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A B S T R A C T   

Cryptocurrency price forecasting is attracting considerable interest due to its crucial decision support role in 
investment strategies. Large fluctuations in non-stationary cryptocurrency prices motivate the urgent need for 
accurate forecasting models. The lack of seasonal effects and the need to meet a number of unrealistic re-
quirements make it difficult to make accurate forecasts using traditional statistical methods, leaving machine 
learning, particularly ensemble and deep learning, as the best technology in the area of cryptocurrency price 
forecasting. This is the first work to provide a comprehensive comparative analysis of ensemble learning and 
deep learning forecasting models, examining their relative performance on various cryptocurrencies (Bitcoin, 
Ethereum, Ripple, and Litecoin) and exploring their potential trading applications. The results of this study 
reveal that gated recurrent unit, simple recurrent neural network, and LightGBM methods outperform other 
machine learning methods, as well as the naive buy-and-hold and random walk strategies. This can effectively 
guide investors in the cryptocurrency markets.   

1. Introduction 

The area of cryptocurrencies has attracted growing attention from 
investors and regulators since Bitcoin was introduced in 2008 (Corbet 
et al., 2019). This growing popularity of cryptocurrencies is related to 
their different characteristics from other traditional financial assets. 
Their value is based on the confidence of the underlying algorithm, 
rather than on any tangible asset, allowing cryptocurrencies to be in-
dependent of any higher authority. This is what eventually leads to low 
transaction costs and government-independent secure peer-to-peer 
payments. 

Extant research recognizes cryptocurrencies as an investment asset 
(Bouri et al., 2017; Corbet et al., 2019; Ji et al., 2018). In response, a 
nascent strand of literature has appeared to explore the potential syn-
ergies between cryptocurrencies and other investment assets, such as 
commodities (Das et al., 2020), equities (Jiang et al., 2021), and con-
ventional currencies (Shahzad et al., 2022). Notably, Guesmi et al. 
(2019) underlined how Bitcoin allows hedging investment strategy 
against various investment assets, including gold, oil, and equities, due 
to its high return and low correlation with the other investment assets. 

Therefore, cryptocurrencies provide investors with diversification and 
hedging opportunities. As of 2022, there are >20,000 cryptocurrencies, 
but only the top 20 account for nearly 90% of the total market. The 
global cryptocurrency market capitalization was 1.06 trillion USD, with 
>300 million cryptocurrency users around the world in 2022 (Tuwiner, 
2022). 

Large price fluctuations of cryptocurrencies generate huge profit 
opportunities for high-frequency traders, including algorithmic trading 
bots (Chu et al., 2019; Chu et al., 2020; Patel et al., 2015). It is estimated 
that more than half of the trading volume is accounted for by these bots, 
making it increasingly difficult for human traders to make profit when 
trading during short periods (Ibrahim et al., 2021). These bots are aided 
by increasingly complex machine learning methods, frequently backed 
by deep learning (Rahmani Cherati et al., 2021). 

The purpose of developing cryptocurrency price forecasting systems 
is to develop a model that can guide the algorithmic/human trader in 
trading decisions to increase the chances of making profits when trading 
cryptocurrencies. Different cryptocurrency price forecasting methods 
can be divided into traditional statistical methods and machine learning 
methods (Chen et al., 2021). 
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Early work in this area focused primarily on traditional statistical 
methods, such as ARIMA (autoregressive integrated moving average) 
(Ibrahim et al., 2021) and GARCH (Baur et al., 2018; Fakhfekh and 
Jeribi, 2020). However, these approaches only capture linear patterns in 
the time series of cryptocurrencies and furthermore assume a normal 
distribution of variables, which is unrealistic in the case of crypto-
currencies (Chen et al., 2021; Khedr et al., 2021). 

