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Doppler anisotropies, induced by our relative motion with respect to the source rest frame, are a
guaranteed property of stochastic gravitational wave backgrounds of cosmological origin. If detected by
future pulsar timing array measurements, they will provide interesting information on the physics sourcing
gravitational waves, which is hard or even impossible to extract from measurements of the isotropic part of
the background only. We analytically determine the pulsar response function to kinematic anisotropies,
including possible effects due to parity violation, to features in the frequency dependence of the isotropic
part of the spectrum, as well as to the presence of extra scalar and vector polarizations. For the first time, we
show how the sensitivity to different effects crucially depends on the pulsar configuration with respect to
the relative motion among frames. Correspondingly, we propose examples of strategies of detection, each
aimed at exploiting future measurements of kinematic anisotropies for characterizing distinct features of the
cosmological gravitational wave background.
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I. INTRODUCTION

Four pulsar timing array (PTA) collaborations [1–4]
recently detected a signal compatible with a stochastic
gravitational wave background (SGWB). At the moment,
various open questions remain on the origin of the
gravitational wave (GW) signal, since diverse sources,
from astrophysical to cosmological, are compatible with
current observations (see, e.g., [5] for a recent multimodel
assessment). Properties of the SGWB can in principle
allow us to distinguish astrophysical from cosmological
sources of GW: parity violation [6–18], non-Gaussianities
(see, e.g., [19–22]), or anisotropies (see [23] for a recent
survey). If the SGWB has cosmological origin, besides its
intrinsic anisotropies, the signal is expected to be charac-
terized by a Doppler anisotropy due to our relative motion
with respect to the source rest frame. As found by cosmic
microwave background (CMB) experiments [24–27],
our velocity with respect to the cosmic rest frame has
an amplitude of size β ¼ v=c ¼ 1.23 × 10−3 with respect
to the velocity of light, and points in the direction
ðl; bÞ ¼ ð264°; 48°Þ. Correspondingly, the size of the dipo-
lar kinematic anisotropy of a cosmological SGWB should
be one-thousandth smaller than the amplitude of the

isotropic part of the GW spectrum. This is smaller in size
than the expected anisotropies of the astrophysical SGWB
in the PTA band (see, e.g., [28–32] and in particular [33] for
a recent study). But, as for the CMB, it is potentially well
larger than intrinsic cosmological anisotropies (see, e.g., the
studies [34–40]). Kinematic anisotropies is a topic of active
research in the context of GW interferometers [23,41–45]. It
is then worth asking what information we can obtain from a
possible future detection of kinematic anisotropies with
PTA experiments.
This is the scope of this work. The development and

refinement of detection techniques of anisotropies of
SGWB from PTA observations have a long history—
see, e.g., [46–53]—often borrowing and elaborating tech-
niques developed in the context of ground-based [54–58]
and space-based [59–63] interferometers. Current PTA
measurements do not find yet indications of SGWB
anisotropies [64,65], but as data are becoming more and
more accurate, a detection might be forthcoming (see
also [66–68] for recent studies of related aspects of GW
observations with PTA). Since in this work we specialize
to kinematic anisotropies, we express our findings in the
most convenient way to extract information from a
detection of Doppler effects in the SGWB. We stress
the geometrical aspects of the problem, and we make
manifest how the sensitivity to different GW effects
depends on the position of pulsars with respect to the
relative velocity vector among frames. These findings—of
which many are new while others are known but we set
them in a new perspective—can be useful to plan future
PTA observations. In fact, as we can plan the location of
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ground-based interferometers in the Earth in order to
extract most physics from observations (for example,
see the recent study [69] in the context of the Einstein
Telescope), we can also plan which pulsars are worth
monitoring to learn new physics from GW measurements.
This is an invaluable opportunity for forthcoming obser-
vations with SKA facilities, which will monitor and detect
signals from a large number of pulsars [70] with important
opportunities for GW physics: see, e.g., [71]. The physical
effects we explore using SGWB kinematic anisotropies in
PTA band are as follows:

(i) Parity violation. Well motivated early-universe sce-
narios predict the existence of parity-violating effects
in gravitational and gauge-field interactions, with
interesting cosmological and GW consequences;
see, e.g., [6–18]. These effects manifest as circular
polarization of the SGWB. This quantity is hard or
even impossible to detect with single interferometers,
when focusing on the isotropic part of the background
only: see, e.g., the clear analysis of [72]. Opportu-
nities of detection arise when cross-correlating differ-
ent experiments, see, e.g., [73–75], or by probing
anisotropies of the SGWB: [76–79]. For the case of
PTA measurements, [80] has shown for the first time
that one needs to measure SGWB anisotropies for
being sensitive to circular polarization (see also [81]).
In our work, we show that kinematic anisotropies are
in fact potentially able to probe circular polarization
with PTA detections, and the PTA sensitivity depends
on the pulsar location with respect to the relative
motion along frames. Hence, a careful plan of the
pulsars to monitor is needed for increasing oppor-
tunities to detection (see Secs. II–V).

(ii) Frequency features in GW spectrum. Kinematic
anisotropies are obtained from Doppler boosting
the isotropic part of the SGWB: they depend on
derivatives along frequency of this quantity [41].
Hence, Doppler effects can be a complementary
probe of the frequency dependence of the SGWB,
alternative to more direct methods (see, e.g., [82]).
Kinematic anisotropies are more pronounced if the
SGWB has features in frequency: suitable combi-
nations of PTA anisotropy measurements allow us to
specifically detect the slope of the background (see
Secs. III and V).

(iii) Presence of extra scalar and vector polarizations.
Alternative theories of gravity predict the existence
of additional scalar and vector polarizations with
respect to the spin-2 ones of general relativity (see,
e.g., [83] for a general discussion, and [84] for a
comprehensive review). Previous works investigated
how PTA measurements can probe the GW polari-
zation content; see, e.g., [85–91]. Here we point out
that kinematic anisotropies, which depend on the
slope of the spectrum, can be sensitive to extra

polarizations also when the latter give a small
contribution to the isotropic part of the spectrum
(see Secs. IV and V).

We discuss the motivations and theoretical formulation of
these topics in Secs. II–IV, while in Sec. V we elaborate
strategies of detection of the effects listed above. Two
Appendixes develop technical tools needed in the main text.

II. SETUP

In this section we investigate the response of a PTA
experiment to an anisotropic SGWB characterized by the
GW intensity and GW circular polarization. We will start
appreciating how the PTA response to GW depends on the
pulsar configuration. In the next sections, the resulting
formulas will then be applied to the specific case of
kinematic anisotropies.
The GW is expressed in terms of fluctuations of the

Minkowski metric

ds2 ¼ −dt2 þ ðδij þ hijðt; x⃗ÞÞdxidxj: ð2:1Þ

We decompose the GW in Fourier modes as

hijðt; x⃗Þ ¼
X
λ

Z þ∞

−∞
df

Z
d2n̂e−2πifn̂ x⃗e2πifteλijðn̂Þhλðf; n̂Þ;

ð2:2Þ

imposing the condition

hλð−f; n̂Þ ¼ h�λðf; n̂Þ ð2:3Þ

which ensures that hijðt; x⃗Þ is real. We also assume that the
polarization tensors eλij are real quantities. See Appendix A
for more details on our conventions. The presence of a GW
deforms the geodesics of light, and produces a time delay
ΔTaðtÞ on the period of a pulsar. We denote with τa the
time traveled from a pulsar to the Earth, setting from now
on c ¼ 1. The pulsar is situated at the position (from now
on, hat quantities correspond to unit vectors)

x⃗a ¼ τax̂a ð2:4Þ

with respect to the Earth, located at x⃗ ¼ 0. The direction of
the vector x̂a of the pulsar with respect to the Earth plays an
important role for our arguments.
The time delay of the light geodesics reads

zaðtÞ ¼
ΔTaðtÞ
TaðtÞ

¼
Z þ∞

−∞
dfe2πiftzaðfÞ ð2:5Þ

¼
Z þ∞

−∞
dfe2πift

�X
λ

Z
d2n̂Dij

a ðn̂Þeλijðn̂Þhλðf; n̂Þ
�
:

ð2:6Þ
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Dij
a is the so-called detector tensor, controlling the con-

nection between the light delay1 and the GW:

Dij
a ≡ x̂iax̂

j
a

2ð1þ n̂ · x̂aÞ
: ð2:7Þ

Starting from the time delay zaðtÞ, it is convenient to
compute the time residual

RaðtÞ≡
Z

t

0

dt0zaðt0Þ; ð2:8Þ

which is easier to handle when Fourier transforming the
signal. We assume that the correlators of Fourier modes of
GW fluctuations can be expressed as

hhλðf; n̂Þh�λ0 ðf0; n̂0Þi ¼
1

2
Sλλ0 ðf; n̂Þδðf − f0Þ δ

ð2Þðn̂ − n̂0Þ
4π

;

