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Abstract. Several pulsar timing array (PTA) collaborations recently announced the first
detection of a stochastic gravitational wave (GW) background, leaving open the question of
its source. We explore the possibility that it originates from cosmic inflation, a guaranteed
source of primordial GW. The inflationary GW background amplitude is enhanced at PTA
scales by a non-standard early cosmological evolution, driven by Dirac-Born-Infeld (DBI)
scalar dynamics motivated by string theory. The resulting GW energy density has a broken
power-law frequency profile, entering the PTA band with a peak amplitude consistent with
the recent GW detection. After this initial DBI kination epoch, the dynamics starts a new
phase mainly controlled by the scalar potential. It provides a realization of an early dark
energy scenario aimed at relaxing the Hy tension, and a late dark energy model which explains
the current cosmological acceleration with no need of a cosmological constant. Hence our
mechanism — besides providing a possible explanation for the recent PTA results — connects
them with testable properties of the physics of the dark universe.
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1 Introduction

Cosmic inflation, well tested at large CMB scales, is a guaranteed source of primordial tensor
fluctuations [1-5]. However, their amplitude is typically too small to be directly detected by
gravitational wave (GW) experiments. In this work we explore a post-inflationary mechanism
capable of enhancing the size of inflationary tensor fluctuations at frequencies detectable by
pulsar timing arrays (PTA) (for other examples of post-inflationary mechanisms, see [6-8]).
The GW energy density parameter Qgw depends on the early-time behavior of the cosmo-
logical scale factor, which can be influenced by the presence of stiff matter [9-11], or scalar
fields coupled conformally [12-17] or disformally [18, 19] to the metric. Extending the results
of [19], we show that an early epoch of scalar domination — motivated by a quantum grav-
ity approach to early-universe cosmology — induces a non-standard cosmological evolution,
which enhances the amplitude of Qaqw at frequencies around 10~® Hz. Our framework pro-
vides a possible contribution towards the explanation of the recent detection of a stochastic
GW background, as announced by several PTA collaborations: NANOGrav [20], PPTA [21],
EPTA [22], CPTA [23] (see also e.g. [24, 25] for some of their own preliminary interpretations
in terms of early universe sources). At the same time, it may ameliorate some well-known
cosmological problems related with the Hubble tension (see [26, 27] for reviews), and the
nature of dark energy.

We start with a theoretical section 2 developing our string-motivated set-up based on
the dynamics of a D-brane in a higher-dimensional space-time. The D-brane motion through
extra-dimensional angular directions is described in terms of an axionic field, coupled to four-
dimensional gravity, and to matter living on the brane through a disformal coupling [28].
The scalar-tensor action includes a kinetic term of Dirac-Born-Infeld (DBI) form, which is
instrumental in controlling an initial phase of kinetically-driven scalar evolution that enhances
the GW spectrum. Moreover, the Lagrangian includes a potential term, responsible for
driving both an early and a late dark energy dominated epoch (for an example of a cascading
dark energy scenario, see [29]).

We continue with a phenomenological section 3, which starts examining how the initial
scalar dynamics drives an initial epoch of coupled DBI kination. This phase affects the early
evolution of the Hubble parameter, enhancing the size of the inflationary SGWB spectrum,
which acquires a broken power-law profile with a peak amplitude well within the sensitivity



curves of PTA experiments. Interestingly, the characteristic scale controlling the DBI kination
is comparable with the scale of QCD transition. We compare the peak amplitude of our profile
with recent data from NANOGrav collaboration [20], finding overall agreement.

After examining the consequences of our set-up for GW physics, in section 3.2 we discuss
how the initial DBI kination phase is connected to a stage where the scalar dynamics is
mainly controlled by a string-motivated axion potential. The structure of the axion potential
is determined by the isometries of the extra-dimensional space, as well as non-perturbative
effects. It can be sufficiently rich to first drive a phase characterized by early dark energy
— which can address the Hubble tension — followed by a late dark energy epoch, which
can explain the current acceleration of our universe. Interestingly, the corresponding axion
decay constants acquire sub-Planckian values. They might represent an acceptable set-up
for building models of dark energy within string theory (see e.g. [30] for a review).

