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A B S T R A C T 21 

The impact of invasive species and land use change on soil nitrogen pools in coastal 22 

wetlands has been reported at local scale, but uncertainty persists for regional pattern due 23 

to geographical variability and limited field data. This study measured the top soil (upper 24 

20 cm) organic nitrogen (SON), inorganic nitrogen (SIN) and total nitrogen (STN) 25 

concentrations and stocks across 21 coastal wetland sites in China (20°42′N-31°51′ N) 26 

that had undergone the same sequence of transformation from mudflats (MFs) to invasive 27 

Spartina alterniflora marshes (SAs) then to earthen aquaculture ponds (APs). Results 28 

showed that the conversion of MF to SA significantly increased SON and SIN 29 

concentrations and stocks by 37.7–86.1%, but subsequent conversion to APs significantly 30 

decreased them by 13.5–34.6%. SON/SIN ratio decreased upon invasion by S. 31 

alterniflora and it had a negative effect on STN accumulation, whereas conversion of 32 

SAs to APs showed the opposite trends. The change rates of SON, SIN and STN stocks 33 

showed clear decreasing trends with increasing latitude in the MF-to-SA conversion 34 

scenario, reflecting the strong influence of environmental temperatures, but weaker or 35 

insignificant trends were observed in the SA-to-AP conversion scenario, likely because 36 

of mitigating anthropogenic activities in aquaculture ponds. Our findings can be used to 37 

inform strategies to control invasive species and reduce the greenhouse gas nitrous oxide 38 

(N2O) emissions, and support global N model for climate change in response to habitat 39 

modifications in coastal wetlands. 40 

Keywords: Soil organic nitrogen (SON); Soil inorganic nitrogen (SIN); Exotic invasive 41 
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plants; Aquaculture reclamation  42 
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1. Introduction 43 

Coastal wetlands consist of mudflats, salt marshes, mangroves or seagrass beds 44 

(Duarte et al., 2013; Mcleod et al., 2011), and they are important carbon and nitrogen 45 

pools (Reddy and DeLaune, 2008; Xu et al., 2020) thanks to their high primary 46 

productivity, high sediment accretion rate, and low decomposition rate (Mcleod et al., 47 

2011; Neubauer and Megonigal, 2021; Xu et al., 2020). Land-use change and exotic 48 

species invasion have impacted coastal wetlands world-wide (Murray et al., 2019; Tan 49 

et al., 2022; Wang et al., 2023a). During the past century, over 21% natural coastal 50 

wetlands have been lost or degraded globally as a result of land use change to support 51 

population growth and economic development (Davidson and Finlyson, 2018; Han et al., 52 

2014; Fluet-Chouinard et al., 2023). Alteration of plant community through invasion or 53 

de-vegetation would change the primary production and the rate of organic deposition 54 

into the soil (Ge et al., 2015; Wang et al., 2023b), while corresponding changes to the 55 

soil microbial community would affect organic remineralization rate (Bahram et al., 56 

2022; Yang et al., 2022a; Yang et al., 2023). Land conversion to aquaculture ponds also 57 

changes soil particle size and creates a continuously water-logged environment, and the 58 

aquaculture operation itself may introduce additional disturbances to soil chemistry, e.g. 59 

by adding fertilizer and organic wastes (Kauffman et al., 2018; Yang et al., 2021). 60 

Many coastal areas in China have undergone a sequence of habitat modification, with 61 

native mudflats being invaded by S. alterniflora and subsequent clearing of S. 62 

alterniflora marshes to create earthen aquaculture ponds (Li et al., 2022; Liu et al., 2018; 63 
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Wang et al., 2023c). This provides a unique opportunity to examine the sequential effect 64 

of landscape modification on ecological vulnerability (Zang et al., 2017) and soil 65 

biogeochemistry. Earlier studies showed that landscape transformation may impact the 66 

organic and inorganic pools of the soil differently, and that the soil greenhouse gas 67 

production and emission may respond in an unexpected way. For example, invasion of 68 

mudflats by S. alterniflora has been shown to increase soil organic carbon concentration 69 

but decrease inorganic carbon concentration, whereas subsequent removal of S. 70 

alterniflora to create aquaculture ponds caused the opposite changes (Duan et al., 2023; 71 

