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ABSTRACT
Automated external defibrillators (AEDs) and implantable 
cardioverter defibrillators (ICDs) are used to treat life-
threatening arrhythmias. AEDs and ICDs use shock 
advice algorithms to classify ECG tracings as shockable 
or non-shockable rhythms in clinical practice. Machine 
learning algorithms have recently been assessed for shock 
decision classification with increasing accuracy. Outside 
of rhythm classification alone, they have been evaluated 
in diagnosis of causes of cardiac arrest, prediction of 
success of defibrillation and rhythm classification without 
the need to interrupt cardiopulmonary resuscitation. 
This review explores the many applications of machine 
learning in AEDs and ICDs. While these technologies are 
exciting areas of research, there remain limitations to their 
widespread use including high processing power, cost and 
the ‘black-box’ phenomenon.

INTRODUCTION
Artificial intelligence (AI) is a broad term 
that encompasses the many uses of machine-
based data processing to achieve outcomes 
that would typically require human cognitive 
function.1 In recent years, AI has expanded 
its role within medicine. In particular 
machine learning, a type of AI where a model 
is trained by a learning algorithm from a 
data set and then applies this model to new 
data sets, has been widely used in a variety of 
medical fields. The availability of large data 
sets, combined with advances in machine 
learning technology, has led to an increasing 
number of medical applications in the last 
few years.1 In this review, we examine the 
use of machine learning in rhythm classifi-
cation in automated external defibrillators 
(AEDs) particularly without interruption of 
cardiopulmonary resuscitation (CPR) and 
predicting successful shocks and electrical 
storm in implantable cardioverter defibrilla-
tors (ICDs). The European Society for Cardi-
ology (ESC) and European Resuscitation 
Council encourage the use of AEDs by emer-
gency services and non-medical members of 
the public to reduce time to defibrillation.2 
The ESC also recommends the use of ICDs in 

patients with documented ventricular fibril-
lation (VF) or haemodynamically unstable 
ventricular tachycardia (VT) without revers-
ible causes or 48 hours after myocardial 
infarction (MI) on chronic optimal medical 
therapy.3 While this is an exciting new area, 
there are some limitations to the widespread 
use of these technologies, which we evaluate 
in the Discussion section.

Machine learning
First, we will explain some of the key AI 
concepts that are discussed in this paper 
and are currently being used in ECG detec-
tion. Table  1 summarises some of these 
key concepts. There are multiple machine 
learning techniques, which can be broadly 
categorised as supervised and unsupervised 
learning, figure 1.1

Unsupervised machine learning recog-
nises patterns in unlabelled data sets. This 
can be useful in identifying subgroups from 
complex data and where labelled data sets are 
not available.1 The clusters or patterns found 
may not be related to the outcome of interest 
and complex data can require large amounts 
of preprocessing prior to use in order to 
yield useful outcomes. However, unsuper-
vised methods have still been used in clinical 
applications, for example, to find patterns in 
electronic health record data where noise, 
heterogeneity and incompleteness limit the 
use of supervised methods.4

Supervised machine learning, on the other 
hand, involves training models to correctly 
classify input data with labelled outputs. This 
requires large numbers of labelled data sets 
for training. Once trained, these models can 
then be used to predict outcomes on new data 
sets in a process known as testing. This can 
be used for classifying distinct groups, that is, 
types of arrhythmias or for regression models 
in data with continuous outcomes. Common 
types of supervised machine learning algo-
rithm include deep learning, support vector 

 on January 4, 2024 by guest. P
rotected by copyright.

http://openheart.bm
j.com

/
O

pen H
eart: first published as 10.1136/openhrt-2022-001976 on 5 July 2022. D

ow
nloaded from

 

http://www.bcs.com
http://openheart.bmj.com/
http://orcid.org/0000-0001-7342-630X
http://crossmark.crossref.org/dialog/?doi=10.1136/openhrt-2022-001976&domain=pdf&date_stamp=2022-07-05
http://openheart.bmj.com/


Open Heart

2 Brown G, et al. Open Heart 2022;9:e001976. doi:10.1136/openhrt-2022-001976

machines (SVMs), random forest and K-nearest neigh-
bour (k-NN).5

Deep learning is a type of machine learning that mimics 
neural networks in the brain to perform high levels 
of data processing.5 Artificial neural networks (ANN) 
contain layers of nodes which manipulate and trans-
form input data; the layers between the input and output 
layers are termed ‘hidden layers’. Weighted connections 
between these hidden layers adjust the signal based on 
importance. During training, these weights are typically 
ascribed a random value close but not equal to zero. 
Using these initial weights, an initial output classification 
is produced by a process called forward propagation. This 
prediction is then compared with the true outcome and 
an error signal is fed back to the model, so that weights 
can be adjusted in a process called back propagation. In 
this way, the model is optimised.5 Deep learning has been 
used since the 1950s for multiple types of data inputs. 
However, its use was initially limited due to ‘overfitting’ 
- when there is too much focus on specific data points 
rendering it no longer generalisable to new unseen data 
sets.6 There have since been various techniques developed 
to avoid overfitting. In ANNs, drop-out regularisation 
techniques are commonly used to counteract overfitting 

and prevent excessive coadaptation of neurons. This 
involves randomly removing neurons and their weighted 
connections either temporarily or permanently during 
training.7

