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OnTrack is a tool that supports workflows for railway verification that has been implemented 
using model driven engineering frameworks. Starting with graphical scheme plans and finishing 
with automatically generated formal models set-up for verification, OnTrack allows railway 
engineers to interact with verification procedures through encapsulating formal methods. 
OnTrack is grounded on a domain specification language (DSL) capturing scheme plans and 
supports generation of various formal models using model transformations. In this paper, we 
detail the role model driven engineering takes within OnTrack and reflect on the use of model 
driven engineering concepts for developing domain specific formal methods toolsets.

1. Introduction

In this paper, we reflect on the development of OnTrack, a tool that automates workflows for railway verification. Such workflows 
usually start with graphical scheme plans or scheme plan representations and finish with automatically generated formal models set 
up for verification. OnTrack has been implemented using a number of model driven frameworks and aims to overcome typical issues 
surrounding the uptake of formal methods by industry [38,18,17,21] by encapsulating such methods within a domain specific tooling 
environment. The paper reflects upon advances made in a number of previous papers [39,35,38,47].

For many years, the application of verification processes such as model checking and interactive theorem proving to various 
industrial case studies has been successfully illustrated, e.g. see [52,9,59,62,48,31,34,58,19,50,15,27]. Even though these approaches 
have been successful from a Computer Science perspective, the adoption of formal methods within industry is still limited [10] due 
to questions around faithful modelling, scalability and accessibility [38,4,20]. Without experts in the field of formal verification, the 
modelling approaches presented are often in a form that is acceptable to computer scientists, but not to the engineer working within 
the domain. These presentations thus lead to doubts in the approach by the engineers and a low level of confidence towards the 
capabilities of the approach to correctly capture the systems being modelled. At the same time, many verification methods are prone 
to suffering from a scalability problem that makes their application to large industrial problems lengthy and often unfeasible. Finally, 
tool support for verification procedures is often aimed towards a Computer Science audience interested in verification, and hence is 
not easily accessible to engineers outside the field of formal methods. This work gives an experience report on how these problems 
can be overcome by using model driven engineering within the domain of railway signalling.

Within the railway industry, it is common practice to define graphical descriptions of railway networks. Such descriptions enable 
an engineer to visually represent the tracks and signals etc., of a railway network. Within OnTrack, we offer this graphical language 
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Fig. 1. A simple scheme plan.

as one particular starting point. OnTrack is grounded on a domain specification language (DSL) for the railway. Around this DSL, we 
have created a graphical editor and implemented a number of model transformations. These transformations can be used to generate 
formal specifications in different languages. We distinguish between model transformations for abstraction (DSL meta-model to DSL 
meta-model), representation (DSL meta-model to a meta-model for a formal specification language) and generate for verification 
transformations (DSL/formal specification language meta-model to plain text). OnTrack also offers the ability to visualise failed 
verification attempts within the OnTrack editor, rather than at the mathematical level of the verification tool output.

In addition, both the DSL and the extensibility of OnTrack to allow the generation of formal models in any given language 
form part of the novelty of our work. The second key aspect of our approach is that we define abstractions on the DSL in order 
to yield optimised descriptions prior to formal analysis. Importantly, these abstractions allow for common benefits for verification 
across different formal languages. The effectiveness of the approach has been illustrated through its application to verify a number of 
different real world railway scheme plans. We note that OnTrack was developed through 2012 – 2018 and thus some of the languages 
and techniques we discuss in this paper have since advanced. However we feel the essence of the lessons from the development remain 
insightful.

Finally, OnTrack is designed for the railway domain, but the clear separation of an editor with support for abstractions from the 
chosen formal language is a principle that we feel is more widely applicable.

The remainder of this paper is structured as follows. In Section 2 we briefly introduce the field of railway signalling verification 
and discuss related contributions. In Section 3 we explore the core model driven frameworks that have been used in implementing 
OnTrack. Section 4 then explores the main structure of the OnTrack tool, highlighting the key areas where model driven frameworks 
have successfully played a role. In Section 5 we highlight challenges that were faced when implementing particular features of 
the tool within an MDE setting. Finally, Section 6 gives a reflection from the authors on the use of model driven frameworks for 
developing formal methods toolsets, before we conclude the paper in Section 7.

2. Verification of railway interlocking data

Railway control systems are a typical example of a safety-critical system, where their failure could lead to catastrophic conse-

quences. A core system for ensuring safety is the Interlocking system. Interlockings operate functionally as a filter between inputs 
from railway signallers and the concrete railway infrastructure itself. Their aim is to ensure that requested changes from the operator, 
such as setting of a particular route, are only undertaken if it is safe to do so with respect to the current state of the railway.

