that decreases linearly. Furthermore, it employs a local
search operator.

The c¢DE algorithm [199] generates new trial solutions
using the fundamental logic of DE, but rather than selecting
them from a population, it samples them from a probabi-
listic model. Potentially, it can be used with all possible DE
mutation strategies, crossover operators, and elitism
schemes. However, depending on the use of a specific
mutation operator, one may need to sample more in-
dividuals, thus requiring more memory. The simplest mu-
tation, i.e., “rand/1,” requires sampling three points to
generate the so-called mutant vector. Compared to rcGA,
a performance gain is recorded in most benchmark prob-
lems [199]. This might be due to the fact that DE is designed
for continuous optimisation, and, therefore, cDE maintains
the very same encoding and working logic as DE. This is not
the case for GA, which is usually used over discrete domains
and requires a real population to perform selection mech-
anisms such as fitness-proportionate or tournament selec-
tion (which can only be used with a size of two individuals in
the memory-saving context). For these reasons, rcGA ends
up performing worse than its population-based counterpart
in many cases, particularly for mid- and high-dimensional
problems (> 10), while cDE is comparable to its population-
based counterpart. Moreover, in the continuous domain,
cDE usually outperforms rcGA (but requires at least 3 in-
dividuals for the mutation, on top of the elite solution and
a temporary vector). Similar considerations also apply to
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other cMeta algorithms, see [31] for details, as population-
based algorithms that perform selection based on pairwise
comparisons can be successfully and straightforwardly
encoded into a compact scheme, while the other might display
substantial performance degradation. In this light, there are
many cDE-based algorithms in the literature. We remark that
some of them might require the same amount of memory
slots of population-based algorithms with small populations,
but most are still characterised by simple and memory-cheap
algorithmic structures. For example, the Disturbed Exploi-
tation compact Differential Evolution (DEcDE) algorithm in
[274] is a simple memetic approach based on a ¢cDE algorithm
that employs two DE exploitative search strategies. The first is
the classic DE/rad/1/exp configuration. The second config-
uration instead has the trigonometric mutation (see [54] for
details on DE). These exploitative DE operators are coun-
terbalanced by a periodic stochastic alteration of the virtual
population, which is meant to introduce exploration elements
in the search. Despite its simplicity, the algorithm out-
performs other compact algorithms in the benchmark
functions tested. Similar results are obtained by using gen-
eralised Opposition-Based Learning (OBL) within cDE. The
resulting cODE (compact Opposition-Based DE) [275] is
competitive with its population-based counterpart. Differ-
ently, [276] proposes a memory-saving solution called
Concise DE-based Chaotic Local Search (CDE-CLS) where
alocal searcher is added purposely to achieve fast convergence
on a real-world problem. An adaptive version is instead the
Compound Sinusoidal cDE (CScDE) proposed in [277]. Here,
the compound sinusoidal heuristic is used to self-adapt the
crossover rate and the mutation scale factor. CScDE out-
performs most state-of-the-art compact algorithms on vari-
ous benchmark problems. Other methods to improve upon
exploration include the use of multiple cDE running together,
as, e.g., [278]. However, these methods are not memory-
saving, as they end up requiring a similar amount of memory
slots to a small population-based algorithm, which may be
preferred.

From the memory point of view, the cheapest compact
DE framework is the compact Differential Evolution light
(cDE-light) algorithm proposed in [279]. This is a fast ap-
proach, as it requires sampling of only one candidate so-
lution per iteration instead of the three required to perform
the classic DE/rand/exp. Furthermore, it does not require
loops to implement the exponential crossover operator,
which is replaced with a counterpart of this operator capable
of predicting the number of design variables to be ex-
changed. The main idea to reduce the number of individuals
in the rand/1 mutation (which is a linear combination of
three randomly selected individuals) is to exploit the
property of the Gaussian distribution from which these
individuals need to be drawn (note that this is an approx-
imation as the distribution is truncated and not a theoretical
Gaussian function. However, the results are satisfactory).
Indeed, under the reasonable assumption of having statis-
tically independent individuals, the corresponding three
Gaussian distributions can be linearly combined to model
the Gaussian model of the resulting mutant vector. Without
having to sample an individual to generate the mutant, this
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can simply be obtained from his Gaussian model. As for the
crossover “light,” the derivation of the formula predicting
the number of variables to be exchanged without requiring
a loop through two individuals is provided in [279]. This
algorithm is based on interesting design ideas, and, despite
the assumptions and approximations, it performs well and
behaves similarly to ¢cDE. As seen for a single-solution al-
gorithm, in this case, a performance gain is recorded when it
is equipped with the restart with the inheritance mechanism
described in Section 5.2. The study in [43] shows that most
compact algorithms can benefit from this scheme by
benchmarking restart variants of compact DE, PSO, and
other algorithms whose compact version is introduced in the
next section.