Convolutional neural networks (CNNs) are a type of 
ANN, which extract high-level features directly from 
raw data.5 They have been used extensively in medical 
imaging but can be used to analyse multiple types of one-
dimensional, two-dimensional and three-dimensional 
data sets. As in ANNs, the inputs, for example, two-
dimensional pixels or three-dimensional voxels, are passed 
through multiple layers of neurons before reaching the 
output. Each layer has a convolutional filter or kernal, 
which extracts the high-level features such as locality 
and subsimilarity. This removes the need for manual 
feature selection and introduction of human bias.8 For 
example, a CNN model was used by Cohen-Shelley et al 
for screening of moderate to severe aortic stenosis (AS).9 
The CNN model has 62 convolutional layers and one clas-
sification output layer—moderate to severe AS or mild 
to no AS, figure  2. Each ECG represented a 12×5000 
matrix, which was the input for the CNN. In the CNN, 
the weights and bias are constantly modified to reduce 
the difference between the given output and the labelled 
outcome in the data set.9

Table 1  Definition of common AI terms1 5

Term Definition

Artificial neural network (ANN) A deep learning algorithm based on biological neural networks with connected layers of nodes used for high levels of 
data processing.

Convolutional neural networks 
(CNN)

A type of artificial neural network which extract high level features directly from one-, two- and three-dimensional 
data for classification.

Support vector machines (SVM) Supervised machine learning models used for classification and regression analysis. Data are categorised using an 
optimal line or hyperplane which maximises distance of the hyperplane from its closest points or support vectors.

Random forest Supervised machine learning model using a large number of decision trees called estimators, which are combined to 
give accurate predictions of outcomes.

K nearest neighbours (k-NN) Supervised machine learning model used for classification and regression based on the proximity of a new datapoint 
to (k) number of neighbouring labelled datapoints.

Figure 1  Top-down approach to AI. Machine learning is 
a type of AI, which can be broadly split into supervised 
and unsupervised machine learning. We will mainly focus 
on the use of supervised machine learning techniques in 
defibrillators. Adapted from Refs1 5. AI, artificial intelligence; 
ANN, artificial neural network; CNN, convolutional neural 
networks; Figure 2  Schematic diagram of a convolutional neural 

network. Adapted from Ref. 7 AS, aortic stenosis.
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SVMs, random forest and k-NN are also supervised 
machine learning models.5 SVMs are used for binary clas-
sification. SVMs determine the optimum hyperplane to 
separate data into two classes. They do this by maximising 
the distance between the hyperplane and the points to 
which it lies closest, also known as support vectors. Random 
forest uses a large number of decision trees called estima-
tors. Each of these estimators is trained using a random 
subset of samples and features from the training set, 
which increases the generalisability of the outcomes. The 
final classification is the mode (classification) or median 
(regression) outcome among the estimators. K-NN clas-
sification does not learn patterns from the training data 
to apply to new data sets but instead directly compares 
new data with training data. New data are compared with 
the k most similar points in the training set and assigned 
as the most common value (classification) or the mean/
median (regression). K is a positive, non-zero integer that 
must be selected based on the specific dataset, number of 
features and individual problem.5

Medical applications of AI
The clinical applications of AI have been rapidly 
expanding. One of the most commonly used settings for 
machine learning is medical imaging and diagnostics. In 
cardiac imaging, several AI techniques have been used 
for identification of structures of the heart, lesion detec-
tion and segmentation of heart tissue and histological 
tissue classification.10

ECG interpretation and classification of cardiac arrhyth-
mias is another obvious application of AI. Manual ECG 
interpretation is subjective, error-prone and varies widely 
depending on the knowledge and experience of the clini-
cian. Computer-generated ECG interpretation has been 
widely available since it was developed in 1960s; however, 
their manual feature recognition algorithms have faced 
criticism for missing the complexities and nuances of 
ECGs.11 Deep learning models, in particular, CNNs, have 
been used for ECG interpretation with human-like accu-
racy, with one model even out-performing cardiologists.12 
Whether the use of complex deep learning algorithms 
such as CNNs will be used routinely for automated ECG 
interpretation remains to be seen.