Interlocking applications are developed according to processes prescribed by railway authorities, such as Network Rail’s Gov-

ernance for Railway Investment Projects (GRIP) process. The first four GRIP phases (Output definition, Feasibility, Option selection, 
Single option development) define the track plan and routes of the railway to be constructed. The next phase, is then contracted to 
signalling companies such as Siemens Rail Automation (who have supported the research we present here). Such companies choose 
appropriate track equipment and add control logic in the form of control tables that stipulate, among other things, when it is safe 
2

to set routes. The track plan in addition to the control tables is typically referred to as a scheme plan (see Fig. 1). The signalling 
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company, based upon these design documents, then implements the interlocking system. Thus, correctness of this detailed design 
and in particular the control logic is fundamental to ensuring safety of the railway.

2.1. Track plans

A railway network consists of a number of track-side elements of different types, for instance linear sections, points, and physical 
signals (or marker boards in newer deployments). The track plan in Fig. 1 shows an example layout of a railway network having a 
number of track circuits (TC1, TC2, TC3 etc.), a number of points (P1, P2 etc.), and 7 signals (S1, S2, etc.).

Track circuits are detection sections, and are used by interlocking systems to detect the presence of trains in a railway network. 
A point can be switched between two positions known as Normal and Reverse. A signal is used to control entry to a particular route, 
which is a region of the scheme plan that depends on the direction of travel. For example Signal S4 controls whether or not a train 
can leave the top platform and exit the track plan via TC16. The rules on when a signal can be set to allow a train to proceed are 
captured within so-called control and release tables. Here we present only the former for simplicity.

2.2. Control tables

An interlocking system constantly monitors the status of track-side elements, and also sets them to appropriate states in order to 
allow trains to travel safely through the given railway network. A control table specifies the routes in the given network layout and 
the conditions for setting these routes. A route is a path from a source signal to a destination signal.

In railway signalling terminology, setting a route denotes the process of allocating resources. That is, sections, points and signals 
for the route are set and then locked for use exclusively for one train. The specification of a route and conditions for setting it includes 
the following information. Considering the control table shown in Fig. 1: the name of the route (e.g. R1A), a list of the detection 
sections in the route’s path that need to be clear of trains (e.g. TC2, TC3, TC4, TC5, TC12 and TC13) and the required positions of 
points used by the route (e.g. P1 and P2 are Normal and P3 is Reverse). Release tables are similar, but instead dictate when resources 
along a route can be released after they have been used by a train.

2.3. Safety guarantees

In order to prevent collisions and derailment of trains, interlocking systems employ a simple logical principle: a route is locked 
exclusively for use by one train at a time. Thus, it is common that signalling companies wish to check various properties of their 
designs, including:

Collision-freedom: which excludes two trains occupying the same track.

Run-through-freedom: which states that whenever a train enters a point, the point is set to cater for this. For example, considering 
Fig. 1 e.g., when a train travels from track TC12 to track TC5, point P3 is set so that it connects TC12 and TC5 (and not 
TC5 and TC6).

No-derailment which prescribes that whenever a train occupies a point, the point does not move.

Here, correct design for the scheme plan is clearly safety-critical as mistakes can lead to a violation of any of the three safety 
properties above.

2.4. Related work on verification environments

It is still an open research question as how to perform safety checks on interlocking designs. Here the main research challenge 
is how to cope with the complexity of the problem as the state space to be verified grows exponentially in the size of the scheme 
plan. Over a sustained period, several research groups, see e.g. [32,3,29,24,26,25,57,38,37,16,30,61,60,56,11,44,58,19,50,15,27], 
have been addressing this challenge and have developed a number of different modelling and verification approaches. Indeed, recent 
approaches have also been shown to scale well to modern industrial systems [27,15,50] and even to railway systems yet to be realised 
within rail industry [14]. Also, effort has been undertaken to review the usability of railway verification tools, where, for example, 
Ferrari et al. have systematically assessed the usability of 13 different formal methods tools [17]. In spite of this, formal methods 
still lack widespread use within industry often due to questions surrounding the usability and expertise required for applying formal 
methods [18,17,21].

The modelling part of such approaches usually consists of “transformations” of how to derive a (formal) model from informal rail 
descriptions as used in rail industry such as a track plan (e.g., as a CAD drawing) enriched by various tables (e.g., a control table). 
Similarly, the verification part usually states a safety condition (e.g., no train collision) and expresses this as a (formal) property 
(e.g., as a logical formula). Finally, a suitable and often automated verification tool is utilised to provide an answer if the property 
holds for the given model.