In the literature, there are examples of compact Evo-
lution Strategy (cES) algorithms, such as c(1 + 1)-ES and the
c(u, 1)-ES [280]. From the experimental analysis in [280], the
c(1+1)-ES algorithm appeared to be as effective as the
original (1+1)-ES. Conversely, c(u, A)-ES appeared to
perform worse than its population-based (¢, 1)-ES coun-
terpart, especially for high values of A.

5.6.2. Compact Swarm Intelligence Algorithms. Compact
Particle Swarm Optimisation (cPSO) [42] is the compact
counterpart of the PSO algorithm for the continuous do-
main. This is simply obtained by using the Gaussian model
to generate a new particle x, which is perturbed by the
velocity vector v as in the original PSO. However, to avoid
sampling the swarm, some adjustments are needed; the
concept of the local best particle cannot be replicated if
a single solution is employed at a time to maintain
a memory-saving framework. For this reason, the PSO
update formula for v only takes into account the actual
global best solution x,,, while the local best solution xy, is
drawn from the Gaussian model with the current PV values.
Note that there are variants of this algorithm using different
distributions for the model, as in the real-parameter com-
pact supervision for PSO (rcSPSO) [281], where a combi-
nation of Cauchy and Gaussian distributions are used. Self-
adaptive variants, like the one in [282], have also been
proposed.

The compact Bacterial Foraging Optimisation (cBFO)
algorithm [283] also employs the same chemotaxis scheme
of population-based BFO, but it models the population with
the Gaussian model of Section 5.4.2. Similarly to BFO, a new
solution is generated from the model at each chemotactic
step, and a mix of tumble/swim moves is attempted. When
generating new offspring (either using the sampling
mechanism or via a tumble/swim), its fitness value is
compared to that of the current best solution. The compact
implementation of the reproduction and elimination/dis-
persal steps is a bit different. Instead of preserving and
replicating the best S/2 bacteria as BFO does, cBFO moves
the PDF in favour of the elite and shrinks over it. As a result,
forcing a PDF update is an approximation of the sexual
reproduction step. Finally, the injection of new randomly
produced bacteria into the swarm is modelled using a per-
turbation of PV in the elimination/dispersal step.
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The list of compact algorithms is large. As many
population-based algorithms can be made compact, the
literature keeps offering examples of a new compact version
to be used mainly in applied contexts. A compact Artificial
Bee Colony (cABC) is proposed in [206], and an Enhanced
cABC (EcABC) variant is proposed in [207]. A parallel
structure, abbreviated as pcABC, is presented in [284].
However, the latter is meant for hardware systems with
multiple cores/processors which do not suffer from memory
or computational limitations. Some compact Firefly Algo-
rithms (cFAs) [38] are also widely used. Note that these are
obtained with some simplifications of the original strategy,
which makes the compact version (in particular, the per-
sistent variant using the Gaussian distribution) follow the
same steps of rcGA except for an extra step before updating
PV. This is required to direct the loser toward the winner to
adhere to the original framework. Based on the method for
updating the elite solution, which can require using L'evy
flight movement, Opposition-Based Learning, and the use of
Gaussian or uniform distribution, 12 cFA variants can be
obtained. More are presented in [285, 286]. In this light, one
can see that making an algorithm compact can be simple.
However, the current trend of simplifying existing algo-
rithms just to present a new optimisation framework does
not necessarily help progress in understanding what good
practices are in the algorithmic design phase. This is par-
ticularly true when the design is driven only by inspiring
metaphors, which often results in new algorithms whose
working mechanism is either unclear or similar to other
existing heuristics. These metaphor-led compact algorithms
are now abundant in the literature for solving real-world
applications. We do report some one of these applied sce-
narios solved with, e.g., compact Cat Swarm Optimisation
(cCSO) [287], compact Teaching-Learning-Based Optimi-
sation (cTLBO) [288], compact Harris Hawks Optimisation
(cHHO) algorithm [289], compact Bat Algorithms [208],
compact Flower Pollination Algorithms [209, 290], compact
Pigeon-Inspired Optimisation (cPIO) [291], the compact
Sine Cosine Algorithm (cSCA/pcSCA) [292, 293] and
McSCA with Multi-group and Multi-strategy (based on
different DE mutations) [294], the compact Equilibrium
Optimiser algorithm (cEO/pcEO) [295], the compact
Cuckoo Search (cCS) [296], compact Harmony Search Al-
gorithms (cHSA) [297], and many others. We direct the
reader to these studies and argue that while the application
domain is interesting, it is difficult to understand what the
contribution of proposing such algorithms to solve such
problems is. In most cases, these are similar to existing
methods or just present insufficiently motivated combina-
tions of operators. Although we believe that progress in the
algorithmic design must be kept alive within the community,
by surveying the recent literature, we call for more emphasis
on analysing the algorithms to have a more informed design
phase in the future.