In the current age of wearable technology and smart-
watches with single-lead ECG capabilities, automatic ECG 
interpretation is becoming particularly important. The 
Kardia Band (KB) records a single-lead ECG in Apple 
Watches. This is then paired with an app which uses 
CNNs to detect atrial fibrillation (AF). Bumgarner et al 
found that KB interpreted AF with 93% sensitivity and 
84% specificity, compared with physician interpretations 
of KB recordings with 99% sensitivity and 83% speci-
ficity. Of the 113 ECG and KB recordings available, 57 
of them were uninterpretable by the KB algorithm but 
were reviewed by clinicians with 100% sensitivity and 80% 
specificity. Therefore, this technology still requires clini-
cian input and oversight for the best results and is not yet 
able to function autonomously.13

Not only can AI be used for standard ECG interpre-
tation but also studies have been assessing its use as a 
screening tool for asymptomatic moderate to severe 
AS, asymptomatic left ventricular dysfunction and early 
pulmonary hypertension—helping in early diagnosis and 
intervention.9 14 15 Attia et al used paired 12-lead ECG 
and echocardiogram data from nearly 45 000 patients 
at the Mayo Clinic to train a CNN for the identification 
of asymptomatic left ventricular dysfunction using the 
12-lead ECG data alone. Their model had a sensitivity 
and specificity of 86.3% and 85.7%, respectively, and 
they found that those with a positive AI screen had a four 
times greater risk of developing ventricular dysfunction 
in the future than those without.14 ECGs are low cost, 
non-invasive and widely available—making them an ideal 
candidate for a screening tool.

Another use of this ECG recognition technology is in 
defibrillators. AEDs were developed for use by untrained 
bystanders on those who have a sudden cardiac arrest 
in a public place.2 ICDs are implanted in those with a 
high risk of sudden cardiac death.3 The key to an appro-
priate and potentially life-saving shock from the ICD or 
AED is the recognition of a shockable rhythm such as 
VF and VT. These rhythms can result in a patient’s death 
unless a shock is delivered quickly. This is where AI may 
have a major role to play in reducing time to shock and 
increasing efficiency of recognition of shockable rhythms.

METHODS
A search was carried out on Medline and Embase on 3 
April 2021 using the terms ‘AED’ ‘ICD’ ‘defibrillator’ 
together with ‘AI’ and ‘deep learning’. This resulted in 
221 abstracts which were screened for relevance to our 
topic of ‘Applications of machine learning in AEDs and 
ICDs’.

ECG interpretation for AEDs
Both traditional machine learning and deep learning 
techniques have been used to classify shockable and 
non-shockable rhythms. Table  2 shows examples of the 
techniques, which have been evaluated for use in shock 
advice algorithms (SAAs) as well as additional applica-
tions of this ECG interpretation technology, for example, 
diagnosis of prearrest MI.

SVMs have been used in rhythm classification of ECG 
readings, see table  2. Rhythm analysis in AEDs needs 
to have both high specificity and sensitivity and low 
processing power, so the machines are cheap and easily 
available. Therefore, optimising the parameters for the 
algorithm can increase efficiency. Alonso-Atienza et al 
initially used an SVM with 13 ECG parameters, which 
have been used previously to characterise VF and shock-
able rhythms.16 They then examined the utility of each 
ECG parameter individually using three different feature 
selection filters. They found threshold sample count, 
sample entropy (measure of similarity with an ECG 
signal segment) and VF filter (measure of residue after a 
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narrowband elimination filter is applied) to be the most 
effective in diagnosis of VF. Therefore, a system using just 
these three features could decrease processing power 
while maintaining accuracy.16 Li et al similarly optimised 
their SVM algorithm with the use of only two parameters 
selected using a genetic algorithm, which mimics natural 
selection and eliminates weaker combinations to find the 
optimum combinations.17 They achieved higher sensitiv-
ities and specificities with two parameters compared with 

Alonso et al. However, they both used different window 
sizes, parameters and databases making them difficult to 
directly compare. Difficulties also arise as many of these 
databases use ECG traces from Holter monitors, which 
differ from out of hospital cardiac arrest (OHCA) traces, 
which often have more noise. In future, a single public 
OHCA ECG database with training and test data sets 
would be useful to allow for comparison of algorithms 
and more similar training sets to actual OHCA traces.

Table 2  Tabular summarisation of search on ECG Interpretation for AEDs

Study Study design Algorithm used Sensitivity Specificity Accuracy Main findings Potential limitations

Thannhauser et al18 Prospective registry of ICD 
recipients

SVM – – – Automated detection of prior 
MI from VF waveform

	► Small sample size
	► Used induced, short duration 

VF which is more organised 
than in-field

	► Less generalisable

Krasteva et al19 Retrospective Holter recordings 
of ventricular arrhythmias and 
AED recordings of OHCA

ANN 99.6% 98.7% 99.3% to 99.5% Accurate, automated 
detection of a shockable 
rhythm

	► Cases distributed unevenly 
with majority used for 
validation

Picon et al43 Retrospective public database 
analysis

CNN 100% 99.0% 99.3% CNNs can accurately detect 
shockable rhythms from 
short ECG segments

	► CNN models require large 
amounts of data and 
processing power to train

Coult et al44 Retrospective cohort study SVM – – – Prediction of OHCA 
outcomes

	► Generalisability
	► Data collection limited to a 

maximum of four shocks

Elola et al45 Retrospective database 
analysis

CNN 92.0% 93.0% 92.1% A recurrent CNN is 
the superior model for 
circulation characterisation 
with a BAC of 90% for 3 s 
segments

	► Low specificity

Nguyen et al46 Retrospective public database 
analysis

CNN 97.0% 99.0% 99.3% Novel SAA to increase the 
probability of an appropriate 
AED defibrillation following 
cardiac arrest

