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Abstract

Recent trends in global climate modeling, coupled with the availability of more fine-scale
datasets, have opened up opportunities for deep learning-based climate prediction to improve
the accuracy of predictions over traditional physics-based models. For this, however, large
ensembles of data are needed. Generative models have recently proven to be a suitable
solution to this problem. For a sound generative model for time-series forecasting, it is
essential that temporal dynamics are preserved in that the generated data obey the original
data distributions over time. Existing forecasting methods aided by generative models are
not adequate for capturing such temporal relationships. Recently, generative models have
been proposed that generate realistic time-series data by exploiting the combinations of
unsupervised and supervised learning. However, these models suffer from instable learning
and mode collapse problems. To overcome these issues, here we propose Wasserstein Time-
Series Generative Adversarial Network (WTGAN), a new forecasting model that effectively
imitates the dynamics of the original data by generating realistic synthetic time-series data. To
validate the proposed forecasting model, we evaluate it by backtesting the challenging decadal
climate forecasting problem. We show that the proposed forecasting model outperforms
state-of-the- art generative models. Another advantage of the proposed model is that once
WTGAN is tuned, generating time-series data is very fast, whereas standard simulators
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consume considerable computer time. Thus, a large amount of climate data can be generated,
which can substantially improve existing data-driven climate forecasting models.

Keywords Forecasting - Climate - Deep learning - Time series - Generative adversarial
learning

1 Introduction

Effective long-term climate forecasting has become a central issue in climate change detec-
tion. Indeed, there is an increasing need for accurate long-term climate predictions because
climate forecasts have become a critical factor for strategic decisions of business, govern-
ments, and socio-economic sectors vulnerable to climate changes (Kumar et al., 2021; Lemos
& Rood, 2010; Lomborg, 2020). For example, agriculture is highly sensitive to climate vari-
ations with serious impacts on agricultural production and water resources (Lu et al., 2019),
and climate uncertainty typically results in less productive conservative agricultural strategies
in an effort to reduce the climate risk (AitSahliaetal.,2011; Jones et al., 2000; Yerlikaya et al.,
2020). Furthermore, effective climate forecasts play a key role in future energy demand esti-
mates as energy use is exposed to climate changes (Franco & Sanstad, 2008; Sadefo Kamdem
et al., 2023; Shahzad et al., 2023; Van Ruijven et al., 2019). That is why focus on forecasting
climate change and its impact intensified during the last decade (Sarin et al., 2020).

The foremost focus of climate research is climate prediction over a timescale horizon
of about ten years. Decadal forecasting includes both annual and multi-year (decadal) pre-
dictions (Boer et al., 2016). Decadal variations in climate span the gap between short-term
climate forecasts, in which initial conditions play a key role, and long-term climate change
forecasts, in which the predominant factor is external forcing. Hence, this requires taking
into account all uncertainties that arise from the interaction between external climate impacts
and the ongoing inherent variation in climate. Decadal climate forecasts have revived interest
in ocean circulations and processes associated with ocean and atmosphere, as understanding
these has been shown to be the keystone to achieving successful decadal predictions of cli-
mate. Long- term climate forecasting models have therefore received much attention in the
past decade to deliver future climate scenarios. However, long-term climate forecasting is a
challenging issue as it retains a high level of complexity and uncertainty in the mechanism
behind the changes in the climate. In the long term, climate forecasting models also struggle
with the problem of behavioural and technological uncertainty (Van Ruijven et al., 2019).
Moreover, these problems vary across temporal and geographical scales (Lemos & Rood,
2010).

Decadal climate forecasts currently employ the very latest linked climate and Earth system
models that address the underlying system of biogeochemical and physical equations that that
drive climate. The intrinsic complexity of such instruments poses an inherent challenge for
decadal projections of climate, which is the trade-off between the vast amount of simulations
needed to provide accurately probabilities related to different plausible decadal climate fluc-
tuations, and the demanding computational needs of climate models. For example, increases
in the horizontal resolution and the number of vertical levels of the Earth system model leads
to an increased demand for computing capacity (Miiller et al., 2018).