Machine learning approaches can extract nonlinear patterns and also 
benefit from large datasets without assuming any prior understanding of 
the data. However, even traditional machine learning methods, such as 
multilayer perceptron (MLP) neural networks (Kristjanpoller and Min-
utolo, 2018) or support vector machines (SVM) (Hajek et al., 2023; 
Moula et al., 2017), suffer from some problems such as susceptibility to 
overfitting and do not fully exploit the potential of extracting high-level 
hidden patterns from cryptocurrency sequential data. To overcome 
these problems, deep learning-based forecasting models have been used, 
having the capacity to outperform traditional machine learning methods 
(Chen et al., 2021; Cui et al., 2022; Liu et al., 2021; Ortu et al., 2022). 
The recent work of Murray et al. (2023) substantiates this finding, 
demonstrating that long short-term memory (LSTM) and gated recurrent 
unit (GRU) neural networks outperform various other statistical and 
machine learning methods in terms of forecasting error. This includes 
not only traditional models such as ARIMA and SVM but also the more 
contemporary temporal fusion transformer (TFT). Another stream of 
research has focused on the capacity of ensemble learning approaches to 
reduce variance and bias by combining a set of diverse weak learning 
models (Aggarwal et al., 2020). In their widely acclaimed work, Sun 
et al. (2020) showed that ensemble learning forecasting models 
outperform individual machine learning models and that gradient 
boosting demonstrates better accuracy and robustness compared with 
the well-known random forest approach. 

Not only does the existing literature fail to provide a comprehensive 
comparison of the latest machine learning methods, but previous studies 
also suggest that different methods may perform differently for different 
cryptocurrencies (Yang et al., 2020; Zhang et al., 2021). Moreover, no 
comparative study has been found that examines the financial perfor-
mance of cryptocurrency investors from the perspective of different 
trading strategies over different time periods. To bridge this gap, this 
work aims to assess the performance of state-of-the-art deep learning 
and ensemble learning approaches in forecasting the prices of four major 
cryptocurrencies, namely Bitcoin, Ethereum, Ripple, and Litecoin. The 
selection of these four cryptocurrencies is not only consistent with those 
in previous related studies (Altan et al., 2019; Cheng, 2023) but it also 
covers a wide range of technologies, applications and market positions, 
making them ideal subjects for comprehensive analysis and forecasting. 
In particular, predicting the price of Ethereum can provide insights into 
a wider range of blockchain applications, predicting the price of Ripple 
can provide valuable insights into the integration of cryptocurrency 
technologies into traditional banking systems, and predicting the price 
of Litecoin alongside Bitcoin can reveal how changes in blockchain 
technology affect cryptocurrency market performance. This diversity 
ensures that the study's findings will be broadly relevant and provide 
valuable insights into the dynamics of the cryptocurrency sector. 
Furthermore, in contrast to earlier research that has tended to evaluate 
the forecasting performance in terms of forecasting errors (Chen et al., 
2021; Murray et al., 2023), here we focus on investor performance by 
simulating the buy & sell, long and short trading strategies. To this end, 
two distinct sub-periods are considered in this study, before and after 
Covid-19. Indeed, the Covid-19 pandemic has had a significant impact 
on the cryptocurrency market, including changes in market efficiency, 
peak performance of some cryptocurrencies, and increases in market 
capitalization (El Montasser et al., 2022; Jalan et al., 2021). To this line 
of research, this study adds an analysis of the predictability of crypto-
currencies in the pre- and post-pandemic period. Unlike previous 
comparative studies that have focused only on the combinations of deep 
learning models (Murray et al., 2023), this paper also examines the 

performance of the hybrid two-step forecasting method (Efat et al., 
2022) that combines ARIMA with deep learning methods, thus capturing 
linear and nonlinear patterns in the cryptocurrency time-series data. 
More importantly, the comparative analysis includes the financial per-
formance of trading strategies based on the machine learning methods 
utilized. Thus, this work provides valuable insights into the performance 
of different machine learning models for predicting cryptocurrency 
prices, and their potential applications in trading strategies. The results 
suggest that these models can enable investors to make more informed 
decisions in the cryptocurrency markets, ultimately leading to better 
investment outcomes. 

The remainder of the article is organized as follows. Section 2 pro-
vides an overview of previous literature on cryptocurrency price fore-
casting. Section 3 presents the research methodology employed and 
Section 4 shows the results. This is followed by Section 5, which dis-
cusses the results. Section 6 concludes the study with some future 
research directions. 