–

Figuera et al47 Retrospective public database 
analysis

SVM 97.0% 99.0% – Automated detection of 
shockable rhythms.
Interpretability is more 
challenging using OHCA 
data compared with Holter 
recordings

	► Long response time of over 
7 min

He et al48 Retrospective cohort study CNN 91.0% 91.0% 85.6% Improved automated 
prediction of defibrillation 
outcomes

	► No phenotypic data or data 
on long term survival

	► Low sensitivity and 
specificity

Tripathy et al49 Retrospective database 
analysis

Variational mode 
decompensation 
and random forest 
classifier

96.5% 98.0% 97.2% Variational mode 
decomposition and random 
forest classifier can be used 
for classification of VF/VT 
and non-shockable rhythms

	► Limited by the size and 
ECGs in databases used

Sanromán-Junquera 
et al50

Retrospective database 
analysis

SVM – – – Proposed SVM system uses 
information from the ICD to 
support the identification 
of anatomical region of the 
left ventricular tachycardiac 
entry site

	► Single centre study
	► Additional covariates 

required for increasing 
accuracy

Li et al17 Retrospective ventricular 
tachyarrhythmia database 
analysis

SVM 96.2% 96.0% 96.0% Validation of a ML-based 
VF/VT classification system, 
argued to be superior to 
conventional classification

	► Selection of high-quality 
data

Alonso-Atienza et al16 Retrospective database 
analysis

SVM 75.0% 92.0% 96.0% Use of SVM algorithms 
combining ECG features 
significantly improves 
the efficiency for the 
detection of life-threatening 
arrhythmias

	► Generalisability

ANN, artificial neural network; NSR, sinus rhythm; OHCA, out of hospital cardiac arrest; SAA, shock advice algorithm; SVM, support-vector machines; VF, ventricular fibrillation; VT, 
ventricular tachycardia.
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SVMs have also been used for diagnosis of the cause of 
arrest based on ECG parameters. Thannhauser et al used 
an SVM to identify previous MI from VF waveforms.18 The 
diagnosis of previous MI based on VF morphology had 
previously been performed in animal studies, but this 
was the first human study that demonstrated ‘proof-of-
concept’. This could be used to inform decision-making 
postcardiac arrest. Elucidating the cause of cardiac arrest 
is important postresuscitation for prevention of further 
episodes. However, this is in the early stages and would 
need to be used with the whole clinical picture for 
decision-making purposes.

Building on previous SVM models, Krasteva et al assessed 
a CNN for characterisation of rhythms.19 They used large 
samples of ECG traces, over 3000 and 6000 for training 
and validation, respectively. However, there were more 
than four times more non-shockable rhythm samples 
available compared with shockable rhythms. Their model 
used ECG traces as short as 2 s with maximal performance 
at 5 s, meaning their system would cause a minimal 
break in CPR before shock decision reached. Previous 
studies have found an average preshock pause in AEDs 
to be 18 s; therefore, this new technology could greatly 
reduce breaks in CPR.20 Krasteva et al found that their 
model outperformed five CNN models in the literature 
on public and OHCA databases as well as a current AED 
shock advisory programme using a decision tree classifier, 
particularly on shorter 2 s ECG traces. This represents a 
significant step forward compared with previous model. 
While they used a large sample size for training and vali-
dation of their deep learning model, their data set was 
imbalanced with four times more non-shockable rhythm 
samples available compared with shockable rhythms. This 
is a commonly encountered issue with current databases 
and can lead to bias within the algorithms.

We can see from multiple studies in table 2 that CNN 
models have high sensitivity to detect shockable rhythms 
and high specificity to rule out non-shockable rhythms. 
Nonetheless, use of these more advanced machine 
learning algorithms is currently limited in practice due to 
the difficulties in embedding them into AEDs with their 
limited processing power. AEDs must be cost-effective to 
allow widespread use. While the above studies demon-
strate high sensitivity and specificity, the algorithms have 
only been tested on the computer-based systems and not 
in AED simulations. Bench studies, such as those used 
by Jekova et al to assess the accuracy of commercial AED 
arrythmia analysis algorithm in the presence of electro-
magnetic interferences, help to evaluate algorithms in 
simulated real-life scenarios.21

Rhythm classification during CPR
One of the major limitations of AED ECG recognition 
is that CPR must be interrupted for reliable diagnosis as 
current algorithms are unable to classify shockable and 
non-shockable rhythms during CPR due to artefacts. CPR 
is often suspended for 15 s or more for diagnosis rhythm 
classification to occur.22 Even small breaks in CPR can 

impact outcomes; an increase in preshock pause of just 
5 s decreases survival by 18%.20 The ability to continue 
chest compressions while analysing the rhythm would 
help to minimise interruptions. Table 3 summarises the 
use of machine learning technologies to analyse rhythms 
during CPR.

