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Abstract
Timely and accurate extraction of pavement crack information is crucial
to maintain service conditions and structural safety for infrastructures and
reduce further road maintenance costs. Currently, deep learning techniques
for automated pavement crack detection are far superior to traditional manual
approaches in both speed and accuracy. However, existing deep learning mod-
els may easily lose crack details when processing images containing complex
background textures or other noises. Although many studies have alleviated
this challenge by introducing attention mechanisms, especially the non-local
(NL) block, which has the ability to efficiently capture long-range dependencies
to facilitate crack pixel capture, the huge computational cost of NL makes the
inference time of the model too long, which is not conducive to practical imple-
mentation. In this study, a new module, namely, the pyramid region attention
module (PRAM), was developed by combining the pyramid pooling module in
the pyramid scene parsing network and optimized NL, which can achieve global
multi-scale context integration and long-range dependencies capture at a rela-
tively lower computational cost. By applying PRAM to deep skip connections in
the modified U-Net, an effective crack segmentation model called CrackResU-
Net was developed. The test results on the existing CrackForest dataset showed
that CrackResU-Net not only achieved an F1 score of 0.9580 but also took only
25.89 ms to process an image with a resolution of 480 × 320, which had advan-
tages in accuracy and speed, compared with several other state-of-the-art crack
segmentation approaches. It was fully demonstrated that this approach could
realize automatic fast and high-precision recognition of pavement cracks for
engineering purposes.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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1 INTRODUCTION

Asphalt pavements inevitably deteriorate during service
due to a variety of internal and external factors, such as
repeated traffic loading and severe weather conditions.
Cracks can significantly affect road smoothness and driv-
ing comfort. If not repaired in time, the road structure may
be infiltrated by water through the initial cracks, causing a
serious reduction in the service life of the road and result-
ing in a significant increase in road maintenance costs.
Therefore, timely detection of cracks plays an important
role for civil engineers. Traditional manual visual inspec-
tion relies almost entirely onmanual operation, which has
not only a high human cost but also the problem of subjec-
tive evaluation results and potential traffic safety concerns.
As a result, efficient and accurate automatic crack detec-
tion methods are urgently needed to enhance the quality
of road monitoring.
Methods based on traditional image processing such as

threshold-based methods (Q. Li & Liu, 2008; Oliveira &
Correia, 2009) and edge detection (Ayenu-Prah & Attoh-
Okine, 2008; Huili Zhao et al., 2010) have been utilized for
detecting pavement cracks in previous studies. Although
these methods are easy to implement, the performance
is greatly affected by the external environment, such as
unsatisfactory detection results for low-quality pavement
images containing shadows, rain, or other noise. As a
result, machine learning methods, which have had great
success in the field of computer vision, were subsequently
introduced for pavement crack recognition, such as sup-
port vector machines (N. Li et al., 2009) and artificial
neural networks (Cheng et al., 2001; Xu et al., 2008). Com-
pared with image processing methods, machine learning-
based methods are more accurate and detect less noise.
However, the complex feature construction steps limited
its applicability. Moreover, due to the limited computing
power of computers at that time, the fewer neural network
layers were insufficient to fully express the complex pave-
ment features, which severely limited the improvement in
detection accuracy.
As artificial intelligence is rapidly developing, the

construction and application of deep learning models
have been preliminarily realized, which means more
neural network layers could be used for feature extraction
and integration. Deep learning is a powerful technology
that not only has been developed for collision avoidance
perception of mobile robots (Macias-Garcia et al., 2021),
classification of motor imagery electroencephalography
(EEG) signals (Hassanpour et al., 2019), and EEG-based
emotion recognition (Olamat et al., 2022) but also has good
applications in solving civil engineering problems, such as
forecasting earthquakes (Rafiei & Adeli, 2017), estimating
the sale prices of real estate units (Rafiei & Adeli, 2016),

estimating concrete properties (Rafiei et al., 2017), and
evaluating construction costs (Rafiei & Adeli, 2018). In
2012, the great success of AlexNet (Krizhevsky et al., 2012)
in image classification attracted the interest of researchers
engaged in automated pavement crack detection research.
Among the various methods, image-level classification
methods (Hou et al., 2021; Pauly et al., 2017) and object
detection methods (Maeda et al., 2018; Yao et al., 2022) can
obtain only the rough location information of pavement
cracks, which could not meet the needs of pavement
condition assessment. Therefore, pixel-level classification
methods that can provide accurate geometric features
of cracks have become the mainstream direction. Most
of the current networks designed for pixel segmentation
were based on the encoder–decoder model, in which
the encoder is for feature extraction and the decoder
up-samples the encoder output to the original image size
and outputs the segmentation results. Bang et al. (2019)
developed a deep convolutional encoder–decoder network
and successfully achieved pixel-level segmentation of road
cracks in black box images. Jenkins et al. (2018) built a
U-Net-based (Ronneberger et al., 2015) pavement crack
segmentation network, the advantage of which is that its
skip connections could allow information fusion between
its encoder and decoder, thereby alleviating the problem of
insufficient spatial information in the decoder. However,
the model accuracy remains to be improved for pavement
images that normally contain various noises and complex
background textures.
Providing models with sufficient multi-scale context

