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A novel response model and target selection method
with applications to marketing
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Summary

Response models used in marketing are not always constructed for later marketing
optimisation, which often results in unsatisfactory results in target selection for future
marketing activities. To solve this problem, we develop a new binary response model
and a new marketing target selection method. The proposed model can predict multiple
propensity scores per customer through customer-specific propensity score distributions,
which is not possible with existing response models, filling a gap in the literature. The
target selection method can determine the best propensity scores from those predicted by
the proposed model and use them to select customers for further marketing activities. Our
simulation results and application to real marketing data confirm that the performance
of the proposed model in target selection is significantly better than that of the existing
models, including some popular machine learning methods, which indicate that our method
can be very useful in practice.
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1. Introduction

Statistical response models have been used in many disciplines, such as marketing.
Many response models have been developed and used in marketing research. In addition
to the probit and logit models, Alvarez & Brehm (1995) proposed a heterogeneous choice
model to deal with possible heterogeneous issue in the data. Manski (1975, 1985) developed
the binary quantile regression (BQR) model, which is a semi-parametric model, and
Bult (1993) also discussed its advantages and limitations in marketing. Horowitz (1992)
and Kordas (2006) proposed smoothed BQR models. Rossi, McCulloch & Allenby (1996)
developed a random coefficient selection model to deal with the heterogeneity in observable
demographics and applied the model to purchase history data. Train (2002) gave a more
comprehensive discussion of this topic.

Moreover, an aggregate advertising response model based on consumer population
dynamics was proposed by Wang et al. (2013), while Li & Ansari (2014) proposed a
Bayesian semi-parametric approach for endogeneity and heterogeneity in choice models.
Bruno, Cebollada & Chintagunta (2018) developed a new model and used it to deal with
the intra-household heterogeneity in customer brand choice behaviour. Kappe, Blank &
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DeSarbo (2018) developed a random coefficients mixture hidden Markov model for flexible
patterns of unobserved heterogeneity in both the state-dependent and transition parameters.

When using these response models in marketing, we first estimate the models by using
a training data set, which contains customer information, including customer responses to
specific product or service offers obtained in past or pilot marketing activities. Then, we
use the estimated models to predict a propensity score for each customer in a test data set,
which contains customer information that has not been used in the model estimation, where
the propensity score indicates the likelihood of the customer becoming a potential buyer.
Finally, the customers in the test set are divided into groups according to their propensity
scores, which are arranged in a decreasing order. A group of customers (e.g. the top 10%
of the customers) can then be selected for future marketing activities because they have a
higher propensity score than others.

The response models used in marketing can perform well in target selection when the
predicted propensity scores are unbiased. However, when the predicted propensity scores are
biased, these response models’ performance in target selection may not be satisfactory. This
problem may occur, for example, when the response models are incorrectly specified and/or
when data are imbalanced. In such cases, the propensity scores predicted by these models
may be biased towards, for example non-buyers. As pointed out by Ling & Li (1998), the
propensity scores may be skewed within a narrow range in one end, and thus, errors in
propensity score estimation will affect the ranking more easily in target selection. Branco,
Torgo & Ribeiro (2016) further pointed out that when data are imbalanced, a response
model in marketing can perform well in prediction (as measured by the total percentage
of correct predictions), but it may be unsatisfactory in target selection, as the predicted
propensity scores may be biased towards non-buyers, resulting in worse target selection
results.

It is seen that optimising the subsequent utilisation of the estimated response models
may be necessary if they are employed to directly or indirectly assist marketing managers
in making marketing-mix decisions. For example, we may need to use the estimated models
to identify the optimal propensity scores that can be used to determine the best customer
group that is most likely to be potential buyers of a company’s new product or service.

However, the existing response models used in marketing are not always constructed
for later marketing optimisation (Albers 2012), and the existing models do not allow us
to predict multiple propensity scores for each customer. Therefore, we have no room to
determine whether the propensity scores predicted by the models are the ‘best’ for target
selection in marketing.

It is important to use optimal propensity scores in marketing because targeting using
optimal propensity scores enables marketers to efficiently allocate resources, improve
campaign effectiveness, reduce costs, and enhance customer satisfaction. It is also important
to use optimal propensity scores in other subject areas, including psychology, political
science, economics, finance and sociology, because using optimal propensity scores allows
researchers in these fields to better address selection bias, assess the impact of policies and
analyse observational data to make causal inferences.

However, to the best of our knowledge, there is currently no response model that
predicts multiple propensity scores for each individual, allowing us to determine the optimal
propensity score. It is this gap in the literature that motivates us to develop a new response
model and related approach to target selection for marketing research in this paper.
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50 A RESPONSE MODEL AND TARGET SELECTION METHOD

The contribution of this work to the related literature is twofold. On the one hand, we
contribute to the statistical literature by developing a novel binary response model that can
be used to solve practical problems in many disciplines. Unlike existing response models,
the proposed model explicitly estimates the entire propensity score distribution. This will
play a vital role in later marketing optimisation because it will allow the proposed model to
assign multiple propensity scores to each customer, and these propensity scores can cover
a wide range of propensity score distribution, allowing us to identify optimal propensity
scores for marketing. It is worth noting that this model can also be applied to other business
problems including, for example, fraud detection and insurance/risk management.

On the other hand, we contribute to the marketing research by developing a target
selection method in order to facilitate the use of the new model in marketing. Our target
selection method includes two steps. The first step is to determine the optimal propensity
score that should be used for selecting targets, and the second step is to use the identified
propensity score to perform target selection in marketing. Since the best propensity score
can be used for target selection, our model can deal with some of the problems caused by
model specification errors and/or imbalanced data, as shown later in this paper.

Our results confirm that not all propensity scores can produce satisfactory results in
target selection. This explains why if the propensity score estimated from a given model is
biased, then the model’s performance in target selection may be unsatisfactory. Our results
also show that the proposed model outperforms baseline response models as well as some
popular machine learning methods used in target selection. The main reason is that our
method can use the ‘best’ propensity score for target selection, while the existing methods
may not.

In Section 2, we briefly discuss the benchmark response models that are closely related
to the model proposed in this paper, and in Section 3, we discuss the proposed response
model and its estimation. In Section 4, we present the method for target selection. Simulation
results are discussed in Section 5, while in Section 6, we discuss the application of the pro-
posed method to the bank marketing data, and compare the results with those obtained from
the benchmark response models and some machine learning methods commonly used in
marketing. Section 7 concludes. Appendix A gives the proofs of three theorems, Appendix B
and Appendix C give the prior density function and the MCMC method for parameter
estimation, respectively, and Appendix D presents results of another simulation study
which confirms that the proposed estimation method performs well, and the convergence
of the method does not depend on the strength of the prior information on the parameters.

2. A brief review of the baseline response models

The binary logistic regression (BLR) model is one of the popular response models
used for target selection in marketing. Many researchers use it as a benchmark model, see
for example Cui, Wong & Wan (2012) and Zahavi & Levin (1997).

Generally, a binary regression model is defined by

y∗
i = η(xi , α) + εi ,

yi = 1 if y∗
i > 0; yi = 0 otherwise, (1)
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Y. CAI 51

where i = 1, . . . , n and n is the sample size, α is a vector of parameters, xi = (x1i , . . . , xki )

is the observed value of k predictors for customer i , and yi is the observed response of
customer i . Moreover, y∗

i is an unobserved continuous variable that may represent, for
example, customers’ psychological feelings about a new product, and εi s are assumed to
be iid random variables.

Let F (·) be the distribution function of εi and ηi = η(xi , α). Then, the propensity
score of customer i can be estimated by the response probability of the customer, which
is given by μi = Pr (yi = 1|ηi ) = Pr (y∗

i > 0|ηi ) = Pr (εi > −ηi ) = 1 − F (−ηi ). If F (·) is
symmetric about zero, then we also have μi = F (ηi ). When F (ηi ) is the logistic distribution
function defined by F (ηi ) = eηi /(1 + eηi ), model (1) becomes the BLR model. In this case,
the conditional mean of y∗

i , that is ηi , is used to estimate the propensity score μi . It is
worth mentioning that, unless otherwise stated, in this paper we assume that εi follows the
logistic distribution.