Existing research in climate forecasting tends to use either physics-based computational
models or data-driven models (Meng et al., 2023; Scher, 2018). As climate-related databases
grow in Earth system models, data-driven machine learning models have become particularly
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relevant (Rolnick et al., 2022). Nevertheless, recent advances in long-term climate forecast-
ing have shown that large ensembles of forecasting models are needed to achieve accurate
forecasts (Smith et al., 2019). This brings with it requirements to acquire/generate sufficient
data for these model ensembles. Indeed, when it comes to representing global climate trends,
it is challenging to develop sound forecasting models due to greater complexity and data
constraints. This study seeks to address this problem with the purpose of enabling the train-
ing of powerful and efficient deep learning-based models that can generate decadal climate
forecasts in rapid time with a time-series distribution of data close to that supplied as training
data to generative adversarial networks (GANs). Although GANs provides an effective solu-
tion to problems where synthetic data are required, it fails to take into account the temporal
dynamics in the data. To overcome this problem, Yoon et al. (2019) introduced Time-series.

GANs (TimeGAN), a GAN model that can be explicitly trained to retain the temporal
dynamics of time-series data. As a result, realistic time-series data for various forecasting
problems can be generated. Both GANs and TimeGANSs suffer from the same problems
associated with the cross-entropy loss function, which can result in mode freezing (collapse)
and the null gradient problem with convergence. Inspired by recent developments in cost
functions for GANS, here we propose a forecasting model that we call Wasserstein Time-
Series GAN (WTGAN), which not only effectively generates realistic time-series data by
modelling the dynamics of the original climate data but it is also less susceptible to mode
collapse and converges quickly to the desired solution. In summary, the contributions of this
study are threefold:

e Anovel WTGAN forecasting model is proposed that exploits the generated realistic time-
series data, which allows us to accurately model the temporal features in complex dynamic
systems while improving GAN’s learning capacity.

e Backtesting of the decadal climate forecasting problem is used to validate the proposed
model. We demonstrate that the state-of-the-art GAN-based forecasting models fail to
adequately model the underlying dynamics in the climate data.

e We show that the trained WTGAN model can quickly generate large amounts of realistic
climate time-series data, thus substantially outperforming existing Earth system simulation
models in terms of computational time.

The rest of the manuscript is structured as follows. Section 2 briefly presents the existing
deep learning approaches to data-driven climate forecasting. Section 3 outlines the research
methodology, introduces the proposed generative model for time-series data, and describes the
data used for climate forecasting. Section 4 presents the experimental setup and forecasting
results. The obtained forecasts are discussed in Sect. 5, and Sect. 6 concludes with future
research suggestions.

2 Related literature

To provide guidance to government decisions and estimate the risks associated with climate
change, physics-based climate models are widely used, such as Earth system models and
General circulation models (Rolnick et al., 2022). To address complex climate problems, these
models rely on data simulations grounded in the laws of physics. However, the simulation of
the dynamics of climate data is a complex task with a wide range of uncertain environmental
factors, which in turn limits the accuracy of predictions based on these numerical models.
Unlike physics-based models, data-driven models fully rely on observational data with the
aim of learning their underlying distribution (Meng et al., 2023). Even though the physical
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interpretation of the data-driven model is problematic, data-driven models such as deep
learning-based models advance the state-of-the-art in many climate forecasting problems.
This is made possible by the ever-increasing data from climate observations. A major obstacle
of existing simulation-based climate forecasting models is their computationally intensity. In
contrast, data-driven climate forecasting models are not only fast to train but more importantly
quickly provide predictions in real deployments.

Climate time-series forecasting presents several unique challenges and characteristics
that distinguish it from other types of time-series data. Climate systems exhibit multivariate,
spatial and long-term dependencies, requiring forecasting models to capture and maintain
temporal coherence over extended durations (Ardabili et al., 2019). Climate systems are also
susceptible to extreme events and influenced by various forcings, such as solar radiation
and greenhouse gas emissions, which can lead to feedback loops and amplify or dampen
changes (AitSahlia et al., 2011). Moreover, climate data can be sparse, especially in historical
records (Ham et al., 2019). Forecasting models need to handle missing data and fill in gaps
appropriately. Additionally, historical climate data might not fully capture the true range of
climate variability due to limitations in measurement and recording. These peculiarities arise
from the complex and interconnected nature of the Earth’s climate system.