information is a way to improve accuracy. Zou et al.
(2018) and Yang et al. (2019) improved the model’s abil-
ity to distinguish cracks from the background by fusing
feature maps from multiple scales. However, the com-
putational complexity may be high when dealing with
large-size images. Comparatively, atrous spatial pyramid
pooling (ASPP; L. -C. Chen et al., 2018), which uses
atrous convolutions with different dilated rates to capture
and fuse features from different receptive fields, is more
lightweight. Song et al. (2020) established a pavement
crack segmentation network named CrackSeg, which uti-
lized a multi-scale dilated convolution module to learn
rich semantic information and fused it with shallow spa-
tial high-resolution features to obtain crack feature details.
Ye et al. (2023) adopted a structure similar to ASPP at
the top of their network to integrate multi-scale informa-
tion,which is beneficial for extracting abstract features and
improving segmentation accuracy. Another lightweight
module for obtaining multi-scale context information is
the pyramid pooling module (PPM; Hengshuang Zhao
et al., 2017), which performs multi-scale pooling opera-
tions on the input feature map to extract the multi-scale
context information. In pavement crack detection studies,

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13128 by T
est, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YAO et al. 3

modules similar to PPM were commonly applied to the
deep layers of the network to help understand the seman-
tic structure of the whole scene and improve segmentation
performance (Xiang et al., 2020; Zhou et al., 2021).
The attention mechanism is another technique to

enhance model precision. In 2018, the squeeze and exci-
tation (SE) module (Hu et al., 2018) was proposed as
a tool for enhancing model performance. This module
enabled the network model to learn the importance of dif-
ferent feature channels by generating an attention map
and reweighting each feature channel of the feature maps.
Test results showed that applying the SE module to clas-
sification models can improve its performance without
significantly increasing the computational cost. Inspired
by SE, more spatial or feature channel attention mod-
ules have been developed and introduced into pavement
crack detection studies. Based on U-Net, Augustauskas
and Lipnickas (2020) utilized attention gate (AG) (Oktay
et al., 2018) to enhance crack detection performance. Song
et al. (2019) captured deep crack details by introducing
a feature channel attention module. Xiang et al. (2020)
used bottleneck attention module (BAM; Park et al., 2018)
in their encoder–decoder model to accurately capture
cracks and suppress irrelevant information. Qiao et al.
(2021) applied the concurrent spatial and channel squeeze
and channel excitation block (Roy et al., 2018) to their
model and achieved better crack segmentation precision.
However, the feature channel and spatial attention mod-
ules described above can capture only local information
and cannot model long-range dependencies. As a result,
the self-attention mechanism (Vaswani et al., 2017) has
attracted the attention of researchers recently. By introduc-
ing the idea of self-attention, the non-local (NL) block was
proposed by X. Wang et al. (2018) and achieved excellent
performance in several computer vision tasks due to its
effective capture of long-range dependencies. Inspired by
NL, Wan et al. (2021) designed CrackResAttentionNet for
pavement crack detection based on the encoder–decoder
network, where two self-attention-based attention mod-
ules were added after different encoder layers to aggregate
long-range context information. Ong et al. (2023) used self-
attention to refine each feature pyramid network (FPN)
layer so that the deep and shallow layers of the FPN
could enhance crack information and reduce noise impact,
respectively. However, the large computational cost of
the self-attention mechanism severely limits the detection
speed.
In this paper, an innovative pyramid region attention

module (PRAM) is proposed to capture long-range depen-
dencies and integratemulti-scale context informationwith
a relatively lower computational cost. By applying the
PRAM, BAM, auxiliary branch, and spatial attention mod-
ule (SA) to the modified U-Net embedded with ResNet-34
(He et al., 2016), an effective crack segmentation model

named CrackResU-Net was designed. The proposedmodel
was tested on the CrackForest dataset (CFD; Shi et al.,
2016), Cracktree200 (Zou et al., 2012), and Crack500 (Yang
et al., 2019), and results were discussed to evaluate its effec-
tiveness and robustness. Themain purpose of this research
was to build an efficient crack segmentation model for
on-site testing by civil engineers that can achieve rapid
detection while ensuring high accuracy.

2 METHODOLOGY

2.1 Network architecture of
CrackResU-Net

As a powerful semantic segmentation model, U-Net has
achieved success in medicine (Ronneberger et al., 2015).
Recently, with the emergence and development of atten-
tion mechanisms, the combination of the two has sig-
nificantly improved its performance (Augustauskas &
Lipnickas, 2020). Thus, the proposed CrackResU-Net was
based on the modified U-Net embedded with ResNet-34.
Figure 1 shows its network architecture. The input image
with three channels is input into CrackResU-Net, and the
feature extraction is performed by ResNet-34 combined
with BAM. As down-sampling proceeds, the image size
is reduced to, at most, 1/32. Subsequent up-sampling by
the Upsample Block is performed to reduce the feature
channel while scaling up the featuremap size, which facil-
itates the fusion with the corresponding encoder feature
map. The Upsample Block contains an up-sampling layer
and a 3 × 3 kernel size convolution layer. After the fusion
operation, an Upconv Block, which consists of two 3 × 3
kernel size convolution layers, is used for feature integra-
tion. Then, the up-sampling process is repeated, and finally
the Upconvlast Block, containing an up-sampling layer
and a 1 × 1 kernel size convolution layer, is passed through
to obtain pixel-level binary detection results (crack and
non-crack). In particular, the PRAM is applied to the
two deep skip connections of CrackResU-Net for captur-
ing long-range dependencies and aggregating multi-scale
context information. Meanwhile, the SA is introduced
in the two shallow skip connections of CrackResU-Net
to enhance the spatial crack edge information for more
accurate segmentation results. More details about the
important components of CrackResU-Net are introduced
in the subsequent sections.