ð2:9Þ

where the tensor Sλλ0 ðf; n̂Þ defines the properties of the
SGWB, and λ is the polarization index [we adopt a ðþ;×Þ
basis for the polarization tensors, see Appendix A]. The

quantity Sλλ0 ðf; n̂Þ can be decomposed in intensity and
circular polarization as

Sλλ0 ðf; n̂Þ ¼ Iðf; n̂Þδλλ0 − iVðf; n̂Þϵλλ0 ; ð2:10Þ

where the 2 × 2 tensor ϵλλ0 is defined as ϵþ× ¼ 1 ¼ −ϵ×þ,
while ϵþþ ¼ 0 ¼ ϵ××. The SGWB intensity Iðf; n̂Þ is real
and positive, and the circular polarization Vðf; n̂Þ is a real
quantity. Both quantities can depend on the GW frequency
and direction, and behave as scalars under boosts. Our
aim is to compute the response of a PTA system to the
presence of a SGWB, whose spectrum is characterized by
(possibly anisotropic) intensity I and circular polarization
V parameters.
In order to do so, we compute the correlation among the

time residuals of a pair of pulsars, denoted respectively by
the letters a and b, which is induced by the presence of GW.
The correlations among time residuals is essential for
detecting and characterizing the SGWB [94]. We introduce
the short-hand notation

Dλ
aðn̂Þ≡Dij

a ðn̂Þeλijðn̂Þ; Δt12 ¼ t1 − t2; ð2:11Þ

and compute the two-point correlators of the two pulsar
time delays (we sum over repeated polarization indices):

hzaðt1Þzbðt2Þi ¼
Z

∞

−∞
dfdf0

Z
d2n̂d2n̂0Dλ

aðn̂ÞDλ0
b ðn̂0Þe2πiðft1þf0t2Þhhλðf; n̂Þhλ0 ðf0; n̂0Þi: ð2:12Þ

Making appropriate changes of variable, f → −f and f0 → −f0, we can use relation (2.3) to recast the previous
expression in a convenient form, which allows us to apply Eq. (2.9):

hzaðt1Þzbðt2Þi ¼
1

2

Z
dfdf0d2n̂d2n̂0Dλ

aðn̂ÞDλ0
b ðn̂0Þ

�
e2πiðft1−f0t2Þhhλðf; n̂Þh�λ0 ðf0; n̂0Þi þ e−2πiðft1−f0t2Þhh�λðf; n̂Þhλ0 ðf0; n̂0Þi

�
;

¼ 1

4

Z
dfd2n̂Dλ

aðn̂ÞDλ0
b ðn̂Þðe2πifΔt12Sλλ0 ðf; n̂Þ þ e−2πifΔt12S�λλ0 ðf; n̂ÞÞ;

¼ 1

4

Z
dfd2n̂Dλ

aðn̂ÞDλ0
b ðn̂Þ½cos ð2πfΔt12ÞðSλλ0 ðf; n̂Þ þ S�λλ0 ðf; n̂ÞÞ þ i sin ð2πfΔt12ÞðSλλ0 ðf; n̂Þ− S�λλ0 ðf; n̂ÞÞ�;

¼ 1

2

Z
dfd2n̂Dλ

aðn̂ÞDλ0
b ðn̂Þ½cos ð2πfΔt12ÞIðf; n̂Þδλλ0 þ sin ð2πfΔt12ÞVðf; n̂Þϵλλ0 �: ð2:13Þ

The previous result can be plugged in Eq. (2.8) to compute the two-point function of time residuals:

hRaðtAÞRbðtBÞi ¼
1

2

Z
tA

0

Z
tB

0

dt1dt2

Z
dfd2n̂Dλ

aðn̂ÞDλ0
b ðn̂Þ½cos ð2πfΔt12ÞIðf; n̂Þδλλ0 þ sin ð2πfΔt12ÞVðf; n̂Þϵλλ0 �

¼
Z

df sin ðπftAÞ sin ðπftBÞ
πf2

½ĪðfÞΓI
abðfÞ cos ð2πfΔtABÞ þ V̄ðfÞΓV

abðfÞ sin ð2πfΔtABÞ�; ð2:14Þ

1In writing Eq. (2.5), we neglect as usual the “pulsar terms” and focus on the “Earth terms.”We refer the reader to Chapter 23 of [92]
and to the recent [93] for textbook discussions on the quantities we are introducing, their physical properties, and more general
information on how PTAs respond to GW physics.
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where ĪðfÞ is the isotropic value of the intensity integrated
over all directions, while V̄ðfÞ is its analog for circular
polarization.
The response functions of a pulsar pair to the GW

intensity and circular polarization are obtained integrating
over n̂, and read

ΓI
abðfÞ¼

1

2πĪðfÞ
Z

d2n̂
�
Dλ

aðn̂ÞDλ0
b ðn̂Þδλλ0

�
Iðf;n̂Þ; ð2:15Þ

ΓV
abðfÞ¼

1

2πV̄ðfÞ
Z

d2n̂
�
Dλ

aðn̂ÞDλ0
b ðn̂Þϵλλ0

�
Vðf;n̂Þ: ð2:16Þ

These quantities depend on the relative position of the
pulsars in the sky (given the dependence of the quantities
Dλ

a;b on the pulsar location) and on the properties of the
SGWB. Hence, the response of a PTA system to GW
depends on the pulsar configuration. Notice that only
correlators (2.14) evaluated at different times tA and tB are
sensitive to circular polarization. In actual measurements
though, correlators are weighted by suitable filters to better
extract the signal. We discuss in Appendix B and Sec. V
the relation between correlators as above and measurable
GW signals, using a a match-filtering technique.
Our task2 is to compute ΓI

abðfÞ and ΓV
abðfÞ. The results

depend also on the theory of gravity one considers. For the
case GWs are carried by spin-2 fields, as in general
relativity, we can make use of Eqs. (A14) and (A15).
The quantities within parentheses3 in Eqs. (2.15) and (2.16)
result:

Dλ
aðn̂ÞDλ0

b ðn̂Þδλλ0 ¼
ðx̂a · n̂Þ2þðx̂b · n̂Þ2þðx̂a · n̂Þ2ðx̂b · n̂Þ2−1

8ð1þ x̂a · n̂Þð1þ x̂b · n̂Þ

þðx̂a · x̂bÞ2−2ðx̂a · x̂bÞðx̂a · n̂Þðx̂b · n̂Þ
4ð1þ x̂a · n̂Þð1þ x̂b · n̂Þ

;

ð2:17Þ

and

Dλ
aðn̂ÞDλ0

b ðn̂Þϵλλ0 ¼
½x̂a · x̂b − ðx̂a · n̂Þðx̂b · n̂Þ�½n̂ · ðx̂a × x̂bÞ�

4ð1þ x̂a · n̂Þð1þ x̂b · n̂Þ
;

ð2:18Þ

where × denotes cross product among vectors. Plugging
these results in Eqs. (2.15) and (2.16), we are left with
angular integrals to carry on, which depend on Iðf; n̂Þ and
Vðf; n̂Þ. The computation gives quantities depending on the
GW frequency.We can already notice that, being the quantity
in Eq. (2.18) an odd function of the vector directions, the
integral over all directions gives zero, unless the circular
polarization function Vðf; n̂Þ depends explicitly on the
direction n̂. Hence, we need an anisotropic signal to measure
circular polarization [80,81], completely analogously to what
happens for planar interferometers (see, e.g., [72]).
Starting from these basic formulas, in the next section we

apply them to the specific case of spin-2 GW (including
circular polarization), and study anisotropies induced by
the motion of our reference frame with respect to the rest
frame of the SGWB source.