Deep learning-based forecasting models were applied successfully to various fields,
including technology forecasting (San Kim and So, 2020), macroeconomic activity (Jabeur
et al., 2022), and Earth system science (Reichstein et al., 2019). Indeed, the state-of-the-art
performance was improved in many domains due to the capacity of multiple layer architec-
tures for learning data representations at different levels of abstraction. Recent applications
of deep learning also cover climate forecasting. For example, Rasp et al. (2018) proposed
a deep learning-based model to exploit the performance of cloud simulations for climate
modelling. Their data-driven model was fast and highly accurate, including the predictions
of extreme events such as tropical waves and precipitation extremes. The potential of the deep
learning-based model for forecasting global weather was examined by Dueben and Bauer
(2018). This was justified by the enormous availability of data, the computational efficiency
of deep learning-based models, and the shortcomings of existing climate models, especially
with regard to model complexity and resolution. The deep learning-based machine learn-
ing methods have also been successfully used to predict extreme climate events in historical
observations (Racah etal., 2017). Exascale- class deep learning architectures were also devel-
oped to efficiently scale deep learning in detecting extreme climate events in multivariate data
with high resolution (Kurth et al., 2018). The main advantages of machine learning and deep
learning in modelling climate change were identified in a systematic review of Ardabili et al.
(2019): high accuracy, low computational cost, and robustness. Hybrid forecasting models
that combine deep learning with traditional machine learning methods have also been recently
used to enhance the performance in climate prediction tasks (de Mattos Neto et al., 2022).
Deep learning and artificial intelligence in general are also making an important contribution
to adaptation to climate change (Leal Filho et al., 2022).

Despite the above advantages of data-driven models, many climate forecasting problems
struggle with limited data because the Earth generates only annual climate observations in
each year, regardless of the number of sensors deployed (Rolnick et al., 2022). As a result, the
climate data are only available for several decades. Another problem arises when we focus
on the quality of the available data. Moreover, biases may exist between different obser-
vation systems and the data-driven forecasting models should also be robust against faulty
and missing data (Dueben & Bauer, 2018). In this regard, GAN-based forecasting models
were identified as a promising direction toward producing a stochastic deep learning-based
parameterization that can effectively capture the data variability (Rasp et al., 2018). Indeed,
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GAN models have gained prominence in the field of operations research due to their versatile
capabilities and potential to address important operations research challenges, such as data
augmentation and scenario generation. In operations research, where data availability can
be limited, GAN-generated data can help augment datasets, leading to better model training
and more accurate analyses (Gokasar et al., 2023). For example, GANs can simulate and
generate data related to supply chain dynamics, aiding in inventory management, demand
forecasting, and optimization of distribution networks (Wang et al., 2023). In addition, GANs
can generate multiple scenarios or variations of data, which can be particularly useful for risk
assessment and optimization under uncertainty (Zhao et al., 2022). GANs can model com-
plex interactions between resources and constraints, offering insights into optimal resource
allocation strategies that might not be readily apparent through traditional methods (Hua
et al., 2019; Wang et al., 2021). GANs can also be used to learn the normal behavior of
complex systems and then identify anomalies or deviations from this behavior (Shao et al.,
2019; Yan, 2021). This is crucial for detecting credit risk, fraud, faults, or irregularities in
various operations research contexts (Bui, 2023; Fiore et al., 2019; Giilmez, 2023; Zhang
et al., 2022). In this study, we leverage these advantages of GANs and propose a forecasting
model that is specifically designed for time-series data.

3 Methodology

This section first introduces the proposed WSGAN model, which aim is to build new real-
istic time-series instances for climate forecasting. Then, the data from the decadal climate
prediction project are described.