2.1.1 SA

With down-sampling in the encoder, some spatial
information is gradually lost, which leads to insufficient
information obtained by the decoder, thus resulting in poor
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F IGURE 1 Network architecture of CrackResU-Net.

detection of tiny targets or edges. U-Net has designed the
skip connection to alleviate this problem. Through skip
connections, features at different levels in the encoder
could be integrated with the corresponding features in
the decoder to complement the missing spatial details.
However, simple concatenation does not allow the net-
work to capture important information related to the
detection target to guide network training, so several
studies have used attention modules to improve skip
connections, such as AG (J. Chen &He, 2022) and channel
attention block (Hsieh & Tsai, 2021). In this paper, SA
was introduced to CrackResU-Net’s skip connections to
refine the spatial information of cracks. Without attention
modules applied, the output feature maps for different

encoder layers of CrackResU-Net were visualized using
Grad-Cam (Selvaraju et al., 2017) and are shown in
Figure 2. It can be seen that features of deep networks
have less spatial information than semantic information,
so the application of SA for reinforcement may not be
significant. In CrackResU-Net, SA was applied to the
two shallow skip connections. The architecture of SA is
shown in Figure 3a. Inspired by the convolutional block
attention module (CBAM; Woo et al., 2018), SA performs
average andmaximumpooling at each spatial location and
concatenates the pooled features in the feature channel
direction. Finally, a convolution operation with a 7 × 7
kernel size is performed to generate the attention map for
reweighting the input of SA, which could help the network
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F IGURE 2 Visualization of the output feature maps for CrackResU-Net’s different encoder layers without attention modules applied.

capture important pixel information and suppress useless
information.

2.1.2 PRAM

Long-range dependencies refer to connections between
pixels or regions in an image that are far away from
each other. The consideration of long-range dependencies
allows the model to capture a wider range of context infor-
mation and better understand the relationships between
different regions in an image, which is critical for tasks
such as image classification, object detection, and seg-
mentation. While convolutional neural networks rely on
convolution operators to model long-range dependencies,
this approach has its limitations. Simply repeating con-
volution operations is computationally inefficient and
challenging to optimize (X. Wang et al., 2018). This makes
it difficult for the network to transfer information between
long-range locations, which leads to ineffective modeling
of long-range dependencies. The NL solves this problem
better by introducing the idea of self-attention. As shown
in Figure 3b, NL first performs dimensionality reduction

on the input and generates three featuremaps by three 1× 1
kernel size convolution layers. Then,matrixmultiplication
is performed on two of the feature maps to obtain cor-
relation coefficients between each feature spatial position
and all other positions. After passing through the Softmax
function, the correlation coefficient matrix is multiplied
with the remaining feature map for weighted reinforce-
ment. Finally, the output is summed with the original
input after passing through a 1 × 1 kernel size convolu-
tion layer. Although such an architecture could enable the
network to capture dependencies between related objects
that are far away, the large computational cost of NL lim-
its the inference speed, which is not conducive to practical
applications.
To solve the above problem, the NL was first optimized,

and SimNLwas proposed. Figure 3c shows its architecture.
Its design adopts the idea of the spatial attention branch
of CBAM, which obtains the attention map by fusing the
maximum and average data at each spatial location of the
feature map. By performing maximum and average pool-
ing in CPC, themaximum and average information at each
spatial position in the two feature maps used for calculat-
ing the attention map in NL are extracted and integrated,
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F IGURE 3 Network architectures: (a) spatial attention module (SA), (b) non-local (NL; X. Wang et al., 2018), (c) SimNL, and (d)
pyramid region attention module (PRAM).

which leads to better attention map generation. Then, the
PRAM was proposed by combining the PPM in a pyramid
scene parsing network (PSPNet; Hengshuang Zhao et al.,
2017) with SimNL. The architecture of PRAM is shown in
Figure 3d. Four feature maps of sizes 1 × 1, 2 × 2, 3 × 3, and
6 × 6 are obtained by performing average pooling at four
scales on each feature channel of the input. Then, except
for the globally pooled feature map that passes through a
1 × 1 kernel size convolution layer, the remaining feature
maps are processed by SimNL for long-range dependencies
capture and spatial information enhancement of different
sub-regions, and thus the proposed module is called the
PRAM. It is worth noting that the residual connection of
SimNL has been canceled in PRAM. Finally, all four sizes
of feature maps are up-sampled to the input size and then
concatenated with the input in the feature channel direc-
tion and output through a 1 × 1 kernel size convolution
layer. Such an architecture not only allows the integration
of context information at different scales, which is ben-
eficial for the model’s understanding of the global scene
but also reduces the input feature map size of SimNL to
a fixed value, which significantly decreases the computa-

F IGURE 4 Computational cost of PRAM and pyramid pooling
module (PPM)+NL.

tional cost. As shown in Figure 4, in this paper, PPM, and
NL were simply connected to form PPM+NL, and its com-
putational cost was compared with the shallow PRAM.
When the input of the model is (320, 320, 3), the input fea-
ture map of PRAM and PPM+NL is (40, 40, 128), and the
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computational cost of PRAM is slightly less than that of
PPM+NL. As the size of the detected image increases, the
difference in computational cost between the two becomes
more and more obvious. When the input of the model is
(1280, 1280, 3), the computational cost of PRAM is less
than half of that of PPM+NL, which indicates that multi-
scale region attention has a great advantage in detecting
large-size images. The PRAM was applied to CrackResU-
Net’s deep skip connections to provide rich integration
information for the decoder.