With respect to modelling, historically, Dines Bjørner has notably developed an extensive DSL for the railway domain [6,8,7]. 
Bjørner’s DSL – the DSL on which we build later – has been applied in the PRaCoSy (People’s Republic of China Railway Computing 
System) project to model a 600 km line between Zhengzhou and Wuhan [8]. More recently, Vu et al. have developed a detailed DSL 
3

aimed particularly at interlocking modelling and verification [58].
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There are several projects with a close relevance to this work. The first is the development environment for verification of railway 
control systems created by Haxthausen and Peleska [23,28]. This environment includes a DSL allowing modelling of control systems, 
and an automatic translation from models described in this DSL to executable control programs. At each level of production, various 
safety checking steps are taken. The difference between our approach and this is that we employ standard techniques from the field 
of MDE to support our toolset, rather than just implementing elements such as model transformations in a general purpose language. 
We highlight the benefits of this in Section 6. Similarly, work by Luteberget et al. [43] has explored automated graphical layout of 
scheme plans, which indeed was a challenge encountered within our work. Here their approach encodes the optimisation challenge 
as a SAT problem, where as we utilised simulated annealing [47].

Next, is the SafeCap project [51] which has the aim of improving railway capacity safely by integrating proof-based reasoning 
about time and state-based models. Part of the project aims to develop an intuitive graphical DSL for the railway domain with a 
tailored toolset [33,53] supporting verification of railway plans. Their approach is based on Event B [1] and the Rodin framework [2]. 
The approach taken in the development of this graphical language is inspired by the methodology we present in this work (in fact, 
the SafeCap DSL and toolset have been developed in co-operation with several of the authors of this paper).

Finally, work by Kanso [40] presents a framework that aids in the development of verified railway interlockings. The framework 
is built around the Agda theorem prover and has been applied to verify two existing railway control systems. The approach by Kanso 
also presents novel results on integrating model checking into Agda. Here we differ from Kanso, as we concentrate on designing 
verification processes with industrial applicability in mind, rather than applying new formal methods to industry in an exemplary 
fashion.

3. Model driven frameworks

In this section, we discuss the main Eclipse IDE components and plugins that we use for creating the OnTrack DSL and the 
associated tool support. To this end, we discuss the Eclipse Modelling Framework (EMF) [54], the Graphical Modelling Framework 
(GMF) [22] and Epsilon [42]. Each of these plugins are developed to support various aspects of model driven engineering and 
development [41,5] of DSLs.

3.1. Eclipse modelling framework

Many people consider the core of a language to be its abstract syntax. From an abstract syntax, one can develop artefacts such 
as a concrete syntax or model transformations to another abstract syntax. The Eclipse Modelling Framework [54] is a modelling 
framework and code generation facility for building tools and other applications based on a structured data model. Part of this 
framework includes Ecore [54] which is a UML class diagram like language for describing meta-models for DSLs. Models are stored 
using the XMI (XML based) file format and can be edited using a number of varying viewpoints. From such a XMI model specification, 
EMF provides tools and runtime support for producing various Java classes for the model, along with a set of adaptor classes that 
enable viewing and editing the model. Finally, such a model serves as the basis for creating a graphical syntax for a DSL using GMF. 
We have utilised EMF to define the elements of the underlying domain specific language within OnTrack. For further reading on 
EMF we refer the reader to [54].

3.2. Graphical modelling framework

The GMF or Graphical Modelling Framework project [22] provides the features allowing one to develop, from an Ecore meta-

model, a graphical concrete syntax for a DSL. The result of applying the GMF process is a graphical editor encapsulating this graphical 
concrete syntax. Such an editor is shown in Fig. 2. This editor consists of a drawing canvas (in the centre) and a palette (right hand 
side). Graphical elements from the palette can be dragged and positioned onto the drawing canvas. Overall, the editor can be used 
to produce model instances of the DSL described by the underlying Ecore meta-model.

GMF uses the Graphical Editing Framework GEF for many of its features, but provides a useful development framework on top 
of GEF. The main features of GMF can be split into two components: a tooling framework for developing graphical editors and a 
runtime framework for running such editors. Here, we discuss the tooling component.

3.2.1. GMF tooling

The tooling component of GMF provides easy access and model driven editing to several models that are required to create a 
GMF editor plugin.

Graphical Definition Model: The graphical definition model is where the user can define the various figures to be used for the 
concrete syntax.

Tooling Definition Model: As illustrated in Fig. 2 (right hand side), most editors created using GMF include a palette allowing users 
to create and work with constructs from the concrete syntax of the DSL. The tooling definition model is where users can define 
and design the elements to be included and displayed in the palette.

Mapping Model: The mapping model is one of the most important models used when generating a GMF editor. It is where one 
can define how elements from the graphical definition model and tooling definition model are linked to elements from the 
4

underlying Ecore meta-model.
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Fig. 2. OnTrack GMF editor for railway scheme plans.

Generator Model: Finally, the generator model combines the information of the previous models with details that are needed to 
generate code for the editor. The generation of this model from the mapping model is often an automatic step, however it is 
possible to customise this model to include features such as extension points [22]. The generator model is used to generate a 
DSL editor similar to the one shown in Fig. 2.

For further details on developing GMF editors we refer the reader to [54,22].