Adaptive filters have been used to remove CPR arte-
facts. These adaptive filters, such as least mean squares or 
recursive least squares, use signals recorded by defibrilla-
tors, including compression depth and thoracic imped-
ance to model the artefact and remove it prior to rhythm 
classification. Isahi et al used a recursive least square filter 
to remove CPR artefacts and a CNN for rhythm classifi-
cation. They found sensitivities and specificities of 95.8% 
and 96.1%, respectively. The use of such adaptive filters 
is limited practically as they rely on additional reference 
channels for information, which are not readily avail-
able in all standard AEDs.23 Similarly, Yu et al used noise-
assisted multivariate empirical mode decomposition and 
least mean squares.24 Even following adaptive filters, 
ECG segments during CPR can still have more noise 
than standard ECGs, therefore using specific machine 
learning algorithms can confer increasing accuracy. Yu et 
al constructed a neural network to assess the rhythms and 
identify VF. They found sensitivities >95% and specifici-
ties >80%. However, the CPR artefacts were taken from 
porcine ECGs of pigs in asystole receiving chest compres-
sions not real-life OHCA ECGs.24

Didon et al developed a new protocol termed ‘Analyse 
While Compressing’ (AWC). AWC is a two-step process 
where the rhythm is initially analysed during chest 
compressions and if a shock is advised, the rhythm is 
confirmed in the absence of chest compressions prior 
to shock delivery. Reconfirmation of rhythm was still 
required in 34.4% of non-shockable rhythm cases where 
the rhythm was not able to be accurately classified, there-
fore CPR interruptions still took place.25

To avoid the need for adaptive filters or external feed-
back devices, end-to-end analysis of the rhythm has been 
evaluated. Jekova et al aimed to optimise an end-to-end 
CNN model for shock advisory decision during CPR 
using real-life AED recordings in OHCA.26 Their CNN 
was able to extract features from raw ECGs during CPR 
with sensitivities and specificities of 89.0% and 91.7%, 
respectively. They tested their model on 5591 real-life 
cardiac arrest rhythms during CPR. Nevertheless, their 
sensitivities and specificities remain below the American 
Heart Association (AHA) recommendations for SAA 
by 1% for VF and 3.9% for asystole.27 Their database 
unfortunately lacked enough shockable VT rhythms, 
less than 0.2% of the total number of rhythms, therefore 
they were unable to report statistically significant sensi-
tivities for VT.26 There is scope for further optimisation 
of the model possibly with further training datasets or 
additional layers and channels in the CNN to make the 
model useful clinically.
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Implantable Cardioverter Defibrillators
ICDs rely on recognition of life-threatening VT and VF 
rhythms before delivering a shock. The SAA must differ-
entiate between shockable rhythms and non-shockable 
rhythms including normal sinus rhythm, supraVTs, sinus 
bradycardia, AF and idioventricular rhythms. The SAA 
must have high sensitivity for shockable rhythms and high 
specificity for non-shockable rhythms, where the delivery 
of shock will confer no benefit and can even result in 
deterioration of the rhythm. Given the catastrophic 
consequences of missing potentially fatal rhythms, ICDs 
are programmed with a high sensitivity threshold in order 
to avoid missed shocks. However, this can lead to high 
numbers of inappropriate shocks. As a result of these 
shocks, there are device complications such as reduced 
battery life and requirement of earlier reimplantation. 

Moreover, for the patient, there is pain associated with 
the shocks, worse quality of life and increased risk of 
dangerous arrythmias.28

Table  4 summarises our search on the use of AI in 
ICDs. Outside of the SAA, machine learning can be used 
to predict appropriate candidates for ICD insertion and 
identify adverse events secondary to ICD including risk of 
electrical storm. The use of machine learning to predict 
the success of defibrillation will be discussed below.

Electrical storm is a life-threatening condition defined 
as three or more sustained episodes of VT, VF or appro-
priate ICD shocks in a 24-hour period. This can be life 
threatening despite an ICD and, therefore, identifying 
those at high risk is important. Models for predic-
tion of electrical storm have been assessed; they found 
percentage of ventricular pacing, cycle length parameters 

Table 3  Tabular summarisation of search on the use of machine learning algorithms in rhythm classification during CPR

Study
Number of ECG 
segments used Study design Algorithm used Sensitivity Specificity Accuracy Limitations

Jekova et al26 1545 End-to-end analysis of ECG 
during CPR in OHCA using CNN

CNN 89.0% 91.7% – 	► Data did not contain 
statistically significant 
numbers of shockable VT

Hajeb-Mahammadalipour 
et al51

23816 Development of an automated 
condition-based filter to 
removed CPR artefacts for 
accurate rhythm analysis during 
CPR

Condition based 
filtering algorithm 
followed by ANN

94.5% 88.3% 89.2% 	► Assumed constant rate of 
chest compressions constant 
within the 14 s period

	► Difficulty removing artefacts 
from asystole ECGs and lack 
of sufficient asystole ECGs in 
training set

Hajeb-Mahmmadalipour 
et al52

3872 Analysis of ECG rhythms 
superimposed with CPR 
artefacts using a CNN

CNN 95.2% 86.0% 88.1% 	► Artificially introduced artefacts 
from AEDs in asystole not 
real-life traces