2 Our set-up

In this section we discuss the effective action for a string-motivated D-brane system. It can
be described in terms of a scalar-tensor theory with interesting consequences for cosmology
and the physics of gravitational waves. Our scenario is motivated by D-brane scalar-tensor
theories as discussed in [31]: we consider a (stack of) D-brane(s) moving along the angular
direction of an internal warped compactification. The axion field ¢ is associated with the an-
gular position of the brane through the extra-dimensional space. The system is described by
a scalar-tensor theory characterized by disformal couplings to matter fields on the brane [28]
(see [32] for a review). The reader interested in more general scenarios — including conformal
couplings between the scalar and the metric — can consult [17-19, 33].
The scalar-tensor action we consider is:

Stot = S¢ + Sm, (2.1)
where
R (00)2
4 4 4
S¢:/d x\/—g —2K2—M 1+ 2 +M*-V(p)| , (2.2)

S — —/d4$\/jgﬁm(§w,). (2.3)

K2 = Mp_12 = 8n (G, and M is a mass scale entering in the scalar kinetic term, related to the
(possibly warped) tension of the D-brane, as well as other properties as warping and fluxes.
Matter fields contained in action (2.3) are disformally coupled to the metric g, entering in

eq (2.2) via

- 0,0 0, ¢

G = G+ =31 - (2.4)
We assume that matter is a perfect fluid, characterized by pressure and energy density only
(see [31] for details).

The scalar kinetic terms have the characteristic Dirac-Born-Infeld (DBI) form of D-
brane actions [34]. The scalar potential V(¢) in eq (2.2) contains various contributions,
which are periodic functions of the size of the internal angular dimensions. We focus on
the case of a D-brane fixed at a specific value of the radial component along the (warped)
extra dimensions. Its position is also fixed within four internal angular directions, leaving



the object free to move along only one angular direction in the warped compact space. The
motion of the brane through this angular direction is controlled by the axion field ¢ appearing
in the scalar-tensor actions (2.2). See e.g. [35, 36] for a scenario where this idea is explicitly
explored to realise natural inflation with D3 and D5 branes in a warped resolved conifold
geometry [37-39].

Let us be a bit more explicit about the structure of the axion potential. The D-brane
scalar potential entering eq (2.2) acquires the schematic form [35, 40]:

V(0) = V(po) + 6 (B (po) + ®a(p0,0)) , (2.5)

with 6 the angular direction along which the D-brane moves, that — upon canonical normal-
ization — will give rise to the scalar field ¢ appearing in action (2.2). The quantity ¢ is a
constant parameter depending on the type of D-brane considered. p is the radial coordinate
fixed at p = pp. V and ®_ represent contributions to the D-brane potential depending only
on the fixed radial coordinate pg. Instead, ®, depends on the angular coordinate as well,
and for a warped resolved conifold is given by [35]:

oo m=l

®4(po,0, o) =Y > [alHlA(PO) +szzB(P0)} Yim (0, do) - (2.6)
=0 m=—1

The indexes (I,m) denote quantum numbers associated to isometries of the internal ge-
ometry. The specific form of HlA,H lB is not too important, as they are functions of the
fixed radial D-brane position pg, only. Considering for definiteness the values (I,m) =
(0,0),(1,0),(2,0),(3,0), we get!

@y, = A1(po) + Az2(po) cos b + Az(po) cos® 6 + Ax(pg) cos 8. (2.7)

For suitable choices of the coefficients, the potential for the canonically normalized field ¢
can be arranged to take the form?