Yang et al., 2022a; Hong et al., 2023). Similar changes were also observed in soil organic 72 

carbon mineralization rate (Yang et al., 2022a; Hong et al., 2023).  73 

However, most previous studies were focused on the impact of landscape 74 

transformation on carbon pools, while little information was available on the change in 75 

soil nitrogen (N) pools. Soil N pool is dominated by organic N (> 90%) (Schulten and 76 

Schnitzer, 1997), and there is a dynamic exchange between the organic and inorganic 77 

pools (Reddy and DeLaune 2008; Schulten and Schnitzer, 1997), the latter of which fuels 78 

primary production and emission of N2O, which is a more powerful greenhouse gas than 79 

carbon dioxide and methane (Xu et al., 2022a; Xu et al., 2022b). Therefore, landscape 80 

modification may change the fractions of soil N pools and regional greenhouse effect. 81 

An earlier study along the southeast coast of China found that soil organic nitrogen (SON) 82 

increased after invasion of mudflats by S. alterniflora but decreased when the Spartina 83 

marshes were converted to aquaculture ponds, primarily due to changing organic matter 84 
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input (Lin et al., 2023). These findings were in line with the changes in soil inorganic 85 

nitrogen (SIN) (Yang et al., 2023). Moreover, invasion of S. alterniflora was reported to 86 

increase SIN stock by enhancing litter decomposition (Smyth et al. 2012), soil N 87 

mineralization (Feng et al., 2023) and the uptake of dissolved inorganic N (i.e. NH4
+-N 88 

and NO3
--N) from tidal subsidies (Peng et al. 2011), which further increased the plant’s 89 

invasion ability. Invasion of mudflat by S. alterniflora can also alter sediment N2O 90 

production potential by changing N substrate availability and abundance of ammonia 91 

oxidizers (Yang et al., 2023). 92 

Many studies have been conducted at the local scale, and the regional and latitudinal 93 

response patterns of soil N to habitat modification are still unclear. It is therefore of 94 

interest to investigate the stocks of soil N pool, their environmental drivers, and how 95 

their proportionalities are changed by habitat modification along a broad geographical 96 

range. For this, we systematically studied 21 coastal wetland areas across the tropical 97 

and subtropical zones in south-eastern China. We compared the SON and SIN pools and 98 

various physiochemical variables in three habitat types: native mudflats, S. alterniflora 99 

marshes and earthen aquaculture ponds, to explore the common effect patterns of habitat 100 

modification on the soil N pool across the different latitudes. We hypothesized that (1) 101 

invasion of native mudflats by S. alterniflora would increase soil N concentrations and 102 

stocks due to enhanced organic matter input from marsh plants; (2) when S. alterniflora 103 

marshes were removed to create aquaculture ponds, the soil N pools would change in the 104 

opposite direction. 105 
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 106 

2. Materials and methods 107 

2.1. Study area, soil sampling and analysis   108 

This study was a part of a larger research campaign between December 2019 and 109 

January 2022 that aimed at understanding the effects of landscape transformation on 110 

coastal wetland ecology and biogeochemistry in southeastern China. Sampling campaign 111 

was conducted in five provinces along the Chinese coastline including Shanghai, 112 

Zhejiang, Fujian, Guangdong and Guangxi, with a total of 21 sampling sites (Fig. 1). 113 

Descriptions of the wetland areas, local climate and history of habitat modification 114 

(mudflats to S. alterniflora marshes, then to earthen aquaculture ponds) can be found in 115 

(Hong et al., 2023; Lin et al., 2023; Yang et al., 2022a and 2023).  116 

Previous studies have suggested that soil properties in the top 30 cm are most 117 

sensitive to management practices associated with LULCC (Eid et al., 2019; Hennings 118 

et al., 2021). Surface soil (0-20 cm) samples were collected in each plot using a steel 119 

soil corer (5 cm internal diameter), for a total of 189 soil samples (21 sampling sites * 3 120 

habitats * 3 plots). All soil samples were transported to the laboratory in a cooler and 121 

stored at 4℃ until processing. Detailed methods for the analyses of soil pH, salinity, 122 

particle size distribution, water content (SWC), bulk density (SBD), porewater Cl- and 123 

SO4
2-, total carbon, and microbial genetic diversity are described in Support Information. 124 

The data on soil physiochemical properties are given in Table S1. In this study, we 125 

focused on the analysis of soil N among the different habitat types and the relations with 126 
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various environmental factors. 127 