3.1 Wasserstein time-series generative adversarial network

A GAN comprises mainly of two components: (1) a generator learning to produce credible
data, and (2) a discriminator learning to discriminate between the fake generator data and the
real original data. At the start of training, the generator creates data that is random and thus
clearly fake. With training, the generator increasingly moves towards providing outputs that
may fool the discriminator. The generator and discriminator are both represented by neural
networks, with the generator being connected straight to the input of the discriminator. The
classification of the discriminator yields an output that the generator applies to adjust the
neural networks’ weights via backpropagation. The flowchart is depicted in Fig. 1.

discriminator

D(x; 64) — fake/real

|

loss
function
I

training data —X~pqata

generator
G(z 6,)

Z~Pz g

backpropagation

Fig. 1 Flowchart of GAN
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For training, the positive instances are represented by real data, while the negative instances
are those from the generator. While training the discriminator, the generator is kept unaltered,
i.e., its neural network’s weights remain unchanged, whilst producing the data that the dis-
criminator is trained on. The loss function of the discriminator penalizes the discriminator
for the errors produced.

The generator gets trained to produce false instances that can mislead the discriminator.
The generator consists of a random noise generator and a generator neural network that
converts the random noise taken at the input into data instances. It has been experimentally
found that the distribution of the noise source does not matter much, so a uniform distribution
is typically assumed. As training continues, the generator becomes increasingly capable of
creating data instances similar to the real ones, and the discriminator starts making more
errors.

However, the task of a forecasting model is not only to capture the feature distribution
at each time point, but it also needs to capture the complex dynamics of these features over
time. To address this issue, Yoon et al. (2019) introduced TimeGAN, which seeks to precisely
represent the underlying conditional distribution of temporal transitions. More precisely,
TimeGAN makes use of the autoregressive decomposition of the joint distribution to target
the conditionals, leading to the complementary and more easily achieved goal of learning the
original data density. This decision implies two different objectives. The first objective is the
distance between both distributions and it is considered to be global. The other objective is a
local measure of the distance between the original and the generated sequence at time 7. From
there, we set the objective that combines traditional GAN (linked to the first objective, which
is configured as the Jensen-Shannon divergence) and a supervised learning of the second
objective through the maximum-likelihood (configured as the Kullbach-Leiber divergence).

The TimeGAN structure consists of the autoencoding components (represented by embed-
ding and recovery functions) trained jointly with the adversarial components (sequence
generator and sequence discriminator). In other words, TimeGAN concurrently performs
feature encoding, generation of representations, and iterates over time. Thus, the embedding
network supplies a latent space, while the adversarial network is operating in this space. A
supervised loss is used to synchronize the latent dynamics of synthetic and data. Figure 2
presents the block scheme of TimeGAN.

reconstructions classifications

eSxI.X €[0.1] x unsupervised loss
t ’

recovery discriminate

embedding generate

real sequences random vectors

reconstruction loss

g8 yrcodes supervised loss
€ s x 1,5, SRRETHOECEDS

eESxIl X € Zsx I Z;

Fig. 2 Block scheme of TimeGAN
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Let us briefly introduce the four parts of TimeGAN. The embedding and recovery com-
ponents are represented by autoencoders, which are used to facilitate the mapping of latent
spaces s and ¢y representing static features S and temporal features X, respectively, to
allow the adversarial network to learn temporal data patterns by reducing dimensionality.
The embedding function e transforms the features S and X to their latent codes i3 = e5(S)
and h; = ex(hs, hy—1,x:), where s and x represent specific values of S and X. The recovery
function works in the opposite direction, that is 5 = ry(hy) and X = ry (h;).

The generator and discriminator work on both static and dynamic data. The generating
function g transforms static and temporal data to synthetic latent codes 713 = gs(zs) and ﬁ,
=eyx (ﬁs, ﬁ,, 1,2t ), respectively. Finally, the discriminator performs the classification on both
real and synthetic data with the following outputs:yg, y; = (hs.y).

First, the reconstruction loss is used to train the embedding and reconstruction networks:

Lk ZES,x1~p|:||S—F||2+Z||x—55”2] )
t

where p is a joint distribution.
Second, the unsupervised loss is defined, which maximizes the classification performance
of the discriminator:

Ly =Es, x,~p |:10gys +> logy,} +Es, X,~1?|:10g(1 —95)+ Y _log(l — @)} (@)
t t

To achieve greater consistency with conditional data distributions, an additional supervised
loss is implemented to train GAN in supervised mode, where the generator is given sequences
drawn from the embedded real data:

Ly =Es, x,~p[||2h, — gelhs, hi—t. 20 } 3)
t 2

In the course of training, the difference is evaluated between the latent vector of the
embedding network and the latent vector synthetically produced by the generator. Whilst Ly
forces the generator to produce realistic time-series data, £g makes sure that similar stepwise
transitions are created. The parameters of the embedding and recovery networks 6, and 6,
are trained by minimizing the reconstruction and supervised losses:

mien (ALs + LR) )
esvYr

where A > 0 denotes a hyperparameter used to balance the losses. Adversarial training is
applied to optimize the parameters 6, and 6; of the generator and discriminator networks:

min <77£S + max£U> 5)
0y Oq

where 1 represents another hyperparameter balancing supervised and unsupervised losses.
Practically speaking, TimeGAN does not seem to be particularly hyperparameter-sensitive;
therefore, in agreement with Yoon et al. (2019), the values for the hyperparameters were set
as follows: A = 1 and n = 10.

Considering the classification problem performed within the TimeGAN (fake/real data
classification), the cross-entropy loss function is typically used. To solve the problem of low
or zero gradients, here we propose to use the Wasserstein loss function in the TimeGAN
model. The Wasserstein loss function is grounded on the distance of ground motion between
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two probability distributions. Therefore, WTGANSs are enhanced TimeGANs with the loss
function.
Ly (Eq. (2)) represented by the Wasserstein loss function defined as follows:

W(P,, Pg) = inf Eqy~ylx =yl (6)
ye(Pr, Py)

where [P, denotes the real data distribution, [P, is the generated data distribution, both are
marginals of joint distributions y(x, y). If we transform Eq. (6) using the Kantorovich-
Rubinstein duality and consider x and y to be K-Lipschitz functions f,,, then the following
objective function is obtained:

maxfp, [ fu ()] = Eevpo)[80(2)] @)

Compared to GANs and TimeGANs, WTGANS are less prone to freezing than competing
models while avoiding zero gradient problems. Unlike cross-entropy, the Wasserstein loss
function also offers the virtue of providing a true metric of distance within the probability
distribution space. The Wasserstein loss function may be realized through the calculation of
the mean by multiplying the predicted score for each instance by the corresponding true label
(element-wise).

3.2 Data

Various ocean measurement systems have been used to collect data on its temperature, oxygen
content, salinity, and so on at the surface and at depth. Additional and more advanced sensors
enable us to gather data on wave height, traces of oil or chlorophyll concentrations. This
plethora of data adds up to build the dataset needed to simulate models of the system that are
helpful in producing long-term forecasts.

The data for this study were obtained from the MiKlip preoperational system for decadal
climate projections (Marotzke et al., 2016). The MiKlip system builds on the high-resolution
Earth system model of the Max Planck Institute (MPI-ESM1.2-HR) (Miiller et al., 2018), a
conglomerate of coupled sub-models for soil and vegetation and a general circulation model.
Inthe MPI-ESM1.2-HR, the general circulation model of the atmosphere exploits a horizontal
resolution of T127/100 km and 95 hybrid sigma pressure levels that reach up to 0.01 hPa,
and the ocean and sea ice model is equipped with a tripolar grid with a global resolution of
0.4° allowing eddies with 40 z-levels. MPI-ESM-HR and other versions of MPI-ESM were
extensively validated in investigations of climate dynamics (Miiller et al., 2018; Pohlmann
et al., 2019).

We used the MiKlip simulations contributing to the decadal climate prediction project
(DCPP) (Boer et al., 2016). The simulations incorporate historical assimilation data spanning
1958/11-2018/11 and hindcasts initially performed on November 1 for every year between
1960 and 2018 employing historical forcing. One major benefit of decadal climate projections
is that their validity can be evaluated by looking at retrospective forecasts (the so-called
hindcasts) and comparing them with later observations (Smith et al., 2019). Each hindcast in
our data consists of five ensemble elements (rq,r, ...,rs) with different initial states. The data
can be found in the Earth System Grid Federation.! The AMV index was computed from the
monthly Max Planck Institute Ocean Model Output as spatial averages of North Atlantic sea-
surface temperature in the region covering 0—60°N latitude and 0°-80°W longitude. Prior to