III. PTA RESPONSE TO KINEMATIC
ANISOTROPIES: THE SPIN-2 CASE

In the previous section we developed a general treatment
to investigate the PTA response to anisotropic GW signals.
We now specialize our attention to the case of Doppler
anisotropies, in theories as general relativity where GWs
are characterized by spin-2 polarizations. Nevertheless, we
include also possible effects of parity violation [6–18]. The
geometrical dependence of the PTA response to kinematic
anisotropies makes them a promising probe of the source of
GWs and of the physics of gravitation.
In fact, kinematic anisotropies are a guaranteed property

of a SGWB of primordial origin: their features are fully
calculable, being determined by the properties of the
isotropic part of the SGWB. If the SGWB has a cosmo-
logical origin related with early-universe physics, we can
expect that the relative motion among frames induces an
effect analog to the large dipolar anisotropy measured in the
CMB [24–27], whose amplitude is a factor 1.2 × 10−3

times smaller than the isotropic background. For the case of
the CMB, the dipolar kinematic anisotropy is well larger in
size than its intrinsic anisotropies. The same can occur for a
cosmological SGWB detectable with PTAs. For this reason
it is worth characterizing kinematic effects, and explore
what information we can extract from their detection with
PTA experiments. We now show how the pulsar response to
Doppler anisotropies depends on the pulsar location in the
sky; on the frequency dependence of the isotropic part of
the SGWB; and on the presence of parity violating effects
in the SGWB as considered in various early universe
scenarios.
The SGWB intensity Iðf; n̂Þ and circular polarization

Vðf; n̂Þ [see Eq. (2.10)] are scalars under boosts.4 Under a
boost characterized by velocity

2While in this section and the next we focus on spin-2 GW
modes, the same procedure can be applied to study alternative
gravity models in which gravitation is mediated by a mixture of
spin-2 and spin-0 or spin-1 fields. We examine this possibility in
Sec. IV.

3Formulas similar to (2.17) have been used in [52,53] to
characterize scenarios with anisotropic GW intensity. See also the
treatment in [46]. As far as we are aware, our formulas for circular
polarization are instead new in this context.

4One can also study the response of the GW experiment to
kinematic anisotropies in other quantities, like the GW energy
density ΩGW [41].
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v⃗ ¼ βv̂ ð3:1Þ

(with β ¼ v=c ¼ v in our units with c ¼ 1) the GW
frequency scales as [41]

f → D−1f; ð3:2Þ

with

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1 − βn̂ · v̂

: ð3:3Þ

Hence, assuming that the GW intensity and circular
polarization are isotropic in the source rest frame, they
develop kinematic anisotropies in a frame (like ours)
moving with velocity v⃗ with respect to the source.
The quantities entering in the integrands of Eqs. (2.15)

and (2.16) become

Iðf; n̂Þ
ĪðfÞ ¼ IðD−1fÞ

ĪðfÞ

¼
�
1þ β2

6
ðαI þ n2I þ 2nIÞ

�
− βnIn̂ · v̂

þ β2

2

�
ðn̂ · v̂Þ2 − 1

3

�
ðαI þ n2I − nIÞ; ð3:4Þ

Vðf; n̂Þ
V̄ðfÞ ¼ VðD−1fÞ

V̄ðfÞ

¼
�
1þ β2

6
ðαV þ n2V þ 2nVÞ

�

− βnVn̂ · v̂þ β2

2

�
ðn̂ · v̂Þ2 − 1

3

�
ðαV þ n2V − nVÞ;

ð3:5Þ

where, as in [41], we introduced parameters controlling the
tilt of the isotropic background:

nIðfÞ ¼
d ln ĪðfÞ
d ln f

; αIðfÞ ¼
dnIðfÞ
d ln f

; ð3:6Þ

nVðfÞ ¼
d ln V̄ðfÞ
d ln f

; αVðfÞ ¼
dnVðfÞ
d ln f

; ð3:7Þ

and the isotropic bar quantities ĪðfÞ, V̄ðfÞ are defined after
Eq. (2.14). In writing Eqs. (3.4) and (3.5) we expand the
definition of D of Eq. (3.3) up to second order in the
expansion parameter β, and we assemble the results in a way
that makes manifest how kinematic effects give rise to
dipolar and quadrupolar anisotropies,5 as controlled by the

size of β. As suggested by CMB results, we expect β to be of
order 10−3, making the detection of kinematic anisotropies
a demanding (but certainly interesting) challenge for PTA
experiments.
Since I and V are scalars under boosts, kinematic

anisotropies depend on derivatives of these quantities,
associated with slope parameters n and α. Doppler effects
are a probe of the frequency dependence of correlators, a
property that can be useful in a variety of situations
(see Sec. V).
From now on, in this section we consider two pulsars a, b

are located at positions x⃗a ¼ τax̂a and x⃗b ¼ τbx̂b with
respect to the Earth located at the origin. The corresponding
pulsar response functions ΓI;V

ab are analytically calculated
plugging the expressions (3.4) and (3.5) into Eqs. (2.15)
and (2.16), and performing the angular integrals.6 The
results are easier to handle introducing the combination

yab ¼
1 − x̂ax̂b

2
¼ 1 − cos ζ

2
; ð3:8Þ

which depends on the relative angle x̂a · x̂b ¼ cos ζ of the
pulsar positional vectors with respect to the Earth [see
Eq. (2.4)]. We now analytically investigate how the integrals
depend on the pulsar positions with respect to the velocity
vector v̂. We find exact results with a transparent geomet-
rical interpretation, which turns useful in developing strat-
egies of detection in Sec. V.

A. Pulsar response to GW intensity

The response function (2.15) to the GW intensity,
expanded up to order β2, results in

ΓI
ab ¼ ΓHD

ab þ βnIF
ð1Þ
ab þ β2ðαI þ n2I − nIÞFð2Þ

ab ; ð3:9Þ

with

ΓHD
ab ¼ 1

3
−
yab
6

þ yab ln yab ð3:10Þ

Fð1Þ
ab ¼

�
1

12
þ yab

2
þ yab ln yab
2ð1 − yabÞ

�
½v̂ · x̂a þ v̂ · x̂b�; ð3:11Þ

Fð2Þ
ab ¼

�
3 − 13yab
20ðyab − 1Þ þ

y2ab ln yab
2ð1 − yabÞ2

�
½ðv̂ · x̂aÞðv̂ · x̂bÞ�

þ
�
1þ 2yab − 4y2ab þ y3ab þ 3yab ln yab

12ð1 − yabÞ2
�

× ½ðv̂ · x̂aÞ2 þ ðv̂ · x̂bÞ2�: ð3:12Þ

5They also give contributions of order β2 to the monopole, a
small effect that we neglect from now on.

6To carry on the integrals we found it convenient to make use
of complex integration methods and the Cauchy theorem, as
explained in detail in [95].
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The response function (3.9) includes a first part ΓHD
ab

(independent from β) corresponding to the classic Hellings-
Downs curve [94] which we collect in Eq. (3.10). A second
part (first determined in [46]) is weighted by the relative
velocity β, and controls the dipolar kinematic anisotropy. As
anticipated above, it is proportional to the slope nIðfÞ of the
SGWB profile, as defined in Eq. (3.6), making Doppler
effects a probe of features of the SGWB frequency spectrum.
Considering its geometrical properties, we notice that
Eq. (3.11) is symmetric under the interchange of pulsar
positions a ↔ b, and it vanishes if the pulsar directions are
orthogonal to the direction of the relative velocity v̂ among
frames. In fact, differently from the Hellings-Downs case,
the pulsar response to the kinematic dipole depends on the
relative angle between pulsars, but also on the angles made
by the pulsar directions with the vector controlling the
velocity among frames [46,47]. We find that only pulsars
whose direction vectors x̂ have components along v̂ respond
to kinematic anisotropies relative to the GW intensity I.
A third part of Eq. (3.9), proportional to β2, controls the

kinematic quadrupole, and is suppressed by a factor β2

with respect to the isotropic background. The quadrupole
can be enhanced if the frequency dependence of the
spectrum has features, which lead to a large parameter
αI defined in Eq. (3.6) and entering in Eq. (3.9) (more on
this later). Also the quadrupolar contribution to the
response to the GW intensity vanishes when the pulsar
directions are orthogonal to v̂. However, it depends on a
different way on the angles among pulsars directions and
v̂: compare Eq. (3.11) with (3.12).

