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Human-induced climate change is leading to temperature rises, along with
increases in the frequency and intensity of heatwaves. Many animals respond
to high temperatures through behavioural thermoregulation, for example by
resting in the shade, but this may impose opportunity costs by reducing fora-
ging time (therefore energy supply), and so may be most effective when food
is abundant. However, the heat dissipation limit (HDL) theory proposes that
even when energy supply is plentiful, high temperatures can still have
negative effects. This is because dissipating excess heat becomes harder,
which limits processes that generate heat such as lactation. We tested predic-
tions from HDL on a wild, equatorial population of banded mongooses
(Mungos mungo). In support of the HDL theory, higher ambient temperatures
led to lighter pups, and increasing food availability made little difference to
pup weight under hotter conditions. This suggests that direct physiological
constraints rather than opportunity costs of behavioural thermoregulation
explain the negative impact of high temperatures on pup growth. Our results
indicate that climate change may be particularly important for equatorial
species, which often experience high temperatures year-round so cannot
time reproduction to coincide with cooler conditions.
1. Background
Human-induced climate change is causing average temperatures to rise and is
increasing the frequency, severity and duration of heatwaves [1]. High tempera-
tures have been shown to negatively impact a variety of key mammalian
life-history traits including body size, reproductive success and survival,
which may in turn lead to population declines [2–5]. Many species attempt to
avoid hyperthermia by changing their behaviour, for example through a
reduction in activity or microhabitat selection of cooler locations [6,7]. However,
these strategies, collectively called ‘behavioural thermoregulation’, can be costly
in terms of lost opportunities because they require animals to alter their patterns
of behaviour, which can carry significant fitness costs. For example, animals may
cease foraging during hot periods, which can reduce their energy intake [8].

High temperatures may also be costly, even when there is ample food avail-
able from the environment [9]. The heat dissipation limit (HDL) theory proposed
by Speakman et al. [10] suggests that that as air temperature increases, it becomes
harder for metabolic heat to be lost, and if heat is generated faster than it can be
lost, this will cause hyperthermia. The reduced capacity for heat to be dissipated
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(rather than energy availability) may therefore be the primary
limiter of maximum energy expenditure [10].

Lactation is considered the most energetically costly event
in a female mammal’s lifetime [11], and milk production is a
highly exothermic process [12,13], leading to lactating animals
being particularly vulnerable to chronic hyperthermia [14].
In support of the HDL theory, experimental studies on
captivemice (Musmusculus) [12,15], pigs (Sus scrofa domesticus)
[16], dairy cattle (Bos taurus) [17] and hamsters (Cricetulus
barabensis) [18] have found high temperatures to depress
milk production and reduce offspring growth, although it is
unclear from these studies whether females stop lactating
before or after mild hyperthermia sets in. The HDL theory
has also been supported by multiple fur-removal experi-
ments [11,19–21], whereby removing fur increases thermal
conductance, allowing for greater heat dissipating capacity.

So far, the HDL theory has been predominantly tested via
laboratory experiments, with very few studies testing the HDL
theory in the wild (but see Nilsson et al. [22] who studied
HDL in relation to brood care in birds, rather than lactation
in mammals). When studies have been conducted in captivity,
food is given ad libitum, such that the HDL theory in relation
to lactation remains untested under limited food resources. In
natural systems, food supply largely determines energy avail-
ability and can have a strong impact on reproductive output
[23], so studies of wild systems are required to understand
the relative importance of high temperatures and food
supply on lactation and offspring growth [23].

There is also a lack of studies investigating the impact of
high temperatures in equatorial species. Animals living close
to the equator at low altitudes experience relatively high
temperatures year-round with little seasonal variation com-
pared to those in temperate regions. Equatorial species are
therefore likely to be physiologically adapted to relatively
constant temperatures, and so may have narrow thermal
ranges which could leave them particularly susceptible to
even small changes in temperature [24,25]. Furthermore, in
temperate regions, high seasonal temperatures are generally
associated with an increase in food availability [26] which
can make it difficult to distinguish between the direct effect
of temperature on reproductive output versus indirect effects
via impacts on food supply [23]. Tropical regions, however,
are characterized by high seasonal variation in rainfall,
which is often the main determinant of food supply
[27–30]. Studying equatorial species can therefore allow us
to decouple the impacts of temperature variation and food
supply on energy dynamics.