2.1.3 Auxiliary branch

Inspired by the auxiliary branch in PSPNet, an auxiliary
branch was added to CrackResU-Net’s encoder to assist in
encoder training. The auxiliary branch can provide addi-
tional gradient signals, allowing gradients to propagate
better to shallow network parts, which helps alleviate gra-
dient vanishing or exploding problems and improves the
training stability of the encoder. Due to the different distri-
bution of spatial and semantic information that different
levels of network layers contain, for guiding the train-
ing more effectively, the auxiliary branch was applied to
the middle position of CrackResU-Net’s encoder, where
the spatial and semantic information was more balanced.
Figure 5 shows its architecture, which consists of a four
times up-sampling layer, a 1 × 1 kernel size convolution
layer, and an Upconvlast Block.

2.2 Loss function

A Softmax function is used to process the output of
CrackResU-Net to generate the final predicted class
probabilities for each pixel point. The loss function of

CrackResU-Net in this paper consists of a main loss 𝐿main
and an auxiliary loss 𝐿aux as shown in Equation (1).

𝐿 = 𝐿main + 𝐿aux (1)

As a commonly used loss function, cross-entropy loss
can better deal with the problem of uneven distribution of
categories in data (Yang et al., 2019). Dice coefficient loss is
a loss function based on set similaritymeasurement, which
considers the spatial relationship between predicted pix-
els and true labels (Augustauskas & Lipnickas, 2020). As a
result, the main loss consists of the cross-entropy loss and
the dice coefficient loss, which is shown in Equation (2).

𝐿main =
1

𝑛

𝑛∑
i=1

𝑘∑
c=1

−𝑝ic ⋅ log (𝑞ic)

+
1

𝑘

𝑘∑
c=1

(
1 −

2 ⋅
∑𝑛

i=1
𝑝ic ⋅ 𝑞ic∑𝑛

i=1
𝑝ic +

∑𝑛

i=1
𝑞ic

)
(2)

where 𝑝ic and 𝑞ic are the true label and main branch
prediction for the 𝑖th pixel that belongs to category c,
respectively, 𝑛 represents the total pixels in the image, and
𝑘 is 2 in this paper.
The auxiliary loss consists of the dice coefficient loss,

which is calculated by Equation (3).

𝐿aux =
1

𝑘

𝑘∑
c=1

(
1 −

2 ⋅
∑𝑛

i=1
𝑝ic ⋅ 𝑧ic∑𝑛

i=1
𝑝ic +

∑𝑛

i=1
𝑧ic

)
(3)

where 𝑝ic and 𝑧ic are the true label and auxiliary branch
prediction for the 𝑖th pixel that belongs to category c,
respectively, 𝑛 represents the total pixels in the image, and
𝑘 is 2 in this paper.

2.3 Optimization

In this paper, the Adam optimizer was selected to optimize
CrackResU-Net. This involved calculating the gradient of
a small batch of samples during each iteration, allowing
for weight updates. Adam is similar to root mean squared
propagation (RMSProp) but with the addition of momen-
tum terms. It dynamically adjusts the learning rate of the
network parameters using first-moment and second-raw-
moment estimates of the gradient. One of its advantages is
that the learning rate has awell-defined range for each iter-
ation after bias correction, which contributes to increased
parameter stability.

3 EXPERIMENTS AND ANALYSIS

For validating CrackResU-Net’s effectiveness, compara-
tive tests were conducted on existing public datasets. The
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8 YAO et al.

network training, data processing, and evaluation were
conducted on a workstation with a Linux operating sys-
tem (Intel Core i5-9400F @ 2.90 GHz CPU, and NVIDIA
Geforce RTX 2060 GPU).

3.1 Dataset establishment

In this paper, CFD was mainly utilized for CrackResU-
Net’s training and testing, and the additional experimental
validation was conducted on Cracktree200 and Crack500.
These three datasets and their processing are described as
follows:

1. CFD: CFD is a commonly used dataset that contains 118
images taken by iPhone5with 480× 320 pixels in resolu-
tion. The images basically reflect the road conditions in
Beijing, China. For expanding the training sample, after
dividing these images into training, validation, and test-
ing sets by a ratio of 6:2:2, cropping was performed on
each image in steps of 20 pixels in horizontal and ver-
tical directions to extract images with 320 × 320 pixels
in resolution. Then, five data augmentation methods,
including rotations of 90◦, 180◦, and 270◦ and flipping
180◦ horizontally and vertically, were applied to gain
3834 training images, 1296 validation images, and 1242
test images.

2. Cracktree200: Cracktree200 is a crack segmentation
dataset proposed by Zou et al. (2012) and includes 206
crack images with 800 × 600 pixels in resolution. The
images have challenges, such as low contrast and poor
occlusion. In this paper, these images were divided into
training and testing sets by a ratio of 6:4.

3. Crack500: Crack500 was presented by Yang et al. (2019)
and contains 500 images of pavement cracks with
2000 × 1500 pixels in resolution. To fit the model input,
each original image was cropped to 640 × 360 size, and
thus 1896 training images, 348 validation images, and
1124 testing images were used in this paper.