2. Literature review 

In theory, the value of cryptocurrencies is a reflection of their utility 
as a medium of exchange, which considerably increased over the last ten 
years. Given the increasing importance of cryptocurrencies for financial 
systems, early work in this area focused primarily on cryptocurrency 
volatilities, which have proved to be large (Klein et al., 2018) and 
difficult to predict so far (Fang et al., 2020; Walther et al., 2019). 
Moreover, empirical evidence also suggests that (Zhang et al., 2018): (1) 
cryptocurrency returns have heavily tailed distributions, (2) autocor-
relations for relative and absolute returns decay at different rates; (3) 
cryptocurrencies exhibit a strong leverage effect and volatility clus-
tering; (4) volatility and returns show the long-range dependence; and 
(5) volatility and price are power-law correlated. These characteristics 
make cryptocurrency price forecasting challenging and investments in 
cryptocurrencies much riskier than investments in traditional financial 
assets. Fluctuations in the value of cryptocurrency assets have been 
difficult to predict because they are not related to any fundamentals, 
which leads to the hypothesis that the value is mainly influenced by the 
sentiment of the cryptocurrency market. As shown in the literature, the 
price of Bitcoins and many other cryptocurrencies has displayed cycli-
cality patterns (also referred to as bubbles) in recent years (Dong et al., 
2022; Kyriazis et al., 2020). 

Most of the research on cryptocurrency price forecasting has focused 
on conventional statistical methods. Catania et al. (2019) used a battery 
of univariate and multivariate vector autoregression (VAR) models for 
predicting four major cryptocurrencies: Bitcoin, Ripple, Litecoin, and 
Ethereum. Notably, significant improvements in forecasting accuracy 
were reported for the combinations of various univariate forecasting 
models. Conrad et al. (2018) analyzed the volatility of cryptocurrencies 
through the lens of GARCH-MIDAS model to extract the long and short- 
term volatility components, finding that S&P 500 volatility significantly 
affected long-term Bitcoin volatility. Likewise, Walther et al. (2019) 
applied the GARCH-MIDAS framework to forecast the volatilities of five 
highly capitalized cryptocurrencies as well as the CRIX cryptocurrency 
index, investigating the effect of Global Real Economic Activity as a 
major driver of long-term cryptocurrency volatility. Results reported by 
Walther et al. (2019) also suggest that the traditional GARCH model 
performs poorly in predicting cryptocurrency volatility during bear 
markets, being surpassed even by models based on individual exogenous 
variables. 

Over the last five years, the focus of cryptocurrency price forecasting 
has shifted to machine learning methods. The work of Kristjanpoller and 
Minutolo (2018) has made a significant contribution to the field by 
proposing a hybrid MLP neural network-GARCH model to forecast the 
price volatility of Bitcoin. The results of a thorough analysis of different 
GARCH models revealed the benefits of combining linear and nonlinear 
models for predicting Bitcoin price volatility. MLP neural network was 
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also employed by Nakano et al. (2018) for predicting Bitcoin returns 
based on a set of technical indicators. Experimental evidence showed 
that the MLP forecasting model outperforms the baseline buy-and-hold 
strategy. MLP also performed well when comparing its movement di-
rection performance against ARIMA, Prophet, and random forest 
(Ibrahim et al., 2021). More recently, recurrent neural networks have 
been utilized, such LSTM and GRU, to automatically extract high-level 
temporal patterns from cryptocurrency time series. These advanced 
neural networks with deep learning were specifically developed to 
handle complex sequential data and, therefore, it was not surprising that 
MLP and other conventional machine learning methods were out-
performed by LSTM in several studies (Chen et al., 2021; Lahmiri and 
Bekiros, 2019; Li and Dai, 2020). 

GRU also produced excellent forecasting performance for four major 
cryptocurrency prices (Zhang et al., 2021), outperforming not only 
traditional machine learning methods but also LSTM-based models. 
However, these deep learning-based models have been shown to work 
effectively, especially in univariate settings (Uras et al., 2020) because 
they are not equipped with a feature selection component and therefore 
can easily become too complex to learn more challenging temporal 
patterns (Fu et al., 2022). 

Ensemble learning methods represent a viable alternative to deep 
learning models due to their capacity to reduce the bias (boosting 
methods) or variance (bagging methods such as random forest) of in-
dividual machine learning methods (Derbentsev et al., 2020). The model 
based on LightGBM (light gradient boosting machine) demonstrated the 
capacity to outperform the random forest model in forecasting the price 
direction of the cryptocurrency market (Sun et al., 2020), thus sug-
gesting that bias reduction is more relevant in the case of cryptocurrency 
prices than variance reduction. Overall, the above studies indicate that 
the machine learning-based forecasting models outperform those using 
conventional statistical methods. This is attributed to the capacity of 
machine learning models to construct generic models easily capturing 
nonlinear complex patterns in cryptocurrency data. Recently, there have 
been two attempts to systematically review the performance of machine 
learning methods for cryptocurrency price forecasting (Khedr et al., 
2021; Ren et al., 2022). Khedr et al. (2021) concluded that LSTM is 
considered to be the best method for predicting cryptocurrency price 
time series due to its ability to recognize long-term time-series associ-
ations. Ren et al. (2022) also valued the predictive performance of LSTM 
while highlighting that combining different machine learning methods 
has now become a hot research area. While these survey studies focus on 
providing an overview of existing machine learning methods used for 
cryptocurrency price forecasting, this study seeks to conduct a 
comparative empirical analysis of state-of-the-art deep learning and 
ensemble learning methods to provide support for profitable algorithmic 
trading. 

