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Abstract: Exploring new reverse osmosis (RO) membranes that break the permeability-selectivity
trade-off rule is the ultimate goal in seawater desalination. Both nanoporous monolayer graphene
(NPG) and carbon nanotube (CNT) channels have been proposed to be promising candidates for
this purpose. From the perspective of membrane thickness, both NPG and CNT can be classified
into the same category, as NPG is equivalent to the thinnest CNT. While NPG has the advantage of
a high water flux rate and CNT is excellent at salt rejection performance, a transition is expected
in practical devices when the channel thickness increases from NPG to infinite-sized CNTs. By
employing molecular dynamics (MD) simulations, we find that as the thickness of CNT increases,
the water flux diminishes but the ion rejection rate increases. These transitions lead to optimal
desalination performance around the cross-over size. Further molecular analysis reveals that this
thickness effect originates from the formation of two hydration shells and their competition with
the ordered water chain structure. With the increase in CNT thickness, the competition-dominated
ion path through CNT is further narrowed. Once above this cross-over size, the highly confined
ion path remains unchanged. Thus, the number of reduced water molecules also tends to stabilize,
which explains the saturation of the salt rejection rate with the increasing CNT thickness. Our results
offer insights into the molecular mechanisms of the thickness-dependent desalination performance
in a one-dimensional nanochannel, which can provide useful guidance for the future design and
optimization of new desalination membranes.

Keywords: thickness effect; carbon nanotube; nanoporous monolayer graphene; ion dehydration;
desalination performance

1. Introduction

Seawater desalination is one of the most promising solutions to fresh water shortages
all over the world [1–4]. As the most common method of desalination, state-of-the-art
reverse osmosis (RO) technology uses a semipermeable membrane to filter out salt ions
but allow water passage [5,6]. Novel filtration membranes with substantially improved
permeability, selectivity, chemical stability, and resistance to fouling remain an open topic
of intense interest as of now [7–9].

With the rapid development of nanotechnology, the boom of novel two-dimensional
(2D) materials demonstrates great promise for the renewal of traditional membranes [1,2].
Based on the dimension of the confined nanochannel, RO membranes can be roughly
divided into three types: the membranes with quasi-one dimensional (1D) nanopores,
e.g., nanoporous graphene (NPG) [10–12], the ones with 1D nanochannels such as carbon
nanotube (CNT) [13–16], and those with 2D interlayer channels, e.g., stacked graphene
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oxide (GO) [17–20]. Due to their similar circular pore shapes, the membranes made of quasi-
1D NPG and 1D CNT were compared in terms of their liquid transport performance [11].
To maintain a balance between permeability and selectivity, novel designs based on large
diameters, including chemical modifications on the pore edge, or a rotating NPG cylinder
have been extensively adopted and yielded satisfactory results [15,21].

Although the quais-1D NPG and 1D CNT have different dimensions, they can be
considered similar in terms of membrane thickness since NPG can function as the thinnest
CNT. The thickness effect can therefore be employed to measure the desalination differences
between NPG and CNT. Considering the advantages of quasi-1D NPG’s high water flux rate
and 1D CNT’s excellent salt rejection capacity, it is reasonable to hypothesize that a critical
thickness value might exist, which enables the combination of the advantages of both NPG
and CNT and thus makes the CNTs the optimal membrane candidates. Previous molecular
dynamics (MD) simulations demonstrated that a 2.34 nm-thick CNT membrane can exhibit
nearly doubled water permeability while maintaining 100% NaCl rejection [22]. This is
inspiring, as it suggests that desalination properties could be easily doubled by simply
choosing a proper CNT thickness without further ado. Compared with the commonly used
diameter variable in optimizing desalination performance, not enough attention has been
paid to the thickness effect. Up to now, the only thing clear for us is that such a thickness
effect arises from the dehydration of salt ions [22]. A further investigation is thus urgently
required to uncover the underlying mechanisms of the observation at the atomic scale.