In the laboratory, roots and gravel were removed from each fresh soil sample. 128 

Afterward, a subsample was air-dried, finely ground (< 0.149 mm) and used for 129 

measuring soil total N (STN) with a Vario MAX CN analyzer (Elementar Scientific 130 

Instruments, Germany) (Lin et al., 2023; Xia et al., 2021). Another subsample was 131 

extracted with 2 M KCl solution for nitrate-N (NO3
--N) and ammonium-N (NH4

+-N) 132 

(Gao et al., 2019), and the concentrations of NO3
--N and NH4

+-N in the extracts were 133 

quantified using SAN++ Continuous Flow Analyzer (Skalar, Netherlands). Soil inorganic 134 

N (SIN) was the sum of soil NO3
--N and NH4

+-N, and soil organic N (SON) was 135 

calculated as the difference between STN and SIN. Soil N stocks (t N ha-1) were 136 

calculated by multiplying SBD (g cm-3) by the different N factions (SON, SIN and STN) 137 

scaled to the soil depth interval (cm) 138 

2.2. Statistical analysis 139 

The Kolmogorov–Smirnov and Levene's tests were used to confirm that all the data 140 

groups met the assumptions of normality and homogeneity of variances, respectively. 141 

One-way analysis of variance (1 way-ANOVA) with Tukey’s HSD test was used to test 142 

the differences between habitat types in soil N fractions (SON, SIN and STN) and 143 

environmental variables including pH, salinity, SWC, SBD, clay, silt, sand, porewater 144 

Cl- and SO4
2- concentrations, C:N ratio, Chao1 index and Shannon index of microbial 145 

diversity. 146 

To account for anthropogenic management practices (e.g. fertilization and irrigation) 147 
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and spatial heterogeneity of environmental condition (e.g. temperature, rainfall), we used 148 

response ratio (RR) and weighted RR (RR++) to quantify the effect of habitat 149 

modification on different variables (Hedges et al., 1999; Tan et al., 2023a). RR and RR++ 150 

are commonly used in ecological meta-analysis to assess heterogeneity of each paired 151 

data set (representing sampling sites) and obtain an overall estimate. Here, RR was 152 

defined as the natural logarithm of the ratio of the N factions or environmental variables 153 

in the modified habitat to the paired original habitat. RR++ was calculated from the 154 

individual RR pairwise comparison between the modified habitat and original habitat 155 

(Hedges et al., 1999).  156 

Spearman correlation analysis, redundancy analysis (RDA) and structural equation 157 

model (SEM) were performed to test the relationship between the RR of N stocks and 158 

environmental variables, and identify the key factors to drive the change in soil N stocks. 159 

Spearman correlation analysis was performed in R (version 4.1.0) using corrplot and 160 

Hmisc packages. RDA was conducted in CANOCO 5.0 (Microcomputer Power, Ithaca, 161 

USA). SEM was constructed in R with the lavaan package using the method of Tan et 162 

al. (2022) and (2023b). All data were presented in mean ± standard error (SE), unless 163 

otherwise stated. In all statistical tests, a significance level of p < 0.05 was used. 164 

 165 

3. Results  166 

3.1. Soil nitrogen concentrations in different habitat types 167 

SON concentration varied across all sampling sites and habitat types: 257.9−1407.9 168 
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mg kg-1 in MF, 596.3−2672.7 mg kg-1 in SA, and 472.4−2501.5 mg kg-1 in AP (Fig. 2a). 169 

The mean SON concentration was highest in SA (1075.3 ± 53.3 mg kg-1), followed by 170 

AP (930.5 ± 94.8 mg kg-1) and MF (780.6 ± 94.1 mg kg-1) (Fig. 2b). Therefore, 171 

conversion of MF to SA increased SON concentration by 37.7% (p < 0.05), whereas 172 

conversion of SA to AP decreased SON concentration by 13.5% (p < 0.05). 173 

SIN concentration ranged 4.2−27.7 mg kg-1 in MF, 10.1−50.6 mg kg-1 in SA, and 174 

5.7−31.5 mg kg-1 in AP (Fig. 2c). The mean SIN concentration was highest in SA (25.8 175 

± 2.3 mg kg-1), followed by AP (18.5 ± 1.9 mg kg-1) and MF (14.6 ± 1.4 mg kg-1) (Fig. 176 