Vi(9) = Vo, (1 = cos[r o/ f1])* . (2.8)

The quantity f; is an axion decay constant: we express it in terms of a dimensionless number,
pulling out a factor of x in eq (2.8). This is the structure of the potential recently introduced
for the so called early dark energy [41, 42] to relax the Hy discrepancy. We will discuss this
topic in more detail in section 3.2.

Besides the term in eq (2.8), there may be additional non-perturbative contributions to
the effective potential, originating from bulk physics, which generate extra terms periodic in
¢. We assume that such contributions are present, and we include an additional term to the
total axion potential, as [43, 44]:

Va(9) = Vou. (1 — cos[ro/ f]) - (2.9)

n [35, 36], only the solutions for (I,m) = (0,0),(1,0), were kept, so that ®, took the form ®, =
Ai1(po) + A2(po) cosb.

ZNote that the choice of [ at this stage is arbitrary. This choice may be realised for example if all coefficients
ay, by vanish for [ > 3 for some reason. In order to determine whether these coefficients can indeed vanish, a
rigorous embedding of the model in a string compactification will be required.




with fo an extra dimensionless decay constant. To summarize, in what follows we consider
the following total potential for the scalar field as a sum of two independent contributions

V(g) = Vi(¢) + Va(9), (2.10)
= Vs, (1= cos[kg/ 1)) + Vo, (1 = cos[ké/ f]) - (2.11)

We plug the potential (2.11) in the total action (2.2), and study the consequences of this
system for the cosmological evolution of our universe.

Evolution equations. The equations of motion for the scalar field and the scale factor
in a Friedmann-Lemaitre-Robertson-Walker metric, as derived from the Einstein-frame ac-
tion (2.2), (2.3), are obtained to be [17-19]:

2 (1+N)
P 2.12
T 5 P (2.12a)
3B ©?
H, =-H|-—"2 (1 Ty 2.12b
1+’y’1 3B H? 43 9 w  3BH?
PN MY I+ N | PN T My 21+
H, v 3BH? 3BXA V,
Hy e _ 2.12
TE e T am oy T eary v 70 (2.12¢)

where the subindex NN indicates derivatives with respect to the number of e-folds dN = Hdt.
For convenience we make use of the dimensionless scalar quantity ¢ = k¢. We introduce
the scalar-dependent Lorentz factor 7y, the quantity that characterize DBI models:

H2
-2 _ 2
ol =1 7M4H2 (’ON’ (213)
as well as the combinations
2 9
B=1-_1 %~ _ (2.14)
3(yv+1)
v
A= —. (2.15)
P

The parameter A is the characteristic quantity that controls the size of the axionic potential
term with respect to the total energy density.

Since we are interested in comparing the expansion rates between our modified cos-
mological evolution and standard ACDM cosmology, we work in the Jordan frame where
energy-momentum and entropy are conserved. (See the discussion in [19].) The energy
density, pressure and equation of state in this frame read

p=v"p, P=yP  d=wy (2.16)

where the non-tilded quantities are computed in the Einstein frame. Moreover, the quantity
p = Y_; i, is the total background energy density: the index 7 runs over matter and radiation,
and @ takes into account of the degrees of freedom at a given temperature during cosmic
evolution (see e.g. [19]). The departure from the standard cosmological evolution can thus



be parameterized by the ratio of Hubble parameters in our scalar-tensor gravity, with respect
to its value in General Relativity (GR) (i.e. in absence of scalar contributions):

H B 73/2(1_{_)\)1/2
Hearp o B1/2

(2.17)