The hydration state of salt ions within the nanochannel is the key to analyzing many
biological and chemical processes, such as the selective permeability of cellular membranes,
the ion selectivity of filtration membranes, etc. [23–25]. Note that the specific hydration
configuration of salt ions within CNT also plays a pivotal role in the analysis of the thickness
effect. However, the transient penetrating process makes it extremely difficult to capture
the necessary details and understand how the specific water configurations contribute
to thickness-dependent ion dehydration. In this work, we mimic the ion penetrating
process by artificially tethering a Na+ ion with a spring, which is allowed to move freely
in the nanopores. Through comprehensively examining the structure properties of salt
ions and water molecules within the two hydration shells, we find that the thickness
effect of CNT is induced by the competition between the hydration shell and the ordered
water chain structure. In particular, the CNT membrane exhibits optimal desalination
performance when its thickness is sufficiently large to accommodate two hydration shells
of salt ions. Meanwhile, water molecules within hydration shells have to be compatible
with the ordered water chain structure. The resulting steady and further confined ion
path contributes to the unchanged dehydration degree, which is consistent with the finally
unchanged dehydration energy barrier reported in the literature [22].

2. Simulation Details

The schematic of the simulation system is illustrated in Figure 1. The feed side
with NaCl solution and the permeate side with pure water are separated by a CNT,
which is enclosed by two graphene sheets with appropriate holes. A net concentration of
0.5 mol/L is yielded with 31 Na+ and 31 Cl− randomly placed in 3432 water molecules.
607 water molecules are accommodated on the permeate side. To simulate the liquid
transport through CNT, different pressures are exerted on the graphene pistons on the feed
and permeate sides, and a pressure difference ∆P = Pfeed − Ppermeate is thus rendered.

As shown in Figure 1b, different thickness values from L1 to L22 are adopted, where
the subscript i in Li represents the number of carbon rings. Values of L1, L4, L7, L10, and L22
CNTs are 0.34, 0.709, 1.078, 1.447, and 2.923 nm, respectively.
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Figure 1. Schematic of the simulation model. (a) NaCl solution and pure water are placed on the 
feed and permeate sides, respectively. The pressure difference is exerted on graphene pistons to 
simulate liquid transport through CNT. (b) Side view of CNTs with different lengths. The subscript 
in Li represents the number of carbon rings. The L1 case is, in fact, a NPG monolayer. 

Water molecules are described using the SPC/E model [26], and the interactions for 
all other atomic species are modeled using Lennard-Jones (LJ) potential with a Coulombic 
term. All the carbon atoms are held rigid. Parameters for carbon and salt ions are adopted 
from a previous paper, and Lorentz-Berthelot mixing rules are used for cross-interactions 
[27]. The long-range Coulomb interaction is calculated using a particle-particle particle-
mesh (PPPM) [28] algorithm with an accuracy of 10−4. 

MD simulations are carried out using the LAMMPS package to predict thickness-
dependent desalination performances [29]. Simulations are carried out in the constant-
volume and constant-temperature (NVT) ensemble at 300 K using a Nose-Hoover ther-
mostat. A time step of 1.0 fs is used for the velocity-Verlet integrator. Periodic boundary 
conditions are applied in the x and y directions, and the corresponding box sizes are Lx = 
31.98 Å and Ly = 34.08 Å. Box length in the z direction depends on the length of the na-
nochannel. 

The first step is to set the pressures on both pistons on the feed and permeate sides 
to the ambient pressure of 0.1 MPa. The desalination system is then allowed to relax for 5 
ns under these conditions. After the system reaches equilibrium, the desired pressure of 
400 MPa is applied to the piston on the feed side, and the Ppermeate remains unchanged. As 
a commonly used strategy to control the simulation time in MD simulations, a higher 
pressure value than the practical desalination pressure is adopted to increase the compu-
tational efficiency [30,31]. The linearly increasing water flux with simulation time indi-
cates that the simulation system reaches the steady state, as shown in Figure S1. All the 
simulations are run until 80% of the water molecules on the feed side are transported to 
the permeate side, and the corresponding water flux rate and NaCl rejection rate are cal-
culated [32]. As commonly used in many works, NaCl rejection is defined as the 100 per-
cent subtracting ratio of the ion concentrations in the permeate and feed sizes [22,30]. To 
maintain electrical neutrality, the number of permeating Na+ and Cl− is almost the same. 
Hence, the NaCl rejection calculation is based on the permeating Na+ number. 