Note that model (1) cannot handle heterogeneous issues that may exist in the data. In
other words, when the variance of εi is not a constant, model (1) is not useful. Yatchew &
Griliches (1985) pointed out that in the presence of heterogeneity, the estimation of
model parameters will be inconsistent and inefficient. In order to solve the problem of
heterogeneity, Alvarez & Brehm (1995) proposed a heterogeneous choice (HC) model:

y∗
i = η(xi , α1) + ez′

i α2εi ,

yi = 1 if y∗
i > 0, yi = 0; otherwise, (2)

where zi is also a vector of predictors that may be the same as xi , and α1 and α2 are vectors
of the model parameters. So, model (2) tries to deal with the heterogeneous problem by
using the term ez′

i α2 . However, Achen (2002) pointed out that model (2) is equivalent to
the following model

y∗
i = η(xi , α1)/ez′

i α2 + εi ,

yi = 1 if y∗
i > 0, yi = 0; otherwise,

and there is no way to distinguish between them. This implies that model (2) is in fact a
non-linear homogeneous binary response model. Hence, the predicted propensity score is
given by μi = ea/(1 + ea), where a = η(xi , α1)/ez′

i α2 .
The BQR model developed by Manski (1975, 1985), Horowitz (1992) and Kordas

(2006) is a semi-parametric model because they do not assume a distribution for the error
term, and they can be estimated by using the methods based on Manski’s (1975, 1985)
maximum score function and its variants. The benefits and limitations of semi-parametric
models are also discussed by Bult (1993). Recently, Benoit & Van den Poel (2012) devel-
oped a Bayesian approach to the BQR model by using the asymmetric Laplace distribution
for εi , denoted by ALD(ψ = 0, σ = 1, τ), where σ and ψ are the scale and location of
the distribution, respectively, and τ ∈ (0, 1). Hence the model can be expressed by

y∗
i = η(xi , α1) + εi ,

yi = 1 if y∗
i > 0; yi = 0 otherwise,

εi ∼ ALD(ψ = 0, σ = 1, τ). (3)

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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52 A RESPONSE MODEL AND TARGET SELECTION METHOD

As the τ quantile of ALD is zero, ηi = η(xi , α1) is in fact the conditional τ quantile
of y∗

i . Following Hashem et al. (2016), the propensity score can be estimated by μi = 1 −
ALD(ψ = −η(xi , α1), σ = 1, τ = 0.5), which corresponds to the conditional median of y∗

i .
We will use the BLR, HC and BQR models as benchmark response models because

they are closely related to our model. This is discussed more at the end of Section 3.1.

3. Proposed model and parameter estimation

The construction of the existing response models discussed above determines that only
one propensity score can be assigned to each customer. Hence, if the predicted propensity
scores are biased, the errors in these scores will affect the ranking of the customers, leading
to unsatisfactory results in target selection.

In order to overcome the limitations of existing models, in this section, we first develop
a new response model by explicitly estimating the distribution of propensity scores, and
then we develop a parameter estimation method.

3.1. Proposed model

Recall that, for the BLR model, the propensity score is given by μi = Pr (yi = 1|ηi ) =
eηi /(1 + eηi ). If we regard μi as a random variable, then ηi is also a random variable.
Hence, if we know the distribution of ηi , then we also know the distribution of μi . To treat
ηi as a random variable, we first propose the following model:

y∗
i = ηi + εi ,

ηi = h1(α, xi ) + h2(β, xi )ξi ,

yi = 1 if y∗
i > 0, yi = 0; otherwise, (4)

where h2(β, xi ) > 0, α and β are parameter vectors to be estimated, both εi and ξi are iid
random variables and εi follows the logistic distribution. We further assume εi and ξi are
independent.

Model (4) says that h1(α, xi ) and h2(β, xi ) are the location and scale of the distribution
of ηi respectively, where the predictors involved in h1 and h2 may be different, but to
simplify the notation used in the paper, we set them equal. It is seen that the term h2(β, xi )

can also be used to deal with some heterogeneity in the data.
The second step of our model building process is to determine the distribution of

ξi in model (4). For target selection, we need the distribution of ηi to capture different
characteristics of data, such as the characteristics related to the centre, skewness and tails of
the data. This is important because, for example, when data are imbalanced, the distribution
of the data is skewed. Compared with the centre, the tail of the distribution may contain
more useful information that can be used for target selection.

The work of Fournier et al. (2007) suggests that the generalised lambda distribution
(GLD) can be a very good candidate for our model because this distribution is so flexible
that many standard distributions, such as normal, Weibull, log-normal, t-, skewed t- and
F -distributions, and many other distributions can be accurately approximated by this
distribution. This shows that the GLD can handle many data structures that these standard

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 53

distributions may not be able to handle alone. Hence, using the GLD for ξi will make the
model more robust to model specification errors.

It is worth noting that the GLD is only explicitly defined by its quantile function,
which can be expressed by Qgld (τ ) = a + bQ(τ , γ ), where a and b are the location and
the scale of the distribution, and Q(τ , γ ) is defined by

Q(τ , γ ) = τ γ1 − 1

γ1
− (1 − τ)γ2 − 1

γ2
, γ1 < 0, γ2 < 0, (5)

where γ = (γ1, γ2) and τ ∈ (0, 1). In fact, Q(τ , γ ) defined by (5) is a special case of GLD,
with location 0 and scale 1. So we let ξi follow the GLD defined by (5). However, as the
GLD is only explicitly defined by its quantile function, we need to use the quantile function
to rewrite model (4), which gives

y∗
i = ηi + εi ,

Qηi (τ | θ , xi ) = h1(α, xi ) + h2(β, xi )Q(τ , γ ),

yi = 1 if y∗
i > 0, yi = 0; otherwise, (6)

where τ ∈ (0, 1) and Q(τ , γ ) represents the quantile function of ξi and θ = (α, β, γ ). In
this paper, we refer to model (6) as the quantile function response (QFR) model.

Theorem 1. Let ηi = h1(α, xi ) + h2(β, xi )ξi , and let Q(τ , γ ) be the quantile function of
ξi . Then the conditional quantile function of ηi is given by Qηi (τ | θ , xi ) = h1(α, xi ) +
h2(β, xi )Q(τ , γ ). Moreover, model (6) implies that the conditional quantile function of the
propensity score μi is given by

Qμi (τ | θ , xi ) = eQηi (τ |θ ,xi )/
(

1 + eQηi (τ | θ ,xi )
)

. (7)

See Appendix A for a proof. Theorem 1 shows that model (6) actually defines the
entire distribution of ηi through its quantile function. It further shows that the distribution of
propensity scores can also be obtained easily through (7). Moreover, due to the monotone
relation between ηi and μi , the τ quantile of ηi corresponds to the τ quantile of the
propensity score μi for any τ ∈ (0, 1). This shows another advantage of using the quantile
function of ηi in the model. We will take advantage of this when we develop the target
selection method later in the paper.

In the following, we focus on model (6), where Q(τ , γ ) is defined by (5). Hence,
Qηi (τ |θ , xi ) defines the GLD with location h1(α, xi ) and scale h2(β, xi ). Moreover, γ1 and
γ2 control its left and right tails respectively. If γ1 = γ2, then the distribution of ηi is
symmetric, otherwise it is skewed. Furthermore, as Gilchrist (2000) pointed out, γ1 and γ2

determine not only the skewness but also the relative weights of the tails. This means that
the skewness is modelled as a result of tail shape rather than as an independent feature.
This is one of the features that other standard distributions may not have.

The final step of our model building process is to specify a functional form for
h1(α, xi ) and h2(β, xi ) respectively. In order to compare with the benchmark response
models, we use the form of a linear function for h1(α, xi ). We use the form of a quadratic
function for h2(β, xi ) because estimating generalised non-linear regression models that

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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54 A RESPONSE MODEL AND TARGET SELECTION METHOD

contain exponential forms can be difficult due to large sampling errors (see, McCullagh &
Nelder 1989). Specifically, in this paper, we let

h1(α, xi ) = α0 + α1x1i + · · · + αk xki , h2(β, xi ) = β0 + β1x2
1i + · · · + βk x2

ki , (8)

where β0 > 0 and βj ≥ 0, j = 1, . . . , k , which guarantee that h2(β, xi ) > 0.

Theorem 2. Consider model (6). If Q(τ , γ ) is given by (5) and h1(α, xi ) and h2(β, xi ) are
defined by (8), then model (6) is well defined on the parameter space � = {(αj , βj , γv ) :
−∞ < αj < ∞, β0 > 0, βj ≥ 0 (j �= 0), γv < 0, all possible j , v}.

See Appendix A for a proof. Therefore, once the quantile function Qηi (τ |θ , xi ) is
available, we know the entire distribution of ηi and μi . As the distribution of ηi and μi

defined by the model is very flexible, many features of the data can be captured by the
distribution, such as features related to centre, dispersion, skewness, tail and so on. The
captured features can then be regarded as potential propensity scores for target selection.
We will discuss this issue in Section 4.

The relations between the QFR model (6) and the BLR, HC and BQR models are
discussed below. If h2(β, xi ) = 0, then the QFR model becomes the BLR model. The HC
model tries to deal with the heterogeneity through the unobserved y∗

i , although the model
is equivalent to a non-linear homogeneous model, while the QFR model can deal with
heterogeneity through ηi . The QFR model uses the quantile function approach to response
modelling (see, e.g. Gilchrist 2000) and hence its parameters do not depend on τ , while
the BQR model uses the quantile regression approach to response modelling (see, e.g.
Koenker 2005) and hence its parameters depend on τ . In addition, the QFR model can
assign multiple propensity scores to each customer, while the BLR, HC and BQR models
can only assign a unique propensity score to each customer. Finally, all response models,
namely QFR, BLR, HC and BQR models, do not consider specific data structures, such as
panel data, time series data or data with specific heterogeneous structures. Hence, they are
good benchmark response models for our research.