The evolution equations (2.12a)—(2.12c) contain contributions that modify the evolution
equation with respect to ACDM. Any early-universe modification from the standard cosmo-
logical evolution should not occur during or after Big-Bang Nucleosynthesis (BBN), to avoid
spoiling its successful predictions. Hence we require that any deviations from ACDM termi-
nate before the onset of BBN: i.e., when the temperature of the universe reaches values around
T ~MeV. We also investigate, however, how our system leads to late scalar-tensor contribu-
tion closely mimicking the cosmological constant of ACDM, driving the current acceleration
of our universe. The structure of evolution equations (2.12a)—(2.12c) is such that any depar-
ture from the equation-of-state value w = 1/3 does not give a noteworthy effect in the scalar
evolution.? In fact, in our case the most important effects in the very early evolution of the
axion field  — when the potential term contributions are negligible — are associated with the
DBI form of its kinetic terms.* During this phase, the amplitude of primordial gravitational
waves is enhanced. As the size of the scalar potential V' (¢) becomes important, additional in-
teresting phenomenological consequences occur. These topics are the subjects of next section.

3 Phenomenology of the scalar-tensor theory

The cosmological evolution of the axionic field ¢ has several interesting phenomenological
consequences. We assume that the initial conditions for ¢ are set at very high temperatures,
some time after cosmic inflation. We select them such that the scalar has an initial kinetic-
driven dynamics, capable of enhancing the spectrum of gravitational waves — see section 3.1.
The DBI kination phase is smoothly followed by a potential-driven phase, during which the
scalar dynamics source phases of early and late dark energy domination — see section 3.2.

3.1 Enhancing the gravitational wave signal at PTA scales

We show how an early modification of standard evolution associated with the DBI-type
action (2.2) amplifies the amplitude of inflationary gravitational waves at PTA scales. We
exploit the fact that this quantity is affected by an early-time non-standard cosmological
evolution. The scalar-tensor dynamics, as controlled by the evolution equations of section 2,
starts soon after inflation ends. We assume that initial conditions are chosen such that
initially the scalar is driven by the DBI kinetic terms only, as appearing in action (2.2),
with negligible contribution from the potential terms (see e.g. [17-19]). The parameter
controlling the kinetic part of the action is M, whose value can chosen together with the
initial conditions for H;, ¢;, ¢ — the last quantity entering in the initial value +; for the
DBI Lorentz parameter of eq (2.13). The initial value for H is determined as described in
appendix A, starting from an initial value for the DBI parameter ~y; of order O(1). Once ¢
is fixed along with an initial temperature T; — which is associated with the initial value of the
scale factor — the value of M is bounded from below by requiring that the solutions for H?

3In contrast to the conformal case [13, 45].
“The initial phase of DBI kination is distinct from kination models considered in the literature (see
e.g. [46-49)).
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Figure 1. Left panel: evolution of the Hubble parameter in our scalar-tensor set-up (red line) and
in ACDM case (blue line), plotted as functions of temperature. Right panel: evolution of the Lorentz
factor v starting from the initial conditions in table 1.

@i oy H; T; M
0.2 | 3.9x 1077 | 3.75359 x 1013 GeV | 499.8043 GeV | 765 MeV

Table 1. Initial conditions and disformal scale (recall that ¢ is dimensionless and measured in Planck
units).

be real and positive and such as not to spoil the predictions of BBN. Assuming that entropy
is conserved, the relation between the temperature of the universe T" and the scale factor a is

a _ <9*s,0>1/3 T (3.1)

CLfO Jxs T’

where the index 0 indicates quantities evaluated today.

We select initial conditions as in table 1. The initial conditions for ¢ and the Hubble
parameter are chosen such as to lead to an initial steady growth of the DBI Lorentz factor v
of eq (2.13), and a transitory large deviation of the Hubble parameter from its GR value. See
figure 1. We select the parameter M demanding that the scalar evolution does not interfere
with BBN, which happens around 1 MeV — see figure 1. The value of M turns out to be
of the order of the QCD scale of 170 MeV. Recall that we work in the Jordan frame — see
section 2 — hence with tilded quantities.