Figure 1. Schematic of the simulation model. (a) NaCl solution and pure water are placed on the
feed and permeate sides, respectively. The pressure difference is exerted on graphene pistons to
simulate liquid transport through CNT. (b) Side view of CNTs with different lengths. The subscript
in Li represents the number of carbon rings. The L1 case is, in fact, a NPG monolayer.

Water molecules are described using the SPC/E model [26], and the interactions for all
other atomic species are modeled using Lennard-Jones (LJ) potential with a Coulombic term.
All the carbon atoms are held rigid. Parameters for carbon and salt ions are adopted from
a previous paper, and Lorentz-Berthelot mixing rules are used for cross-interactions [27].
The long-range Coulomb interaction is calculated using a particle-particle particle-mesh
(PPPM) [28] algorithm with an accuracy of 10−4.

MD simulations are carried out using the LAMMPS package to predict thickness-
dependent desalination performances [29]. Simulations are carried out in the constant-
volume and constant-temperature (NVT) ensemble at 300 K using a Nose-Hoover ther-
mostat. A time step of 1.0 fs is used for the velocity-Verlet integrator. Periodic boundary
conditions are applied in the x and y directions, and the corresponding box sizes are
Lx = 31.98 Å and Ly = 34.08 Å. Box length in the z direction depends on the length of
the nanochannel.

The first step is to set the pressures on both pistons on the feed and permeate sides
to the ambient pressure of 0.1 MPa. The desalination system is then allowed to relax for
5 ns under these conditions. After the system reaches equilibrium, the desired pressure of
400 MPa is applied to the piston on the feed side, and the Ppermeate remains unchanged. As a
commonly used strategy to control the simulation time in MD simulations, a higher pressure
value than the practical desalination pressure is adopted to increase the computational
efficiency [30,31]. The linearly increasing water flux with simulation time indicates that
the simulation system reaches the steady state, as shown in Figure S1. All the simulations
are run until 80% of the water molecules on the feed side are transported to the permeate
side, and the corresponding water flux rate and NaCl rejection rate are calculated [32]. As
commonly used in many works, NaCl rejection is defined as the 100 percent subtracting
ratio of the ion concentrations in the permeate and feed sizes [22,30]. To maintain electrical
neutrality, the number of permeating Na+ and Cl− is almost the same. Hence, the NaCl
rejection calculation is based on the permeating Na+ number.
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3. Results and Discussion

Herein, desalination performance in (6, 6), (7, 7), (8, 8), and (9, 9) CNTs is stud-
ied, where the effective pore diameters after subtracting the van der Waals diameter of
0.34 nm are 0.472, 0.608, 0.743, and 0.879 nm, respectively. Water flux rate and NaCl re-
jection against diameter are shown in Figure 2a,b for L1 CNTs (NPG) and L22 CNTs. It
is clearly seen that strong competition exists between salt rejection and water flux. Not
surprisingly, NPG shows superiority in water flux rate, while CNTs exhibit advantages
in salt rejection. Especially for the (7, 7) CNT, a significant increase from 51.5% to 100% is
observed for the NaCl rejection when the nanochannel changes from the L1 NPG to the
L22 CNT, while the corresponding water flux rate is found to decrease from 141.4 ns−1 to
94.8 ns−1. This makes (7, 7) CNT an ideal candidate to investigate the thickness transition
from L1 to L22 CNT. Thus, the thickness-dependent desalination performance of (7, 7) CNTs
is illustrated in Figure 2c. It is seen from the figure that with rising thickness, the two
desalination parameters finally reach a stable stage after an initial transition zone where
they change rapidly with the variation of CNT thickness.
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To uncover the underlying mechanisms of thickness-dependent desalination perfor-
mance, it is necessary to examine the detailed ion penetrating process. However, the in-
stantaneous penetration behavior made it almost impossible to capture the necessary de-
tails. Within the limited range of CNT length considered, the ion penetrating process in-
cludes two successive and symmetrical steps: entering CNT from the bulk solution on the 
feed side and returning to the bulk solution on the permeate side. In view of the same 
hydration structure in bulk solution, unique ion hydration configurations within the na-
nochannels play a pivotal role in generating the thickness effect. Therefore, in this work, 
one single Na+ ion was artificially placed in the pore center and tethered with a spring to 
allow free motion within nanopores. In real-life cases, the ions sometimes cannot pass 
through the CNTs when the thickness is too large or the diameter is relatively small. We, 
however, keep utilizing this protocol throughout our analyses as it enables us to explain 
the desalination difference from a distinctive perspective. 