3.2.2. Epsilon

Often, the development of a GMF editor is motivated by the possibility of producing, from an instance model created by the 
editor, some sort of output usually in the form of text or program code. Similarly, many people wish to transform the model into a 
slightly different model, or compare it to another model that may be an instance of a different meta-model. To help with these tasks, 
users can make use of what are known as model transformations. Although there are several possible frameworks for defining model 
transformations we concentrate our review on the Epsilon framework [42] used in this work.

Epsilon, an extensible platform of integrated languages for model management [42], provides a family of languages and features 
for defining and applying model transformations, comparisons, validation and code generation. In the case of Ecore meta-models, 
the main types of model transformation which are of interest to us are:

1. Model-to-text transformation (M2T): Model-to-text transformations can be viewed as model-to-model transformations, where 
the output model is simply an instance of the (very general) meta-model defining sequences of characters. Such transformations 
are often used for code generation from a given model to a programming language. Later in Section 4.1.1, we will use this type 
of transformation to generate formal specifications from graphical models. Interestingly when generating text, one can opt to 
use a meta-model for the output text or to skip the meta-model and simply directly output text.

2. Model-to-model transformation (M2M): Model-to-model transformations define how a model instance of one Ecore meta-model 
can be transformed into a model instance of (optionally) another Ecore meta-model. Later in Section 4.1.2 we will use these to 
capture abstractions from the field of model checking of Interlockings.

To support the above model transformations Epsilon provides several languages [42] of which we consider and use:

EOL: The Epsilon object language that provides a common set of model management constructs. EOL forms the base language of 
which the other Epsilon languages are constructed.

ETL: The Epsilon transformation language for specifying model to model transformations.

EGL: The Epsilon generation language for model-to-text transformations. EGL provides a templating feature for code generation 
5

without requiring a meta-model for the output model.
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Fig. 3. A snippet of the OnTrack DSL.

EWL: Finally, the Epsilon wizard language for defining and executing transformation workflows, including activating transformations 
from a GMF editor.

More details on these languages and their formal definitions can be found in the Epsilon book by Kolovos et al. [42].

4. OnTrack architecture and functionality

OnTrack has been created using the EMF [54] and GMF frameworks [22] and multiple Epsilon [42] model transformations. 
Fig. 4 shows the workflows that we support in OnTrack. Initially, users can either import an existing rail plan in RailML [46] or 
they can draw a track plan using the graphical front end. They can then enrich this graphical plan by adding textual (table based) 
information for control and release tables. Together these form a scheme plan, which are models formulated relative to OnTrack’s 
DSL meta-model. Fig. 3 provides a snippet of this DSL highlighting the elements required to capture a control table. However the full 
DSL contains 20 classes and around 60 associations. We note that the DSL only captures those elements necessary for verification 
of control tables against safety properties at ERTMS Level 2 and below, which means it does not capture many elements of railway 
systems. The DSL also took some time in development and was a result of many discussions with Railway experts. It was also built 
upon the elements visible in manually constructed formal models that had been initially, in a time-consuming manner, developed to 
explore verification techniques.

A scheme plan is then the basis for subsequent workflows that support its verification, simulation, analysis etc. Scheme plans can 
then be translated to formal specifications in various (specification) formalisms.

Once a formal model has been generated, it can be simulated or verified using the tools associated with the formal specification 
language that has been used as the generation target language. For example, ProB can be used for animating and verifying CSP||B, 
SPASS can be used for verifying CASL, TimedCSP Simulator can be used for simulating and visualising train runs.

OnTrack is extensible, that is, the editor, tooling and importantly, abstractions (see Section 4.1.2) can be reused to generate formal 
models from various contexts by providing a suitable model transformation to that context. These models can then be simulated and 
analysed with the respective tools. In principle, this workflow can be fully automatic. In a prototyping phase, one would support it 
only partially, i.e., OnTrack produces a file that then needs to be loaded into another tool, rather than having OnTrack opening this 
other tool directly.

4.1. The successful role of model transformations

The original goals of OnTrack were to support the generation of formal models from a graphical model. Here, it was somewhat 
6

planned that model transformations would be used to generate text based formal models. However, throughout development, it 
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Fig. 4. The OnTrack workflow.

Fig. 5. Model transformations within OnTrack.

became apparent that model transformation could also be used as a powerful way of implementing common abstractions (see 
Section 4.1.2) that are needed to allow for successful verification. For example, see the abstractions explored in [37,45]. We now 
discuss the role of model transformations within these settings. The general scheme is captured in Fig. 5.

Initially, a user draws a Track Plan using the graphical front end. Then the first model transformation we have implemented, 
Generate Tables leads to a Scheme Plan, which is formed from a track plan and its associated control tables. This model transformation 
is included to aid signalling engineers by pre-populating control tables with data that can be automatically derived from the scheme 
plan. We note, that in general it is not possible to fully automatically generate control tables as there are often design choices to be 
made.