2d). Conversion of MF to SA increased SIN concentration by 77.3% (p < 0.05), but 177 

conversion of SA to AP decreased SIN concentration by 28.2% (p < 0.05). 178 

3.2. Response of soil N stocks to habitat modification 179 

SON, SIN and STN stocks were all highest in SA, followed by AP and MF (Table 180 

1). SON accounted for over 97% of the STN stock, whereas NH4
+-N accounted for about 181 

92% of the SIN stock in all habitat types. Based on the weighted response ratio (RR++) 182 

for the sequence of habitat modification, conversion of MF to SA significantly increased 183 

SON, SIN and STN stocks by 38.6%, 86.1% and 39.5% (percentage change of mean 184 

difference), respectively. In contrast, conversion of SA to AP significantly decreased 185 

SON, SIN and STN stocks by 17.6%, 34.6% and 18.0%, respectively (Fig. 3). 186 

There was a latitudinal gradient in the response of soil N stocks to habitat 187 

modification: The response ratio (RR) of SON, SIN and STN stocks all decreased 188 

significantly with increasing latitude in the MF-to-SA conversion scenario, while 189 
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significant negative trends were observed for SON and STN stocks in the SA-to-AP 190 

conversion scenario (Fig. 4). Similar patterns were also found in the soil N stocks in all 191 

habitat types at the province level (Table S2). 192 

When we considered the relative proportions of SON and SIN, the SON/SIN ratio 193 

decreased by 15.5% when MFs were converted to SAs, but increased by 36.4% when 194 

SAs were converted to APs (Fig. 5a). The response ratio (RR) of STN correlated 195 

negatively to RR of SON/SIN ratio for MF-to-SA conversion (Fig. 5b), but positively 196 

for SA-to-AP conversion (Fig. 5c). 197 

3.3. Environmental control of soil N stock responses 198 

According to redundancy analysis (RDA), salinity, Cl- and Chao1 index and clay 199 

together explained 63.7% of the variations in RR of the soil N stocks when MFs were 200 

converted to SAs (Fig. 6a). Based on the structural equation model (SEM), salinity and 201 

Cl- had positive direct and indirect effects on RR of SIN and STN stocks (Fig. 7a). Clay 202 

had a positive effect on RR of SON (direct) and STN (indirect) stocks (Fig. 7a). Chao1 203 

index had a negative effect on RR of SON (direct) and STN (indirect) stocks (Fig. 7a).  204 

For the conversion of SAs to APs, RDA showed that SWC, clay, sand and pH 205 

together explained 67.5% of variations in RR of the soil N stocks (Fig. 6b). Based on 206 

SEM, SWC and clay had positive and direct effect on RR of SON and SIN stocks, and 207 

indirect effect on RR of STN stock (Fig. 7b). pH affected RR of SIN stock positively 208 

and directly (Fig. 7b). Sand had a negative direct effect on RR of SON and SIN stocks 209 

and an indirect effect on STN stock (Fig. 7b).  210 
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 211 

4. Discussion 212 

4.1. Soil N response to conversion of mudflat to Spartina marsh  213 

The results of this study, which included 21 sampling sites, revealed that conversion 214 

of mudflats to S. alterniflora marshes increased SON and SIN concentrations and stocks 215 

by 37.7–86.1% based on the percentage change of mean difference (Fig. 2 and Fig.3). 216 

These results supported our first hypothesis. This might be attributed to the higher 217 

productivity, input of plant litters and root exudates in marshes than in unvegetated 218 

mudflats (Mcleod et al., 2011; Neubauer and Megonigal, 2021; Tong et al., 2011; Fig. 219 

8a and 8b). The invasive S. alterniflora is also efficient in trapping organic- and nitrogen-220 

rich particles from terrestrial runoff and tidal input, thanks to its high shoot density and 221 

well-developed underground root system (Hsieh et al., 2021; Li et al., 2021), which 222 

would also increase the STN stock in the topsoil (Fig. 8b).  223 

In this study, SON was the dominant fraction of STN (Table 1) and the response 224 

patterns of SON and STN to habitat modification were almost the same (Fig. 3). Since 225 

the soil bulk density was statistically the same between habitat types (Table S1), the 226 

changes of N stock were primarily driven by changes in N concentration. 227 

Chao1 index and Shannon index in SAs were significantly higher than in MFs 228 

(Table S1) and showed a significantly negative relationship with SON stock in the RDA 229 