Here, we test the HDL theory in a wild population of
banded mongooses (Mungos mungo) in equatorial Uganda.
Banded mongooses live in family groups where females
(mean = 3.5 females, range 1 to 13) give birth synchronously
(usually on the same night) to between one and five pups
each [31]. The resultant litters are raised communally in an
underground den, and pups are suckled indiscriminately by
multiple lactating females for approximately 30 days before
the weaning process begins [31,32]. Underground rearing is
likely to buffer pups against direct negative effects of high
temperatures [33], therefore separating thermal effects on
pups from those on lactating females. This makes them ideal
for studying the indirect effects of high temperatures on
pup growth via its effect on milk production. Furthermore,
banded mongoose adults behaviourally thermoregulate by
foraging when temperatures are cooler, resting in the shade
during the hottest parts of the day [34]. High temperatures
therefore likely result in reduced time available for foraging
[35]. However, rainfall is tightly linked to the availability of
invertebrate prey [36–38], allowing us to investigate whether
high food availability can compensate for the negative impacts
of high temperatures.
2. Methods
Our study used life history, bodymass, genetic and environmental
data collected between August 2000 andMarch 2018 from a popu-
lation of wild banded mongooses in Queen Elizabeth National
Park, Uganda (0°120 S, 27°540 E). At any one time, the population
was made up of 8–12 social groups, each of which typically con-
tained between 10 and 30 adults [39]. Banded mongooses
primarily fed on invertebrates [40] and while groups foraged
together, foraging itself was not cooperative [41]. Groups under-
took two foraging sessions per day; the first session beginning
shortly after dawn and usually lasting between 3–4 h, and the
second session beginning in the afternoon, usually lasting 2–3 h
and finishing before sunset [34,35].

(a) Climatic variables
Our study site is located in a scrub–savannah habitat and can be
characterized by relatively constant temperatures (monthly mean
maximum daily temperature ± s.d. = 29.5 ± 1.5°C) [42]. Neverthe-
less, short-term variation does occur, including heatwaves [43].
There are also two rainy seasons per year, from March–May
and August–December, with drier periods in between. We
used rainfall as a proxy for food availability as invertebrate
prey are more abundant at higher rainfall [36,37], and rainfall
has previously been shown to positively affect weight gain in
adults [42] and pups [44]. Data on rainfall (mm) and maximum
ambient temperature (Tmax) (°C), both measured to one decimal
place, were collected daily from a weather station located in our
study site.

(b) Life history
Our study population is habituated to observation at less than
10 m (usually less than 5 m) [45]. Each social group was visited
every 1–3 days to determine group composition and record
births, deaths and other life-history data [46]. Pregnancies and
births were identified by changes in the size and shape of the
abdomen, the absence of previously pregnant females on fora-
ging trips the morning after birth, and the start of pup-care
behaviour [31,39,47].

(c) Body mass
Since pups are raised in underground dens it was not possible to
weigh them until they emerged at approximately 30 days old,
after which they start accompanying the group on foraging trips
and wean onto solid food [39]. Pups were caught by hand, sexed
and weighed using a portable electronic scale (accuracy ± 1.5 g)
in the morning (ca 07.30 am) (see Jordan et al. [45]). Due to time
constraints and field researcher safety considerations, there was
some variation in the age of pups at first weighing. This study
included 215 pups weighed when they were between 28 and 38
days old (mean mass = 188.9 g (range 87–307 g); mean age at
weighing = 32.9 days), which captures an age range at which
weighing pups is possible butwhen pups still rely heavily onmilk.

(d) Maternity
Synchronized birthing masks the maternity of banded mongoose
pups so maternity cannot be determined behaviourally. Instead,



Table 1. Summary of an LMM investigating pup mass after the lactation period. Our model included 215 pups, with 60 different mothers, born into nine
social groups.

fixed effects estimate se d.f. t-value p-value

intercept −269.983 135.505 191 −1.99 0.048

age 3.132 0.884 198 3.55 4.90 × 10−4

sex (male) 5.986 4.506 182 1.33 0.186

number of lactating females −1.598 1.343 194 −1.19 0.235

rainfall 170.137 42.966 188

temperature 11.712 4.649 191

temperature : rainfall −5.574 1.458 187 −3.82 1.79 × 10−4

(b)

maximum
temperature (°C)