Algorithmic trading has been actively developing in recent decades 
due to a combination of factors: the rapid development of machine 
learning methods, the development of technologies for working with 
data and its analysis, the growth of storage and processing capabilities 
for large amounts of data. In addition, the complexity of trading system 
algorithms used by market participants is growing, since they compete 
not only with those who do not use automated systems, but also with 
each other. In connection with these trends, the study of the applica-
bility of various machine learning algorithms to algorithmic trading 
problems is an urgent task. This is important not only for companies 
engaged in algorithmic trading, such as hedge funds, but also from the 
scientific community because the application of state-of-the-art machine 
learning algorithms to the area under consideration can bring new 
knowledge to the development of automated trading systems for cryp-
tocurrency markets. This paper is devoted to the application of ensemble 
learning and deep learning to forecast cryptocurrency prices. In cryp-
tocurrency market trading, both the base predictors in ensembles and 
neural networks with deep learning mimic the actions of trading agents 
on the cryptocurrency market. This study was carried out to investigate 

the relevance of ensemble learning and deep learning for automatic 
cryptocurrency trading. 

3. Research methodology 

In this section, the methods used for the construction of forecasting 
models are introduced, together with their specifications. The machine 
learning methods employed in this study include boosting-based 
ensemble methods, recurrent deep neural networks, and hybrid two- 
stage methods integrating ARIMA with recurrent deep neural networks. 

3.1. Boosting-based ensemble methods 

Given that bagging-based ensemble methods, including random 
forest, have not performed well in earlier research (Ibrahim et al., 2021; 
Sun et al., 2020), we decided to examine the performance of boosting- 
based ensemble methods in the current study. The ultimate aim of 
boosting is to enhance the accuracy of a sequence of weak prediction 
models, where each model in the sequence compensates for the errors of 
its predecessors. As a result, a strong model is produced representing a 
highly accurate combination of weak models. This approach not only 
proved to be effective compared with individual and other ensemble 
learning methods, but also outperformed deep learning models in recent 
investigations (Manchanda and Aggarwal, 2021). Noteworthy, Ada-
Boost, a traditional boosting approach, exceeded the forecasting per-
formance of LSTM and other machine learning methods, including MLP 
and ELM (extreme learning machines) (Manchanda and Aggarwal, 
2021). 

The idea of AdaBoost is that the weights of the data instances that are 
accurately predicted by the preceding weak regressor are decreased 
while the weights of the instances where forecasts deviated from the 
actual cryptocurrency prices are increased. Thus, successive forecasting 
models increasingly focus on poorly forecasted data instances, and the 
performance of the overall model is iteratively improved. In other 
words, AdaBoost generates an additive model while the value of loss 
function (bias) is reduced in each iteration. 

LightGBM is an enhanced version of AdaBoost, allowing for the 
computationally efficient minimization of an arbitrary differentiable 
loss function. Similarly, as AdaBoost, regression trees are employed as 
weak learners in LightGBM. In contrast, the fast and highly efficient 
training capacity of LightGBM allows for dealing with large datasets. 
This is enabled by exploiting the exclusive feature bundling (into a 
single feature and thus reducing data dimensionality) and gradient- 
based one-side sampling (by randomly dropping instances with small 
gradients). At the same time, the advantages of the well-known XGBoost 
(extreme gradient boosting) are retained, including parallel training, 
sparse optimization, multiple loss functions, early stopping, and regu-
larization. The main difference is that LightGBM grows regression trees 
leafwise, and not level-wise like traditional boosting methods. The 
objective function of LightGBM is defined as follows: 

G = 1 /2

( (∑
i∈IL

gi
)2

∑
i∈IL

hi + λ
+

( ∑
i∈IR

gi
)2

∑
i∈IR

hi + λ
−

( ∑
i∈Igi

)2

∑
i∈Ihi + λ

)

(1)  

where IR and IL are the sets of instances of the right and left branches, 
respectively; gi and hi represent the loss gradient statistics of the first and 
second order, respectively; and λ is a regularization parameter. 