	► Not tested during asystole

Didon et al25 2916 To present new combination of 
algorithms for rhythm analysis 
during CPR in AED

Analyse While 
Compressing (AWC)

92.10% >99% – 	► Small sample of VT rhythms
	► Still requires 'hands-

off' reconfirmation of 
classification in 34.4% of 
cases

Isasi et al23 272 Rhythm classification during 
CPR using a recursive least 
squares filter followed by CNN

Recursive least 
squares filter 
followed by CNN

95.8% 96.1% 96.0% 	► Recursive least squares filter 
requires thoracic impedance 
to remove ECG artefacts

Hu et al53 1578 Two-step analysis of ECG during 
chest compressions whereby if 
shockable rhythm not identified, 
chest compression-free analysis 
occurs

A two-step analysis 
through CPR 
algorithm

93.60% 99.50% – 	► Small sample size of coarse 
VT

	► The OHCA cardiac arrests 
were not treated with a 
defibrillator until they arrived 
at hospital

	► Short ECG segments

Isasi et al54 2203 Use of machine learning 
algorithms following CPR 
artefact filtering for reliable 
shock decisions

Least mean squares 
filter followed by 
ANN, SVM, Kernel 
Logistic Regression 
or Random Forest 
classifier

94.5% 95.5% 96.0% 	► Computer based study not 
‘bench’ simulation study

Fumagalli et al55 2701 Analysis of ECG during chest 
compressions with 3 s pause to 
re-confirm rhythm

Analysis During 
Compressions with 
Fast Reconfirmation 
(ADC-FR) algorithm

95.0% 99.0% – 	► Requires thoracic impedance 
for removal of ECG artefact

Yu et al24 1017 An adaptive filter which can 
eliminate CPR artefacts from 
corrupted ECGs without any 
reference channels can be 
used for non-shockable rhythm 
detection during CPR

ANN 95.0% 80.0% – 	► Tested with artificial mixtures 
of clean human ECGs and CPR 
artefacts collected from pigs

	► Only 24 CPR artefacts 
produced and superimposed 
onto the ECG segments

ANN, artificial neural network; CNN, convolutional neural network; OHCA, out of hospital cardiac arrest; VT, ventricular tachycardia.
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and number of previously untreated tachycardias to be 
risk factors.29 30

Predicting success of defibrillator shocks
There are multiple potential benefits to the prediction of 
successful defibrillation. Currently, in OHCA, shocks are 
delivered, depending on rhythm assessment, following 
2 min of CPR.31 This resuscitation protocol does not 
consider the likelihood of shock delivery being successful 
at any point during the arrest. AI algorithms can be 
used to predict likelihood of shock success in the hopes 
that shocks could be delivered at the optimum time—a 
summary of these papers is in table 5.

SVMs have been used to predict successful defibrilla-
tion in VF arrest.32–34 Multiple VF waveform character-
istics were used in these studies; the best predictors of 
termination of VF including amplitude spectrum area—a 
frequency domain characteristic—and slope and root 
mean square amplitude—time domain characteristics. 
Howe et al found an accuracy of 81.9% using their model 
with the aforementioned VF waveform characteristics.33 

However, this was only based on a small retrospective 
study of 41 patients with 115 defibrillation ECGs. Larger 
sample sizes would be required to validate this system. 
The accuracy of defibrillation success was improved with 
waveform capnography. Capnography is being used more 
frequently in cardiac arrest scenarios as it can also be used 
for early indication of return of spontaneous circulation. 
However, use would be limited in community AEDs where 
capnography is not commonplace and could have issues 
being implemented without training and ICDs where it is 
not available.

Shandilya et al constructed a similar SVM algorithm 
assessing VF waveform characteristics with accuracy of 
83.3%.34 The patients in their study had received low 
voltage (120 J) shocks. While this is considered equiva-
lent to higher energy shocks, it may affect how the results 
can be compared with similar studies. VF is the initial 
rhythm in only 20%–30% of cardiac arrests.35 We have 
not seen studies yet assessing prediction of shocks in 
other rhythms such as VT.

Table 4  Tabular summarisation of search on the use of artificial intelligence in ICDs

Study
Number of 
participants Study design Algorithm used

Most accurate 
predictive factors Potential limitations Benefits

Wu et al56 382 Prospective registry 
analysis

Random Forest 	► HF hospitalisation
	► CMR derived LA and LV 

volumes
	► Larger total scar and 

grey zone extents
	► Lower LA emptying 

fractions
	► Serum IL-6

	► Observational study
	► Long enrolment for 

cohort
	► ICD programming 

parameters not 
prescriptive

Identification of predictive factors 
for appropriate ICD interventions 
in a cohort of patients suitable for 
primary prevention ICD insertion.

Van Hille et 
al57

62 Retrospective 
database analysis

Drools and ontology 
reasoning modules

	► With finer level of 
granularity DROOLS 
would be preferred

	► Small sample sizes
	► Does not use specific 

instructions

Drools and ontology reasoning 
approaches are efficacious 
methods for the triage of AF alerts 
from ICD devices.