Next, there are two possible scenarios for the horizontal workflow that depend upon whether or not a meta-model is available for 
the formal specification language one would like to generate.

1. Using a meta-model for the formal specification language: The first option is to have a meta-model describing the formal 
specification language. A Represent transformation translates a Scheme Plan into an equivalent Formal Scheme Plan over the 
meta-model of the formal specification language. Then various Generate for Verification model-to-text transformations turn a 
7

Formal Scheme Plan into a Formal Specification Text ready for verification.
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Fig. 6. Example of static text generation for our DSL.

Fig. 7. Dynamic text generation for elements of Unit free type.

2. Direct generation of a formal specification: The second approach is to directly generate a formal specification. Thus only the 
Generate for Verification model-to-text transformations need to be implemented.

In both cases, the Generate for Verification transformations can enrich the models appropriately for verification, e.g. by including 
the various lemmas that may be known to help that formal method in proving safety.

This horizontal workflow provides a transformation yielding a formal specification that faithfully represents a scheme plan. In 
Section 4.1.1 we highlight the second approach that has been taken for the generation of CASL specifications 4.1.1.

Finally, the top level of the workflow shows the ability of OnTrack to include abstractions. We are interested in abstractions 
as these can ease verification. For currently implemented abstractions, the diagram commutes. Although we note that abstractions 
within the tool are implemented at the DSL meta-model level, whilst any abstractions on concrete specifications are part of the formal 
construction within the given formal language. Thus, when implementing new abstractions, one should check that the implementa-

tion meets the formal definition of the abstraction.

4.1.1. Formal model generation

Here we describe the direct implementation of the Generate for Verification transformations for CASL. The Generate for Verification

transformation translates meta-model instances of OnTrack’s DSL into formal specification text. This transformation is implemented 
using the Epsilon Generation Language (EGL) [42]. EGL allows template files to be written describing the text to be generated. These 
templates provide two main features for outputting text, namely the ability to output static text and to output dynamic text. Static 
text is considered text that is always generated independent of the model. Whilst Dynamic text is text that depends on the given 
model. For this reason, Dynamic text is sometimes referred to as configuration data. By default, any text written in an EGL template 
is considered to be static text. For example we know that the specification of data types for our DSL and similarly our extension of 
this with dynamical aspects is the same for all models. Hence this is rather straightforwardly encoded as static text to be output, see 
Fig. 6.

Within the same EGL template, we can then specify the output for a concrete scheme plan. For example, consider the free type 
of units that is used to capture track-like components. Here, such a free type is built from the concrete elements of linear tracks and 
points contained within the graphical model. Hence we can specify the template in Fig. 7 for the dynamic generation of the free type 
Unit. The result of applying this EGL fragment, to the concrete scheme plan in Fig. 1 is the following CASL specification fragment:

free type Unit::= TC1 | TC2 |... | P1 | P2... .

Considering Fig. 7, the first construct of EGL that we notice is [% and %]. Any text specified between such a set of brackets is 
interpreted as code. For example, the line var rail: OTDiagram:=... is a line of EGL code for declaring the variable rail
and assigning to it the current scheme plan instance within the graphical editor. This variable, can then be used throughout the 
EGL template to refer to the current model instance. Next, we see an EGL if statement (line 3). This statement checks the number 
8

of elements in the hasUnits relation of the current rail diagram. If there are linear units or points that have been drawn in the 
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Fig. 8. ETL rule for abstract model transformation.

diagram, the code inside the if statement is executed. The first line within the if statement is static text to be generated. That is, 
as long as the if statement is entered, the text “free type Unit::=” will be output. Lines 6 to 9 perform a loop through the 
units of the concrete scheme plan instance. For each unit up until the last but one, we can see that in line 9 the dynamic text 
generation “[%=unit.name%]” is executed. Here, the dynamic text generation also contains the “=” symbol. This indicates that the 
text following is a piece of code that returns a value. For example, “unit.name” is a field containing the name that has been given 
to the current unit element. This name will then be output by the generation process. This dynamic text generation is immediately 
followed by the static text generation “|”. This produces the “|” symbol between elements of the free type. Finally, after the while 
statement there is another block of code (lines 10 and 11) that outputs the last unit identifier in the collection.

In a similar manner to the presented free type generation, it is possible to explore all the elements of the diagram generating the 
concrete scheme plan specification in CASL. After generation of the scheme plan, the safety property to be proven over the scheme 
plan can also be generated. As CASL supports quantification within property specifications, this property is the same for all scheme 
plans and is thus simply generated as static text. The result is a full CASL specification ready for verification of the current model 
instance.

Overall, this generation means that OnTrack achieves the aim of automating the production of formal specifications from a 
graphical model. OnTrack is a toolset that is usable by engineers from the railway domain and allows them to produce formal CASL

specifications ready for verification.