3.2. Parameter estimation

In order to facilitate the use of the proposed model in practice, we now discuss how
to estimate the model parameters. In this paper, we develop an estimation method for
model (6), where Q(τ , γ ), h1(α, xi ) and h2(β, xi ) are defined by (5) and (8) respectively.
However, this estimation method can be easily extended to other formulae for Q(τ , γ ),
h1(α, xi ) and h2(β, xi ).

3.2.1. Posterior density function

First recall that in our model, the propensity score μi is a random variable whose
distribution is determined by its quantile function Qμi (τ |θ , xi ). So a random sample of
μi , also denoted by μi in order to simplify the notation used in this paper, is given by
μi = Qμi (τi |θ , xi ), where τi is a random sample of the uniform distribution between 0
and 1.

Let μ = (μ1, . . . ,μn), τ = (τ1, . . . ,τn), y = (y1, . . . ,yn) and x = (x1, . . . , xk ).
Then given x, the likelihood of y can be expressed by L(y|μ, τ , θ , x) = ∏n

i=1
μ

yi
i (1 − μi )

(1−yi ). However, since μi depends on τi and τi is unobservable, the MLE method

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.

 1467842x, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/anzs.12406 by T

est, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Y. CAI 55

is not convenient for the parameter estimation. Thus we consider a Bayesian approach to
parameter estimation, which requires us to derive the posterior distribution of θ , μ and τ .

Theorem 3. Let π(μ, τ , θ |x, y) and π0(θ |x) be the posterior and prior density functions of
(μ, τ , θ) and θ respectively. Then

π(μ, τ , θ |x, y) ∝
{

n∏
i=1

μ
yi
i (1 − μi )

(1−yi )πi (μi |τi , θ , xi )

}
π0(θ | x), (9)

where πi (μi |τi , θ , xi ) =
{

1+eQηi (τi |θ ,xi )
}2

eQηi (τi |θ ,xi ) dQ(τi ,γ )

dτ
h2(β,xi )

.

Furthermore, let � = �1 × �2 × �3, where θ ∈ �1 = {(αj , βj , γv )|αj ∈
[−M , M ], βj ∈ [ε, M ], γv ∈ [−M , −ε], for all possible j , v}, μ ∈ �2 = (0, 1)n and τ ∈
�3 = [ε, 1 − ε]n , in which M and ε are two fixed positive real numbers. Suppose π0(θ |x)

is well defined on �1. Then the posterior density function π(μ, τ , θ |x, y) defined by (9) is
well defined on � in the sense that

∫
�
π(μ, τ , θ |x, y)dμdτdθ < ∞.

See Appendix A for a proof. In this paper, we let M = 1020 and ε = 10−20. Hence, the
difference between �1 and � (see Theorem 2) is negligible, thus ensuring that important
parameter regions in � will not be missed. Theorem 3 shows that the posterior density
function is well defined on �, but it is very complicated. Hence, the Markov Chain Monte
Carlo (MCMC) method is suitable for parameter estimation.

3.2.2. MCMC method

It follows from Theorem 3 that we now need to specify a prior density function
π0(θ |x) so that it is well defined on �1. To simplify the calculation, we let π0(θ |x) =
π(α)π(β)π(γ ), where αj follows a truncated normal distribution on [−M , M ], and βj

and −λv follow a truncated log-normal distribution on [ε, M ] respectively. Appendix B
provides the detailed formula of the prior density function.

The basic idea of a MCMC method is to generate a sequence of values in the
parameter space � so that this sequence of values forms a Markov Chain whose equilibrium
distribution is the posterior distribution of the parameters. See Brooks (1998) for details.
To achieve this, we use the Metropolis-Hastings algorithm in which a candidate parameter
value is simulated from a chosen distribution and this proposed value is accepted as the
next in the sequence with a known probability, see Geyer (2011). The detailed steps of our
MCMC method are given in Appendix C.

Therefore, after a burn-in period, posterior samples can be collected from the Markov
Chain generated by the MCMC method. The model parameters can be estimated by using
the average of the posterior samples. We denote the estimated parameters by α̂, β̂ and γ̂ .
Then, the conditional quantile function of ηi and μi can be estimated by Q̂ηi

(τ |θ̂ , xi ) =
h1(α̂, xi ) + h2

(
β̂, xi

)
Q(τ , γ̂ ) and Q̂μi

(τ |θ̂ , xi ) = eQ̂ηi
(τ |θ̂ ,xi )/{1 + eQ̂ηi

(τ |θ̂ ,xi )} respectively.
Using the distribution of ηi or μi , we can now assign multiple propensity scores to each
customer for target selection.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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56 A RESPONSE MODEL AND TARGET SELECTION METHOD

4. Target selection method

4.1. Multiple propensity scores

Recall that if we use an existing model, we can only assign a unique propensity score
to each customer. If, for example, the model is not specified correctly or the data are
imbalanced, the predicted propensity scores may be biased towards non-buyers, resulting
in large errors in target selection.

However, for the QFR model, we have the entire propensity score distribution, defined
by Q̂μi

(τ |θ̂ , xi ). Therefore, we can use, for example, the mean, median, quantiles or
other information about the distribution of μi as the estimated propensity scores for each
customer. It can be seen that each customer now has multiple propensity scores, and different
propensity scores contain information about different parts (or characteristics) of the μi

distribution.
It is worth noting that which propensity score is more suitable for target selection

depends on the data structure. For example, if the data are balanced, a propensity score
containing information about the centre of the μi distribution may be more appropriate, but
when the data are imbalanced, a propensity score containing information about the tail of
the distribution may be more appropriate. Therefore, a wide range of propensity scores can
avoid losing important information about the distribution of μi and enable us to determine
the ‘best’ propensity score for target selection.

It is worth emphasising again that the relation between ηi and the corresponding μi

is monotonic. This suggests that the ranking of customers based on μi is the same as
the ranking of customers based on ηi , thus leading to the same results in target selection.
Therefore, in order to simplify the calculation, in the rest of this paper, we will use ηi to
define the propensity scores for target selection.

Let ηij be the j th propensity score of customer i , where j = 1, . . . , J , and J is the total
number of propensity scores that are assigned to customer i . Let Cj = {ηij , i = 1, . . . , n}.
Then Cj contains the j th propensity score of all customers.

In order to ensure that ηij can cover a wide distribution range of ηi , we can let ηij

be the τj quantile of ηi , that is, ηij = Qηi (τj |θ , xi ), where 0 < τ1 < · · · < τJ < 1 cover a
wide range between 0 and 1. As an example, we can define first seven propensity scores by
letting τj ∈ {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99}, we can define the eighth propensity score
by letting ηi8 = ηi7 − ηi1. Therefore, these propensity scores reflect the main characteristics
of the ηi distribution or μi distribution. More specifically, the tail of the distribution is
captured by ηi1, ηi2, ηi6 and ηi7, the central location is captured by the ηi3, ηi4 and ηi5,
and the dispersion is captured by ηi8. It is worth noting that other information about the
distribution of ηi may also be used to define propensity scores, but in this paper, we will
mainly use the propensity scores defined above.

4.2. Target selection

It is worth noting that in direct marketing, the lift is usually the most important criterion
for assessing the performance of a model in target selection (see e.g. Bhattacharya 1999,
Vuk & Curk 2006, and Cui, Wong & Wan 2012). The lift is defined by the ratio of the
percentage of true positive responses in a specific group of customers identified by a model
to the percentage of responses in the group identified by the random model. For example,

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 57

a model with a lift of 2 in a group of 10% customers is said to be twice as good as the
random model in that group. Thus, we can rank customers in an ordered list: customers
with higher propensity scores are at the top of the list. Then, we can calculate the lift in the
top 10% of customers, and then calculate the lift in the top 20% of customers, and so on,
until we reach 100% of customers. Using lifts across these groups is helpful for comparing
the performance of different models.

For our model, after assigning multiple propensity scores to each customer, we need
to determine which score should be used in target selection. Recall that we have used the
training set to estimate the model. We now still need to use the training set to determine
the best propensity score for target selection. The main steps of our target selection method
are given below.

(i) Given j , rank customers in the training set to obtain an ordered list: customers
with higher j th propensity scores are at the top of the list.

(ii) Use the ordered customer list to define 10 customer groups, denoted by A�j , where
� = 1, . . . , 10, and A�j contains the top 10�% customers.