The initial enhancement of the Lorentz factor, as well as the early modifications of
the Hubble parameter, leads to an amplification of inflationary gravitational waves. The
fractional energy density of primordial gravitational waves measured today is given by (we
follow the treatments in [50-53]):

50y — L dptw (k)
~ 2
1 6Lhc 1 Hhc
~ o Pr(k) <ao) <ﬁ0> (3:3)

where Py is the primordial inflationary tensor spectrum, and the suffix ‘hc’ indicates horizon



crossing time for the mode k. The quantity Pr is

2 H?

(3.4)

and we take its amplitude at CMB scales to be Pr = rAg, with Ag = 2.1 x 1072, For
simplicity we assume that r saturates the current upper bound r = 0.036 provided by the
BICEP /Keck collaboration [54].

Formula (3.3) indicates that any deviation of the cosmological evolution from standard
ACDM can change the predictions for Q%W(k), and possibly amplifies the spectrum of infla-
tionary GW. In fact, we make use of the evolution equations (2.12a)—(2.12c), and re-express

Q%W as
5 PT a 4 ’)/3H2
2 &0 _ T “ GR
Gw = (24) (ao) B (Ho/h)? (3:5)

The quantity v is given in eq (2.13), while B in eq (2.14). Hggr corresponds to the GR
Hubble parameter in absence of scalar field contributions. Expression (3.5) shows that an
enhancement of the DBI Lorentz factor +, and a modification of the Hubble parameter with
respect its GR value influence the scale-dependence of Q%W. We can express this quantity
as function of frequency f = 27 k ap, through the formula [51, 52, 55]

T g 1/3 8mp
= 2.41473 x 10% (0) 2450 i Hy, 3.6
f Thc Gxs,hc 3M}2>1 ( )

where recall that hc is the horizon crossing scale of the mode k.

We represent in figure 2 the GW spectrum obtained by numerically solving the evolution
equations of section 2, and plugging the results in eq (3.5). The initial conditions in table 1
lead to a rapid, transient increase of 7, and allow us to amplify the GW signal at PTA
frequencies. In fact, the energy density associated with primordial gravitational waves is
raised by several orders of magnitude with respect to its standard value, for a frequency
around the 107 — 1078 Hz band that is probed by PTA experiments. The frequency profile of
the spectrum acquires a broken power-law shape. It initially rises as f2, to then grow® as f° up
to the peak, and then decreases as f~3. The peak amplitude is of the same order as the value
detected by the NANOGrav collaboration [20]. However, the NANOGrav value we compare
with is based on a fiducial power-law model, and a more sophisticated data analysis would
be needed for comparing our broken power-law shape with the amplitude obtained by PTA
data. In fact, [20] also provides a brief analysis of broken power-law models, providing the
best-fit value for the break of the frequency profile: our result is consistent with their value.

Figure 2 also contains the sensitivity curves for the NANOGrav experiment, as well
as other detectors for reference. The sensitivity curves are built with the broken power-
law sensitivity (BPLS) curve technique, introduced in [19] as an extension of the traditional
power-law sensitivity curves of [58]. (Our definition and methods to obtain BPLS is slightly
different from [59].) The BPLS curve allows one to visually realise whether a broken power-
law signal can be detected by a given experiment: our profile for Qgwh? enters into the
sensitivity curve of NANOGrav, showing that the scalar-tensor theory we described allows