The number density map of ion distribution within CNTs is provided in the top row 
of Figure 3. When a Na+ ion passes through the L1 NPG membrane, its relative affinity 
with the pore edge is manifested by the loose distribution pattern. With the increase in 
membrane thickness, the Na+ ion was gradually restricted to the central region. When the 
membrane thickness is increased to L7, the Na+ ion has the largest probability of occupying 
the pore center. This trend is maintained when the membrane thickness is further in-
creased to L10. Considering the ion-oxygen interaction, it is reasonable to speculate that 
the position shift of the Na+ ion is related to the water molecules within hydration shells. 
Hence, the hydration shell configurations of Na+ in different CNTs are studied, as shown 
in the bottom row of Figure 3. For the L1 NPG, water molecules within both hydration 
shells are completely disordered. Compared with the spherical hydration shells in bulk 

Figure 2. Water flux rate and salt rejection in (a) L1 CNT (NPG) and (b) L22 CNT. (c) Thickness-
dependent desalination performance in (7, 7) CNTs. The desalination parameters in (7, 7) CNT
and the corresponding NPG are marked with green dashed squares and blue dashed circles
for comparison.

To uncover the underlying mechanisms of thickness-dependent desalination perfor-
mance, it is necessary to examine the detailed ion penetrating process. However, the
instantaneous penetration behavior made it almost impossible to capture the necessary
details. Within the limited range of CNT length considered, the ion penetrating process
includes two successive and symmetrical steps: entering CNT from the bulk solution on
the feed side and returning to the bulk solution on the permeate side. In view of the
same hydration structure in bulk solution, unique ion hydration configurations within the
nanochannels play a pivotal role in generating the thickness effect. Therefore, in this work,
one single Na+ ion was artificially placed in the pore center and tethered with a spring
to allow free motion within nanopores. In real-life cases, the ions sometimes cannot pass
through the CNTs when the thickness is too large or the diameter is relatively small. We,
however, keep utilizing this protocol throughout our analyses as it enables us to explain
the desalination difference from a distinctive perspective.

The number density map of ion distribution within CNTs is provided in the top row
of Figure 3. When a Na+ ion passes through the L1 NPG membrane, its relative affinity
with the pore edge is manifested by the loose distribution pattern. With the increase in
membrane thickness, the Na+ ion was gradually restricted to the central region. When the
membrane thickness is increased to L7, the Na+ ion has the largest probability of occupying
the pore center. This trend is maintained when the membrane thickness is further increased
to L10. Considering the ion-oxygen interaction, it is reasonable to speculate that the position
shift of the Na+ ion is related to the water molecules within hydration shells. Hence,
the hydration shell configurations of Na+ in different CNTs are studied, as shown in the
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bottom row of Figure 3. For the L1 NPG, water molecules within both hydration shells
are completely disordered. Compared with the spherical hydration shells in bulk solution,
water molecules within the graphene plane are expelled. The Na+ ion tends to be close
to the edge of graphene, accompanied by one coplanar water molecule within the first
hydration shell. When the membrane thickness is raised to L4, water molecules within the
first hydration shell start to exhibit a two-column configuration, and a similar configuration
always remains in thicker CNTs. Due to the pore diameter confinement, water molecules
in the second hydration shell refer to the ones connecting to the two water columns in the
CNT axial direction. Water molecules in the second hydration shell are also disordered
in L4 CNT. With the further increase in membrane thickness, L7 CNT is long enough for
water molecules in both hydration shells to form an ordered two-column chain structure.
Held tightly by the ordered water chain structure, the motion area of Na+ ions is strictly
restricted to the central region, as shown by the highest distribution density in the pore
center of L7 and L10 CNTs.
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Figure 3. (a–d) Number density map of ion distribution within the thickness-variant (7, 7) CNTs. The
corresponding CNT lengths are L1, L4, L7, and L10, respectively. (e–h) MD snapshots of Na+ hydration
shells in L1, L4, L7, and L10 CNTs. The first and second hydration shells are marked with blue and light
blue backgrounds, respectively. Only water molecules within both hydration shells are displayed.