3.2 Evaluation metrics

For crack segmentation, pixels correctly predicted as
cracks are true positive (TP), pixels incorrectly predicted
as cracks are false positive (FP), pixels correctly predicted
as background are true negative (TN), and pixels incor-
rectly predicted as background are false negative (FN).
In this paper, precision (Pr), recall (Re), and F1 score are
used to evaluate CrackResU-Net and are calculated as
Equation (4), Equation (5), and Equation (6), respectively.

Pr =
TP

TP + FP
(4)

Re =
TP

TP + FN
(5)

F1 score =
2 ⋅ Pr ⋅ Re

Pr + Re
(6)

Since manual annotation often results in a transition
region between non-cracked and cracked pixels, the pre-
dicted crack pixels within two pixels of the crack label can
be regarded as TP, per the strategy used by Liu et al. (2020).

3.3 Hyperparameters

For model training, the batch size used for calculating
the gradient is set to 8, and L2 regularization with a
weight decay factor of 0.00001 is applied. Considering that
the decaying learning rate helps network training, this
research adopted a dynamic learning rate modification
strategy based on model performance. The dice coefficient
is calculated on the validation set once every 1/8 epoch of
training, according to Equation (7). When no better dice
coefficient is obtained three times in a row, the learning
rate decreases by 90%. In this paper, an initial learning rate
of 0.0001 is adopted.

Dice coef f icient =
2 ⋅ TP

TP + FP + TP + FN
(7)

3.4 Network training and model
optimization on CFD

The strategy of Gaussian noise addition, random color
augmentation, and random image translation was used
during network training to increase the robustness of
CrackResU-Net. Meanwhile, images with short sides of
less than 320 pixels were scaled before passing through the
model in order to ensure a sufficient amount of informa-
tion contained in the pooling grid at the smallest scale in
PRAM. The model was basically fitted after training six
epochs, and the weights of the model that achieved the
best dice coefficient on the validation set were saved for the
next tests. In addition, Figure 6 visualizes the output fea-
ture maps of CrackResU-Net for different training periods
with and without an auxiliary branch, and it can be seen
that the addition of an auxiliary branch can significantly
improve themodel fitting speed, which is important for the
optimization of the model parameters.

3.4.1 The experiment of weight coefficient
for the auxiliary loss

To explore the optimal percentage of auxiliary loss in
the total loss, four auxiliary loss weight coefficients were
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YAO et al. 9

F IGURE 6 Visualization of CrackResU-Net with and without an auxiliary branch.

TABLE 1 Comparison of different weight coefficients for
auxiliary loss.

Weight
coefficients

Precision
(Pr) Recall (Re) F1

0.3 0.9678 0.9405 0.9539
0.5 0.9554 0.9520 0.9537
0.7 0.9644 0.9489 0.9566
1.0 0.9659 0.9502 0.9580

The bolded numbers mean the best options in these coefficients.

experimentally verified. As shown in Table 1, the per-
formance of CrackResU-Net tends to improve with the
increase of weight coefficient for auxiliary loss and reaches
the optimum at 1.0. Thus, the weight coefficient of auxil-
iary loss during training was selected as 1.0.

3.4.2 An experiment of branch selection of
PRAM

PRAM has four different scales of pooling branches (in
the following, they are referred to by their average pool-
ing size, i.e., 1, 2, 3, and 6). The more grids generated
by the average pooling, the smaller the range of spatial
information represented by each grid, and the more sim-
ilar this branch is to the original NL. In order to find
the optimal combining methods of branches, five com-
bining methods were selected for experimental validation.
As shown in Table 2, the model performance, computa-
tional cost, and parameters all gradually increase as the
number of pooling branches used increases, and the best
performance is reached when 1, 2, 3, and 6 branches are
used at the same time. In addition, the model can reach
the same level of performance as the simultaneous use
of 1, 2, and 3 branches when the 6 branch is used alone,
which indicates that the small-scale pooling branch seems
to be more beneficial to the model in capturing the crack
details, compared with the large-scale pooling branch. For
better crack detection, CrackResU-Net used 1, 2, 3, and 6
branches simultaneously to implement PRAM.

TABLE 2 Comparison of different pooling branches used in
pyramid region attention module (PRAM).

Pooling
branches Pr Re F1 Parameters

Floating
point
operations
(FLOPs)

1 0.9541 0.9525 0.9533 25.65 M 22,592.26 M
12 0.9704 0.9400 0.9550 25.89 M 22,671.57 M
123 0.9679 0.9452 0.9564 26.14 M 22,751.70 M
6 0.9584 0.9542 0.9563 25.73 M 22,598.14 M
1236 0.9659 0.9502 0.9580 26.39 M 22,836.31 M

Note: FLOPs of all models were measured with the input of size 480 × 320.
The bolded numbers mean the best options in these coefficients.

3.5 Test results and analysis

3.5.1 Test results on CFD

To verify the crack detection performance of CrackResU-
Net, this research conducted comparative experiments
and visualized some detection results using CrackResU-
Net, FCN8s (Long et al., 2015), SegNet (Badrinarayanan
et al., 2017), PSPNet, U-Net, and DeepLabv3+ (L. -C. Chen
et al., 2018) on CFD. As shown in Figure 7, it is indicated
that the detection results of FCN8s, SegNet, U-Net, and
DeepLabv3+ all show FP points far from the true labels,
while PSPNet and CrackResU-Net have no such prob-
lem. In addition, because CrackResU-Net makes full use
of global multi-scale information and introduces SimNL
to capture long-range dependencies, its detection results
are smoother and more detailed, compared with other
methods. Compared with DeepLabv3+, CrackResU-Net
is slightly lacking in the recall of alligator cracks, and it
has more advantages in accuracy. Overall, CrackResU-Net
is able to accurately extract the majority of crack pix-
els regardless of lighting conditions, shadows, pavement
markings, and other noise.
A quantitative comparison of the above models on CFD

is shown in Table 3. CrackResU-Net has the highest Pr and
F1 score among these methods, which fully demonstrates
the effectiveness of CrackResU-Net in pavement crack
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10 YAO et al.