Shakibfar et 
al29

16 022 Retrospective 
database analysis

Logistic regression—
model 1
Random forest—
model 2

	► Total number of 
sustained episodes

	► Shocks delivered
	► Cycle length parameters

– Prediction of electrical storm 
using machine learning models 
based on ICD remote monitoring 
summaries during episodes.
Random forest superior to logistic 
regression (p<0.01).

Shakibfar 
et al
30

19 935 Retrospective cohort 
study

Random forest and 
logistic regression

	► Percentage of 
ventricular pacing 
during the day

	► Activity of ICD during 
day

	► Average ventricular HR 
during day

	► Number of previously 
untreated tachycardias

	► Difficult to 
differentiate nsVT 
and VT

	► US only 
(generalisability)

Use of large-scale random forest 
showed that daily summaries 
of ICD measurements in the 
absence of clinical information 
can predict short term risk of 
electrical storm.

Ross et al58 71 948 Retrospective 
registry analysis

Random forest and 
logistic regression

	► Family history of 
sudden death

	► NYHA 4
	► Previous ICD
	► Thoracic cardiac 

surgery and 
biventricular pacemaker 
insertion

	► Dual chamber ICDs 
only

	► No information on 
leads

	► Single rather than 
multiple imputation

Random forest can improve 
identification of mortality and 
adverse events by dual-chamber 
ICDs.

AF, atrial fibrillation; HF, heart failure; IL-6, interleukin-6; LA, left atrium; LV, left ventricle; nsVT, non-sustained ventricular tachycardia; NYHA-4, New 
York Heart Association Classification 4; VT, ventricular tachycardia.
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In a more recent paper, Shandilya et al performed a 
retrospective analysis of 153 patients with OHCA cardiac 
arrest who received at least one shock for VF. Using a 
multiple domain integrative model, a type of AI model, 
to classify ECG rhythms and predict defibrillation success, 
they found 78.8% accuracy with ECG rhythms alone. As 
above, addition of end-tidal CO2 increased accuracy to 
83.3%, unfortunately this information was only available 
for 48 patients.36 They did not control for preshock pauses 
and ‘no-flow’ time before defibrillation, which has been 
previously shown to impact success.35 This was a relatively 
small study, and larger sample sizes will be required to get 
more meaningful data. Current sensitivities and specific-
ities are unlikely to be sufficient to justify changing the 
current protocols.

AI could also be used to aid decision-making for 
implantation of an ICD. Patients with previous MI are 
separated into high arrhythmia risk groups—who could 
benefit from an ICD—and low arrhythmia risk groups 
based on clinical guidelines. Clearly, it would be benefi-
cial to risk stratify patients individually to appropriately 
provide ICDs to those who might benefit. Markers such 
as left ventricular ejection fraction and myocardial scar 
size have been used in AI systems to evaluate arrhythmia 
risk. Kotu et al used cardiac MRI features including size, 
location and texture of scarred myocardium to charac-
terise labelled high and low risk groups.32 Using an SVM 
classifier, they were able to obtain an average accuracy of 
92.6% with a combination of scar size and heterogeneity. 
This technology could be used clinically to aid decision-
making, nevertheless the final decision would still need 
to be clinician led and on a case-by-case basis.

As well as predicting the success of ICD shocks, 
predicting need for a shock prior to the delivery would 
be useful clinically to warn patients and avoid side effects 
of ‘surprise shocks’. Au-Yeung et al used data from the 
Sudden Cardiac Death Heart Failure Trial where they 
collected preventricular tachyarrhythmia and regular 

rhythms from patients with congestive heart failure.37 
They analysed heart rate variability data 5 min and 10 s 
before tachyarrhythmia in attempt to identify a ‘signa-
ture’ of VF/VT onset. They used both random forest and 
SVM to assess the data. They found a specificity of 75% 
for 5 min prediction and 80% for 10 s prediction. With 
these results, however, there would likely be many false 
positives. The study was limited as it only assessed patient 
with heart failure. It is possible that using additional 
features or more sensitive AI programmes could yield 
higher sensitivities that could be used in clinical practice.

DISCUSSION
We have outlined above the enormous potential of 
AI in cardiology and specifically in AEDs and ICDs. 
Machine learning offers exciting prospects to reduce 
peri-shock pauses both with increased efficiency of SAAs 
and the ability of SAAs to classify rhythms without inter-
rupting CPR. In ICDs, machine learning has a number 
of applications, which could improve the quality of life 
of patients, including prediction of shock and electrical 
storm. Despite the enormous potential of AI in the field 
of defibrillators, there are some limitations to be aware 
of. Commercially available AEDs already exhibit high 
specificity. Compared with ICDs, AEDs favour specificity 
over sensitivity to reduce inappropriate shocks. Interna-
tional standards advise AED sensitivity >90% and speci-
ficity of  >95% for detecting coarse VF.27 Nishiyami et al 
found on assessment of four commercially available AEDs 
that VF was diagnosed and treated correctly in almost all 
cases.38 Given the technology already has such high rates, 
it could be argued that newer AI algorithms increase 
the cost and complexity of machines with minimal gain. 
However, none of the AEDs investigated could obtain 
both a >75% sensitivity for VT and >95% specificity for 
SVT.38 In the future, looking to improve VT and SVT 
discrimination could be a key area for AI.