®Note that the gravitational wave amplitude is enhanced purely due to the DBI kination period encoded
in v, B in equation (3.5). Thus the enhancement behaviour is different from that of a standard “kination”
dominated epoch [46-49]. See [19] for details.
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Figure 2. The profile of the primordial GW energy density of eq (3.5) in our DBI-driven scalar-tensor
system (red line), as compared with the standard prediction in ACDM (blue line). The dashed vertical
line indicates the frequency corresponding to the initial temperature 7; at which the scalar evolution
starts. The sensitivity curves for various experiments are plotted using the notion of broken power-law
sensitivity (BPLS) curve [19] for ET-D, LISA, BBO, and DECIGO experiments with the condition of
SNR > 10. For NANOGrav, the sensitivity curves have been constructed using the corresponding noise
spectra for the stochastic gravitational wave background [56, 57]. The light violet shaded portion corre-
sponds to the BPLS sensitivity region with SNR > 5, while the dashed violet line denotes the boundary
of the power-law sensitivity (PLS) region with SNR > 5. The black point along with the y-axis error
bar denotes the value Q. h? = 2.6772 x 10~® obtained with a model of the timing-residual power
spectral density with variable power-law exponent, as described by the NANOGrav collaboration [20].
This value is derived from a fiducial power-law model, which explains why it lies outside the BPLS
region, but within the allowed PLS region. The x-axis error bar denotes the 90% confidence region of
3.2"_"?:3 x 1078 Hz for the break frequency in a broken power-law model as obtained by the NANOGrav
collaboration [20]. The peak of the GW spectrum reaches a maximum value of ~ 1.7 x 1078, in agree-
ment with the above bound, while the peak in the profile occurs at around ~ 1.02 x 108 Hz.

us to amplify the primordial spectrum of inflationary tensor fluctuations at a level detectable
by PTA experiments. We conclude that our signal might contribute to the stochastic GW
background recently detected by PTA experiments [20-23].

In order to compare the results of our D-brane disformal scenario with the recent
NANOGrav 15-year data, we model the peak of the broken power-law GW spectrum as
obtained in figure 2 as follows [20, 60]:

3 o—3 1/e e(p—o)
Qlw h? = AR 2 (J;i) 1+ (;;) ] , (3.7)

where fy, = 1/year in Hz. On fitting this model to our numerical results, we find the
following values of the parameters: logq(Ap/s) = 5.279, logo(fn/Hz) = —8.048, ¢ = 6.0,
e = 0.25, and p = —2.0. Keeping the spectral indices fixed, we vary log;q(Ap/s) and
logo(fv/Hz) to arrive at the best-fit values for these quantities by using the publicly available
code PTArcade [61-63]. The results have been plotted in figure 3. According to these
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Figure 3. The lower left panel in this plot shows the 68%, 95%, and 99% confidence levels of
the 2-dimensional posterior distribution for the parameters of the broken power-law fitting function:
logqo(Ap/s) and log,,(fn/Hz). The other two panels show the 1-dimensional marginalized posterior
distributions for these parameters. The dashed vertical lines in the plots for the 1-dimensional distri-
butions indicate the 68%, 95%, and 99% credible intervals. The uniform priors used in this analysis
are: logyo(Ap/s) € [2.0,8.0] and log,,(f»/Hz) € [-10.0,—6.0]. We also assume Hellings & Downs
correlations between the pulsars.

results, the Bayesian estimates for the best-fit values are: log;o(Ap/s) = 5.242 + 0.191 and
logyo(fv/Hz) = —8.149 £ 0.144. By comparing these limits with our aforementioned fitting
parameters, we find that they are well in agreement with the NANOGrav data.

3.2 Early and late dark energy

Following the initial phase of DBI kination domination enhancing the GW spectrum (see
figure 2), the DBI Lorentz factor v returns to small values (see figure 1). The subsequent
scalar dynamics is smoothly matched to a second phase, mainly controlled by the potential
terms of eq (2.8). The potential-dominated phase allows us to realize a scenario including
both an early dark energy (EDE) epoch, as well a late dark energy (LDE) phase which
explains the present day acceleration of the universe.’

The scalar potential (2.8) has been recently considered in [41, 42] as a possible way to
relax the so called Hy tension in cosmology, via the injection of an early period of dark energy
domination, driven by the scalar ¢, called early dark energy (EDE) (see [65, 66] for early EDE
models). The Hy tension refers to the discrepancy between local measurements of the Hubble
parameter today from supernovae, and its inferred value from cosmic microwave background
(CMB) measurements assuming the standard ACDM cosmological model (for recent reviews

SRecently, a connection between EDE and stochastic GW signals has been explored in [64]. Their frame-
work differs from ours, since we use the properties of DBI kinetic terms for enhancing the GW spectrum —
see section 2 — while they make use of the properties of the EDE axionic potential. The peak of their GW
signal is far from PTA scales.