F IGURE 7 Detection results of CrackResU-Net and various semantic segmentation algorithms on CrackForest dataset: (a) original
image, (b) true label, (c) FCN8s, (d) SegNet, (e) pyramid scene parsing network (PSPNet), (f) U-Net, (g) DeepLabv3+, and (h) CrackResU-Net.

TABLE 3 Performance comparison of CrackResU-Net and
various semantic segmentation algorithms on CrackForest dataset
(CFD).

Methods Pr Re F1

Inference
speed
ms/image

FCN8s 0.9116 0.9500 0.9304 24.97
SegNet 0.9308 0.9186 0.9247 40.04
PSPNet 0.9123 0.9492 0.9304 48.95
DeepLabv3+ 0.9494 0.9526 0.9510 34.73
U-Net 0.9392 0.9520 0.9455 58.39
CrackResU-Net 0.9659 0.9502 0.9580 25.89

Note: The inference speed was measured at a batch size of 1.
The bolded numbers mean the best options in these coefficients.

segmentation. Although DeepLabv3+ performs better in
Re, its Pr is much lower than CrackResU-Net. In addition,
in terms of inference speed, CrackResU-Net processes an
image with a resolution of 480 × 320 in only 25.89 ms,
which is 8.84ms less thanDeepLabv3+, and thus it is more
beneficial in terms of practicality.
In addition, a quantitative comparison of CrackResU-

Net with other crack segmentation algorithms on CFD is
presented in Table 4, where it can be seen that CrackResU-
Net has a higher F1 score, compared with other crack
detection algorithms with the same tolerance margin.

3.5.2 Test results on Crack500

Figure 8 shows some crack detection results of CrackResU-
Net, FCN8s, SegNet, PSPNet, U-Net, and DeepLabv3+

TABLE 4 Performance comparison of CrackResU-Net and
various crack segmentation algorithms on CFD.

Methods
Tolerance
margin F1

Otsu (1979) 2 0.1250
Canny (1986) 2 0.3268
Ai et al. (2018) 2 0.8700
Fan et al. (2018) 2 0.9244
U-HDN (Fan, Li, Chen, Wei, et al.,
2020)

2 0.9390

ResU-Net (Lau et al., 2020) 2 0.9555
Liu et al. (2020) 2 0.9575
Ensemble network (Fan, Li, Chen,
Di Mascio, et al., 2020)

2 0.9533

ResU-Net + ASPP (Augustauskas &
Lipnickas, 2020)

2 0.9570

Parallel ResNet (Fan et al., 2022) 2 0.9563
CrackResU-Net 2 0.9580

Abbreviation: ASPP, atrous spatial pyramid pooling.
The bolded numbers mean the best options in these coefficients.

on Crack500. It is shown that DeepLabv3+ performs the
best among the other five semantic segmentation models,
detecting the most crack pixel points, but it is inferior to
CrackResU-Net in crack refinement and continuity. Espe-
cially from the detection results of the fifth crack image,
compared with other models, CrackResU-Net can accu-
rately extract crack pixels in pavement images containing
complex textures and has better robustness.
Table 5 quantitatively compares CrackResU-Net

and five semantic segmentation models on Crack500.
Corresponding to the visualization results, DeepLabv3+
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YAO et al. 11

F IGURE 8 Detection results of CrackResU-Net and various semantic segmentation algorithms on Crack500: (a) original image, (b) true
label, (c) FCN8s, (d) SegNet, (e) PSPNet, (f) U-Net, (g) DeepLabv3+, and (h) CrackResU-Net.

TABLE 5 Performance comparison of CrackResU-Net and
various semantic segmentation algorithms on Crack500.

Methods Pr Re F1

Inference
speed
ms/image

FCN8s 0.7037 0.8244 0.7593 26.42
SegNet 0.7373 0.7611 0.7490 47.87
PSPNet 0.7336 0.8204 0.7746 57.88
DeepLabv3+ 0.7301 0.8354 0.7793 34.21
U-Net 0.7465 0.7868 0.7661 73.20
CrackResU-Net 0.7370 0.8320 0.7816 26.14

Note: The inference speed was measured at a batch size of 1.
The bolded numbers mean the best options in these coefficients.

TABLE 6 Performance comparison of CrackResU-Net and
various crack segmentation algorithms on Crack500.

Methods
Tolerance
margin F1

W. Wang and Su (2020) 2 0.7681
ResU-Net (Lau et al., 2020) 2 0.7327
CrackResU-Net 2 0.7816

The bolded numbers mean the best options in these coefficients.

performs best among the other five segmentation algo-
rithms and achieves the highest Re. CrackResU-Net
achieves the best F1 score and inference speed.
In addition, a quantitative comparison of CrackResU-

Net with other crack segmentation algorithms on
Crack500 is presented in Table 6. It shows that
CrackResU-Net performs better with the same tolerance
margin.