B. Pulsar response to GW circular polarization

The pulsar response function for a circularly polarized
GW signal reads

ΓV
ab ¼ βnVG

ð1Þ
ab þ β2ðαV þ n2V − nVÞGð2Þ

ab ; ð3:13Þ

with

Gð1Þ
ab ¼ −

�
1

3
þ yab ln yab
4ð1 − yabÞ

�
½v̂ · ðx̂a × x̂bÞ�

Gð2Þ
ab ¼

�
2y2ab − 1 − yab − 3yab ln yab

12ð1 − yabÞ2
�

× ½ðv̂ · x̂a þ v̂ · x̂bÞðv̂ · ðx̂a × x̂bÞÞ�: ð3:14Þ

The response function (3.13) starts at order β: the PTA
response to circular polarization vanishes for an isotropic
background, and we need to include SGWB anisotropies
for being sensitive to this quantity [80]. The geometrical
reason being an integration over all directions, which
vanishes for parity-odd isotropic signals associated with
circular polarization [see comment after Eq. (2.18)]. This is
similar in spirit to what happens for planar interferometers
as LISA, for which we need to probe anisotropies in order
to measure effects due to parity violation [76–79].
Also in this case, kinematic anisotropies are proportional

to parameters controlling the frequency slope of the circular
polarization function. The expression (3.13) demonstrates
that the PTA pair can detect circular polarization only if v̂
has components orthogonal to the plane formed by the
pulsar directions. This feature is opposite to what was found
above when discussing pulsar response to GW intensity.
This property—which we point out for the first time—can
then be useful for experimentally distinguishing the two
contributions: see Sec. V.
It is not straightforward to represent in a plot the rich,

multiparameter dependence of the response functions on
the geometrical configuration of the system. For definite-
ness, in Fig. 1 (left panel), we represent the pulsar angular
response to the kinematic dipole, both for intensity and
circular polarization, as a function of the angle between
pulsar directions. In the right panel, we represent the

FIG. 1. We represent those contributions to PTA response functions to GW intensity and circular polarization, which depend on the
angle ζ among pulsar directions. Namely, we plot the quantities within round parentheses of Eqs. (3.12) and (3.14). In black, the
Hellings-Downs curve. Left panel: dashed blue: dipole response to GW intensity; dot-dashed red: dipole response to GW circular
polarization. Right panel: dashed blue: quadrupole response to GW intensity [the part proportional to ðv̂ · pαÞ2 þ ðv̂ · pβÞ2]; dot-dashed
red: quadrupole response to GW circular polarization.
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response functions to the kinematic quadrupole. We
plot only the quantities between round parentheses in
Eqs. (3.12) and (3.14), without the geometrical factors
depending on the relative velocity v̂ among frames. A more
detailed analysis of the geometrical dependence on the
various quantities is postponed to Sec. V. For the moment,
it is sufficient to notice that the dependence on the pulsar

separation of the functions FðiÞ
ab and GðiÞ

ab is qualitatively
different from the Hellings-Downs curve, which we also
represent for comparison.

C. Examples of SGWB frequency dependence

Besides the geometrical dependence of the results on the
location of pulsars, the PTA response to Doppler effects
depends on the frequency dependence of the isotropic part of
the SGWB. In fact, the size and observational impact of
kinematic anisotropies can be enhanced if the SGWB is
characterized by large values for the slope parameters n and
α of Eq. (3.6), at least for certain ranges of frequencies.
While current PTA data are compatible with a power law
profile of the isotropic SGWB as a function of frequency, in
the future more accurate data might favor other scenarios.
For example, broken power law profiles, well motivated by a
variety of SGWB sources [96], have also been considered
in [1] for explaining the most recent pulsar timing array data
(see also [97] for more complex profiles in frequency). The
same is true for more complex SGWB profiles motivated by
primordial black hole physics: see, e.g., the first analysis
carried out in [1,98–101] (and also [102] for a recent review
on inflationary primordial black hole models).
We briefly outline the consequences of these two

scenarios for the physics of kinematic anisotropies:
Broken power law. Consider the following broken power

law ansatz for the intensity profile [103,104]

ĪðfÞ ¼ I0κγ½1þ κσ�−γþδ
σ ; ð3:15Þ

where we denote κ ¼ f=f⋆, and I0, γ, δ, σ are positive
dimensionless parameters, while f⋆ is a pivot frequency
within the PTA detection band. The associated tilt param-
eters result:

nI ¼
γ − δκσ

1þ κσ
;

αI ¼ −
σðγ þ δÞκσ
ð1þ κσÞ2 : ð3:16Þ

The resulting slope nI of the intensity spectrum is equal to
the parameter γ at small frequencies, and to −δ at larger
frequencies. For large values of σ, at intermediate frequen-
cies the quantity αI can increase by several orders of
magnitude, enhancing the quadrupolar kinematic anisotro-
pies to a size comparable to the dipolar ones (see [105]
for related effects explored for the case of interferometers).
We represent in Fig 2 (left panel) an example to visually
demonstrate such behavior for the slope parameters.
Second-order GW from primordial black hole formation.

Primordial black holes can form in the early universe. Their
formation requires to amplify the spectrum of scalar
fluctuations for a range of scales around a pivot frequency
f⋆, which we can consider in the PTA frequency ranges. At
second order in perturbations, these mechanisms induce a
SGWB, whose properties depend on the source scalar
spectrum [106–109] (see also [110–112]). For a narrow
scalar spectrum whose width is much smaller than f⋆, we
expect that the GW energy density ΩGWðfÞ increases as
ðf=f⋆Þ3 for small frequencies f ≪ f⋆ [113]. Then its
profile has a dip (typically at scales around f=f⋆ ≃

ffiffiffiffiffiffiffiffi
2=3

p
),

followed by a pronounced resonance. The frequency profile

FIG. 2. Examples of intensity spectrum profiles, and combinations of slope parameters characterizing kinematic anisotropies.
In all cases, β ¼ 1.2 × 10−3. Left panel: broken power law profile of Eq. (3.15). We choose I0 ¼ 0.1, σ ¼ 100, γ ¼ 3, and δ ¼ 8.
Black line: the intensity. Dashed red line: the combination βjnI j characterizing the amplitude of the dipolar anisotropy. Dot-dashed blue
line: the combination β2jαI þ n2I − nI j, characterizing the amplitude of the quadrupolar anisotropy. Notice that in proximity of the break
of the power law the amplitude of the quadrupolar anisotropy is comparable to the dipolar one. Right panel: ansatz (3.17) motivated by
the physics of primordial black holes. Color codes are as above. In proximity of dips of intensity, the size of kinematic anisotropies
become large.
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then drops its amplitude for f > 2f⋆ (see the discussion
in [108,109]). Given that intensity is connected to the GW
energy density through the relation f3ĪðfÞ ∝ ΩGWðfÞ, we
can consider the following simple ansatz for the intensity
parameter (we call again κ ¼ f=f⋆):

IðκÞ ¼ ðκ2 − 4Þ2ð3κ2 − 2Þ2
64

; 0 ≤ κ ≤ 2; ð3:17Þ

as representative of the behavior described above. In fact,
the intensity IðκÞ ∝ ΩGWðκÞ=κ3 is constant at small
frequencies κ ≪ 1, for then developing the features
described above. Hence, in this context,

nI ¼
8κ2ð3κ2 − 7Þ
3κ4 − 14κ2 þ 8

; ð3:18Þ

αI ¼ −
16κ2ð21κ4 − 48κ2 þ 56Þ

ð3κ4 − 14κ2 þ 8Þ2 : ð3:19Þ

We represent in Fig 2 (right panel) the resulting intensity and
the slope parameter combinations characterizing kinematic
anisotropies. In proximity of the dip in intensity which
precedes the resonance, the size of the slope parameters
becomes so large that dipolar and quadrupolar anisotropies
become comparable in size.

IV. KINEMATIC ANISOTROPIES
AND MODIFIED GRAVITY

Theories of gravity alternative to general relativity allow
for scalar and vector metric components to participate
to gravitational interactions, and to contribute to the GW
signal in terms of extra GW polarizations [114]. The PTA
responses to scalar and vector polarizations have been
derived in [85–91] for the case of isotropic backgrounds
(see also the general treatment in [84]). Such extra polar-
izations induce correlations among pulsar signals distinct
from the Hellings-Downs curve. These alternative predic-
tions are not favored by recent detections [1], which can be
used to set upper bounds on scalar and vector contributions
to the isotropic backgrounds. Nevertheless, in view of future
opportunities to further improve constraints (or maybe
even detect signals of modified gravity), it is interesting
to develop this topic, and analyze how scalar and vector GW
polarizations contribute to kinematic anisotropies.
Analogously to the spin-2 case, the PTA response to

kinematic anisotropies associated with extra GW polar-
izations is sensitive to the slope of scalar and vector spectra,
as well as to the presence of parity violating effects in the
vector sector. Doppler effects are unique probes of these
features, which can increase the opportunities of detection.
Here we derive for the first time analytical formulas
describing the PTA response functions to kinematic anisot-
ropies, associated with scalar and vector polarizations.