and SEM results (Fig.6 and Fig. 7). This suggests more diverse microbe communities 230 

decomposing SON in SAs, potentially increasing SIN concentration and stock as seen in 231 
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our data (Fig. 3). In addition, the shade provided by plant canopies and water absorption 232 

by ground litter may prevent soil surface evaporation and increase the retention of salt 233 

water from tidal inundation (Kadiri et al., 2011), as indicated by the higher soil salinity 234 

and SWC in SAs (Table S1), which would add additional exogenous N to the soil and 235 

explain the positive correlation in RR between SIN stock and salinity (Fig. S1b). The 236 

elevated SIN including NO3
--N and NH4

+-N could in turn fuel N2O production, as has 237 

been shown in our companion study (Yang et al., 2023).  238 

When we examined the relative proportions of the different N fractions, we found 239 

that the SON/SIN ratio decreased significantly after habitat modification, owing to a 240 

greater rise in SIN than in SON (Fig. 3 and Fig. 5a). Interestingly, RR of STN was 241 

negatively correlated with RR of SON/SIN ratio (Fig. 5b), suggesting that SIN 242 

availability was key in supporting the growth and spread of S. alterniflora, which in turn 243 

elevated the total soil N concentration (Feng et al., 2023; Sardans et al., 2017).  244 

4.2. Soil N response to conversion of Spartina marsh to aquaculture pond  245 

Based on the change rate of weighted response ratio, SON, SIN and STN 246 

concentrations and stocks decreased by 13.5–34.6% when SAs were converted to APs, 247 

which supported our second hypothesis (Fig. 2 and Fig.3). This at first glance may seem 248 

counter-intuitive because aquaculture operation is often thought to cause heavy 249 

eutrophication (Burford et al., 2003), but similar decrease in soil organic carbon 250 

concentration has been observed (Hong et al., 2023). When constructing the aquaculture 251 

ponds, farmers remove the vegetation and the organic-rich topsoil. Most of the coastal 252 
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aquaculture ponds in our study are for farming shrimp that have a relatively low feed 253 

conversion ratio (i.e. high efficiency to utilize feed), and therefore only a small amount 254 

of organic waste would be added to the soil (Yang et al., 2021; Fig. 8c). Additionally, the 255 

common practice of draining and drying out the ponds would cause additional loss of 256 

soil N in APs (Kauffman et al., 2018; Sasmito et al., 2019; Fig. 8c). 257 

Conversion of SAs to APs increased the SON/SIN ratio significantly, and the RR 258 

of SON/SIN correlated positively with RR of STN (Fig. 5a and 5c), indicating that soil 259 

N pool in APs was mainly controlled by SON dynamics. Unlike SAs, SIN had minor 260 

effect on ecosystem productivity and SON accumulation, due to the absence of 261 

vegetation in APs. SWC and clay both had a positive effect on SIN and SON (Fig 7b), 262 

likely because of better retention of N in porewater and N adsorption onto fine particle 263 

surfaces (Daugherty et al., 2019; Fissore et al., 2009; Hennings et al., 2021). Conversely, 264 

higher sand concentration would increase soil porosity and lower N retention, as 265 

suggested by the negative effect by sand in the SEM analysis (Fig 7b). 266 

4.3. Latitudinal patterns of soil N response to habitat modifications  267 

We found clear latitudinal gradients in soil N responses to habitat modifications (Fig. 268 

4). With increasing latitude, RRs of SON, SIN and STN stock decreased in the MF-to-269 

SA conversion scenario, likely reflecting the effect of temperature. Across the sampling 270 

sites in this study, the mean annual temperature decreased linearly with increasing 271 

latitude (Fig. S2). Temperature has well-documented influences on plant growth and N 272 

mineralization (Fissore et al., 2009; Liu et al., 2017; Tao et al., 2018). The higher 273 
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temperatures and longer growing seasons at the lower latitudes would result in higher 274 

plant productivity and hence organic N input to the soil, and subsequent mineralization 275 

of SON would then release SIN (Fissore et al., 2009; Liu et al., 2017; Tao et al., 2018). 276 