(iii) Calculate the lift in each group A�j , denoted by u�j .
(iv) Calculate the average value of the lifts, denoted by ūj .
(v) Repeat the above steps for all j = 1, . . . , J .

(vi) Let ūj∗ = max {ūj , j = 1, . . . , J }. Then the j ∗th propensity score is the propensity
score that should be used for target selection.

(vii) Calculate the j ∗th propensity score of all customers in the test set, rank the
customers and select a group of customers for future marketing activities.

Note that max {ūj , j = 1, . . . , J } may not be unique. For example, we may have
ū2 = ū6 = max {ūj , j = 1, . . . , J }. In this case, both propensity scores may be used for
target selection. Users can determine which one to use in practice. It is also worth noting
that if the training and test data sets are not random samples of the same data set, then
the proposed target selection method may not work, because in this case, the two data sets
may have different data structures. To ensure that the training and test data sets have the
same structure, various sampling methods may be used. For example, the simple random
sampling method, stratified random sampling method or combinations of several random
sampling methods can be used.

In the above method, we used the average of the lifts in the 10 percentage groups to
determine which propensity score should be used in target selection. Our results show that
this simple optimisation criterion works well. However, it is worth noting that we can also
use other criteria to determine the best propensity score to use. For example, instead of the
average lift, we may use a median lift, we may use the area under the lift curve, or we may
combine multiple propensity scores with the financial cost of marketing (see e.g. Bult &
Wansbeek 1995). Therefore, the comparison between different optimisation standards needs
to be studied in the future.

5. Simulation study

We now discuss the simulation results in order to gain some in-depth understanding of
the performance of the proposed model in target selection. The purpose of this simulation

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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58 A RESPONSE MODEL AND TARGET SELECTION METHOD

study is to confirm that, in the presence of model specification errors, the performance of
the proposed model in marketing is better than the benchmark response models. This is
important because in practice, we often face the problems caused by model specification
errors.

We first simulated xi from N(0, 1) for i = 1, . . . , 500, and then we simulated ηi from
N(mi , σi ), where mi = 0.2 + 0.5x2

i + 0.25 sin(xi ), σi = 0.2 + 0.11exi for i = 1, . . . , 250,
and mi = −0.5 − 0.5xi + 0.25x2

i , σi = 0.5 for i = 251, . . . , 500. The μi values were
calculated by μi = eηi /(1 + eηi ). Finally, we let yi = 1 with probability μi and yi = 0
otherwise.

The above procedure was repeated 200 times, resulting in 200 independent data sets,
the first of which is shown in Figure 1.

It is seen that the data structure is quite complicated and the dependence between
variable x and η is not linear. We fitted the following four models to each of the data sets.

QFR model: y∗
i = ηi + εi , where

Qηi (τ | x, α, β, γ ) = α0 + α1xi + (β0 + β1x2
i )

(
τ γ1 − 1

γ1
− (1 − τ)γ2 − 1

γ2

)

and Qμi (τ | x, α, β, γ ) is given by (7).
BLR model: y∗

i = ηi + εi , where ηi = c0 + c1xi and μi = eηi /(1 + eηi ).
BQR model: y∗

i = ηi + εi , where ηi = d0 + d1xi and μi = 1 − ALD(ψ = −(d0 +
d1xi ), σ = 1, τ = 0.5).

HC model: y∗
i = ηi + σi εi , where ηi = e0 + e1xi , σi = ee2xi and μi = eηi /σi /(1 +

eηi /σi ).
Therefore, all four response models are incorrectly specified. We now consider the

performance of these models in prediction and in target selection. When predicting discrete
variables, commonly used metrics are the confusion matrix (Kohavi & Provost 1998) and
the area under the receiver operating characteristic (ROC) curve (Fawcett 2006), denoted
by AUC. The larger the AUC, the higher the predictive power of the model. To generate

Figure 1. Plots of the first simulated data set in the simulation study.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 59

an ROC curve, we need to (i) calculate the propensity score μi of the customers in a data
set, (ii) select a sequence of score thresholds 0 < c1 < · · · < cK < 1, (iii) for each ck , let
yi = 1 if μi > ck , and yi = 0 otherwise, and calculate the total percentage (denoted by pk )
of correct positive predictions and (iv) plot pk against ck to obtain the ROC curve for a
model. It can be seen that the higher the ROC curve, the larger the AUC, and therefore
the better the prediction performance of the response model. It is worth noting that in this
paper, we use the median of μi (corresponding to the median of ηi ) to predict the response
variable.

Figure 2 shows the plot of the AUCs in 200 simulations. It is seen that the AUC values
obtained from our QFR model are larger than those obtained from the SLR, HC and BQR
models. In fact, we also used the one-tailed t-test to check the significance of the difference
between the average AUCs obtained from different models. The results show that, at the
1% significance level, the QFR model has the highest predictive power, the HC model has

(a) (b)

(d)(c)

(f)(e)

Figure 2. AUC plots for the fitted models. (a)–(c) Black curves for QFR model and grey curves for
BLR, HC and BQR models. (d, e) Black curves for BLR model and grey curves for HC and BQR
models. (f) Black curve for HC model and grey curve for BQR model.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.

 1467842x, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/anzs.12406 by T

est, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



60 A RESPONSE MODEL AND TARGET SELECTION METHOD

the second highest predictive power, and the BQR and BLR models have similar predictive
power.

Now, we consider target selection. We used the first simulated data set as the training
set, and simulated another 100,000 data from the same model to give the test set. For the
QFR model, we use the median of μi and ηij as propensity scores for customer i , where ηij

is the τj quantile of ηi , j = 1, . . . , 5 and τj ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. Therefore, in this
simulation study, we assigned a total of six propensity scores to each customer. By using
the training set and the target selection method discussed in Section 4.2, we calculated the
lift in each group, the results of which are given in Table 1, where μ represents the median
of μi . So, we can use Table 1 to determine which propensity score should be used in target
selection.

It is seen that the lifts obtained based on the propensity scores defined by the median of
μi and the 50% quantile of ηi are the same. This is not surprising, because the median of μi

corresponds to the 50% quantile of ηi (i.e. the median of ηi ), they should produce the same
result in target selection. Comparing the average lift, Table 1 also shows that the average
lift based on these two propensity scores is the largest. Therefore, we can use the 50%
quantile of ηi or the median of μi for target selection.

Next, we check whether the best result of target selection on the test set still
corresponds to the best propensity score determined above. Note that in reality, the test
set does not contain values of yi . However, since we use the simulated data, we know the
values of yi in the test set and we can use them to check whether the best propensity score
identified above is still the best on the test set.

Table 2 shows the lifts obtained from all propensity scores predicted by the QFR model
on the test set. It can be seen that the results on the test set are very similar to those on
the training set, with the best results again corresponding to the 50% quantile of ηi or the
median of μi . This is what we should expect, because both the training set and the test set
are simulated from the same model, and hence they have the same data structure.

We also checked performance of the benchmark response models in target selection
and included the results in Table 2. It can be seen that the overall performance of our
model in target selection is also better than that of the benchmark response models. Note
that all three benchmark response models have the same lifts because they are accurate to
two decimal places.

Table 1. Lifts for propensity score determination.

ηi1 ηi2 ηi3 ηi4 ηi5
Group μ 5% 25% 50% 75% 95%

10% 1.40 1.01 1.11 1.40 1.29 1.26
20% 1.16 0.98 0.98 1.16 1.18 1.18
30% 1.10 0.98 0.98 1.10 1.09 1.08
40% 1.09 0.92 0.94 1.09 1.08 1.06
50% 1.09 0.94 0.94 1.09 1.04 1.05
60% 1.05 0.97 0.97 1.05 1.04 1.04
70% 1.03 0.96 0.96 1.03 1.02 1.01
80% 1.00 0.96 0.95 1.00 1.01 1.00
90% 1.01 0.96 0.96 1.01 1.00 1.00
100% 1.00 1.00 1.00 1.00 1.00 1.00
Average 1.09 0.97 0.98 1.09 1.07 1.07

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 61

Table 2. Lifts for test set in target selection.

ηi1 ηi2 ηi3 ηi4 ηi5
Group μ 5% 25% 50% 75% 95% BLR HC BQR

10% 1.42 0.88 0.88 1.42 1.38 1.34 1.43 1.43 1.43
20% 1.30 0.87 0.87 1.30 1.27 1.27 1.27 1.27 1.27
30% 1.22 0.87 0.87 1.22 1.21 1.21 1.17 1.17 1.17
40% 1.16 0.88 0.88 1.16 1.16 1.15 1.11 1.11 1.11
50% 1.12 0.89 0.89 1.12 1.12 1.11 1.06 1.06 1.06
60% 1.09 0.90 0.90 1.09 1.08 1.08 1.03 1.03 1.03
70% 1.06 0.91 0.91 1.06 1.06 1.06 1.00 1.00 1.00
80% 1.03 0.93 0.93 1.03 1.03 1.03 0.99 0.99 0.99
90% 1.01 0.96 0.96 1.01 1.01 1.01 0.99 0.99 0.99
100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 1.14 0.91 0.91 1.14 1.13 1.13 1.10 1.10 1.10

We further conducted another simulation study in order to confirm that the proposed
estimation method performs well and the convergence of the method does not depend on
the strength of the prior information on the parameters. Indeed, good results were also
obtained. See Appendix D for details.