6. Lightweight Metaheuristics Applications

The main scenarios and motivations for using lightweight
algorithms are summarised as follows.
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6.1. Embedded Systems. Lightweight algorithms can be used
in several low-cost, resource-limited computing devices that
are used nowadays in a wide range of miniaturised com-
mercially available devices, such as those used, for example,
in wet laboratories [32, 33], humanoid robots [38], flying
robots (microaerial vehicles) [298], and mobile robots [22].

6.2. Real-Time Optimisation. When applications require
a real-time optimisation problem to be solved, sMeta can be
a logical choice (as well as most compact algorithms as long
as the complex model is not used). In engineering, such
situations are abundant and in most cases do not require an
optimal solution but rather a solution of satisfactory quality
within some precision thresholds. Examples of these sce-
narios are nonlinear optimal control, receding horizon
control, and moving horizon estimation [299]. Other ap-
plications might involve solving large-scale optimisation
problems, such as optimising the parameters of black-box
models (e.g., a deep neural network or a hidden Markov
model), or solving inverse problems [186] on board an
embedded system.

6.3. Hybrid Optimisation Algorithms. Lightweight algo-
rithms, and in particular single-solution metaheuristics, are
useful “building blocks” for hybrid algorithms [211, 276].
Even in nonmemory-saving contexts, this is evident when
dealing with hyper-heuristics and memetic computing
approaches.

6.4. Other Situations. A universal metaheuristic does not
exist, and in many real-world scenarios, simple algorithms
perform better than more complex ones. Based on examples
in, for example, optimal control in industrial plants [42],
neural network training [288], and ontology mapping [300],
we recommend taking them into account as they might be
able to provide satisfactory results while keeping imple-
mentation difficulties relatively low.

Relevant application contexts where lightweight algo-
rithms are used are listed as follows:

(1) Wireless Sensor Networks (WSNs), e.g., Optimised
deployment [301], Minimised energy depletion
[302], Base station locations [303], Topology con-
trol  scheme [304], Clustering formation
[208, 301, 302], and Node Localisation [282, 293];

(2) Embedded control systems [39, 185, 198,
199, 274, 305];

(3) Robotics, e.g., industrial robots [39, 274, 276, 279,
305, 306], mobile robots [22], humanoid robots
[38, 285, 286, 297], and unmanned aerial vehicles
[185, 296];

(4) Electronic design, e.g., of magnetic field sensors
[186], printed circuit boards [307], digital signal
processing elements [180, 308-311], and antennas
[312, 313];

(5) Computer vision, e.g., image segmentation [287],
clustering [179], and face recognition [173, 174];
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(6) Power/energy systems [42, 314, 315] and renewable
energy systems [291, 295, 316];

(7) Transportation [292, 294] and civil engineering
(317, 318];

(8) Design of engineering/mechanical structures
(289, 319];

(9) Natural language processing [320];
(10) Machine learning [276, 288, 321-323];
(11) Ontology engineering [211, 273];

(12) Cloud computing security [324];
(13) Bioinformatics [175, 176].

Table 1 contains the aforementioned applications, re-
lated articles, and specific algorithms that are being used.

7. Discussion and Open Issues

Based on the survey of the literature on lightweight meta-
heuristics reported before, we can now draw the following
conclusions:

(i) Compact and single-solution algorithms are com-
monly expected to be outperformed by population-
based algorithms in terms of solution quality.
However, this is not always the case. Furthermore,
there might be applied contexts where these are the
only choices because of memory constraints or just
preferred for speed gain and simplicity in their
implementation.