Although similar latitudinal gradients were observed for SON and STN in the SA-277 

to-AP conversion scenario, the relationships were weaker, and the trend for SIN was not 278 

significant (Fig. 4). This might be due to the fact that the aquaculture pond soil was more 279 

strongly subject to anthropogenic activities, which weakened the influence by 280 

environmental temperature (latitude). Notably, for reducing the impact of heterogeneity 281 

and improving the overall evaluation of response of soil N pools to APs conversion, it is 282 

worthy and necessary to conduct larger spatial scale field-based investigation. 283 

4.4. Implications for land management  284 

Many studies reported that S. alterniflora has distinct traits such as higher nutrient 285 

utilization efficiency (He et al., 2023; Liao et al., 2007) and longer growth period (Xu et 286 

al., 2020) that allow it to out-compete native plants, leading to a decline in biodiversity 287 

and other ecosystem services of coastal wetlands (Duan et al., 2020; Ge et al. 2015). In 288 

this study, we discovered that SIN had a positive influence on soil N accumulation in S. 289 

alterniflora marshes, which is consistent with the results of Xu et al. (2020). Therefore, 290 

reducing nutrient loading in coastal water will be key to mitigating S. alterniflora 291 

invasion and proliferation.  292 

Our previous research showed that ammonia oxidation was the overall rate-limiting 293 

step in N2O production in these habitats, which had a strong positive correlation with 294 
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abundance of ammonia-oxidizing archaea (AOA) amoA and NH4
+-N concentration in 295 

the soil (Yang et al., 2022b and 2023). SAs have the largest N2O production potential 296 

due to the higher NH4
+-N concentration than MFs and APs (Table 1, Table S2 and Fig. 297 

4). Considering the latitudinal gradient in STN and SON response to habitat modification 298 

that we found in this study (Fig. 4), converting S. alterniflora marshes to aquaculture 299 

ponds, especially in low-latitude coastal areas, could be an effective strategy for 300 

achieving multiple benefits such as controlling invasive species, boosting food 301 

production and reducing soil N2O emission, with a low N loss caused by reclamation. 302 

To prevent further N loss from aquaculture ponds after reclamation, native aquatic 303 

vegetation can be replanted in the ponds (Buhmann and Papenbrock, 2013; Tan et al., 304 

2023b). The vegetation will not only increase organic matter input to the soil, it may also 305 

filter out the excess nutrients and other contaminants in the pond water, oxygenate the 306 

water via photosynthesis, and provide additional food to the farmed animals (Buhmann 307 

and Papenbrock, 2013; Tan et al., 2023b).  308 

 309 

5. Conclusions and recommendations  310 

We investigated the effect of coastal habitat modification on soil N across 21 311 

sampling sites along the southeast coast of China. Our result showed that soil organic 312 

and inorganic N increased significantly when mudflats were invaded by S. alterniflora, 313 

but decreased when S. alterniflora marshes were subsequently cleared to create 314 

aquaculture ponds. The relative proportions of SON and SIN changed in opposite 315 
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directions between the two land conversion scenarios, indicating the effects of marsh 316 

vegetation (present or absent) and environmental conditions in the different habitat types. 317 

By comparing the latitudinal patterns across all 21 sites, we also deduced the relative 318 

influence of environmental temperature and anthropogenic activities on soil N change in 319 

response to habitat modification. Our findings can be used to support land-use policy, 320 

invasive species control and the development of strategies to mitigate N2O emissions. 321 

The dataset could also support improving the accuracy of global N model forecasting for 322 

climate change in response to habitat modification in coastal wetlands. 323 

Some improvements can be considered in future study: (a) Multiple land-use types 324 

often co-exist in the coastal region, such as paddy field, dry farmland and reclaimed 325 

marshland, most of them have been converted from natural wetlands. Building on this 326 

study, it will be of interest to investigate the response of soil N pool to the other land 327 

conversion scenarios. (b) The N concentration and stock in deeper soil (> 20 cm) have 328 

not been measured, but which will be needed to understand the long-term N 329 

sequestration at the selected sites. (c) Lastly, coastal habitat modification is not limited 330 

to the southeastern part of China. Additional sampling in the northern provinces would 331 

allow for a more complete spatial coverage. 332 
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Figure 2 Surface soil organic nitrogen (a) and inorganic nitrogen (c) concentrations (mean + 5 

S.E.) in the three habitat types at the 21 sampling sites, and the corresponding boxplots (b and 6 

d). MFs, SAs and APs represent mud flats, S. alterniflora marshes and aquaculture ponds, 7 

respectively. Different lowercase letters above the boxplots within each panel indicate 8 

significant differences between habitat types (p<0.05). 9 
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 27 