TABLE 7 Performance comparison of CrackResU-Net and
various semantic segmentation algorithms on Cracktree200.

Methods Pr Re F1

Inference
speed
ms/image

FCN8s 0.9129 0.9412 0.9268 52.06
SegNet 0.9692 0.9031 0.9350 97.74
PSPNet 0.9057 0.9576 0.9309 124.27
DeepLabv3+ 0.9654 0.9572 0.9613 54.90
U-Net 0.9529 0.9570 0.9550 146.18
CrackResU-Net 0.9660 0.9551 0.9605 41.12

Note: The inference speed was measured at a batch size of 1.
The bolded numbers mean the best options in these coefficients.

3.5.3 Test results on Cracktree200

The cracks in the Cracktree200 are labeled finer and
thus have fewer crack pixels, which results in difficult
learning of the crack segmentation model during the
initial training phase. Therefore, the model weights
trained on CFD were used when performing the model
training. Figure 9 visualizes some detection results of
CrackResU-Net, FCN8s, SegNet, PSPNet, U-Net, and
DeepLabv3+ on Cracktree200. Compared with other
methods, DeepLabv3+ and CrackResU-Net are more
accurate for capturing tiny cracks and are not affected
by the lighting conditions and shadows in the images.
In addition, DeepLabv3+ is stronger in recalling crack
pixels, while CrackResU-Net is more accurate in detecting
cracks and has smoother and more continuous detection
results.
Table 7 quantitatively compares the CrackResU-Net and

five segmentation models on Cracktree200. Unlike the
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12 YAO et al.

F IGURE 9 Detection results of CrackResU-Net and various semantic segmentation algorithms on Cracktree200: (a) original image, (b)
true label, (c) FCN8s, (d) SegNet, (e) PSPNet, (f) U-Net, (g) DeepLabv3+, and (h) CrackResU-Net.

TABLE 8 Performance comparison of CrackResU-Net and
various crack segmentation algorithms on Cracktree200.

Methods
Tolerance
margin F1

CrackTree (Zou et al., 2012) 2 0.8500
Parallel ResNet (Fan et al., 2022) 2 0.9308
CrackResU-Net 2 0.9605

The bolded numbers mean the best options in these coefficients.

results in the two previous datasets, DeepLabv3+ achieves
the highest F1 score, which may be due to the fact that the
true labels of the cracks on Cracktree200 are too fine to
match the pooling branches in PRAM. For example, except
for the original feature map without scaling, the grids
generated by other pooling branches contain too large a
range of information, resulting in difficulties in capturing
position information of tiny cracks. Using smaller-
scale pooling branches in PRAM or weighting different
branches may alleviate this problem in the future. Com-
pared with DeepLabv3+, CrackResU-Net sacrifices an F1
score of 0.0008 and reduces the processing time by 13.78ms
for an image with a resolution of 800 × 600, which is more
advantageous.
In addition, a quantitative comparison of CrackResU-

Net with other crack segmentation algorithms on Crack-
tree200 is presented in Table 8, and CrackResU-Net
achieves a better F1 score with the same tolerance
margin.

TABLE 9 Ablation experiments on CFD.

Models F1 FLOPs
U-Net 0.9455 153,577.88 M
ResU-Net+BAM 0.9458 22,428.35 M
CrackResU-Net without SA 0.9564 22,831.60 M
CrackResU-Net without Aux 0.9516 22,836.31 M
CrackResU-Net without PRAM 0.9504 22,433.05 M
CrackResU-Net (PRAM replaced by PPM) 0.9533 22,832.28 M
CrackResU-Net 0.9580 22,836.31 M

Note: Aux indicates the application of an auxiliary branch; ResU-Net+BAM
indicates U-Net embedded with ResNet-34 and BAM; FLOPs of all models
were measured with the input of size 480 × 320.
Abbreviations: BAM, bottleneck attention module; PPM, pyramid pooling
module; SA, spatial attention module.
The bolded numbers mean the best options in these coefficients.

4 RESULT ANALYSIS AND
DISCUSSION

4.1 Ablation experiment

To understand the behavior of ResNet-34 with BAM,
PRAM, SA, and the auxiliary branch, a comprehensive
ablation experiment of CrackResU-Net on CFD was
conducted. As in Table 9, ResNet-34 with BAM is a good
encoder, which not only reduces a lot of computational
costs, compared with U-Net, but also has a slight improve-
ment in performance. On this basis, the combination
of SA, auxiliary branch, and PRAM can provide a 1.22%
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YAO et al. 13

F IGURE 10 Visualization of the output feature maps for different decoder layers: (a) ResU-Net+bottleneck attention module (BAM),
(b) CrackResU-Net, (c) ResU-Net+BAM, and (d) CrackResU-Net.

improvement in the F1 score. By observing the experimen-
tal results, it can be noticed that PRAM contributes the
most to the performance improvement of CrackResU-Net,
and its performance is better than PPM, which fully
proves the effectiveness of long-range dependencies
capture. The addition of an auxiliary branch not only
does not contribute to computational complexity but also
significantly improves model performance. In addition,
although SA improves the performance of CrackResU-
Net by a small amount only, it still helps in model
optimization.