4.1.2. DSL level abstractions

Research groups have developed so-called domain level abstractions for the setting of railway verification [37,45,36,49,27,15,50]. 
These abstractions take advantage of domain specific features of railways in order to provide benefits to verification. Such abstractions 
often aim to reduce the scale and complexity of the railway plan that is needed to prove safety. They are typically expressed over 
a mathematically formulated DSL of the domain and often require a manual proof to be constructed within the setting of the 
formal specification approach being utilised. Within OnTrack, we have implemented a number of such abstractions ranging from 
simple removal of non essential elements (discussed below), to the much more complex construction of influencing regions (see the 
covering abstraction provided by James et al. [36]).

Within OnTrack one of the implemented abstractions is based on the simplifying scheme plan abstraction by Moller et al. [45], 
where various sequences of units are “collapsed” into single units. For example, considering Fig. 1, route R1A ends with track circuits 
𝑇𝐶12 and 𝑇𝐶13 which appear in the clear column of the control table. As these are straight tracks, the abstraction allows them to 
be considered as a single logical unit. The abstraction has been shown correct, and to improve the feasibility of verification [45]. The 
abstraction is implemented using the Epsilon Transformation Language (ETL) [42] that is designed for model transformations. Fig. 8

gives an excerpt of our transformation. The algorithm uses the following list structures: toDelete: storing units to be removed and

consToBeMapped: storing which connectors require renaming.

The abs rule performs as follows: line 1 states that the rule translates the given rail diagram rd to another rd2. The second line 
simply calls an operation computeAbstraction() on rd to compute which units can be collapsed and to populate the lists with 
appropriate values. Next, the algorithm will consider every unit ut within rd (line 3). If ut is not in the list toDelete (line 4), 
then the algorithm will perform analysis on the connectors of ut. If connector one of ut is within the set of connectors requiring 
renaming (line 5), then the first connector of ut is renamed using a call to the operation getMapping() (line 6). Lines 8 to 9 of the 
algorithm perform these steps for connector C2 of ut. After this computation, the modified unit ut is added as an element to rd2
(line 11). The algorithm continues in a similar manner, computing which connectors and signals should be added to rd2. Finally, an 
operation computeTables is called to compute a new control table for rd2.

Importantly, we note, that any domain level abstractions implemented in OnTrack (such as the one presented) can be applied 
9

before the model transformations that generate formal models. This allows reuse of these abstractions for the currently supported 
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formal models in OnTrack, as well as reuse for any languages that are added in the future. However, the ability to apply the 
transformation in OnTrack does not mean that the abstraction is semantically sound within the given formal model, and indeed the 
abstraction would need to be proven correct based upon the semantics of the formal language. As an example of such a proof we 
refer the reader to [36].

5. Challenges in input formats and counterexample visualisation

Throughout the development of OnTrack, there were a number of desired features from a railway verification perspective that 
did not fit naturally with the available MDE frameworks at the time. In particular, both involved interfacing OnTrack with other 
tools and formats that were not defined in the traditional sense of a meta-model or DSL. We now discuss these challenges.

5.1. Importing data

In the railway verification community, there are often issues around interoperability of tools due to a plethora of data formats 
that are used by the different organisation across the railway domain. Here, a limitation with many existing toolsets is that users are 
often required to re-draw and re-enter railway layouts directly into the verification toolset. Re-entering data is clearly cumbersome, 
open to errors and time consuming. Similarly, automated importation of verification data tends to be hard as geospatial information 
on positioning of language elements is often missing from the data.

Here, we had hoped to be able to develop a model transformation from existing data formats (for example Brave [12] and 
RailML [46]), however it was a challenge that after initial investigations looked to be too cumbersome. Hence the decision was taken 
to implement the import as an ad-hoc Java plugin.

5.1.1. Well defined data

Here, considering for example the Brave data format, the following aspects played a role in this decision:

• No defined language model: The lack of a well defined meta-model for the data meant that one would need to be developed; 
here the size of the Brave language is much larger than the OnTrack DSL and thus this endeavour seemed too large.

• Well Formed Models: Given the lack of a language definition, there were a number of concerns around importing incomplete 
complex models that may work fine with the Brave toolset, but would require the (likely manual task) of adding data to make 
a well formed OnTrack model. For example, a simple missing end of track marker at the edge of the scheme plan would work 
within simulations in Brave, but would not be a well-formed model within OnTrack.

• Granularity and Terminology: The Brave data format contains many added interconnected domain entities that were not needed 
in the setting of OnTrack. These differences in granularity often led to overlapping terminology that represented domain entities 
in a conflicting manner from varied viewpoints. For example, train detection units could cover multiple tracks and points in 
Brave, whereas within OnTrack this granularity is not present and is abstracted into a single unit of detection.