1 https://confluence.ecmwf.int/display/COPSRV/CMIP6%3 A+Decadal+climate+predictions.
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Fig. 3 Input data structure 1960
g P / 1961
“//1962
N\
N\
| N\
0 \
i ' N 1 AN
Pl N\ i N\
b N \
P N o \\
P N
b : 2016
b h: N, 2017
P : A/‘/zms
I'E i 0 Nov
R Y R I 1 Dec
E ™ 2 Jan
/ S Do !
\ U :
N\ ! i I
AN o H
\ Vo i
N [ !
N\ = i
N\ -1 |
\ 120 Oct
59 groups P 121 Nov
122 Dec

the index being calculated, biases in the model, such as drift, were systematically eliminated
from the grid-point data following DCPP recommendations.

The data supplied are illustrated as fifty-nine 122 x 5 matrices, as shown in Fig. 3.
Each matrix is composed of five simulations of sea temperature in the North Atlantic. Each
column represents the monthly average temperatures over 10 years starting from November
of that year. That is, the first matrix carries five simulations ranging from November 1960 to
December 1970, the second one covers November 1961 to December 1971 and so on until
the last one, which covers 2018 to 2028.

Temperatures ranged from 17.86 °C to 24.27 °C, with the average and standard deviation
of 20.88 £ 1.62 °C. The original data were normalized and standardized as detailed in the
following section.

4 Experiments
4.1 Experimental setup

The experiments were conducted using a MacBook pro laptop running macOS High Sierra
with 8 GB of RAM. To train the WTGAN model, 1000 iterations were executed. Initially,
tests were also run with 2000 and 5000 epochs, without obtaining particular improvements
in the results. Each trained model was used to generate 100 instances in a 100 x 59 x 122
x 5 array. Each model took just over an hour to train, while creating 100 instances from the
trained WTGAN model took under a minute.

The original code of the TimeGAN model can be found at the following link: https://gi
thub.com/jsyoon0823/TimeGAN. The code of the Wasserstein loss function is available at:
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https://github.com/kzkadc/wasserstein-gan. The proposed model was implemented in Python
3.7 with the settings adopted from Yoon et al. (2019): hidden dimensions = 24, number of
layers = 3, activation function = sigmoid, module = GRU (gated recurrent unit). The GRU
module was chosen because, unlike LSTM (long short-term memory), it solves the vanishing
gradient problem. It is worth noting that we also experimented with different numbers of
hidden dimensions, but no improvement in forecasting was made.

4.2 Experimental results

In this section, the experimental results show the effectiveness of the proposed forecasting
model compared with existing GAN-based forecasting models.

In the first run of experiments, we demonstrate both (1) the effect of the proposed Wasser-
stein loss function in the TimeGAN model and (2) the importance of data pre-treatment
(normalization/standardization) for the quality of the generated time-series data. To this end,
the original data were first used with the same experimental settings as presented in Sect.
4.1 using the cross-entropy loss as in the original TimeGAN model. Figure 4 shows the
synthetic data produced with the increasing training time of TimeGAN. The patterns of the
real data were captured in about seventy epochs. It is interesting to observe how the model
accommodates these patterns gradually.

Figure 5 shows the result of the data processing. As can be seen from Fig. 5a, the generated
time-series data do not follow the trend of the real data: the generated data averages are flat and
the dynamics of growth are not reproduced. The result suggests that the TimeGAN generator
did not converge and was trapped in a local minimum. To overcome this problem, we used the
Wasserstein distance as the loss function. To this end, the TimeGAN was enhanced to allow
us the use the Wasserstein loss instead of the standard cross-entropy loss function. However,
Fig. 5b shows that growth dynamics were not captured in this case either.

This result indicated that the original data (without pre-processing) were not helpful for
representing the temporal dynamics of the generated data. Therefore, we further examined
two global (on all data columns) pre-processing schemes: (1) unity-based normalization (x
— xmin)/(xmax — xmin) and (2) standardization (x — ux)/ox. Figure 6 shows the result of
the experiment for the unity-based normalization. However, the generated data exhibited the
same unsatisfactory trend. It is worth noting that similar results were also obtained for the
data standardization even with the Wasserstein loss function.