Next, we examine the orientation of water molecules within hydration shells. Here,
α is used to represent the angle between the oxygen-ion vector and the water dipole
vector. Its probability distribution within the first and second hydration shells is plotted
in Figure 4. Due to the strong electrostatic interaction between the oxygen atoms and
the positive charge that the Na+ ion carries, the probabilities of α in the first and second
hydration shells reach peak values at around 155◦ and 145◦, respectively. With the increase
in membrane thickness, α distribution probability becomes narrower and sharper. For
the α probability in the first hydration shell in Figure 4a, the two-column patterned water
molecules in the first hydration shell start to form in L4 CNT and exhibit highly ordered
orientation in L7 CNT. A slightly higher peak value is observed in L22 CNT. As for the
water molecules in the second hydration shell in Figure 4b, the discrepancy between the
NPG and CNT membranes is clearly observed. The ordered second hydration shell starts
to form in L7 CNT and is further strengthened with the increase in membrane thickness.
The overall orientation distribution trend is consistent with the above analysis of hydration
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structures. To sum up, the ordered water chain structure within CNT can regulate the water
configuration within the hydration shell. The competition between the ordered water chain
structure and the hydration shell is the origin of the preference for ion position. It is easy
to imagine that the narrow ion path in thicker CNTs would exert a larger resistance for
ion passage in practical desalination applications, and thus a larger salt rejection would be
rendered. Once the confined and concentrative path is formed in L7 CNT, the resistance
remains unchanged with further increases in CNT thickness.
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dipole vector.

The ion hydration configuration within the nanochannels is closely related to their
dehydration process. Using the aforementioned spring-tethered Na+ ion model in thickness-
variant CNTs, the ion-oxygen radial distribution functions (RDFs) of Na+ in different CNTs
are calculated, as shown in Figure 5a. The corresponding coordination numbers in the first
(Nc1) and second (Nc2) hydration shells are summarized in Table 1. In accordance with the
previous results, 5.6 and 17.1 water molecules were found in the first and second hydration
shells [33–35]. The reduced number of water molecules in different CNTs is depicted in
Figure 5b. When the Na+ ion enters the L1 NPG, about 4 water molecules are peeled from the
second hydration shell, while the first hydration shell remains almost intact in spite of the
deformation. Starting from the thinnest L4 CNT, dehydration occurs in both shells, and the
reduced water number in the first hydration shell stabilizes at around 1.0. With the increase
in CNT thickness to L7, the reduced water number in the second hydration shell rises from
10.0 to 12.7 and remains almost constant with the further increase in membrane thickness.
This further confirms that the actual reduced number in ion dehydration is constant when
the CNT membrane is thick enough to form a complete two-column water chain within
the hydration shell. Despite the Na+ ion being artificially tethered within the nanochannel,
the number of dehydrated water molecules can clearly manifest the dehydration energy
barrier that the ion needs to overcome to squeeze through the narrow path inside the
CNT. This conclusion is consistent with the unchanged dehydration degree above a certain
thickness [22], as the input energy is not large enough to make the Na+ ion peel almost
13 water molecules from the second hydration shell to cross CNTs thicker than L7.
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Figure 5. (a) Thickness-dependent RDFs between Na+ ions and oxygen atoms of water molecules
(O). RDF in bulk solution is also plotted for comparison. (b) Reduced number of water molecules in
the first and second hydration shells of different CNTs.