Table 5  Tabular summarisation of search on the prediction of ICD interventions

Study Data set
Number of 
participants Algorithm used

Classification 
accuracy AUC

Ventricular 
arrhythmias

Okada et al59 CMR imaging 122 Substrate spatial 
complexity analysis

81.0% 0.72 40

Kotu et al32 CMR imaging 54 MATLAB, SVM and 
k-NN

94.4% to 92.6% 0.96 –

Ebrahimzadeh et al60 ECG 70 (35 normal, 35 sudden 
cardiac death)

kNN, MLP 84.0% to 99.7% – –

Au-Yeung et al37 ECG 788 RF, SVM – 0.81 to 0.88 3 in 10 patients

Marzec et al61 CIED 235 RF, k-NN, STATA IC 55.3% to 76.6% 0.5 49

Shandilya et al 36 ECG+PetCO2 153 MDI model 78.8% 0.832 –

Howe et al33 ECG 41 SVM 81.9% 0.75 115

Shandilya et al34 ECG 57 cardiac arrests (90 
signals)

SVM Up to 83.3% 0.85 to 0.93 57

AUC, area under the curve; CIED, cardiac implantable electronic devices; CMR, cardiac MRI; k-NN, k nearest neighbours algorithm; MDI, 
multidomain integrative; MLP, multilayer perceptron; RF, random forest; STATA-IC, statistical software package; SVM, support vector machines.
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Overfitting represents a challenge to AI algorithms, 
whereby the model has learnt in such a way that the rules 
are only applicable to the training sample and are no 
longer generalisable.6 7 As well as drop-out regularisation, 
the large data sets now available help to mitigate overfit-
ting in training of algorithms. In medical imaging, data 
augmentation has been used to artificially increase the 
data sets available by creating variants of original images 
in the data sets.39 Whether this could also be used with 
ECG traces is unclear. Multiple studies that were used 
in this review also discussed the issue of not having a 
single large database to use, so that algorithms could be 
compared. Therefore, the benefits of a single large data-
base would be twofold.

A common issue within the field of AI is the ‘black-box 
problem’. This is the fact that some AI models, in 
particular, neural networks, lack interpretability in 
their decision-making process.40 Many of the studies we 
reported above have detailed in their methods, which 
parameters have been used in their algorithms. None-
theless, it can be difficult to fully explain the outcomes 
reached based on these parameters. As neural networks 
become more complex with increasing numbers of 
layers, they become more difficult to interpret. Explain-
able AI has been a key area of research, particularly 
with potential medicolegal issues of incorrect shock 
decisions.

In the USA, bystander AED use occurs in only 2% of 
OHCA cardiac arrests.41 Another application of AI which 
we have not yet discussed is in drone delivery of AEDs in 
order to increase availability of AEDs and reduce to time 
to initial defibrillation. A recent simulation study in rural 
Canada found that drone-delivered AEDs decreased time 
to defibrillation by between 1.8 min and 8.0 min—which 
would have a great impact on mortality.42 AI could be 
used to calculate optimum geographical location and 
possible patrols to allow greatest access to AEDs. There 
remain some limitations with drone delivery currently 
including flight path restrictions and an inability to fly 
in rainy and windy conditions, which would need to be 
overcome before widespread use.

One of the most exciting future advances in machine 
learning use in AEDs is in rhythm recognition during 
CPR. This technology has developed from adaptive 
filters to remove CPR artefacts to the development of 
end-to-end SAAs. AHA recommended sensitivities and 
specificities have not yet been reached but with further 
optimisation of algorithms, this could become a reality 
soon. One key step will be the development of a large 
database of real-life AED traces during CPR. Jekova et al 
were able to use a large database but the proportions of 
VF for example did not meet criteria, and for further 
optimisation, more studies will be required.26 Current 
models have not been able to reduce ‘hands-off’ time 
completely as they often still require reconfirmation 
of the rhythm in the absence of chest compressions.25 
Further optimisation of these algorithms remains an 
exciting area of research.

CONCLUSION
Machine learning remains a promising new technology 
for SAAs in AEDs and ICDs. These technologies have 
the potential to increase survival in OHCA by removing 
the need to stop CPR during resuscitation and optimum 
timing of shock delivery. They can also be used to help 
diagnose cause of arrest, for example, previous MI and 
improving patient quality of life by reduction in inappro-
priate ICD shocks—all of which could have life changing 
outcomes for patients. Even small improvements in sensi-
tivities and specificities of these widely used defibrillators 
could save hundreds of lives. In the future, a single large 
database of real-life training and testing ECGs would be 
useful for building and assessing algorithms to allow for 
comparison of different technologies. We hope to see this 
technology being integrated into clinical practice in the 
near future.
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