28.30
29.58
30.86
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Figure 1. (a) Banded mongoose pups emerging from their underground den at around 30 days old. (b) Pup body mass as a function of the interaction between
temperature and rainfall. Lines show the predictions from the LMM, plotted for three temperatures; 28.3 (mean− 1 s.d.), 29.6 (mean), and 30.9°C (mean + 1 s.d.),
with the shaded areas representing 95% CI. Temperature was included as a continuous variable in our analysis, but we show the predicted rainfall–pup mass
relationship at three temperatures for illustrative purposes. At low and medium temperatures, pup weight increases with rainfall, however at high temperatures,
there is no effect of rainfall on pup weight (as evident from the CIs).
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maternity data were extracted from an existing genetic pedigree
based on 35–43 microsatellite loci; see [48] and [49].
(e) Statistical analysis
We constructed a linearmixed effectsmodel (LMM) in R 3.3.1 [50],
with pup mass as our response variable. To investigate how rain-
fall affected pup mass at varying temperatures, we modelled the
interaction between rainfall and temperature. We used mean
daily Tmax (°C) during the lactation period (0–30 days) and the
mean rainfall (mm) over the 30 days prior to the birth of
the pup birth as a proxy for food availability during the lactation
period, since it takes this time for high rainfall to translate into
higher food availability [36–38]. Previous studies also indicate
that rainfall over this time period is positively correlated with
adult daily weight gain [42]. In our model, mean Tmax ranged
from 27.0–32.1°C and mean rainfall values ranged from 0.1 to
6.5 mm. Our rainfall and temperature measures were not strongly
correlated (correlation coefficient = 0.081). The number of lactat-
ing females present in the group was added as a covariate since
pups with access to more lactating females may be able to
obtain more milk, although these pups will likely also face
higher competition from other pups. Sex was fitted as a covariate
since male pups were previously found to weigh slightly more
than females [51], and pup age was included to account for
age differences in weighing. It is possible that offspring weight
might vary by mother [52] so we fitted the identity of the
mother as a random effect. We also fitted the identity of
the social group as a random effect to account for variation in
group-level factors such as territory quality. Standard model
checks were employed following Crawley [53].
3. Results
Pupmasswas significantly affected by the interaction between
temperature and rainfall (table 1). Under cooler temperatures,
higher levels of rainfall were associated with heavier pups,
however, under hotter conditions, changes in rainfall had
little effect on pup mass (figure 1). Our model controlled for
the significant effect of pup age at weighing, and we found
no effect of pup sex or the number of lactating females.
4. Discussion
We found that under hotter conditions, increased food avail-
ability did not lead to increased banded mongoose pup
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mass. This is consistent with the HDL theory, which proposes
that as the air temperature gets closer to body temperature, dis-
sipating heat becomes harder [10]. As a result, lactating
females may be forced to suppress exothermic processes
such as milk production (either at or approaching their critical
thermal maximum) in order to avoid hyperthermia [15]. At
lower ambient temperatures, however, banded mongoose
pupbodymass increasedwith food supply.Here, heat dissipa-
tion can happen faster, which may lift constraints on how
quickly energy can be metabolized [10]. As a result, when
there is sufficient food available, females can consume more
energy to increase milk production, which is consistent with
our finding of greater pup growth.

In addition to placing constraints on lactation, high
temperatures could also directly affect the pups’ ability
to dissipate heat causing them to reduce milk intake in
order to avoid hyperthermia, although likely to a lesser
extent than adults due to the pups’ higher surface area to
volume ratios [23]. Similar effects have been found in meer-
kats, whereby weaned pups have reduced mass gain at
high temperatures, but without an apparent reduction in
feeding rate [54]. However, in our study of banded mon-
gooses, we focused on pups that are raised in underground
dens pre-weaning. While there have been no studies of
the thermal properties of banded mongoose dens, similar
structures have been shown to provide insulation against
temperature fluctuations in a variety of other species
[55–57]. Dens are therefore likely to provide protection to
banded mongoose pups against direct negative effects of
high temperatures. Lactating females, however, must forage
in ambient temperatures, thus limitations on lactation are
likely to produce the greatest impacts on pup growth in
this species.

High temperatures during the lactation period are likely
to have downstream impacts on pups post-weaning. For
example, pups that are lighter at emergence from the den
are less likely to survive to nutritional independence (90
days) [44,58] and weigh less at maturity (1 year) [58]. Further-
more, body mass at maturity influences lifetime reproductive
success, with lighter individuals of both sexes producing
fewer pups [58]. Hot conditions experienced in early life
could therefore have lifelong fitness implications.

High temperatures are also likely to have impacts that
go beyond body mass. For example, high seasonal tempera-
tures have been shown to reduce the probability of the
communal litter surviving to 30 days [35]. As our findings
are based on those pups that survived the lactation period,
we may have missed cases where lactation has been reduced
to the extent that it has caused pupmortality prior to the emer-
gence of the litter from the den. Unfortunately, it is rarely
possible to observe or weigh banded mongoose pups while
in the den, so causes of pre-emergence mortality are difficult
to determine.

High temperatures during the early developmental stages
have also been found to negatively impact other species. For
example hot conditions reduce the survival of southern pied
babblers (Turdoides bicolor) to independence [5], reduce mass
gain and fledgling mass in common fiscal nestlings (Lanius
collaris) [59] and reduce mass gain and weight at nutritional
independence in meerkats [54]. Reduced body size is in
turn associated with reduced survival, fecundity and repro-
ductive success [60–62]. Therefore, the negative impacts of
hot conditions during development on lifelong fitness could
be relatively common among birds and mammals, although
the importance of HDL across species is currently unclear
and needs testing.

As global temperatures rise and heatwaves increase in
frequency and intensity [1], temperate species may be able to
adjust their reproductive phenology [63,64], for example
to avoid lactating when seasonal temperatures are high.
It is unclear, however, if and how equatorial species will
be able to adapt to these changes. Our study confirms the
susceptibility of an equatorial species to small changes
in temperature; mean daily maximum temperatures over the
lactation period only ranged from 27.0 to 32.1°C. Our results
also imply that high food abundance may not compensate
for the negative impacts of high temperatures on lactating
females. Although rainfall is predicted to increase in western
Uganda with climate change [65], temperatures across
Uganda are also continuing to rise [66] and so over time,
increased rainfall may not compensate for higher tempera-
tures, and rainfall may cease to predict pup mass. In the
light of rising global temperatures as well as more
intense and frequent heatwaves [1], we highlight a clear
need for greater research efforts on the effect of climatic
variation on species occupying tropical and equatorial
regions, where populations live and breed under consistently
high temperatures.
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