3.2. Recurrent deep neural networks 

Recurrent neural networks (RNNs) are types of neural networks in 
which links between units generate a controlled sequence, which allows 
for processing sequential data. In contrast to MLP, RNN can process 
arbitrary length sequences with its internal memory. Various RNN ar-
chitectures, ranging from simple to complex, have been introduced. For 
cryptocurrency price forecasting, the LSTM and GRU neural networks 
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are the most widely used. RNNs, equipped with a self-feedback mech-
anism, have the capacity to handle long-term dependencies in crypto-
currency time-series data. The vanishing gradient represents a major 
limitation of RNNs. To overcome this problem, LSTM neural networks 
were introduced (Yu et al., 2019). Each unit of LSTM is composed of 
memory cells that store information updated through the input, forget, 
and output gate. At day t, xt represents the input cryptocurrency price 
data of the LSTM cell whose output at the previous day is denoted as 
ℎt− 1, ct stands for the memory cell value. The calculation process of the 
LSTM unit is conducted as follows: 

it = (Wxixt +Wℎiℎt− 1 +Wcict− 1 + bi) (2)  

ft =
(
Wxfxt +Wℎfℎt− 1 +Wcfct− 1 + bf

)
(3)  

ct = ftct− 1 + it tanℎ (Wxcxt +Wℎcℎt− 1 + bc) (4)  

ot = (Wxoxt +Wℎoℎt − 1+Wcoct− 1 + bo) (5)  

ℎt = ot tanℎ (ct) (6)  

where it, ft and ot is the output of the input forget, and output gate, 
respectively and their corresponding weight matrices are Wi, Wf and Wo; 
ct is the state of the memory cell; b is bias; and σ and tanh represent 
sigmoid and hyperbolic tangent activation functions, respectively. 
Benefitting from memory cells and control gates, LSTM builds a long- 
term delay between input and feedback. The internal state of memory 
cells retains a continuous flow of error, without the gradient exploding 
or disappearing. Similarly, GRU consists of the update and reset gates 
and a memory cell, whose outputs ut, rt and ct, respectively, can be ob-
tained as follows: 

ut = (Wuxxt +Wucct− 1 + bu) (7)  

rt = (Wrcxt +Wrcct− 1 + br) (8)  

ĉt = tanh(Wcxht +Wrc(rtct− 1)+ bc ) (9)  

ct = (1 − ut)ct− 1 + ut ĉt (10)  

where ̂ct is a candidate state of the memory cell. In GRU, the reset gate is 
used to select the optimal time lag. Having fewer computational pa-
rameters than LSTM, GRU proved to be more effective when handling 
less frequent and smaller datasets, such as cryptocurrency price times-
eries (Hansun et al., 2022). Inspired by this finding, we also consider a 
simple RNN in this study to exploit its computational efficiency. The 
simple RNN is defined as follows: 

ℎt = tanℎ(Wℎxℎt− 1 +Wℎℎxt− 1 + bℎ) (11)  

yt = tanℎ
(
Wℎyℎt + by

)
(12)  

where Wh represents the weight matrix in the hidden layer, and ht and yt 
are the outputs of the hidden and output layer, respectively. 

3.3. Hybrid two-stage models 

The idea of a hybrid two-stage cryptocurrency price forecasting 
model has its roots in the seminal paper of Zhang (2003). The idea is to 
use a deep neural network to estimate the residuals of the ARIMA model, 
with ARIMA capturing the linear patterns of the cryptocurrency price 
data while a deep neural network LSTM is used to model the remaining 
nonlinear patterns, thus improving the accuracy of forecasts. 

The ARIMA model is effective in detecting linear patterns in time- 
series data. The assumption of a linear data generation process is un-
realistic for cryptocurrency time-series data, and it is a major limitation 
of the ARIMA model. At the same time, despite their rapid development 
and reasonably successful application to real-world forecasting 

problems, machine learning methods tend to be complex and may lack 
the transparency needed to receive widespread acceptance. Classical 
MLP neural network models are also not good enough to capture both 
linear and nonlinear patterns equally well. Therefore, here we combine 
ARIMA for estimating the linear component Lt and the above-mentioned 
LSTM recurrent deep neural network for estimating the residual et from 
the linear model, that is, the nonlinear component Nt. 