6. A marketing application

In this section, we compare the performance of the four response models in terms
of prediction and target selection. We also compare the performance of these response
models in target selection with some popular machine learning methods commonly used in
marketing.

6.1. The data

The data considered in this application were collected from marketing campaigns
conducted by a Portuguese banking institution in the period from May 2008 to November
2010. Although the original data are not available, Moro, Laureano & Cortez (2011) used
data mining techniques and provided a subset of the data, which contains 16 attributes, one
output variable and 45211 instances, of which 5289 were successful. Hence the success
rate was 11.7%.

The variables given in the data set are defined as follows. The response variable is Y,
where Y = 1 represents that the customer subscribed a term deposit and Y = 0 otherwise.
The 16 predictors are age (V1), job type (V2), marital status (V3), education level (V4), credit
in default (V5), average yearly balance in euros (V6), housing loan (V7), personal loan (V8),
contact communication type (V9), last contact day of the month (V10), last contact month of
year (V11), last contact duration (V12), number of contacts performed during this campaign
(V13), number of days that passed by after the client was last contacted from a previous
campaign (V14), number of contacts performed before this campaign and for this client
(V15) and the outcome of the previous marketing campaign (V16).

We divided the data set into two random subsets, namely the training set and the test
set. The training set consists of 690 customers, and the test set contains the rest of the data.
The sample size of 690 was randomly selected between 600 and 800 using the random

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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62 A RESPONSE MODEL AND TARGET SELECTION METHOD

Figure 3. Plots of the observed bank marketing data in the training set.

number generator in the statistical software R. As we do not know the specific structure
of the entire data set, we used the simple random sampling method to obtain the training
set. We deliberately keep the sample size of the training set small, because in practice, we
often need to conduct pilot marketing activities for a small group of customers before we
conduct a full scale marketing campaign. Therefore, response models that perform well on
smaller data sets are very important in practice.

We will use the training set to estimate the models, and use the test set to examine the
performance of models in target selection. For our model, we will also use the training set
to determine the propensity score that should be used in target selection. Plots of the data
in the training set are shown in Figure 3. It is seen that the data are imbalanced. In fact,
the success rate in the training set is 13.6%, very similar to the entire data set.

6.2. Estimated response models

We estimated the four response models using the training set. For the QFR model
defined by (6), (5) and (8), a Markov Chain was run for 5 × 105 steps, whose plot (not
shown to save space) suggests that the Markov Chain converged after a burn-in period
of the first 104 steps. The three benchmark response models were estimated using the

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 63

(a) (b)

(d)(c)

Figure 4. The parameters (points) of the four response models estimated using the bank marketing
data. The vertical line segment shows the 95% credible/confidence interval. The vertical dashed line
indicates that the confidence interval is outside the range of the graph.

statistical software R. Figure 4 summarises the estimated parameters (dots), where each
vertical line segment corresponds to the 95% credible interval or confidence interval of a
model parameter, and each vertical dashed line indicates that the confidence interval is too
wide to be displayed within the range of the graph.

6.3. Performance of the response models in prediction

We first consider in-sample prediction. We used the four fitted models to calculate
the propensity score of customers in the training set and obtained the total percentage of
correct positive predictions at each score threshold. Then, we show the ROC curves of the
four models in Figure 5a, where the vertical line corresponds to the typical score threshold
0.5. It can be seen that for in-sample prediction, our model has better performance than the
benchmark response models in the entire range of 0–1.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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64 A RESPONSE MODEL AND TARGET SELECTION METHOD
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Figure 5. (a) ROC curves on the training set. (b) ROC curves on the test set. The vertical line
corresponds to the score threshold 0.5. The continuous, dash-dotted, dotted and dashed ROC curves
correspond to QFR, HC, BQR and BLR models respectively.

For the out-of-sample prediction, we check the average performance of the models. We
obtained 100 independent random subsets from the test set, each of which contains 10,000
customers. Then, for each of these 100 subsets, we used the four fitted models to calculate
the propensity scores and obtain the total percentage of correct positive predictions.

It is worth mentioning that we do not have any information about the data structure,
and therefore, we use 100 independent random subsets of the test set for out-of-sample
prediction, which will allow us to check how the models perform on different test sets that
may have different unknown structures.

To make the plot clearer, we further calculated the average percentage of correct
positive predictions at each score threshold and show the corresponding ROC curves in
Figure 5b. Clearly, the performance of our model in prediction is also better than that of
the benchmark response models. On the other hand, in the benchmark response models,
when the score threshold is less than 0.5, the HC and BQR models are better than the BLR
model, otherwise the BLR model is better.

6.4. Performance of the response models in target selection

A response model can perform well in prediction, but it may be unsatisfactory in
target selection, especially in the case of imbalanced data (Branco, Torgo & Ribeiro 2016).
We now examine the performance of the models in target selection. First, we consider our
model.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 65

We use the method discussed in Section 4.1 to define the propensity scores in this
study. Specifically, for j ≤ 7, let ηij be the j th propensity score of customer i , where
ηij is the τj quantile of ηi , and τj ∈ {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99}. For j = 8,
let ηi8 = ηi7 − ηi1. Let Cj contain the j th propensity score of all customers in the
training set.

After ranking customers in the training set according to the propensity scores contained
in Cj , we calculated the lift in each percentage group. Table 3 shows all the lifts obtained
using the training set. It is worth noting that Table 3 does not contain the results
corresponding to the propensity scores defined by μi , because they are the same as the
results given in Table 3.

It is seen that the maximum average lift corresponds to j = 5, 6, 7, 8. According to our
target selection method, the last four propensity scores are the best propensity scores, and
we can use any of them to select targets from the test set.

Figure 6 shows the lifts in Table 3, where the grey and darker curves correspond
to j ≤ 4 and j ≥ 5 respectively. Obviously, the grey curves are much lower than the

Table 3. Lifts for propensity score determination.

ηi1 ηi2 ηi3 ηi4 ηi5 ηi6 ηi7 ηi8
Groups 1% 5% 25% 50% 75% 95% 99% 99%-1%

10% 0.98 0.98 0.98 0.61 1.22 1.22 1.22 1.22
20% 1.04 1.11 1.04 0.86 1.54 1.54 1.54 1.54
30% 1.07 1.07 1.07 0.70 1.60 1.60 1.56 1.56
40% 0.96 0.96 0.93 0.62 1.42 1.42 1.42 1.42
50% 0.84 0.84 0.84 0.67 1.16 1.18 1.18 1.21
60% 0.76 0.76 0.76 0.70 1.07 1.07 1.07 1.07
70% 0.74 0.74 0.74 0.72 1.02 1.01 1.01 1.01
80% 0.85 0.87 0.85 0.82 0.96 0.97 0.97 0.96
90% 0.98 0.98 0.98 0.95 1.03 1.03 1.03 1.03
100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.92 0.93 0.92 0.76 1.20 1.20 1.20 1.20
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Figure 6. The lift chart for propensity score determination. The grey and darker curves correspond
to j ≤ 4 and j ≥ 5 respectively. The horizontal line represents the baseline.
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66 A RESPONSE MODEL AND TARGET SELECTION METHOD

horizontal line, which means that if the first four propensity scores are used in target
selection, the performance of the model in target selection will be much worse than the
random model. On the other hand, the dark curves are mainly located above the horizontal
line, especially for the first few percentage groups. All these results indicate that if the
last four propensity scores are used, the model will produce similar results in target
selection, and all these results will be much better than the results obtained from the
random model. Therefore, any of the last four propensity scores can be used for target
selection.

Now, given j ≥ 5, we can calculate the j th propensity score of the customers in the test
set, and rank the customers in the test set according to their j th propensity scores. Then, we
can select a certain percentage of customers for future marketing activities. Please note that
in reality, until the completion of the marketing activities, the performance of the model on
the test set for target selection is not known. However, in this study, since the data were
collected in the past bank marketing activities, we can use a lift table or lift chart to check
the performance of the model on the test set.

More specifically, for comparison purposes, we calculated all eight propensity scores
for each customer in the test set, as well as the lift in each percentage group. We present
the results in Table 4 and Figure 7.

As expected, Table 4 clearly shows that the last four propensity scores have produced
very similar results in target selection, and these results are also much better than those
obtained by using the first four propensity scores. It is worth noting that Table 4 also
confirms that, when the data are imbalanced, the propensity scores corresponding to the
centre of the distribution (50% quantile of ηi ) may not be suitable for target selection.