MDE Challenge 1 – Supporting less structured and non well-formed models: Overall, the developers of OnTrack felt that the 
well-structured nature of data often found within MDE tools was not matched by the less structured data that we would like to 
import. Thus dealing with abnormalities seemed much easier from a generic programming language perspective. Here we feel there 
could be an interesting area of research in dealing with non well-formed models or similar within MDE settings.

5.1.2. Model layout and geospatial information

In addition to being able to import data, the graphical nature of our models means that geospatial information on layout of model 
entities is essential for viewing and working with the models. However, we note that such geospatial information is not necessary 
for the verification of control tables, which is only concerned with the topological nature of the railway. Such geospatial information 
is often not available when importing models, or is very complex to deal with. Here we had hoped that GMF would offer a sensible 
graph layout option or algorithm that produced a somewhat workable result for railway engineers (even if not matching the real 
world scheme plan layout). However, essentially any imported model is displayed graphically in a hierarchical list of entities. This 
led to our imported models being completely unusable for domain experts, and is indeed one of the limitations of MDE frameworks 
such as GMF, where geospatial information is not considered as part of the models semantics.

To overcome this, we developed a best-fit approach to track layout that we then tested with end users [47]. This approach is 
based upon simulated annealing, which makes incrementally smaller changes to the layout over thousands of iterations, with an 
aim of optimising a defined score function. In terms of implementation, this feature took considerable effort for development of the 
simulated annealing algorithm. However, linking this to interact with the layout of elements within GMF was relatively simple once 
the initial hurdle of understanding the construction of GMF models had been overcome. We note that the implementation does not 
follow any systematic MDE principles, and is rather generic in terms of approach, which in turn may hinder maintainability of the 
toolset as MDE frameworks evolve. The approach is incorporated as a simple Java based import plug-in.

MDE Challenge 2 – Consider geospatial information as part of a models semantics: We feel that layout of entities in DSLs 
is something that would be fruitful for the MDE community to explore. Where perhaps the solution is in-fact a DSL that allows 
10

specification of how entities should be geospatially represented in relation to one-another. In addition, to aid in uptake of MDE tools, 
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better documentation and examples (at the time of development of OnTrack) would have provided greater support for such ad-hoc 
plugins.

5.2. Counterexample visualisation

Finally, OnTrack aims to encapsulate formal methods for proving correctness of railway designs with regards to safety. When 
designing signalling systems, engineers often step through problems and safety issues like a mathematician would step through the 
lines of a proof. As OnTrack generates formal models from graphical specifications, it is highly desirable that any failed proofs, or 
counterexamples to a safety property be presented once again at the level of the graphical specification within the graphical DSL.

Here, there is once again a trade-off as failed proof counterexample traces are typically described at the low level of the proof tool 
involved (indeed sometimes lower than the generated formal models). Hence a reverse model transformation would be somewhat 
cumbersome to try to construct. Often such counterexample traces also contain not just a single “state”, but thousands of consecutive 
states, leading from initial conditions through to where the safety property is violated. Hence a graphical visualisation must not 
only be perceptually effective, it must also support the cognitive map with which railway engineers and formal methods researchers 
approach the problem.

To overcome this, we once again implemented an ad-hoc plugin that only supports CSP models (here a unique backwards 
transformation is needed for each formal method). We provide an interactive step-through approach via next/previous buttons, 
similar to a debugger. The various states of the system are displayed within the GMF editor (see Fig. 9, which highlights the dynamic 
state changes for a simple counterexample that ends with two trains occupying the same track highlighted in red). Again this approach 
was subjected to a user study [47] to help determine which states should be displayed (i.e. key frames), rather than displaying the 
possibly thousands of states for a given counterexample.

Overall here, the implementation effort was minimal, where familiarity with GMF aided in the development. However, we do 
note that some changes were made to the underlying DSL meta-model to support this functionality. For example to capture state 
information in a nice way, certain fields were added to domain elements.

MDE Challenge 3 – Animation of models: Overall, the authors feel that there could be a better solution to counterexample 
visualisation through some form of graphical DSL that supports animation. Indeed this perhaps could be achieved through a dedicated 
DSL/GMF editor combination that captures and supports a generic form of counterexample and interactions with it. From this, it 
would also be interesting to explore if bi-directional model transformations could be used to support a close link between DSL models 
and counterexamples from each formal method.

6. Reflections on model driven engineering for formal methods

The aims of the OnTrack toolset were to deal with shortcomings surrounding the uptake of formal methods by industry [38,4,20]

due to questions around:

Faithful modelling: Do the proposed mathematical models faithfully represent the systems of concern? Modelling approaches 
offered from Computer Science are often in a form that is acceptable to computer scientists, but not to the engineer 
working within the domain. How can an engineer working within the domain come up with new models?

Scalability: Does the proposed technology scale up to industrially sized systems in a manner that is uniformly applicable? Often, 
formal methods have been applied in a pilot to specific systems, but require individual, hand-crafted adaptation and 
optimisation for each new system under consideration.