‘/Oede ‘/bde fl f2
(6.32 x 10719 GeV)? | 1.45247 x 10747 GeV* | 0.3569 | 0.1044

Table 2. The values of the parameters in the scalar potential (3.8).
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Figure 4. The evolution of the scalar field ¢ as a function of the scale factor in our set-up. The
initial conditions and parameter values can be found in tables 1 and 2. In the inset, we have zoomed
into the region where the field oscillates around the minimum of the EDE potential. The dashed
vertical line in the inset corresponds to a redshift of z ~ 10362, which is around the time when
the fractional energy density of the EDE component reaches its maximum value (see figure 5 and
associated discussions for more details).

on the Hy tension and solutions see [26, 27]. For recent reviews on EDE models see [67, 68]).
As discussed in section 2, in our case the potential also includes an additional term, leading
to a LDE domination driven by the axion [69]. In total, the potential expressed in terms
of the dimensionless scalar field ¢ can be written as” (recall that the decay constants are
dimensionless and given in Planck units):

V() = Voua, (1 = coslp/ f1])* + Vo, (1 = coslp/ fa]) - (3-8)

The first term is responsible for the EDE epoch, and we select Vg . ~ eV*; the second term
leads to late time acceleration, hence Vp,_ ~ (0.002eV)*. The axionic evolution controlled by
the potential terms is preceded by the DBI kinetic evolution of section 3.1: the requirement
of matching the two phases partially determines the parameters of the model, as in table 2.
Interestingly, this matching connects the early DBI kination phase which enhances the GW
signal, to a later evolution contributing to the physics of the dark universe.

The initial conditions for the field, its velocity, and the Hubble expansion rate are chosen
as discussed in section 3.1. Once these are set, we have to choose values for the parameters
describing the potential (3.8). Since the EDE energy density must decay faster than the
energy density of matter or radiation, the value of n is restricted to be > 3. In our analysis,
we fix this value to be n = 3. The other two parameters relevant for EDE, i.e. Vy ., and

ede

"Possible embeddings of EDE from string theory based on closed string moduli has been discussed recently
in [70, 71].
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f1, are chosen such that we satisfy the two conditions that the EDE component contributes
~ 12% of the total energy density of the universe, and the maximum of the EDE energy
density occurs around the time of matter-radiation equality. The parameters Vy, and f, are
similarly chosen such that the onset of LDE domination occurs recently and at the correct
energy scale so as to account for the current accelerated expansion of the universe.

The value for the EDE decay constant fi turns out to be sub-Planckian, while we choose
the value of the LDE decay constant fs as

2q

fo=g

fi, (3.9)

with ¢, m being integers. The quantity ¢ is determined by the periodicity of the EDE poten-
tial, 27 f1, and the value of ¢ is determined at an epoch where the DBI kinetic effects end.
By choosing a sufficiently large m, the value of fs relevant for LDE can be made sufficiently
small in Planck units potentially satisfying the constraints from the weak gravity conjecture
for EDE [72]. For the values in table 2 we have ¢ = 6 and we choose m = 20.

Figure 4 shows the evolution of the scalar field as a function of the universe temperature,
starting from the initial conditions after inflation of table 1. During the initial epoch of DBI-
kination, the field is unaffected by the potential. The axion potential becomes relevant at
around T' ~eV, where the field value remains frozen by the Hubble friction acting as a
cosmological constant: this corresponds to the phase of EDE domination. In order to satisfy
current constraints, and help in ameliorating the Hubble tension, the fractional energy density
contributed by the EDE component,

fape(z) = 22 (3.10)
pT

should not exceed values around 12% (see e.g. [67, 68]). This requirement is satisfied in our
set-up, see figure 5. It would nevertheless be important to analyse in more detail whether
our modified evolution equation is in agreement with current CMB constraints: this goes
beyond the scope of this work, and we defer it to a separate study.