3.4. Specifications of models 

For both the boosting-based ensemble methods (AdaBoost and 
LightGBM regressor methods) and recurrent deep neural networks 
(simple RNN, GRU, and LSTM), grid search with a rolling window cross- 
validation (Bhattacharjee et al., 2022; Fuss and Koller, 2016) under 
minimizing the mean square error was used to find the optimal values of 
the hyper-parameters, as is shown in Table 1.1 

For both boosting methods, two hyper-parameters were examined, 
the number of estimators and learning rate, for the LightGBM method, 
three types of loss functions were considered. For the simple RNN, 
different numbers of units were tested from. For the GRU and LSTM 
models, the following values of hyper-parameters were examined: hid-
den layers, number of epochs, number of hidden units, and learning rate. 
Overall, the least complex models were generated for Litecoin (with one 
hidden layer and 8 units) while most complex models were optimal for 
the Ethereum data (using 128 or 256 units in the hidden layers). 
Generally, 5 epochs were enough to train the deep learning-based 
forecasting models. 

In the hybrid two-stage models, the parameters of ARIMA were 
selected semi-automatically by using the smallest value of BIC (Bayesian 
information criterion) on training data. For Ripple and Litecoin, the 
ARIMA models were ARIMA(1,0,1) and ARIMA(2,0,0), respectively. 
When the best model was represented by white noise, the restricted AR 
model was chosen based on the value of PACF (partial autocorrelation 
function). Hence, AR (6) and AR (2) were the best models for Bitcoin and 
Ethereum, respectively. 

4. Empirical results 

The daily cryptocurrency time-series data were collected from 
https:/www.investing.com.2 To investigate the predictability of the 

Table 1 
Values and ranges of model hyper-parameters.  

Models Hyper-parameters 

MLP Hidden layers: [1,2]; the number of hidden units: [10, 20, 30, 40, 50, 
100]; activation function: [‘relu’, ‘tanh’]; optimizer solver: [‘sgd’, 
‘adam’]; regularization alpha: [0.0001], learning rate for sgd optimizer: 
[‘constant’，’invscaling’, ‘adaptive’]. 

LSTM Hidden layers: [1, 2]; the number of epochs: [3, 5, 10, 50, 100, 300]; the 
number of hidden units [4, 8, 16, 32, 64, 128, 256]; learning rate 
[0.001, 0.01, 0.1]; lag days [3, 5, 8, 10] 

AdaBoost The number of estimators: [10, 20, 30, 40, …, 100]; learning rate: 
[0.001, 0.01, 0.1, 1.0]; loss functions: [linear, square, exponential] 

LightGBM The number of estimators: [10, 20, 30, 40, …, 100]; learning rate: 
[0.001, 0.01, 0.1, 1.0]. 

RNN The number of units: [4, 16, 32, 64, 128]. 
GRU Hidden layers: [1, 2]; the number of epochs: [3, 5, 10, 50, 100, 300]; the 

number of hidden units [4, 8, 16, 32, 64, 128, 256]; learning rate 
[0.001, 0.01, 0.1].  

1 The models were implemented in Python using the Scikit-Learn (ensemble 
methods), Statsmodels (ARIMA), and Keras (recurrent deep neural networks) 
libraries. The code is provided in the supplementary material.  

2 All data used are freely accessible and downloadable at https://www.in 
vesting.com/crypto/. The data used in this study are also available in the 
supplementary material. 
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most relevant cryptocurrencies in terms of volume, four most popular 
cryptocurrencies were selected for our comparative analysis, namely 
BTC/USD, ETH/USD, LTC/USD, and XRP/USD. The trading data was 
obtained up to August 31, 2023. Table 2 presents the basic character-
istics of the cryptocurrency data, and Fig. 1 shows the fluctuation of the 
logarithmic cryptocurrency prices. Note that each time series was split 
into two different sub-periods (denoted as before Covid-19 and after 
Covid-19), given the considerable effect of Covid-19 on cryptocurrency 
markets. 