4.2 Visualization of the behaviors of
PRAM and SA

Figure 10 visualizes the output feature maps for different
decoder layers when processing pavement crack images
using ResU-Net+BAM and CrackResU-Net. It can be seen
that after integrating the rich semantic information pro-
vided by PRAM, the thirdUpconv Block of CrackResU-Net
locates the cracks more accurately, focusing the scattered
attention points around the cracks. Compared with ResU-
Net+BAM, FP points in the red solid box are eliminated.
The first and second Upconv blocks refine the previous

feature maps and the addition of SA results in fewer FN
points in the blue solid box. Although the improvement
of SA is not significant in the figure, it cannot be denied
that the results of the ablation experiment demonstrate its
optimization on the model. Through further observation,
the predicted results are more similar to the visualiza-
tion of the second Upconv block, indicating that the
parts within the red dashed box are more important to
the model. Therefore, optimizing this part and prun-
ing other parts of the decoder may be future research
directions.

4.3 Comparison with other skip
connection methods

The PRAM and SA proposed in this paper were applied
to skip connections to improve detection performance.
In order to further verify the effectiveness of this mod-
ified skip connection method, the comparison of other
improved skip connection methods used for crack detec-
tion was conducted on CFD. As shown in Table 10, the
proposed method has significant advantages over other
algorithms in terms of Re and F1 scores and does not
increase a lot of computational costs.
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14 YAO et al.

F IGURE 11 Several detection results with false negative points: (a) original image, (b) true label, and (c) CrackResU-Net.

TABLE 10 Comparison of the proposed method and other
skip connection methods.

Methods Pr Re F1 FLOPs
CrackResU-Net (AG)
(L. -C. Chen & He, 2022)

0.9669 0.9349 0.9506 22,719.70 M

CrackResU-Net (CAB)
(Hsieh & Tsai, 2021)

0.9632 0.9423 0.9526 22,707.33 M

CrackResU-Net 0.9659 0.9502 0.9580 22,836.31 M

Note: FLOPs of all models were measured with the input of size 480 × 320.
Abbreviations: AG, attention gate; CAB, channel attention block.
The bolded numbers mean the best options in these coefficients.

TABLE 11 Comparison of SimNL and non-local (NL) in
PRAM.

Modules Pr Re F1
NL 0.9664 0.9450 0.9556
SimNL 0.9659 0.9502 0.9580

The bolded numbers mean the best options in these coefficients.

4.4 Comparison of SimNL and NL

To validate the effectiveness of SimNL, a comparison
experiment between SimNL and NL in PRAM was con-
ducted. As shown in Table 11, SimNL outperforms in terms
of contributing F1 score and Re.

4.5 FN problems for fine cracks

Although CrackResU-Net has shown good detection per-
formance on CFD, Cracktree200, and Crack500, it has FN

issues in detecting some fine cracks. As shown in Figure 11,
the small cracks in the red boxes that are difficult to distin-
guish with the eyes are not detected. This corresponds to
the test results on Cracktree200, possibly due to the poor
matching of pooling branches in PRAM with these small
crack points, and further improvement is needed in the
future.

5 CONCLUSION

An effective pavement crack segmentation approach based
on the modified U-Net, namely, CrackResU-Net, was
proposed in this paper. ResNet-34 with BAM was first
embedded into U-Net for efficient encoder feature extrac-
tion, and an auxiliary branch was added to the model for
better encoder training. Then a newmodule named PRAM
was proposed by combining the PPM and modified NL,
which could achieve multi-scale context information inte-
gration and long-range dependencies capture. Moreover,
since the PRAM reduces the input feature map size of
modified NL to a fixed value, the computational cost is sig-
nificantly saved, which is more advantageous for detecting
large-size images. PRAM was applied to CrackResU-Net’s
deep skip connections to provide rich integration infor-
mation for the decoder, and the SA module was applied
to CrackResU-Net’s shallow skip connections to enhance
crack spatial details.
CFD was used for the training, validation, and testing of

CrackResU-Net. Test results showed that CrackResU-Net
achieved Pr, Re, and F1 scores of 0.9659, 0.9502, and 0.9580,
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YAO et al. 15

respectively. In addition, it took only 25.89 ms to process
an image with a resolution of 480 × 320, which achieved a
better balance between speed and accuracy, comparedwith
several other state-of-the-art crack segmentation methods.
To further evaluate its effectiveness and robustness, the
test results with other crack detectionmodels on Crack500
andCracktree200were also discussed, andCrackResU-Net
still performedwell. However, it had FN issues in detecting
some fine cracks, andusing smaller-scale pooling branches
in PRAM or weighting different branches may alleviate
this problem in the future.
Finally, comprehensive experiments were performed on

CFD to discuss in detail the behavior of the important
components of CrackResU-Net. For PRAM, it contributed
the most to the performance improvement of CrackResU-
Net and could help the decoder locate the cracks more
accurately, which fully proves the effectiveness of long-
range dependencies capture. For the auxiliary branch,
when it was applied to the middle position of CrackResU-
Net’s encoder, it not only accelerated the model fitting but
also had a significant improvement in model performance
without increasing computational cost. As a result, it could
be further improved and applied to future detection mod-
els. For SA, its improvement in model performance was
little, but it still helped in model optimization. In addition,
the improved skip connection method combining SA and
PRAM exhibited better performance than other modified
skip connection methods with attention, and this method
may be extended to other image recognition tasks.
In the future, we will focus on detecting more pavement

diseases, such as potholes and ruts. In addition, by combin-
ing ground-penetrating radar data, 3D reconstruction of
the pavement structurewill be realized, andmore informa-
tion on hidden distresses can be obtained, which is of great
significance for both pavement design and maintenance.
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