Figure 7 further shows that the lift curves corresponding to the last four propensity
scores are much higher than other lift curves, so confirming again that the best propensity
scores identified on the training set do produce the best results in target selection on the
test set.

We further used the benchmark response models to calculate the propensity scores of
customers in the test set and the lift in each percentage group. The results can also be found
from Table 4 and Figure 7. Obviously, in terms of target selection, the performance of all
benchmark response models is much worse than our model. In fact, they are even worse
than the random model in target selection.

Table 4. Lifts obtained from different models on the test set.

ηi1 ηi2 ηi3 ηi4 ηi5 ηi6 ηi7 ηi8
Groups 1% 5% 25% 50% 75% 95% 99% 99%-1% BLR BQR HC

10% 0.91 0.90 0.87 0.56 1.83 1.84 1.85 1.86 0.36 0.32 0.44
20% 0.82 0.82 0.79 0.51 1.84 1.85 1.86 1.86 0.43 0.38 1.02
30% 0.79 0.79 0.76 0.50 1.76 1.78 1.78 1.79 0.54 0.50 0.88
40% 0.71 0.71 0.69 0.51 1.50 1.51 1.51 1.53 0.68 0.65 0.76
50% 0.67 0.67 0.66 0.53 1.30 1.31 1.32 1.33 0.78 0.75 0.71
60% 0.65 0.65 0.64 0.56 1.17 1.18 1.18 1.19 0.87 0.80 0.68
70% 0.66 0.66 0.66 0.62 1.08 1.08 1.09 1.09 0.92 0.80 0.64
80% 0.78 0.78 0.78 0.75 1.03 1.04 1.04 1.04 0.91 0.77 0.70
90% 0.90 0.90 0.90 0.86 1.00 1.01 1.01 1.01 0.96 0.77 0.73
100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.79 0.79 0.77 0.64 1.35 1.36 1.36 1.37 0.75 0.67 0.76

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Figure 7. The lift chart for the test set: Grey and black curves correspond to the QFR model with
j ≤ 4 and j ≥ 5 respectively. Dotted, dot-dashed and dashed curves correspond to BLR, BQR and
HC models respectively. Horizontal line represents the baseline.

It is worth noting that in this application, the propensity scores obtained from the
benchmark response models correspond to the centre of a skewed distribution, which is
similar to our fourth propensity score (that is, the 50% quantile of ηi ). Therefore, in this
study, they are not as useful as the propensity scores corresponding to the tails of the ηi

distribution in the target selection.

6.5. Performance of some machine learning methods in target selection

Now we further compare our methods with the following popular machine learning
methods that are commonly used in marketing. (a) Decision tree (DT) (see, e.g. Hastie,
Tibshirani & Friedman 2009), which is a machine learning method that recursively partitions
data based on features to create a tree-like structure that predicts target outcomes by
traversing the tree’s branches according to feature values. (b) Classification and regression
trees (CART) (see, e.g. Breiman et al. 1984), which is a DT-based approach for categorical
(classification) and continuous (regression) target prediction, where data are divided into
subsets at each node according to features, resulting in leaf nodes containing the predicted
target value or class. (c) Random forests trees (RFT) (see, e.g. Breiman, 2001), which is
an ensemble learning technique that combines multiple DTs, improves prediction accuracy
by averaging their outputs and provides robust and reliable target selection by aggregating
predictions from different individual trees. (d) K-nearest neighbour classification method
(KNN) (see, e.g. Cover & Hart 1967), which assigns target labels to data points by
considering the majority class of the k nearest neighbors in the feature space. (e) Quantile
regression random forests (QRRF) (see, e.g. Meinshausen 2006), which is a hybrid approach
that combines the ensemble power of random forests with quantile regression, allowing

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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68 A RESPONSE MODEL AND TARGET SELECTION METHOD

Table 5. Lifts obtained from machine learning methods.

Groups DT CART RFT KNN QRRF NBC SVM

10% 0.82 1.10 0.62 0.62 0.63 0.76 0.67
20% 0.97 1.10 0.78 0.78 0.77 0.80 0.80
30% 1.01 1.10 0.85 0.85 0.85 0.86 0.87
40% 1.03 1.10 0.89 0.89 0.89 0.91 0.91
50% 1.05 1.10 0.92 0.92 0.92 0.94 0.94
60% 1.05 1.10 0.94 0.94 0.94 0.95 0.96
70% 1.06 1.10 0.96 0.96 0.96 0.96 0.97
80% 1.05 1.10 0.98 0.98 0.98 0.98 0.98
90% 1.04 1.00 0.99 0.99 0.99 0.99 0.99
100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 1.01 1.08 0.89 0.89 0.89 0.92 0.91

prediction of different quantiles of the target variable, thus providing a more comprehensive
understanding of the distribution of the data. (f) Naı̈ve Bayes classification (NBC) method
(see, e.g. Hastie, Tibshirani & Friedman 2009), which applies Bayes theorem and assumes
feature independence to assign target classes to data points based on the probabilistic
relationship between their features and class probabilities. (g) Support vector machine
(SVM) classifier (see, e.g. Cortes & Vapnik 1995), which classifies data points into different
classes by finding a hyperplane to maximise the separation between data points in feature
space, enabling efficient target selection even in complex and high-dimensional data. It is
worth noting that some of these methods also work well with imbalanced data.

We use each of these methods to perform the target selection and calculate the lift in
each percentage group. The results are given in Table 5. Compared with the results obtained
from the response models, we see that these machine learning methods outperform the
BLR, BQR and HC methods, and the best machine learning method is the classification
and regression trees method with an average lift of 1.08. However, these results are still
much worse than the results obtained from our method.

7. Conclusion

We have developed a new response model that can explicitly estimate the entire
propensity score distribution. Therefore, it can assign multiple propensity scores to each
customer, which provides a way to fill the gap in the literature. To facilitate the use of the
proposed model in marketing, we also developed a new target selection method. The target
selection method can be used to identify the best propensity score from the propensity
scores predicted by the proposed model, and use the identified propensity score to select
targets for future marketing activities.

In this paper, we discussed our approach by using a special case of the QFR model (6),
where Q(τ , γ ) is given by (5) and h1(α, xi ) and h2(β, xi ) are given by (8). In fact, the
methodology developed in the paper can be easily extended to other QFR models defined
by different Q(τ , γ ), h1(α, xi ) and h2(β, xi ) functions.

We have seen that the propensity scores identified by our target selection method
can indeed produce much improved results in target selection compared to the benchmark
response models and the machine learning methods commonly used in marketing. Our
results also confirm that not all propensity scores can produce good results in target

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Y. CAI 69

selection. This explains why the propensity scores predicted by existing response models
may not provide satisfactory results in target selection.

It is seen that our model helps us understand and better capture complex patterns
and dependencies in customer data, and more accurately predict customer behaviour
and responses to marketing campaigns. With our enhanced target selection method,
marketers can identify and target specific customer segments more effectively. On the
other hand, it is also worth noting that the model we have developed can also be applied
to other business problems including, for example, fraud detection and insurance/risk
management.

Finally, our target selection method is based on the average lift to determine the optimal
propensity score for target selection, which is limited. Therefore, future examination and
comparison of many other criteria that may be helpful in determining the optimal propensity
score for target selection will be required.

APPENDIX A

Proof of Theorem 1. As Q(τ , γ ) is the quantile function of ξi , we have Pr {ξi ≤
Q(τ , γ )} = τ for any τ ∈ (0, 1). It follows from τ = Pr {ξi ≤ Q(τ , γ )} = Pr {h1(α, xi ) +
h2(β, xi )ξi ≤ h1(α, xi ) + h2(β, xi )Q(τ , γ )} = Pr {ηi ≤ h1(α, xi ) + h2(β, xi )Q(τ , γ )} that
the τ quantile of ηi is given by h1(α, xi ) + h2(β, xi )Q(τ , γ ). As τ is an arbitrary
real number between 0 and 1, we see that the quantile function of ηi is given by
Qηi (τ | θ , xi ) = h1(α, xi ) + h2(β, xi )Q(τ , γ ), which is the second equation in model (6) as
required.

Note that μi = Pr (yi = 1|ηi ) = eηi /(1 + eηi ) is a monotone function of ηi . Hence,
given the quantile function Qηi (τ | θ , xi ) of ηi , the quantile function of μi is Qμi (τ | θ , xi ) =
eQηi (τ | θ ,xi )/(1 + eQηi (τ | θ ,xi )) as required.

Proof of Theorem 2. We need to show that two distinct parameter vectors, (α, β, γ ) and
(α∗, β∗, γ ∗) cannot yield the same value of the maximised likelihood function.