Table 1. Coordination numbers in the first (Nc1) and second hydration shells (Nc2).

Bulk L1 L4 L7 L10 L22

Nc1 5.6 5.2 4.5 4.4 4.4 4.3

Nc2 17.1 12.9 7.0 4.4 4.3 4.0

Generally speaking, this thickness effect applies to all the CNT diameters considered
in this work, as shown in Figure 6. Similar to the case in (7, 7) CNT, intact hydration
shells start to form at the L7 length in (6, 6) CNT. Nevertheless, the extreme confinement
in L1 NPG could block almost all the ion passage. The increase in CNT thickness makes
no significant contribution to salt rejection improvement but undermines the water flux
rate instead, as shown in Figure 2a,b. For the (8, 8) and (9, 9) CNTs, water molecules
exhibit four and six columns of chain structure, respectively [36]. As shown in Figure 6,
the CNT length needed for intact hydration shells is larger than L7, and the position shift
of Na+ ions originating from the competition between the hydration shell and ordered
water chain can also be observed. Combined with the thickness-dependent salt rejection
lines in Figure S2b, the critical thickness values in (6, 6), (7, 7), (8, 8), and (9, 9) CNTs are
L1 (0.34 nm), L7 (1.078 nm), L10 (1.447 nm), and L10 (1.447 nm), respectively. On the one hand,
the diameter-dependence of the critical thickness value stems from the weaker confinement
in large CNTs. On the other hand, in spite of saturated salt rejection in (8, 8) and (9, 9)
CNTs, the actual salt rejection capacities are still inefficient and unsatisfactory. In practical
desalination applications, the operating pressure is usually not higher than 10 MPa, which
may loosen the restriction on the CNT diameter [30]. It has been found that the ideal
size of the CNTs for desalination applications can be as large as 1.1 nm in diameter [37].
Hence, the (8, 8) and (9, 9) CNT membranes can be used for ideal salt rejection, and a larger
critical thickness value may be expected in practical devices. Compared with the previously
reported critical thickness of 2.34 nm [22], although differences exist in specific details, the
nature of enhancing water permeation at the cost of ion rejection through proper choice of
CNT thickness is exactly the same.
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4. Conclusions

In our efforts to develop a novel desalination membrane that is expected to enjoy
NPG’s high water flux rate and CNT’s excellent salt rejection capacity, we conducted MD
simulations to examine the thickness-dependent desalination performance of CNTs. To this
end, (6, 6), (7, 7), (8, 8), and (9, 9) CNTs with various thicknesses are used to construct the
filtration membranes. Our simulation results show that, for the diameter ranges considered
in this work, the salt rejection rate initially increases with increasing CNT thickness but
levels off once the thickness exceeds a critical value. We found that CNT membranes
demonstrate the most efficient desalination performance when the length of the CNT
reaches a critical value that enables salt ions to form ordered hydration shells. Analysis
based on molecular details revealed that the position preference of salt ions within the CNT
nanochannel is the result of competition between the hydration shell and the ordered water
chain structure. As the thickness of the membrane increases, the ion path through CNT
narrows down and eventually becomes a confined route after the thickness approaches the
critical value. In this process, the number of reduced water molecules from the hydration
shells follows a similar trend of rising and then saturating, which shows a clear indicator of
the dehydration energy barrier that ions have to overcome to squeeze through the CNTs
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with variable thickness. By revealing the rationale of the thickness effect from a unique
perspective, we expect that the new findings of the present study can significantly deepen
the understanding of ion transport through 1D nanochannels and provide theoretical
guidance for practical desalination applications in the near future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/membranes13050525/s1, Figure S1: Water flux of thickness-
variant (7, 7) CNTs versus simulation time; Figure S2: Thickness-dependent (a) water flux rate and
(b) NaCl rejection in (6, 6), (7, 7), (8, 8) and (9, 9) CNTs.
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