(ii) Some well-known drawbacks of population-based
optimisation are premature convergence or stag-
nation. When the first occurs, the population loses
diversity, and the algorithm is stuck in a local op-
timum. In the second case, even though the pop-
ulation is still diverse, the search may stagnate,
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(iv) Due to the fact that compact optimisation algo-

rithms by nature handle each variable in-
dependently, they perform exceptionally well on
separable problems. This is especially true for some
of the most recent algorithms, e.g., CScDE, SNUM,
and ¢cSNUM [21, 277]. However, it is possible to
endow both cMeta and sMeta with algorithmic
moves that handle multiple variables at the same
time. A concrete example is that recently proposed
in [44], where the ¢cSM approach was shown to be
successful, particularly in multimodal problems.

(v) Among compact algorithms, some (e.g., rcGA)

work well in lower dimensionalities, while others
(e.g., cPSO) perform especially well in larger di-
mensionalities (a similar observation can be made
for single-solution algorithms). This seems not only
to be a consequence of the inherent search logic
underlying each algorithm. Another possible ex-
planation has been provided in a recent study
provided in [326], which showed that the correla-
tion between pairs of variables appears to contin-
uously decrease as the size of the problem increases,
from the point of view of a stochastic search al-
gorithm. As a consequence, large-scale non-
separable high-dimensional problems can be
approached as if they are separable. According to
the same authors, this effect arises from the fact that
in high dimensionalities only a very limited portion
of the decision space can be explored with a rea-
sonable computational budget. Therefore, explora-
tion should be performed with any improvement
along each variable, which is consistent with simple
methods that use a limited computational budget to
focus mainly on exploitation. This is also compatible
with most multistart lightweight algorithms.

meaning that the operators cannot create offspring
that outperform their parent solutions. Premature
convergence also plagues lightweight algorithms.
Interestingly, the latter can be used to help
population-based algorithms overcome stagnation
by providing additional movement in the search
space [78] and premature convergence by adding
the population superfit individuals.

(iii) In relation to the previous point, most compact

optimisation methods have an intrinsic limitation
when dealing with multimodal functions [21, 277].
Indeed, since they lack an actual population of
candidate solutions, they cannot provide a sufficient
degree of diversity, particularly in the long term
after the Gaussian model has converged. As a result,
unless certain restart methods are introduced, these
types of algorithms excel at exploitation but fall
short of exploration, which is required to handle
multimodal functions effectively. Indeed, after the
Gaussian model converges, new solutions are
sampled from a relatively tiny subset of the search
space, resulting in a local search.

8. Future Research Directions

Promising research lines to improve upon the current state
of the art in light-weight optimisation algorithms which are
summarised as follows:

(i) Probabilistic models: Nearly the totality of compact
algorithms employs the Gaussian distribution,
which is simple to work with, but alternative
models might be more suitable and should be
investigated.

(ii) Multimodality: Poor performance in this class of
problems suggests the need to focus more on
exploratory operators or mechanisms in the al-
gorithmic design phase.

(iii) Scalability: The problem of dealing with increasing
dimensionality values without deterioration of
performance needs further attention, as truly
large-scale problems are becoming increasingly
frequent, even in low-resource devices.

(iv) Hybridisation: It will be interesting to explore
different combinations of multiple compact logics.
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(v) Adaptation and learning: Lightweight algorithms

with increased intelligence will be needed, that is,
algorithms that can self-adapt their parameters to
the problem at hand. Another possibility would be
to put multiple lightweight algorithms together,
using, for instance, a scheme similar to that in-
troduced in [327]: in this scheme, 6 algorithms are
arranged into three bags, each with two algorithms,
depending on the number of solutions used in the
optimisers. Once a bag is selected, its optimisers
are run according to a reinforcement learning
process based on its performance. As a result, if the
considered optimiser performs well (based on the
fitness improvement), it will be rewarded, while the
others will be penalised. The best-performing
optimiser will earn more probability to run in
the next iterations, while the other optimisers will
be activated less frequently, eventually until their
corresponding probability is null.