The procedure to follow for determining the PTA
response to kinematic anisotropies is identical to what
was done in Secs. II and III for the tensor case—the only
difference being that we utilize the corresponding scalar
and vector GW polarization tensors, whose properties are
described in Appendix A. In particular, the scalar and
vector polarization tensors are used to perform angular
integrals corresponding to Eqs. (2.15) and (2.16).
Scalar contributions to GW signal are characterized only

by scalar intensity, and there is no circular polarization. We
can assume that the total isotropic part for the intensity ĪðfÞ
of the SGWB is made of a tensor and a scalar part,
ĪðfÞ ¼ ĪtnðfÞ þ ĪscðfÞ, possibly hierarchical in size as
Īsc ≪ Īten. Using the same notation of Sec. III, and
introducing the slope parameters for each of the intensity
contributions

ntn ¼
fdĪtnðfÞ
ĪðfÞdf ; nsc ¼

fdĪscðfÞ
ĪðfÞdf ð4:1Þ

αtn ¼
fdntnðfÞ

df
; αsc ¼

fdnscðfÞ
df

; ð4:2Þ

we find that the PTA response function to the scalar part of
the intensity is

Γsc
ab ¼

1

3
−
yab
6

þ β
nsc
12

½v̂ · x̂a þ v̂ · x̂b�

þ β2

60
ðαsc þ n2sc − nscÞ½ðv̂ · x̂aÞðv̂ · x̂bÞ�; ð4:3Þ

where, beside the isotropic part, we consider the dipolar
(proportional to β) and quadrupolar (proportional to β2)
kinematic anisotropy contributions. (Instead, the tensor part
is identical to what was discussed in Sec. III.) Interestingly—
and differently from the tensor case—the PTA response to
scalar kinematic anisotropies is independent from the angle
x̂a · x̂b among pulsars, while it depends on the angles among
the pulsar directions and the frame velocity vector v̂. See
Fig. 3 (left panel). Moreover, it is proportional to nsc, making
it a unique probe of the slope of the scalar contribution to the
total intensity (more on this in Sec. V).
Vector-tensor nonminimally coupled theories of gravity

have also been introduced in view of applications to dark
energy and black hole physics (see, e.g., [115–118]). The
correlators among vector Fourier modes can be decomposed
into intensity and circular polarization, analogously to what
was done in the tensor case in Sec. II. Using formulas (A21)
and (A22), it is straightforward to compute the PTA
response to dipolar anisotropies of the vector intensity
and vector circular polarization, finding (the slope param-
eters are defined analogously as above)
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Γvector
ab ¼−

7

3
þ8yab

3
− lnyabþnvecβ

	�
yab−

4

3
−

lnyab
2ð1−yabÞ

�

× ½v̂ · x̂aþ v̂ · x̂b�þ
�
−
2

3
−

lnyab
2ð1−yabÞ

�
½v̂ ·ðx̂a× x̂bÞ�



:

ð4:4Þ

The response to vector GW components does depend on
the angular separation among pulsar directions. See Fig 3
(right panel). It is very large for small angular separation
among pulsars, where contributions of pulsar terms should
nevertheless be included, see, e.g., [49,85]. In the second
line of Eq. (4.4) we find in the first term the pulsar dipolar
response to vector intensity, which depends on the projec-
tion of the pulsar directions on the velocity vector v̂. The
second term controls the pulsar dipolar response to vector
circular polarization, depending on the projection of v̂ on a
direction perpendicular to the plane of the two pulsar
directions. These features are similar to what was found for
the spin-2 case, see Sec. III.

V. STRATEGIES OF DETECTION

So far, we learned several interesting features of kin-
ematic anisotropies, which make them potential probes of
specific properties of the SGWB:

(i) The geometrical configuration of the pulsar network
enters in the PTA response functions, which depend
in a distinctive way on intensity and circular polari-
zation of the SGWB. While the response to GW
intensity is maximal for pulsars whose positional
vectors are in the direction of the Doppler velocity
vector v̂, the response to GW circular polarization is

enhanced for pulsars lying on a plane orthogonal to
v̂. This distinct behavior in the two cases can be used
for selecting PTA sets aiming at distinguishing and
independently measure the GW intensity and circu-
lar polarization.

(ii) The overall size of kinematic anisotropies can be
amplified in scenarios with a rich frequency
dependence of the isotropic part of the background,
see, e.g., Sec. III C. This property applies to GW
backgrounds associated with standard spin-2 polar-
izations, but possibly also containing GW spin-0
and spin-1 contributions. Hence, a detection of
kinematic anisotropies can give us a complemen-
tary probe of the slope of GW polarization com-
ponents, which is difficult or even impossible to
extract from the study of the isotropic part of the
background only.

We now make concrete applications of our findings, in
order to develop specific strategies of detection of different
physical effects. In a sentence, the main feature we can
exploit is the following:

(i) The presence of kinematic anisotropies implies that
signal correlations among pulsars do not follow the
standard Hellings-Downs angular distribution, but
have deviations that depend on SGWB properties.
Measurements of these deviations, that are deter-
ministic and analytically calculable, can be used to
extract information about the GW signal.

As explained in the Introduction, we are especially
interested in using kinematic anisotropies as a probe of:
(1) parity violation, (2) the frequency slope of correlation
functions, and (3) the presence of extra polarizations. We
discuss these three topics in what follows.

FIG. 3. We represent part of the PTA response function to GW intensity and circular polarization in modified gravity, including
kinematic anisotropies, as a function of the angle ζ among pulsar directions. We understand the overall factors depending on the slopes n
and α, as well as the geometrical factors depending on the velocity among frames. Left panel: black line: PTA response to an isotropic
scalar GW component. Dashed blue: dipole response to scalar GW intensity. Dot-dashed red: quadrupole response to scalar GW
intensity. Right panel: black line: PTA response to an isotropic vector GW component. Dashed blue: dipole response to vector GW
intensity. Dot-dashed red: dipole response to vector GW circular polarization. In the right plot, we plot the quantities within round
parentheses of Eq. (4.4).
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A. Kinematic anisotropies and SGWB
circular polarization

The effects of parity violation in the SGWB kinematic
anisotropies can be cleanly extracted from PTA data, once
we make an appropriate choice of pulsars to monitor. In
fact, it is not even necessary to make combinations among
different signals, as proposed in the first work [80]
discussing the topic (see also [81]). Choosing carefully
the pulsar system, we can reduce sources of statistical
errors by focusing only on pulsars located at convenient
positions to reveal the presence of parity violation.
Equations (3.13) and (3.14) teach us that PTAs are
sensitive to circular polarization only through the anisot-
ropies of the SGWB (as first pointed out in [80]), and
moreover the corresponding signal is enhanced when
maximizing the quantity ½v̂ · ðx̂a × x̂bÞ�. (The same is true
for parity violating effects in possible spin-1 polarization
contributions, see Sec. IV.)
In Fig. 4 (left panel), we represent v̂ · ðx̂a × x̂bÞ as a

function of ζ, for a random set of pulsar pairs whose
positional vectors lie on a plane orthogonal with the velocity
vector v̂. The size of the quantity v̂ · ðx̂a × x̂bÞ is maximal
for intermediate values of ζ ≃ π=2, while it reduces at the
extremes ζ ≃ 0 and ζ ≃ π. In the right panel of the figure, we
represent the response function ΓV

ab to circular polarization,
which shows that scattering effects are more pronounced for
intermediate values of the angle ζ.
Hence, to be maximally sensitive to circular polarization

V, it is convenient to focus on pulsars whose position
vectors form a plane orthogonal to the direction of the
velocity vector v̂, so that we completely remove possible
contaminations from kinematic effects due to GW intensity.
The formula for the optimal signal-to-noise ratio (SNR) for
detecting the presence of V in the PTA time-delay corre-
lators is derived in Appendix B. It results in

SNRV ¼ 2πT1=2

	X
ab

Z
df

V̄2ðfÞðΓV
abðfÞÞ2

SðnÞa ðfÞSðnÞb ðfÞ



1=2

;

¼ 2πT1=2β

	X
ab

Z
df

V̄2ðfÞn2VðfÞ
SðnÞa ðfÞSðnÞb ðfÞ

×

�
1

3
þ yab ln yab
4ð1 − yabÞ

�
2

½v̂ · ðx̂a × x̂bÞ�2



1=2
; ð5:1Þ

where the sum is limited to pulsar pairs orthogonal to v̂,
as described above, and SðnÞ is the noise spectral density
function (see Appendix B for more details). The general
form for the circular polarization response ΓV

ab is given in
Eq. (3.13), and in the second line of Eq. (5.1) we write its
contributions up to the dipole. Besides being proportional to
β, it also depends on the slope of the quantity V̄ðfÞ, and
might be enhanced if V̄ðfÞ is a steep function of frequency.
In fact, the study of kinematic anisotropies—given their
unique dependence on the slope of the spectrum, see
comments between Eqs. (3.7) and (3.8)—might represent
the only way to probe the frequency dependence of
quantities associated with circular polarization. In the most
conservative cases, in case V̄ ≃ Ī with no pronounced
features, in order to detect parity violating effects we would
need a factor 1=β ≃ one thousand more in sensitivity with
respect to current experiments.