Usability: Are the methods accessible to practitioners in the domain of interest or is it just the developers of the approach who can 
apply them? Handling of tools for verification procedures is often aimed towards a Computer Science audience specialised 
in verification, however they are usually not manageable by engineers outside the field of formal methods.

On each of these fronts, utilising MDE frameworks to implement a tool environment has had a number of both expected and 
unforeseen benefits. In particular:

Takeaway 1 – DSLs and model transformations support faithful modelling well: Confidence in a formal model actually pro-

viding a faithful model of the domain has been increased. Here, both the use of OnTrack’s DSL, that is well understood by railway 
engineers, and the use of model transformations, that are highly systematic and easy to read (compared to an ad-hoc translation), have 
improved confidence of Siemens Rail Engineers in the formal models we have created. Interestingly, the tool has also allowed for 
rich discussions in a manner that overcomes language barriers between domain experts and formal methods researchers, supporting 
further refinement of the formal models and verification processes.

Takeaway 2 – Model transformations are a good approach to implementing abstractions: OnTrack has presented a new form 
of scalability for formal methods, in that it supports domain centred abstractions that can be utilised by any underlying formal 
method. Here, the development of domain level abstractions [36] were in fact inspired by the idea of DSL level model-to-model 
transformations. In addition, the fact that such abstractions are implemented as model transformations independent of the formal 
11

method, means that if a new formal method is added to OnTrack, it can benefit from these abstractions without any additional 
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Fig. 9. Counterexample visualisation via key frames. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

implementation work.1 As these abstractions are also written in a clear and concise way as model transformations, there is again 
increased confidence in the correctness of the implementation, which is especially important within the setting of formal methods.
12

1 We note that there may be manual effort in constructing a semantics level proof, but this would have to be completed for any abstraction anyway.



Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Takeaway 3 – MDE tools were successful in allowing rapid development of a graphical tool to improve usability of formal 
methods: Thanks to OnTrack’s DSL and its GMF based editor, OnTrack succeeds in being highly usable by railway engineers [47]

by encapsulating formal model generation. Here, although not without some challenges (see Section 5), the use of GMF allowed for 
rapid development of a modelling environment that allows rail engineers to create, edit and fine-tune railway scheme plan designs. 
In addition, simple wizards have been implemented in Epsilon’s Wizard Language that allow automation of several tasks, such as 
generation of control table data.

7. Conclusions and future ideas

In this paper, we have reviewed and reflected upon the implementation of OnTrack, a tool for automating workflows for railway 
verification. Overall, we believe the OnTrack project has been a success as a demonstrator of how model driven engineering can 
be applied to develop domain specific toolsets for formal methods. Indeed, OnTrack is still in use today by researchers developing 
formal models particularly at Swansea University, Coventry University and Siemens Rail Research. However, we note that there are 
barriers to the use of OnTrack within the setting of safety cases for the railway domain. In particular, many of the implementation 
techniques do not meet the relevant safety compliance checks required for safety critical systems (e.g. qualification of a T2 level tool 
according to EN50128 [13]) and thus any likely usage outside of industrial research departments would require re-development of 
the tool, in a likely more bespoke manner. However, the ideas explored in OnTrack have influenced the views on rich data models 
and also data transformations within Siemens Rail.

As experts in formal methods, the authors have developed a particular fondness towards the benefits of using DSLs and model 
transformations. Not only did GMF provide a low barrier to entry for developing a graphical specification tool, but formulating 
specification generation and abstractions as model transformations provides a real clarity both conceptually and in terms of both 
traceability and readability within the implementation. This level of traceability we feel is core to maintain faith in any formal 
methods tool. In addition, OnTrack has supported collaboration between academic groups benefiting from the tool without the need 
for a large implementation effort, but by simply developing translations to their formal models. For example, OnTrack was an integral 
part of the DITTO research project (see http://dittorailway .uk) allowing traffic engineers and transport operations researchers (from 
University of Leeds and University of Southampton), railway engineering researchers (from Birmingham University) and computer 
scientists (from Swansea University) to explore fundamental principles for the optimisation of rail operations.

Finally, the authors would like to further explore the use of Model driven approaches within OnTrack. In particular, we feel there 
is scope for improving upon the argument of faithful modelling by utilising validation languages such as EVL [42] to show correctness 
of the implemented model transformations. In addition, we are keen to explore the development of a separate tool that encompasses 
a family of DSLs to capture various forms of counterexamples as generated by various proof tools. Here, we feel a generic graphical 
framework that can be specialised to a particular domain and that supports presentation and interaction with failed proofs would 
provide many benefits to both the formal methods community and domain experts wishing to use formal methods. We envisage that 
perhaps bi-directional model transformations [55] would play a key role in such an endeavour.
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