(vi) Noisy/dynamic optimisation: It will be useful to

investigate new compact optimisation schemes
(for instance, with new distributions or new
sampling mechanisms) to deal with noisy func-
tions or Dynamic Optimisation Problems (DOPs)
[328, 329] (i.e., problems where the search space
changes over time). Concerning noisy optimisa-
tion, apart from some works on cGA
[240, 330-332], the only few works dealing with
noise are based on rcGA [333], ¢cDE [334], and
a compact EDA framework [335]. In terms of
dynamic optimisation, a Hooke-Jeeves-based
Memetic Algorithm (HJMA) was presented in
[336], where experiments have been conducted on
the Moving Peaks (MP) problem (this benchmark
is defined in [337] as an artificial multidimensional
landscape comprising multiple peaks, each of
which has its height, width, and position slightly
altered whenever a change occurs in the envi-
ronment. Its complexity can be raised by in-
creasing the number of dimensions/peaks and by
adding noise over the whole landscape. A review of
the approaches that have been tested in the dy-
namic MP problem can be found in [338]. More
recently, some authors proposed the Deterministic
Distortion and Rotation Benchmark (DDRB)
[339], a method to generate Deterministic Dy-
namic Multimodal Optimisation Problems
(DMMOP) considering both dynamic and mul-
timodal characteristics, which can simulate more
diverse sets of challenges. In the same context,
another set of benchmark problems, as well as an
optimisation framework, called PopDMMO,
containing several population-based algorithms,
was designed in [340]). To address the need to
continuously adapt to landscape changes, some
improvements in ¢cGA have been proposed in
[341], based on techniques of hypermutation and
random immigrants. The results of a modified
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version of the Moving Peaks Benchmark indicate
that both strategies improve the algorithm per-
formance for dynamic environments. Instead, the
compact adaptive mutation genetic algorithm
(amcGA) presented in [342] is based on an
adaptive mechanism where the mutation scheme is
directly linked to a change detection scheme so
that the change detection scheme regulates the
mutation rate (i.e., the degree of change de-
termines the probability of mutation). This method
was tested in [343] using a real-world dynamic
optimisation problem that includes designing and
optimising a PID controller for a torsional mass-
spring-damper system in a dynamic environment.
Other variants of amcGA can also be found in
[344]. However, more research in this direction is
needed.

(vii) Constrained and multi-objective problems: Bound-

constrained single-objective optimisation has been
the focus of most research on lightweight meta-
heuristics. In many application scenarios, however,
one needs to handle multiple objectives at the same
time and/or handle a set of equality/inequality
constraints. Therefore, future research on light-
weight algorithms for multi-objective and/or
constrained optimisation applications may be in-
teresting. Regarding sMeta, some multi-objective
variants of SEO have been adapted, for example, to
solve the problem of home healthcare routing and
scheduling [345], to optimise an integrated system
of water supply and waste collection [346], and to
optimise a municipal solid waste problem [347].
Instead, in [348], a multi-objective variant of the
VS algorithm is introduced. Regarding cMeta,
there are already some studies that go in this di-
rection which already exist; see, e.g., [349, 350].
These research papers show that Multi-Objective
compact Differential Evolution (MOcDE) and
Multi-Objective compact Particle Swarm Opti-
miser (MOCcPSO), respectively, can be used suc-
cessfully for solving unconstrained, continuous
multi-objective  optimisation  problems. In
[257, 351], the authors solve the ontology align-
ment problem using the compact multi-objective
Co-Firefly algorithm and cPSO, respectively. One
main drawback of cMeta and sMeta is that, without
an actual population or an archive, they cannot
keep a Pareto front in memory. Lack of diversity is
also an issue for multi-objective optimisation.
Therefore, more research is needed in this di-
rection. Regarding constrained optimisation, an
Improved SA (ISA) is introduced in [352], which is
capable of dealing with only linear constraints. ISA
is characterised by changing only one component
of the current solution at each iteration, without
penalty function. Another similar work [353]
proposed two variants based on a hybrid Simulated
Annealing-Hill Climbing algorithm, to solve
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constrained optimisation problems. The first ver-
sion incorporates penalty methods for constraint
handling, whereas the second one eliminates the
need for imposing penalties in the objective
function by tracing feasible and infeasible solution
sequences independently. Also, more research
seems to be needed in this area.

(viii) The trend in designing novel algorithms solely by
following an inspiring metaphor and making their
compact versions available would not help un-
derstand how these simple methods work and can
be improved in the future. Even if good results can
be obtained with such algorithms over some ap-
plication domains, this does not seem to lead to
any progress in explaining the algorithmic be-
haviour and the well-known drawbacks of meta-
heuristics. Also, from the novelty point of view,
this approach is arguable [65, 66, 354]. Therefore,
we call for more fundamental research in the di-
rection of overcoming drawbacks to obtain an
improved self-adaptive algorithmic structure.
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