First note that if for the two parameter vectors (α, β, γ ) and (α∗, β∗, γ ∗) such that

Qηi (τ | α, β, γ , xi ) = Qη∗
i
(τ | α∗, β∗, γ ∗, xi ) (A1)

holds for all xi and τ ∈ (0, 1), then we have

n∏
i=1

μ
yi
i (1 − μi )

1−yi =
n∏

i=1

(μ∗
i )

yi (1 − μ∗
i )

1−yi ,

where the quantile function of μ∗
i is given by

Qμ∗
i
(τ | α∗, β∗, γ ∗, xi ) = e

Qη∗
i
(τ |α∗,β∗,γ ∗,xi )

/
{

1 + e
Qη∗

i
(τ | α∗,β∗,γ ∗,xi )

}
.

Hence, we only need to show that if (A1) holds, then we must have α = α∗, β = β∗

and γ = γ ∗.
For (A1) to hold, we need, for all xi and τ ∈ (0, 1),

α0 + α1x1i + · · · + αk xki = α∗
0 + α∗

1x1i + · · · + α∗
k xki , (A2)
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70 A RESPONSE MODEL AND TARGET SELECTION METHOD

and

(
β0 + β1x2

1i + · · · + βk x2
ki

)(
τ γ1 − 1

γ1
− (1 − τ)γ2 − 1

γ2

)

= (
β∗

0 + β∗
1 x2

1i + · · · + β∗
k x2

ki

)
(

τ γ ∗
1 − 1

γ ∗
1

− (1 − τ)γ
∗
2 − 1

γ ∗
2

)
. (A3)

It follow from (A2) that, for all xi

(α0 − α∗
0) + (α1 − α∗

1)x1i + · · · + (αk − α∗
k )xki = 0,

Hence, we must have αi = α∗
i for i = 0, . . . , k , that is α = α∗.

For (A3) to hold for all xi and all τ ∈ (0, 1), we need

β0 + β1x2
1i + · · · + βk x2

ki = β∗
0 + β∗

1 x2
1i + · · · + β∗

k x2
ki

for all xi , which means that β = β∗ must hold; and

τ γ1 − 1

γ1
− (1 − τ)γ2 − 1

γ2
= τ γ ∗

1 − 1

γ ∗
1

− (1 − τ)γ
∗
2 − 1

γ ∗
2

for all τ ∈ (0, 1). This means that two strictly monotone quantile functions are equal and
the parameters do not depend on τ . Therefore, we must have γ1 = γ ∗

1 and γ2 = γ ∗
2 , that is

γ = γ ∗ as required. This completes the proof.

Proof of Theorem 3. First, note that if we let f (x) be the probability density function of a
random variable X and Qx (τ ) its quantile function, then we have f (x) = {dQx (τ )/dτ }−1.
Hence

π(μ, τ , θ |x, y) ∝ L(y |μ, τ , θ , x)π(μ |τ , θ , x)π(τ |θ , x)π0(θ |x)

=
{

n∏
i=1

μ
yi
i (1 − μi )

(1−yi )πi (μi |τi , θ , xi )πi (τi |θ , xi )

}
π0(θ |x),

where πi (μi |θ , xi ) is given by

πi (μi |θ , xi ) =
{

dQμi (τ |θ , xi )

dτ

}−1

τ=τi

=
[

eQηi (τ | θ ,xi ) dQ(τ ,γ )

dτ
h2(β, xi ){

1 + eQηi (τ | θ ,xi )
}2

]−1

τ=τi

=
{
1 + eQηi (τi | θ ,xi )

}2

eQηi (τi |θ ,xi ) dQ(τi ,γ )

dτ
h2(β, xi )

,

and πi (τi |θ , xi ) = 1 as τi is uniformly distributed on (0, 1). This completes the proof.

Since μi ∈ (0, 1), we see that μ
yi
i (1 − μi )

(1−yi ) ≤ 1. Moreover, for τi ∈ [ε, 1 −
ε], the density function πi (μi |θ , xi ) is continuous on the closed set [ε, 1 − ε],
hence it is finite on [ε, 1 − ε]. Therefore, there exists a constant, say M̃ , such that∏n

i=1 μ
yi
i (1 − μi )

(1−yi )πi (μi |θ , xi ) ≤ M̃ on �.
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Y. CAI 71

Hence, it follows from
∫
�1

π0(θ |x)dθ < ∞ that
∫
�
π(μ, τ , θ |x, y)dμdτdθ ≤

M̃
∫
�1

π0(θ |x)dθ
∫
�2

dμ
∫
�3

dτ < ∞ as required.

APPENDIX B

The prior density functions for α, β and γ are given below. Clearly, they are density
functions truncated on the parameter space of the posterior density function.

π(α) =
k∏

j=0

1√
2π σj

e−α2
j /2σ 2

j

{∫ M

−M

1√
2π σj

e−α2
j /2σ 2

j dαj

}−1

,

π(β) =
k∏

j=0

1√
2π βj sj

e−ln2(βj )/2s2
j

{∫ M

ε

1√
2π βj sj

e−ln2(βj )/2s2
j dβj

}−1

,

π(γ ) =
2∏

v=1

1√
2πλv (−γv )

e−(ln(−γv ))2/2λ2
v

{∫ M

ε

1√
2πλv (−γv )

e−(ln(−γv ))2/2λ2
v d(−γv )

}−1

,

where σj , sj and λv are the scale parameters of the respective prior density functions.

APPENDIX C

Our MCMC method is given below. Let μ, τ , α, β, γ represent the current and μ′, τ ′, α′,
β ′, γ ′ represent the proposed parameter values. Then our MCMC method consists of the
following steps.

Step 1 Propose α′
j by simulating α′

j ∼
(
σ̃ j

√
2π

)−1
e−(α′

j −αj )
2/2σ̃ 2

j such that α′
j ∈

[−M , M ], where j = 0, . . . , k .

Step 2 Propose β ′
j by simulating β ′

j ∼
(

s̃ j β
′
j

√
2π

)−1
e−(ln β ′

j −ln βj )
2/2s̃2

j such that β ′
j ∈

[ε, M ], where j = 0, . . . , k .

Step 3 Propose γ ′
v by simulating −γ ′

v ∼
{
λ̃v (−γ ′

v )
√

2π
}−1

e−{ln(−γ ′
v )−ln(−γv )}2

/2λ̃
2
v such

that γ ′
v ∈ [−M , −ε], where v = 1, 2.

Step 4 Propose τ ′
i = 0.5 and μ′

i = eη′
i /(1 + eη′

i ), where η′
i = (α′

0 + α′
1x1i + · · · +

α′
k xki ) + (

β ′
0 + β ′

1x2
1i + · · · + β ′

k x2
ki

){
0.5γ ′

1 −1
γ ′

1
− 0.5γ ′

2 −1
γ ′

2

}
.

Step 5 Accept the proposed values with probability min {AB , 1}, where A and B are
given below.

Step 6 If the proposed values are accepted, let (μ, τ , α, β, γ ) = (μ′, τ ′, α′, β ′, γ ′).
Otherwise, discard (μ′, τ ′, α′, β ′, γ ′). Go to Step 1.

The acceptance probability of the MCMC method is given by min {AB , 1}, where
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72 A RESPONSE MODEL AND TARGET SELECTION METHOD

A = π(μ′, τ ′, α′, β ′, γ ′|x, y)

π(μ, τ , α, β, γ |x, y)

=
n∏

i=1

(μ′
i )

yi (1 − (μ′
i ))

1−yi

μ
yi
i (1 − μi )1−yi

π(μ′|τ ′, α′, β ′, γ ′, x)

π(μ|τ , α, β, γ , x)

π(τ ′|α′, β ′, γ ′, x)

π(τ |, α, β, γ , x)

π(α′, β ′, γ ′|x)

π(α, β, γ |x)

=
n∏

i=1

(μ′
i )

yi (1 − (μ′
i ))

1−yi

μ
yi
i (1 − μi )1−yi

π(μ′|τ ′, α′, β ′, γ ′, x)

π(μ|τ , α, β, γ , x)

π(α′)π(β ′)π(γ ′)
π(α)π(β)π(γ )

B = q{(μ′, τ ′, α′, β ′, γ ′|x) → (μ, τ , α, β, γ |x)}
q{(μ, τ , α, β, γ |x) → (μ′, τ ′, α′, β ′, γ ′|x)} = π(μ, τ , α, β, γ |μ′, τ ′, α′, β ′, γ ′, x)

π(μ′, τ ′, α′, β ′, γ ′|μ, τ , α, β, γ , x)

=
π(μ|α, β, γ , τ , τ ′, μ′, α′, β ′, γ ′, x)π(α|β, γ , μ′, α′, β ′, γ ′, x)

π(β|γ , μ′, α′, β ′, γ ′, x)π(γ |μ′, α′, β ′, γ ′, x)

π(μ′|α′, β ′, γ ′, τ , τ ′, μ, α, β, γ , x)π(α′|β ′, γ ′, μ,
α, β, γ , x)π(β ′|γ ′, μ, α, β, γ , x)π(γ ′|μ, α, β, γ , x)

= π(μ|τ , α, β, γ , x)

π(μ′|τ ′, α′, β ′, γ ′, x)

π(α|α′)
π(α′|α)

π(β|β ′)
π(β ′|β)

π(γ |γ ′)
π(γ ′|γ )

.