B. Kinematic anisotropies and SGWB intensity

Suppose we are interested in extracting from the kin-
ematic anisotropy contributions associated with the GW
intensity ĪðfÞ as introduced in Sec. III A. The correspond-
ing response function ΓI

ab of a pulsar pair ða; bÞ to intensity
Doppler effects is given by Eq. (3.9), which we rewrite here
up to the dipole contributions:

FIG. 4. We consider a random collection of pulsar pairs whose positional vectors x̂a and x̂b lie on the a plane orthogonal to the relative
velocity v̂. Our aim is to represent how geometrical factors depending on v̂ affect the response functions for circular polarization, as a
function of the angle ζ among pulsars. Left: combination v̂ · ðx̂a × x̂bÞ for the random realization, as a function of ζ. Notice that the size
of this quantity decreases for ζ → 0 and ζ → π. Right: black curve: Hellings-Downs distribution. Blue points: response function for our
random realization of pulsars, including the circular polarization kinematic dipole, with βnI ¼ 1=10. Notice that, for intermediate values
of ζ, the points are scattered with respect to the black line.
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ΓI
ab¼

�
1

3
−
yab
6

þyab lnyab

�
þβnI

�
1

12
þyab

2
þ yab lnyab
2ð1−yabÞ

�

× ½v̂ · x̂aþ v̂ · x̂b�: ð5:2Þ

Recall the definition of the parameter yab ¼ ð1 − cos ζÞ=2
is expressed in terms of the angle x̂a · x̂b ¼ cos ζ between
the unit vectors indicating the pulsar positions with respect
to the Earth. The function (5.2) depends on ζ through the
first contribution between parentheses, which corresponds
to the Hellings-Downs curve ΓHD

ab as defined in Eq. (3.10).
But Eq. (5.2) also depends on the angle that each pulsar
vector forms with the relative frame velocity v̂. As
explained in Sec. III, only pulsars whose vector compo-
nents lie along v̂ are sensitive to kinematic anisotropies
relative to the GW intensity.
When plotting the quantity ΓI

ab as a function of ζ
for each pulsar pair in a given set, data points get
scattered around the Hellings-Downs curve of Eq. (3.10)
(see [47,48]). In fact, data are modulated by the quantity
ðv̂ · x̂a þ v̂ · x̂bÞ in Eq. (5.2); we expect that point scatter-
ing around the Hellings-Downs line is maximal for small
values of ζ, while it reduces for ζ ≃ π, since in this limit the
coefficient of the kinematic dipole contribution vanishes:
ðv̂ · x̂a þ v̂ · x̂bÞ ≃ 0. We represent in Fig 5 (left panel) the
value of the quantity ðv̂ · x̂a þ v̂ · x̂bÞ as a function of ζ,
for a random set of pulsars whose positions are coplanar
with the velocity vector v̂. As anticipated, the size of this
quantity reduces as we increase the angle ζ. The right panel
of the same figure shows the resulting response function
ΓI
ab as a function of ζ, which is indeed scattered for small

angular separations ζ with respect to the Hellings-Downs
curve. Hence, the effects of kinematic anisotropies relative
to the GW intensity I are maximal for pulsar pairs lying in
the same plane as v̂, and with whose positional vectors

form a small relative angle among themselves. This
represents an interesting difference with respect to the
GW circular polarization response that we discussed in
Sec. VA.
As manifest from Fig. 5, the kinematic effects we are

interested in are small. On the other hand, by combining
signals,7 we can form null tests for Doppler effects
associated to the intensity of the SGWB. To find such
combinations, we further exploit the results of Sec. III.
Suppose that GWs are characterized by spin-2 polarization
only, with no effects of parity violation. Then, consider two
pairs of pulsars. One pair, ab, lies on a plane parallel to v̂:
hence, it feels the effects of kinematic anisotropies, and the
response function up to the dipole is given by Eq. (5.2). The
other pair, cd, lies on a plane orthogonal to v̂: hence, it is
blind to Doppler effects, and the pulsar response function is
determined only by the Hellings-Downs curve of Eq. (3.10).
We then take the following combination of equal-time

correlators for time residuals [recall their definition in
Eq. (2.14)]:

�
ΓðHDÞ
cd

�
hRaðtÞRbðtÞi −

�
ΓðHDÞ
ab

�
hRcðtÞRdðtÞi

hRcðtÞRdðtÞi

¼ β
Fð1Þ
ab

R
dfnIðfÞĪðfÞsin2ðπftÞ=f2R
dfĪðfÞsin2ðπftÞ=f2 ; ð5:3Þ

where ΓHD is the Hellings-Downs function of Eq. (3.10),
while Fð1Þ is given in Eq. (3.11). Hence, in the context we
are considering, a measurement of the combination (5.3)
allows us to extract only the effects of kinematic

FIG. 5. We consider a random collection of pulsar pairs whose positional vectors x̂a and x̂b lie on the same plane as the relative
velocity v̂. Our aim is to represent how geometrical factors depending on v̂ affect the response functions, as a function of the angle ζ
among pulsars. Left: combination v̂ · x̂a þ v̂ · x̂b for the random realization, as a function of ζ. Notice that the size of this quantity
decreases as ζ → π. Right: black curve: Hellings-Downs distribution. Red points: response function for our random realization of
pulsars, including the intensity kinematic dipole, with βnI ¼ 1=10. Notice that, for small values of ζ, the points are scattered with respect
to the black line.

7See the review [84] for a discussion of possibilities to
combine GW signals to extract specific physical information
from them.
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anisotropies, with no contaminations from the isotropic
background. Interestingly, given the dependence on the
intensity slope nI in the numerator of Eq. (5.3), the
sensitivity to kinematic anisotropies gets enhanced for
signals with features, see for example Sec. III C. In this
sense, kinematic anisotropies allow us to probe features in
the frequency dependence of GW correlators.
While so far we discussed the dipole only, similar

considerations hold for the quadrupole contributions,
which as we have seen can be enhanced in scenarios with
features in the isotropic SGWB as a function of frequency.
See Fig. 6 for representative examples of kinematic quadru-
pole effects.

C. Kinematic anisotropies and scalar contributions
to the GW signal

Models of modified gravity often predict the existence of
light scalar fields associated with gravitational interactions.
They contribute to GW as additional spin-0, scalar polar-
izations [114]. Scalars can contribute to the total GW
intensity. But if their amplitude Īsc is well smaller than the
tensor intensity amplitude Ītn, it might be hard to disen-
tangle their contribution from analyzing only the isotropic
part of the background.
Interestingly, if the isotropic scalar intensity ĪscðfÞ has a

steep slope, or more generally it has pronounced features
associated with its frequency dependence, its consequences
on kinematic anisotropies can allow us to extract the
presence of scalar polarization with PTA data.
In scenarios including contributions from the scalar

polarization, we express the total GW intensity (tensor
plus scalar parts) as

ĪðfÞ ¼ Ītn þ ĪscðfÞ: ð5:4Þ

Defining the intensity slope parameters as in Eqs. (4.1)
and (4.2), we find that the PTA intensity response function

to Doppler dipolar anisotropies in such scalar-tensor
theories can be decomposed as

ΓI
ab ¼ ΓST;iso

ab þ β

12
ΓST;dip
ab ð5:5Þ

with

ΓST;iso
ab ¼ ĪtnðfÞ

Ītn þ ĪscðfÞ
�
1

3
−
yab
6

þ yab ln yab

�

þ ĪscðfÞ
Ītn þ ĪscðfÞ

�
1

3
−
yab
6

�
ð5:6Þ

ΓST;dip
ab ¼

�
nsc þ ntn

�
1þ 6yab þ

6yab ln yab
ð1 − yabÞ

��

× ½v̂ · x̂a þ v̂ · x̂b�: ð5:7Þ

The quantity ΓST;iso
ab describes the pulsar response to the

isotropic part of the scalar-tensor intensity, while ΓST;dip
ab the

pulsar response to the dipolar kinematic anisotropy. Hence,
even if Īsc=Ītn ≪ 1—so that ΓST;iso

ab is “almost blind” to
scalar contributions—a pronounced slope dependence, lead-
ing to nsc ≥ ntn can make ΓST;dip

ab sensitive to the scalar
polarization. An appropriate combination of signals asso-
ciated to different pulsar pairs, following the method
described around Eq. (5.3), isolates the effects of scalar
dipolar anisotropies in the response functions. Consequently,
the presence of scalar polarizations might be detectable even
if scalar polarizations contribute as a small part to the GW
signal amplitude.

VI. OUTLOOK

The recent detection of a stochastic gravitational wave
background from several pulsar timing array collaborations
opens a new window for gravitational wave cosmology.