As the temperature of the universe decreases, the axion field rolls to the minimum of the
EDE potential, around which it oscillates until it feels the second LDE potential in eq (3.8).
This leads to the current cosmological acceleration. In figure 6 we plot the evolution of the
separate contributions to the total energy density of the universe from radiation, matter,
and the axion field. The figure shows three epochs driven by the D-brane axionic field: DBI
kination, EDE, and LDE. During the first phase of DBI kination the scalar contribution
briefly dominates the energy density; in the phase of EDE the scalar energy density is almost
constant, and subdominant; in the last phase of LDE the scalar energy density is again
constant, and eventually starts to dominate the total energy density.

4 Discussion

The recent detection of a stochastic GW background by several PTA collaborations raises
the question of its origin. In this work we explored the possibility that it is sourced by
cosmic inflation, a well-known source of primordial GW. The inflationary GW background
amplitude is enhanced at PTA scales by a non-standard early cosmological evolution, driven
by a kinetically-dominated scalar-tensor dynamics motivated by string theory. The resulting
GW energy density has a distinctive broken power-law frequency profile, entering the PTA
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Figure 5. The fractional contribution of the EDE to the total energy density has been plotted as a
function of redshift. It reaches a maximum value of ~ 0.12 around log;, z ~ 3.562, which has been
shown to help in relaxing the Hubble tension [73].
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Figure 6. Plot of the different contributions to the energy density of the universe as a function of
the universe temperature. The behaviour of the scalar field energy density at different temperatures
illustrates the DBI kination epoch — the scalar energy density transiently dominates over the other
energy densities at high temperatures — the EDE epoch — the scalar energy density is constant
and subdominant at intermediate temperatures — and the LDE epoch — the scalar energy density
returns to a constant value driving present-day acceleration.

band with a peak amplitude consistent with the recent GW detections. Our framework —
besides providing a possible explanation for the recent PTA results — also sheds light on
other well-known cosmological problems. It provides a realization of an early dark energy
scenario aimed to address the H tension, and a late dark energy model which explains the
current cosmological acceleration with no need of a cosmological constant.
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Several questions are left for further exploring this connection between GW in the PTA
band and the physics of the dark universe. It will be interesting to test in detail our specific
broken power-law frequency profile for the GW energy density against the actual PTA data
that are being currently released. It would also be important to develop more careful tests of
the early dark energy scenario we propose, for example comparing it against constraints from
CMB observations, to further restrict our parameter space. This analysis would require to
modify existing CMB codes to accommodate the details of our set-up. Since the characteristic
energy scale of the mechanism we propose is set around the scale of QCD transition, our
scenario can have further consequences for the predictions of dark matter relic density and
sterile neutrinos (see e.g. [14]). We leave some of these investigations to a forthcoming work.
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A Determining the initial condition for H

In this appendix we briefly describe how we fix the initial conditions for the Hubble parameter
in our analysis. We define the Hubble parameter in the standard ACDM scenario as

K2 K2

Hicpy = 3 (PR + Ppm + pa) = 3 Poe- (A1)

The Hubble parameter in the disformal DBI case can be expressed as

) _ K
H” = ? (pﬁp + pbg)
2
K -
=35 (1Pt V). (A.2a)
Using the expression (2.14), we can write
2,2 2
R K -
H?* [1— 2| = — V). A3

Substituting the relation (2.13), we get the following quartic equation in ~:
P (M2 g+ 02 )+ (M2 V =3) 497 (M2 g =3 — ¢2)  (A4)
+7(M*4¢I2Vv+3) +3=0.
This equation can be solved to obtain four initial values of v for a given set of initial condi-

tions. For our system, we choose the value of 7; to be real and of order one. With this choice
of v;, we can then obtain the value of H; from the relation (2.13).
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