entire available period was considered as presented in Table 2. 
In the experimental setting, the rolling window cross-validation 

approach (Bhattacharjee et al., 2022; Fuss and Koller, 2016) was used 
to split the time series into the training set immediately followed by the 
testing set. Specifically, the cryptocurrency time-series data were 

partitioned into a training set and testing set following a rolling window 
to match the structure of the time series data, the number of rolling test 
samples is shown in Table 2. Consistent with earlier studies (Corbet 
et al., 2022; Livieris et al., 2021), this paper applied the first-order dif-
ferences of daily cryptocurrency logarithmic prices (Fig. 2). It should be 
noted that while differencing can be a useful approach to dealing with 
non-stationarity in time series data, it does not necessarily eliminate the 
need for complex machine learning models. Complex machine learning 
models are often able to capture more complex patterns, handle larger 
datasets, and automatically extract relevant features from the data. In 
addition, they can be effective in dealing with complex relationships and 
non-linear dynamics that may not be adequately captured by traditional 
quantitative techniques (Shajalal et al., 2023). 

The summary descriptive statistics for the cryptocurrency time series 

Table 2 
Data description.  

Cryptocurrency Starting 
date 

Midpoint date (Covid-19 
timepoint) 

Ending date No. of observations before midpoint date 
(before Covid-19) 

No. of observations after midpoint date 
(after Covid-19) 

Bitcoin April 1, 
2016 

January 1, 2020 August 31, 
2023 

1370 1339 

Ethereum April 1, 
2016 

January 1, 2020 August 31, 
2023 

1370 1339 

Litecoin April 1, 
2016 

January 1, 2020 August 31, 
2023 

1370 1339 

Ripple April 1, 
2016 

January 1, 2020 August 31, 
2023 

1370 1339  

Fig. 1. Logarithmic cryptocurrency prices.  
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are presented in Table 3. As can be seen in Table 3, the average daily 
price differences were positive for all the four cryptocurrencies, with 
Ethereum showing the highest returns, while Ripple showed the highest 
standard deviation. In addition, the high kurtosis of all cryptocurrency 
data indicates leptokurtic time series, with Ethereum showing the 
highest excess kurtosis. Finally, while the price differences of Bitcoin 
and Ethereum were negatively skewed (with a longer left tail), the 
opposite result can be observed for the price differences of Litecoin and 
Ripple. 

To consider the stochastic nature of neural networks, hereinafter the 
results for the used neural networks are reported as an average of 50 
simulation runs. As the datasets varied in terms of sample sizes 
(Table 2), the comparison of the forecasting performance of the used 
methods between different cryptocurrencies is difficult. To consider this 
limitation into account, three naive algorithms were employed to 
represent benchmarks. To this end, in agreement with previous studies 
(Akyildirim et al., 2021; Caporale et al., 2018; Oyedele et al., 2023), the 
following methods were used: random walk (RW), white noise (WN), 
and buy & sell (B&S). The random walk method is based on the 
Martingale assumption, hence using the last value of cryptocurrency 
price as the forecast for the next day value. The white noise method 
relies on a randomly generated cryptocurrency time series with normal 
distribution; that is, with the mean calculated as the mean of the training 
sample and the variance being equal to the variance of the training 
sample. The buy & sell method replicates a simple strategy of buying a 
cryptocurrency for a fixed amount of money every day and selling it at 
the end of the day. 

To comprehensively evaluate the forecasting performance of the 

ensemble learning and deep learning methods, two sets of metrics were 
used. First, commonly used regression metrics were employed as fol-
lows: MAPE (mean absolute percentage error), ME (mean error), MAE 
(mean absolute error), MPE (mean percentage error), RMSE (root mean 
square error), R (correlation coefficient), and MIN-MAX error. Second, a 
set of metrics useful for evaluating investor performance was used, 
namely scalar product (SP), return score (Return), long return 
(Return_long), short return (Return_short), mean directional accuracy 
(MDA), mean directional accuracy positive (MDA+), and mean direc-
tional accuracy negative (MDA-). The SP of the actual and forecast 
values was used to simulate the buy & sell trading strategy, where the 
amount of investment is proportional to the forecast signal. The return 
score was used to simulate the trading strategy based on the signals of 
the used ensemble learning and deep learning methods. The return score 
was calculated as the sum of the returns of a particular trading strategy. 
The long (short) return simulated the return obtained using the long 
(short) trading strategy. MDA compares the predicted price direction 
(upward or downward) to the actual cryptocurrency price direction, 
while MDA+ and MDA- evaluate the upward and downward directional 
accuracy, respectively. 