FIG. 6. This plot complements Figs. 4 and 5, by showing the contributions of the kinematic quadrupole to the angular dependence of
the PTA response functions. Black lines: Hellings-Downs curve. Left panel: the red points are a random realization of the quadrupole
contribution to the intensity response function, choosing the value β2ðαI þ n2I − nIÞ ¼ 1=50. Right panel: the blue points are a random
realization of the quadrupole contribution to the circular polarization response function, with β2ðαV þ n2V − nVÞ ¼ 1=10.
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If the stochastic gravitational wave background has a
cosmological origin, one of its guaranteed features is
kinematic anisotropies due to our motion with respect to
the gravitational wave source. In this work, we investigated
the physical information that can be extracted from a
detection of kinematic anisotropies. We have shown that
the pulsar response functions to Doppler effects depend
on the stochastic background source and on the underlying
gravitational physics. Furthermore, we stressed for the first
time how the measured gravitational wave signal depends
on the pulsar location with respect to the relative velocity
among frames. We presented our results in a convenient
way that emphasizes the geometrical dependence of the
pulsar response functions to different properties of the
stochastic background.
Our findings can be useful in planning future measure-

ments, or in elaborating existing data, for using kinematic
anisotropies to detect, or set more stringent constraints, on
parity violation in gravitational interactions, on the presence
of scalar/vector polarizations, or to develop independent
probes of the frequency profile of the stochastic background.
Besides backgrounds detectable at nanohertz frequencies
with pulsar timing arrays, it would be interesting to apply
our findings also to astrometric measurements of gravita-
tional waves based on Gaia data, see, e.g., the discussion
in [119–123].
Current measurements (see [65]) set upper bounds

Cl>0=C0 ≤ 0.2 on the amplitude of multipoles of the
SGWB. The work [90] estimates that a detection is possible
only for anisotropies whose size is of the order of 0.1 with
respect to the isotropic background, unless the amplitude of
the latter is measured with high SNR. However, the recent
first detection of the isotropic part of the background by
various international PTA collaborations gives hope for the
future. Future measurements of pulsar timing residuals, for
example by the SKA collaboration, will monitor many more
pulsars than current experiments. Their higher sensitivity
will improve the confidence on the detection of the isotropic
part of the SGWB and its SNR, enhancing the opportunity to
detect SGWB anisotropies.
The theoretical study in this manuscript adds further

ingredients that can help in planning future dedicated
searches of Doppler anisotropies. Moreover, the manuscript
studies the consequences of SGWB with a frequency
dependence that goes beyond a power law, as motivated
for example by early universe models producing primordial
black holes (see Sec. III C). In this case, we cannot apply the
factorizable ansatz for the anisotropic SGWB often used
in the literature, as constituted of a part depending on
frequency, times a part depending on direction. In fact, we
find that a SGWB with enhanced features in its frequency
dependence can amplify the size of kinematic anisotropies to
values well larger than the amplitude v=c ∼ 10−3 one would
expect for kinematic anisotropies.

In our work, we assumed that the direction and amplitude
of the velocity vector among the cosmological source of
gravitational waves and the solar system baricenter coin-
cides to what was measured by the cosmic microwave
background dipole. On the other hand, our formulas can be
used to directly test this hypothesis, somehow analogously
to the proposal [124] in the different context of radio
sources. In fact, the topic of radio galaxy and quasar
measurements of the cosmic dipole is a point of debate
in recent literature [125–130]. It would be interesting to
use gravitational waves as an independent probe of the
direction of the kinematic dipole, and test alternative
scenarios based on large scale superhorizon isocurvature
fluctuations [131,132], intrinsic anisotropies [133], or more
general deviations from the cosmological principle [134].
In this sense, this program belongs to the “multimessenger
cosmology” framework advocated in [135,136].
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APPENDIX A: IDENTITIES INVOLVING
THE POLARIZATION TENSORS

We derive useful identities involving the polarization
tensors entering in the Fourier transform of the GW signals,
which we used in Secs. II–IV. We start discussing the spin-2
case, then consider respectively the spin-0 and spin-1 cases.
Spin-2 polarization tensors. In the main text, Sec. III, we

focused on the ðþ;×Þ basis for the polarization tensors. To
develop our arguments, in this appendix it is convenient to
introduce the ðR;LÞ circular basis:

eR=Lab ðn̂Þ ¼ eþabðn̂Þ � ie×abðn̂Þffiffiffi
2

p : ðA1Þ

We assume that the polarization tensors eþ;×
ab are real

quantities: hence ðeRabÞ� ¼ eLab. Notice also the identity

eRabðn̂ÞeLcdðn̂Þ ¼
1

2
ðeþabeþcd þ e×abe

×
cdÞ þ

i
2
ðe×abeþcd − eþabe

×
cdÞ:
ðA2Þ

We identify the circular polarization indices with �1:
λ ¼ R=L ¼ �1. The polarization tensors in the circular
basis can be conveniently expressed as a product of
polarization vectors:

eλabðn̂Þ ¼ eλaðn̂Þeλbðn̂Þ ¼
p̂a þ iλq̂affiffiffi

2
p p̂b þ iλq̂bffiffiffi

2
p : ðA3Þ
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The real unit vectors p̂a, q̂a are orthogonal among
themselves and to the GW direction n̂. We can express
q̂ as

q̂a ¼ ϵabcn̂bp̂c; ðA4Þ

with ϵabc the Levi-Civita tensor in three dimensions. (For
what comes next, we do not need to make any specific
choice for the direction p̂a.) It is easy to verify the
following identity involving symmetric tensors:

p̂ap̂b þ q̂aq̂b ¼ δab − n̂an̂b: ðA5Þ

In fact, both the lhs and rhs are parallel to p̂a and q̂a,
orthogonal to n̂a, and of trace 2. Moreover, the antisym-
metric combination p̂aq̂b − p̂bq̂a is orthogonal to n̂a, and
satisfies the identity

p̂aq̂b − p̂bq̂a ¼ ϵabcn̂c: ðA6Þ

We can convince ourselves of the validity of relation (A6)
by contracting with p̂a, q̂b:

X
a

p̂aðp̂aq̂b − p̂bq̂aÞ ¼ q̂b ¼ p̂aϵabcn̂c; ðA7Þ

and

X
a

q̂aðp̂aq̂b − p̂bq̂aÞ ¼ −p̂b ¼ q̂aϵabcn̂c; ðA8Þ

compatibly with Eq. (A6). See also [79].
Identities (A5) and (A6) ensure the relation (no summa-

tion over polarization indexes)

eλaðn̂Þðeλbðn̂ÞÞ� ¼
pa þ iλqaffiffiffi

2
p pb − iλqbffiffiffi

2
p ; ðA9Þ

¼ 1

2
ðpapb þ qaqbÞ −

iλ
2
ðpaqb − pbqaÞ;

ðA10Þ

¼ 1

2
ðδab − nanbÞ −

iλ
2
ϵabcnc: ðA11Þ

Hence,

eλabðn̂Þðeλcdðn̂ÞÞ� ¼ eλaðn̂Þðeλcðn̂ÞÞ�eλbðn̂Þðeλdðn̂ÞÞ� ðA12Þ

¼ 1

4
ðδac − nanc − iλϵacfnfÞ

× ðδbd − nbnd − iλϵbdgngÞ: ðA13Þ

Expanding the product, and passing from the circular ðR; LÞ
polarization to the original ðþ;×Þ polarization using
Eq. (A2), we find the identities

X
λλ0

eλabðn̂Þeλ
0
cdðn̂Þδλλ0 ¼

1

2
ðδac − nancÞðδbd − nbndÞ

þ 1

2
ðδad − nandÞðδbc − nbncÞ

−
1

2
ðδab − nanbÞðδcd − ncndÞ;

ðA14Þ

and

X
λλ0

eλabðn̂Þeλ
0
cdðn̂Þϵλλ0 ¼

1

2
ðδac − nancÞϵbdfnf

þ 1

2
ðδbd − nbndÞϵacfnf: ðA15Þ

We used these relations in the main text to obtain Eqs. (2.17)
and (2.18), controlling the PTA response respectively to GW
intensity and circular polarization.
Spin-0 polarization tensor. We can be brief here,

since the spin-0 mode is associated with a single polari-
zation tensor

σabðn̂Þ ¼ n̂an̂b; ðA16Þ

which we used for deriving Eq. (4.3) in the main text.
Spin-1 polarization tensors. To describe spin-1 polari-

zation tensors we can use a ðþ;×Þ basis or a circular ðR; LÞ
basis: they are related exactly as in Eq. (A1) for the spin-2
case. In the circular basis ðR; LÞ ¼ �1, the vector polari-
zation tensors read

uλ
abðn̂Þ ¼

1ffiffiffi
2

p ðeλaðn̂Þn̂b þ n̂aeλbðn̂ÞÞ; ðA17Þ

with eλaðn̂Þ the vectors appearing in Eq. (A3). We have the
relation

uλ
abðn̂Þðuλ

cdðn̂ÞÞ�

¼ 1

2
ðeλaðn̂Þn̂b þ n̂aeλbðn̂ÞÞ

�
ðeλcðn̂ÞÞ�n̂d þ n̂cðeλdðn̂ÞÞ�

�
;