Hence,

AB =
n∏

i=1

(μ′
i )

yi (1 − (μ′
i ))

1−yi

μ
yi
i (1 − μi )1−yi

π(α′)π(β ′)π(γ ′)
π(α)π(β)π(γ )

π(α|α′)
π(α′|α)

π(β|β ′)
π(β ′|β)

π(γ |γ ′)
π(γ ′|γ )

,

where

π(α′)π(β ′)π(γ ′)
π(α)π(β)π(γ )

=
k∏

j=0

e−(α′2
j −α2

j )/2σ 2
j

βj

β ′
j

e
−

{
ln2(β ′

j )−ln2(βj )
}
/2s2

j

2∏
v=1

γv

γ ′
v

e
−

{
ln2(−γ ′

v )−ln2(−γv )
}
/2λ2

v ,

π(α|α′)
π(α′|α)

= 1,
π(β|β ′)
π(β ′|β)

=
k∏

j=0

β ′
j

βj

�
(

ln M −ln βj
s̃ j

)
− �

(
ln ε−ln βj

s̃ j

)

�

(
ln M −ln β ′

j
s̃ j

)
− �

(
ln ε−ln β ′

j
s̃ j

)

π(γ |γ ′)
π(γ ′|γ )

=
2∏

v=1

γ ′
v

γv

�
(

ln M −ln(−γv )

λ̃v

)
− �

(
ln ε−ln(−γv )

λ̃v

)

�
(

ln M −ln(−γ ′
v )

λ̃v

)
− �

(
ln ε−ln(−γ ′

v )

λ̃v

) .

Therefore,

AB =
n∏

i=1

(μ′
i )

yi (1 − (μ′
i ))

1−yi

μ
yi
i (1 − μi )1−yi

k∏
j=0

e−(α′2
j −α2

j )/2σ 2
j e

−
{

ln2(β ′
j )−ln2(βj )

}
/2s2

j

×
2∏

v=1

e
−

{
ln2(−γ ′

v )−ln2(−γv )
}
/2λ2

v

k∏
j=0

�
(

ln M −ln βj
s̃ j

)
− �

(
ln ε−ln βj

s̃ j

)

�

(
ln M −ln β ′

j
s̃ j

)
− �

(
ln ε−ln β ′

j
s̃ j

)

×
2∏

v=1

�
(

ln M −ln(−γv )

λ̃v

)
− �

(
ln ε−ln(−γv )

λ̃v

)

�
(

ln M −ln(−γ ′
v )

λ̃v

)
− �

(
ln ε−ln(−γ ′

v )

λ̃v

) .
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APPENDIX D

Another simulation study

In this simulation study, we show that the proposed estimation method performs well, and
the convergence of the method does not depend on the strength of the prior information on
the parameters.

For i = 1, . . . , 500, we simulated xi uniformly on [0, 5] and ηi from

Qηi (τ |xi ) = (−0.4 + 0.2xi ) + (2 + 0.3x2
i )

{
τ−0.35 − 1

−0.35
− (1 − τ)−0.5 − 1

−0.5

}
, (D1)

which can be achieved by simulating τi uniformly on (0, 1) and calculating ηi = Qηi (τi |xi )

using (D1). Then μi values can be calculated by μi = eηi /(1 + eηi ). Finally, we let yi = 1
with probability μi and yi = 0 otherwise. By repeating these steps 200 times, we obtained
200 independent data sets.

Note that in reality both ηi and μi are not observable, but here we will use them
to check the performance of our estimation method. Specifically, we will (a) compare the
distribution of the estimated standardised residuals r̂ i = {ηi − (α̂0 + α̂1xi )}/{β̂0 + β̂1x2

i }
(i = 1, . . . , 500) with the true one

Q(τ , γ ) = (τ−0.35 − 1)/(−0.35) − {(1 − τ)−0.5 − 1}/(−0.5); (D2)

(b) compare the estimated distribution of μ with the true one defined by (7); and (c) check
the coverage probabilities of the estimated quantile curves of η and μ respectively. If the
estimation method performs well, we should expect a good agreement between the estimated
results and true results.

It is worth mentioning that the strength of the prior information about the parameters
of the posterior density function is measured by the values of σj , s� and λv (see Appendix
B). For example, a large (or small) value of σj suggests that the prior information on αj

is weak (or strong). To check the effect of the prior information on the estimation, we
let σj = s� = λv = ξ , where ξ = 1, 2, 3. So, the variance of αj is given by 1, 4 and 9 for
ξ = 1, 2 and 3 respectively, while the variances of β� and γv are the same, given by 4.671,
2926 and 6.565 × 107 corresponding to ξ = 1, 2 and 3 respectively. Clearly, when ξ = 2
the strength of the prior information has already become very weak.

Now, for each value of ξ , a Markov Chain was run for 5 × 105 steps. Testing runs
suggest that a burn-in period of the first 2 × 104 steps is enough. The posterior samples
were then collected after the burn-in period. The first two rows of Figure D1 show the
time series plots of the posterior samples obtained by using the first simulated data set and
ξ = 2, which suggests that the convergence of the Markov Chain has been achieved. The
last two rows of Figure D1 show the probability density function plots of the posterior
marginal distributions of the parameters, where the vertical lines correspond to the true
parameter values, and the darker continuous, grey continuous and dotted curves correspond
to priors with ξ = 1, 2 and 3 respectively. It is seen that in all cases the true parameter
values are well within the range of the posterior marginal distributions. To save space, we
will present our results corresponding to ξ = 2 in the paper.

For each data set, we recorded the Bayesian estimate together with an associated 95%
credible interval, leading to 200 credible intervals for each parameter. Table D1 shows the

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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74 A RESPONSE MODEL AND TARGET SELECTION METHOD

Figure D1. Top two rows: Time series plots of the posterior samples of the model parameters for
ξ = 2. Last two rows: Plots of the posterior marginal density functions of the model parameters, where
the darker continuous, grey continuous and dotted curves correspond to ξ = 1, 2 and 3 respectively,
and the vertical lines correspond to the true model parameters.

Table D1. Estimation results.

Parameter α0 α1 β0 β1 γ1 γ2

True value −0.40 0.20 2.00 0.30 −0.35 −0.50
Lower bound −1.120 −0.287 0.019 0.012 −2.705 −2.461
Upper bound 1.237 0.494 22.268 5.086 −0.019 −0.014

true parameter values and the average value of the lower (upper) bounds of these credible
intervals. It is seen that all the true parameter values are well within the respective lower
and upper bounds, suggesting a good performance of the method.

We now compare the distribution of r̂ i with (D2). A good performance of the method is
expected if the two distributions are not significantly different. So we estimated a probability
density function by using r̂ i (i = 1, . . . , 500) for each data set, which is then compared
with (D2) by using the Kolmogorov–Smirnov test. We found that the average p-value
of the 200 tests is 0.0642 with a 95% confidence interval [0.0454, 0.0831]. Hence the
Kolmogorov–Smirnov test shows that, on average, the distribution of r̂ i is not significantly
different from the true distribution defined by (D2) at a 1% level of significance.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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Similarly, we compared the estimated and true distributions of μ. We found that the
average p-value of the Kolmogorov–Smirnov tests over 200 simulations is 0.0433 with
a 95% confidence interval ranging from 0.0313 to 0.0554. Hence, these two distributions
are also not significantly different at a 1% level of significance, providing further evidence
about the good performance of the method.

Let us now consider the estimated conditional quantiles of η and μ. For τ ∈
{0.025, 0.05 , 0.25, 0.5, 0.75, 0.95, 0.975}, let nτ

η� (or nτ
η�/500) and nτ

μ� (or nτ
μ�/500) be

the number (or proportion) of observed ηi and μi in the �th simulated data set that are less
than Q̂ηi

(τ |α̂, β̂, γ̂ , xi ) and Q̂μi
(τ |α̂, β̂, γ̂ , xi ) respectively, where � = 1, . . . , 200. For each

�, we further calculated mean squared error (MSE) between nτ
η�/500 and τ and between

nτ
μ�/500 and τ respectively. A good performance of the method is expected if these MSE

values are all small for � = 1, . . . , 200. The average MSE value for η is 0.0065 with a 95%
confidence interval [0.006, 0.0069] and that for μ is 0.0051 with a 95% confidence interval
[0.0049, 0.0054]. Clearly, both of these MSEs are very small. In summary, the performance
of the estimation method is satisfactory in this study.
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