Because even the global normalization failed to provide reasonable results, it was hypoth-
esized that choosing parameters related to the entire dataset might obscure the dynamics

10 15 20 60 65 70

Epochs

Fig. 4 The effect of the number of epochs on the data generated using TimeGAN. At the top is the trend of the
simulation (the first one from 1960), at the bottom is the evolution of the curve generated
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Fig. 5 Results of TimeGAN with original data for (a) cross-entropy loss and (b) Wasserstein loss. The red
(black) curves are the average annual values of the real (generated) data, and the green (blue) curves show the
average column values of the real (generated). (Color figure online)

Fig. 6 Results of WTGAN with globally normalized data. The red (black) curves are the average annual values
of the real (generated) data, and the green (blue) curves show the average column values of the real (generated).
(Color figure online)

of the real data by flattening the results around the normalized values. Two additional data
pre-processing schemes were then utilized to normalize and standardize the data locally (in
each column). In contrast to the previous results, the locally normalized data fit the dynamics
of the real data, with much larger deviations of the mean values (Fig. 7). Here, it can be
seen that the TimeGAN with cross-entropy loss produces the data with significantly lower
average values than for the real data, while the WTGAN produces a larger amplitude of data
averages generated.

In Fig. 8, a different data representation can be seen to demonstrate the decadal forecasting
capacity of generated data throughout the hindcasting period. Again, the TimeGAN with
Wasserstein loss better simulates the original data, whereas the use of cross-entropy loss
functions does not represent the original data distribution.
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1960 1970 1980 1990 2000 2010 2020 20% 1960 1970 1980 1990 2000 2010 2020 2030

(a) ®)

Fig. 7 Results of TimeGAN with locally normalized data for (a) cross-entropy loss and (b) Wasserstein loss.
The red (black) curves are the average annual values of the real (generated) data, and the green (blue) curves
show the average column values of the real (generated). (Color figure online)

Figures 9 and 10 show the results of WTGAN when the data were standardized locally
(by data column). Compared to that obtained for locally normalized data, this result suggests
a more reliable data generation process, although in some cases the averages generated are
still low.

To better evaluate these results, a violin plot was made. The central year of each treatment
is shown on the abscissa; for illustration, the first column in the first chart (years 1960-1964)
shows 1962. The results show that the synthetic data are consistent with the dynamics of the
real data and retain average values that are close to the real ones.

Given that the goal of this study was to generate synthetic data with the same trend and
variance as their real counterparts in a short period of time, Table 1 contrasts the computing
power used to create the simulations between the proposed WTGAN model and MPI-ESM.
The reduction in computing resources is significant. On a conventional computer, approxi-
mately 500 simulations can be produced over 30 years in just over 1 h of machine time.

5 Discussion

Prior research has found that the limited amounts of valid observational data is the main
limitation of successful application of deep learning-based models in climate forecasting
(Ham et al., 2019). In the study conducted by Ham et al. (2019), it was demonstrated that a
deep-learning-based statistical forecast model exhibits a noteworthy capability in generating
accurate forecasts of the El Nifio-Southern Oscillation. To address the inherent constraint
of limited observational data, the researchers implemented transfer learning as a strategic
approach. This involved the preliminary training of a convolutional neural network on his-
torical simulation data. However, the CMIP5 models have limitations in spatial and temporal
resolutions and climate models used in CMIP5 can have biases in simulating certain aspects
of the climate. To overcome these problems, GAN models have recently been used to gen-
erate synthetic climate data that can be tailored to specific needs, allowing researchers to
explore scenarios beyond historical data, especially in regions or time periods with sparse
observations, while producing data at higher spatial and temporal resolutions (Kumar et al.,
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Fig. 8 10-year average results of TimeGAN with locally normalized data for (a) cross- entropy loss and
(b) Wasserstein loss. Average values calculated from the real (generated) data columns are shown in red
(black). Each column represents ten years. (Color figure online)
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Fig. 9 Results of WTGAN with locally standardized data. The red (black) curves are the average annual values
of the real (generated) data, and the green (blue) curves show the average column values of the real (generated).
(Color figure online)

2023; Meng et al., 2023). Notably, Meng et al. (2023) demonstrated that the performance of
the traditional assimilation models can be significantly improved by GAN-based forecast-
ing models. Specifically, their GAN-based forecasting model was superior to the competing
deep learning-based models, namely recurrent neural networks (Jia et al., 2019) and mul-
tilayer convolutional LSTM neural networks (Zhang et al., 2020), in the prediction of sea
subsurface temperature. Inspired by these findings, this study introduced a novel WTGAN
forecasting model, which leverages authentically generated time-series data, allowing us to
adeptly characterize the temporal attributes within intricate dynamic systems.