ðA18Þ

¼ 1

2

�
eλaðn̂Þðeλcðn̂ÞÞ�n̂bn̂d þ eλbðn̂Þðeλcðn̂ÞÞ�n̂an̂d

þ eλaðn̂Þðeλdðn̂ÞÞ�n̂bn̂c þ eσbðn̂Þðeλdðn̂ÞÞ�n̂an̂c
�
; ðA19Þ
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¼ 1

4
½δac − n̂an̂c − iλϵacfnf�n̂bn̂d

þ 1

4
½δbc − n̂bn̂c − iλϵbcfn̂f�n̂an̂d;

¼ 1

4
ðδacn̂bn̂d þ δbcn̂an̂d þ δadn̂bn̂c þ δbdn̂an̂cÞ− n̂an̂bn̂cn̂d

−
iλ
4
ðϵacfn̂bn̂d þ ϵbcfn̂an̂d þ ϵadfn̂bn̂c þ ϵbdfn̂an̂cÞn̂f:

ðA20Þ

Proceeding as we did in deriving Eqs. (A14) and (A15) for
the spin-2 case, we can then obtain the following identities
for vector polarizations in the ðþ;×Þ basis:
X
λλ0

uλ
abðn̂Þuλ0

cdðn̂Þδλλ0 ¼
1

2
ðδacn̂bn̂d þ δbcn̂an̂d þ δadn̂bn̂c

þ δbdn̂an̂cÞ − 2n̂an̂bn̂cn̂d; ðA21Þ

and

X
λλ0

uλ
abðn̂Þuλ0

cdðn̂Þϵλλ0 ¼
1

2
ðϵacfn̂bn̂d þ ϵbcfn̂an̂d

þ ϵadfn̂bn̂c þ ϵbdfn̂an̂cÞn̂f; ðA22Þ

which we used for deriving Eq. (4.4) in the main text.

APPENDIX B: THE OPTIMAL
SIGNAL-TO-NOISE RATIO

In this appendix we discuss the computation of the
signal-to-noise ratio, in terms of a match-filtering technique
as discussed in the paper [46] and the textbook [137]. We
focus here on the case of spin-2 polarizations, but the
arguments are the same for spin-1 and spin-0. We assume
that the noise dominates over the signal. The latter can be
extracted once we know its properties.
The stationary two-point correlator for time delays of

pulsar measurements summed over a PTA set of pulsar
pairs ða; bÞ is weighted by an appropriate choice of filters,

Y¼
X
ab

Z
T=2

−T=2
dt1

Z
T=2

−T=2
dt2zaðt1Þzbðt2ÞQabðt1− t2Þ; ðB1Þ

where T indicates the duration of the experiment. We pass
to Fourier space, and write the previous expression as

Y ¼ 1

2

X
ab

Z
∞

−∞
df1df2δTðf1 − f2Þz�aðf1Þzbðf2Þ

×Qabðf2Þ þ c:c: ðB2Þ

The “finite-time” delta function is

δTðfÞ ¼
sin ðπfTÞ

πf
: ðB3Þ

We assume that QabðtÞ is real, and its Fourier transform
obeys Q�

abðfÞ ¼ Qabð−fÞ. Decomposed in real and imagi-
nary parts, we can express it as

QabðfÞ ¼ QI
abðfÞ þ iQV

abðfÞ; ðB4Þ

with QI;V
ab two real functions of frequency. In defining the

SNR, the signal S is the averaged value of Y when the GW
signal is present; the noise N is the root mean square of Y
when the GW is absent. The aim is to determine the optimal
filter functions QI and QV for extracting the GW signal
from the noise.
We start expressing the signal S as

S ¼ hYi ¼ 1

2

X
ab

Z
∞

−∞
df1df2δTðf1 − f2Þhz�aðf1Þzbðf2Þi

×Qabðf2Þ þ c:c: ðB5Þ

Using formulas developed in Sec. II, we can write the two-
point correlator in Fourier space as

hz�aðf1Þzbðf2Þi ¼
1

2

Z
d2n̂Dλ

aDλ0
b ðIðf1; n̂Þδλλ0

− iVðf1; n̂Þϵλλ0 Þδðf1 − f2Þ ðB6Þ

¼ πĪðf1ÞðΓI
abðf1Þ − iΓV

abðf1ÞÞ: ðB7Þ

We plug this expression in Eq. (B5), and use the decom-
position (B4), finding

S ¼ πT
X
ab

Z
dfĪðfÞ½ΓI

abðfÞQI
abðfÞ þ ΓV

abðfÞQV
abðfÞ�

ðB8Þ

since δTð0Þ ¼ T. The computation of the noiseN is identical
to the textbook treatment of [137]. Characterizing the

correlator of pulsar noise na in terms of the quantity SðnÞa as

hn�aðf1Þnaðf2Þi ¼
1

2
δðf1 − f2ÞSðnÞa ðf1Þ; ðB9Þ

the square of the noise is

N2 ¼ T
4

X
ab

Z
dfQabðfÞQ�

abðfÞSðnÞa ðfÞSðnÞb ðfÞ: ðB10Þ
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Hence, the signal-to-noise ratio results:

SNR ¼ T1=2 2π
P

ab

R
dfĪðfÞ½ΓI

abðfÞQI
abðfÞ þ ΓV

abðfÞQV
abðfÞ�hP

cd

R
df½ðQI

cdðfÞÞ2 þ ðQV
cdðfÞÞ2�SðnÞc ðfÞSðnÞd ðfÞ

i
1=2 : ðB11Þ

We now determine the optimal choice of filter function that maximizes the SNR. Given a tensor with structure

ðAð1Þ;Að2ÞÞ ¼
�
ðAð1Þ

ab ; A
ð2Þ
ab Þ; ðAð1Þ

cd ; A
ð2Þ
cd Þ…

�
; ðB12Þ

where the dots run over the pulsar pairs, one considers the positive-definite product

hðAð1Þ;Að2ÞÞ; ðBð1Þ;Bð2ÞÞi ¼
X
ab

Z
df

�
Að1Þ
ab A

ð2Þ
ab þ Bð1Þ

ab B
ð2Þ
ab

�
SðnÞa ðfÞSðnÞb ðfÞ: ðB13Þ

Using this tool, we can schematically express the SNR of Eq. (B11) as

SNR ¼ 2πT1=2 hðQð1Þ; Qð2ÞÞ; ðĪΓI=S2n; V̄ΓV=S2nÞi
hðQð1Þ; Qð2ÞÞ; ðQð1Þ; Qð2ÞÞi : ðB14Þ

We now have different options:
(i) If we wish to maximize the SNR to the total signal (intensity and circular polarization combined) we choose the filter

ðĪΓI=S2n; V̄ΓV=S2nÞwhich obviously maximizes the scalar product of Eq. (B14). Using this filter we conclude that the
optimal SNR is

SNRIþV ¼ 2πT1=2

	X
ab

Z
df

Ī2ðfÞðΓI
abðfÞÞ2 þ V̄2ðfÞðΓV

abðfÞÞ2
SðnÞa ðfÞSðnÞb ðfÞ



1=2

: ðB15Þ

Its value depends on the GW intensity and
circular polarization, and on the geometric quan-
tities constituting ΓI

ab and ΓV
ab, as discussed in the

main text.
(ii) We can instead be interested to extract from the

signal only components associated for example to
circular polarization, and determine the filter better
suited to this purpose. The filter is then ð0; V̄ΓV=S2nÞ
(i.e. a filter whose Fourier transform has only
imaginary and no real component), and the asso-
ciated SNR is

SNRV ¼ 2πT1=2

	X
ab

Z
df

V̄2ðfÞðΓV
abðfÞÞ2

SðnÞa ðfÞSðnÞb ðfÞ



1=2

:

ðB16Þ

As discussed in the main text, the sensitivity to
circular polarization is then enhanced by selecting
pulsars whose directions form a plane orthogonal to
the velocity vector v̂ between the SGWB source and
detector frames.

(iii) Analogously, if we wish only to be sensitive to the
GW intensity, we select a filter with a real part only,
and the maximal SNR is

SNRI ¼ 2πT1=2

	X
ab

Z
df

Ī2ðfÞðΓI
abðfÞÞ2

SðnÞa ðfÞSðnÞb ðfÞ



1=2

:

ðB17Þ

The sensitivity to intensity is enhanced by select-
ing pulsars whose directions are parallel to the
velocity vector v̂ between the SGWB source and
detector frames.
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