Figure 7 Partial least square structural equation modeling (PLS-SEM) of the RR of SON, 28 

SIN and STN stocks response to the RR of environmental factors, for converting mudflats 29 

to S. alterniflora marshes (a) and converting S. alterniflora marshes to aquaculture ponds 30 

(b). Boxes indicate measured variables used in the model. Solid blue and red arrows 31 

indicate significant positive and negative effects, respectively; dotted arrow indicates 32 

insignificant effect on the dependent variable. Numbers adjacent to arrows are 33 

standardized path coefficients, indicating the effect size of the relationship. R2 represents 34 

the variance explained for target variables. * p < 0.05; ** p < 0.01. 35 
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Figure S2. Linear regression between latitude and mean annual temperature.53 
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Table S1 Surface soil physicochemical properties across the three habitat types: mud flat 54 

(MF), S. alterniflora marshes (SA) and aquaculture ponds (AP). 55 

Properties 
Habitat types 

MF SA AP 

pH 7.99±0.06a 7.95±0.06a 7.82±0.06a 

Salinity (‰) 3.96±0.20a 4.54±0.23a 4.21±0.31a 

SWC (%) 43.05±1.33b 47.12±1.38a 47.78±1.70a 

SBD (g cm-3) 1.29±0.02a 1.26±0.02a 1.25±0.03a 

Cl- (mg L-1) 36.84±2.15b 40.94±2.23a 37.75±3.43b 

SO4
2- (mg L-1) 8.90±0.63b 9.13±0.50b 17.48±1.40a 

C:N ratio 36.84±2.15b 40.94±2.23a 37.75±3.43b 

Clay (%) 10.41±0.47a 10.94±0.49a 10.50±0.57a 

Silt (%) 54.07±2.29a 52.67±2.41bc 50.14±2.56c 

Sandy (%) 35.53±2.69b 36.38±2.86b 39.35±3.06a 

Chao1 index 6075.38±158.74b 7253.20±194.57a 6380.57±195.18b 

Shannon index 7.75±0.18b 8.92±0.22a 8.88±0.13a 

Different lowercase letters along the same row indicate significant differences at p < 0.05 between 56 

habitat types. Data are taken from Yang et al. (2022) for reference and review only. See main text for 57 

explanation of the abbreviations.58 
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Table S2 The concentration and stock of NH4
+-N and NO3

--N among mud flat (MF), S. 59 

alterniflora marshes (SA) and aquaculture ponds (AP) across five provinces. 60 

Habitats Province NH4
+-N 

concentration 

(mg kg-1) 

NO3
--N 

concentration 

(mg kg-1) 

NH4
+-N stock 

(kg ha-1) 

NO3
--N stock 

(kg ha-1) 

MF Shanghai 10.04±1.65 1.11±0.25 26.33±3.84 2.92±0.60 

 Zhejiang 13.02±2.76 1.36±0.10 49.81±10.36 3.38±0.83 

 Fujian 14.98±2.19 1.22±0.06 46.45±3.28 2.66±0.03 

 Guangdong 8.90±3.09 1.12±0.15 25.14±12.12 3.22±1.32 

 Guangxi 19.93±1.07 1.48±0.05 61.73±12.81 4.55±0.57 

SA Shanghai 20.34±4.58 1.80±0.73 55.50±15.02 4.95±2.20 

 Zhejiang 18.10±2.23 1.59±0.20 44.82±2.39 3.57±0.03 

 Fujian 22.27±2.38 1.80±0.27 43.97±13.00 2.93±0.14 

 Guangdong 42.64±3.64 2.39±0.55 115.53±5.87 6.48±0.98 

 Guangxi 26.61±2.07 1.47±0.10 89.25±12.04 4.94±0.58 

AP Shanghai 9.10±3.48 1.31±0.29 27.59±9.91 4.04±1.01 

 Zhejiang 12.23±3.80 1.66±0.38 36.00±23.59 6.26±0.77 

 Fujian 19.77±2.35 1.50±0.18 35.21±1.83 3.00±0.49 

 Guangdong 20.09±3.29 1.19±0.03 51.14±15.71 3.03±0.38 

 Guangxi 24.11±1.73 0.92±0.08 74.69±19.41 2.80±0.26 
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