Similar to the above-mentioned deep learning-based data generation approaches, and com-
pared to existing simulation models (de Mattos Neto et al., 2022; Leal Filho et al., 2022;
Rasp et al., 2018), the model proposed in this study has the advantage of efficiently gener-
ating realistic time-series data, which is particularly convenient in many climate prediction
problems with a very limited amount of valid observations (Rolnick et al., 2022).

Furthermore, our results show that the standard GANSs, as used in related studies (Meng
et al., 2023), are not sufficient to produce realistic time-series climate data because the
transition dynamics in the data is difficult to be captured efficiently. Our evidence shows that
WTGAN can learn and replicate complex temporal patterns that are inherent in climate time-
series data, thereby exhibiting realistic transitions in long-term sequences and maintaining
temporal consistency. Our study not only confirms the superiority of the GANs designed
specifically for time-series data, but we also demonstrate that the traditional loss function
easily leads to the collapse mode and failure of the training algorithm. This is consistent with
recent studies (Mi et al., 2023), which demonstrate that the inclusion of the Wasserstein loss
function provides both robustness to the model training process and an increased range of
output diversity.

Finally, some limitations of the WTGAN-based model should be noted. First, the model
might lack the extensive validation and verification that historical simulation data have under-
gone. This raises questions about the accuracy and reliability of the synthetic data, especially
when sufficient amounts of high-quality observational data are not available. Moreover, devel-
oping a reliable GAN model for different climate data and forecasting tasks requires careful
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Fig. 10 Violin plots of the results of WTGAN with locally standardized data. For each year, the distribution
of the average values of each simulation are shown, the distribution of the five elements (500 elements) of the
real (generated) data are in blue (red). (Color figure online)

Table 1 Machine resources needed to perform climate simulations

Model Machine Cores/nodes Years/computing time
MPI-ESM Mistral 36 50/day
WTGAN MacBook pro 2 30 x 5 x 100/h
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training, hyperparameter tuning, and validation to ensure that the generated data aligns with
the underlying physical processes. Although this study can provide important clues for con-
ducting such experiments, the computational complexity of the models and the expertise
required to validate them should also be mentioned, which may hinder their applicability by
other researchers and practitioners.

6 Conclusion

This study focused on the rapid generation of synthetic data to improve the forecasting
performance of a GAN-based model. To this end, the WTGAN model was proposed, which
attempts to replicate the temporal dynamics in the real time-series data. The previously
developed TimeGAN model comprises four basic modules, while adopting the cross-entropy
loss function. It was considered worthwhile to circumvent the collapse mode by applying the
Wasserstein loss function in the discriminator module of TimeGAN rather than the cross-
entropy loss function. Additionally, we decided to transform the training data locally on each
individual simulation as opposed to globally on the entire dataset. It was precisely the models
that used the local standardized data in the WTGAN model.

This work has raised several issues that need further investigation. Continuing this work
calls for the generation of multivariate synthetic data covering various physical variables
such as salinity and temperature. To this, geolocation can be used to create maps illustrating
the climate situation over time. Another issue that needs to be addressed is assimilation
with respect to difficult-to-predict extreme events, such as volcanic eruptions that impose
significant variations in the data. To this end, the introduction of fixed points corresponding
to these events is needed. The WTGAN model should account for these events by forcing
the curves to pass through the fixed points and then incorporate them in the generation of
synthetic data. Even though these modifications will demand much higher computational
resources than those used here, these are still within the capabilities of a computer with
an appropriate GPU. We believe that the presented modifications of the GAN model will
enable its further use in various prediction problems in operations research. Potential areas
of application of the WTGAN model in operations research are multivariate, spatial and
non-stationary prediction problems with extreme events that may suffer from sparse data,
such as inventory management (Shajalal et al., 2023) and demand forecasting (Efat et al.,
2022).
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