In addition to the three naive methods, several other baseline 
methods were used to demonstrate the efficiency of the deep learning 
methods, including the traditional ARIMA, MLP, and hybrid two-stage 
ARIMA+MLP methods. Five and ten previous cryptocurrency prices 
were examined in the experiments and the best results are presented 
hereinafter. 

The results of the experiments are presented in Tables 4–7. From 
Tables 4–7, it can be noted that the compared methods performed 

Fig. 2. First-order differences of daily logarithmic cryptocurrency prices.  

Table 3 
Summary descriptive statistics for cryptocurrency data.  

Cryptocurrency Mean Minimum Maximum St.Dev. Skewness Kurtosis 

Bitcoin 0.001526 − 0.49728 0.227602 0.038855 − 0.84402 13.01061 
Ethereum 0.001829 − 0.58964 0.258599 0.053355 − 0.59340 9.05271 
Litecoin 0.001102 − 0.48208 0.591547 0.056149 0.404124 12.22713 
Ripple 0.001559 − 0.65299 1.027995 0.068411 2.056983 33.64264  
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differently not only on different cryptocurrencies, but also in terms of 
regression and investor statistics. As for the regression metrics, 
LightGBM and AdaBoost performed best for Bitcoin and Ethereum across 
the sub-periods studied. Different results were obtained for the two 
remaining cryptocurrencies with lower market capitalization. For Rip-
ple, LightGBM surpassed the remaining methods during the pre-Covid- 
19 sub-period, while MLP and GRU outperformed the other methods 
in the period following the emergence of Covid-19. Similarly, different 
results are apparent for Litecoin, with the MLP and Simple RNN 
demonstrating superior performance prior to and following the 
appearance of Covid-19, respectively. What is striking here is that, 
except Bitcoin and Ethereum, these methods did not perform similarly 
well in terms of investor statistics, suggesting that although achieving 
low forecast deviations, these methods failed to capture the direction of 
the next day's price change. Regarding the investor metrics, Simple RNN 

performed best for Ripple and LightGBM showed superior performance 
for Litecoin. For the pre-Covid-19 sub-period, the returns of the best 
performing methods ranged from 2.68 for Litecoin using AdaBoost to 
4.93 for Ripple (Simple RNN). For the period following the emergence of 
Covid-19, the returns ranged from 2.61 (for Bitcoin using AdaBoost) to 
3.39 (for Litecoin using LightGBM). Exceptional MDA was obtained for 
all cryptocurrencies, ranging from 67.5% for Ethereum to 75.1% for 
Bitcoin. Generally, there was a greater MDA across cryptocurrencies 
during the post-Covid-19 pandemic, resulting in improved predictability 
of cryptocurrency price trends. This is a rather remarkable result when 
considering balanced performance achieved in all cases in terms of up-
ward and downward trend prediction. To compare the investor perfor-
mance statistically, we conducted a nonparametric Friedman test across 
the investor metrics. The test uses the Friedman statistics to rank the 
forecasting models across the two sub-periods. The Friedman p-value 

Table 4 
Results of Bitcoin forecasting performance – regression and investor metrics.  

Before Covid-19 (2016-04-01 to 2019-12-31) 

Method MAPE ME MAE MPE RMSE R MIN-MAX 

WN 2.3206 0.0018 0.0326 1.2303 0.0427 − 0.0028 0.0536 
RW 4.2513 0.0027 0.0421 0.0653 0.0518 − 0.0339 − 0.0089 
B&S – – – – – – – 
ARIMA 2.0730 0.0016 0.0314 1.4435 0.0398 − 0.0392 0.0425 
MLP 1.7589 0.0009 0.0233 1.0032 0.0307 0.4884 0.0341 
LSTM 1.0865 0.0013 0.0272 1.0103 0.0361 − 0.2352 0.1010 
ARIMA+MLP 2.5503 0.0013 0.0286 1.3667 0.0364 0.2944 0.0489 
ARIMA+LSTM 2.2950 0.0014 0.0301 1.4338 0.0380 0.1745 0.0556 
AdaBoost 1.5506 0.0009 0.0221 0.9405 0.0294 0.5522 0.0639 
LightGBM 1.5608 0.0008 0.0205 0.7688 0.0280 0.6067 0.0618 
Simple RNN 1.6677 0.0012 0.0258 1.1060 0.0343 0.2629 0.0583 
GRU 1.6831 0.0011 0.0250 0.9890 0.0328 0.3766 0.0427 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN − 0.0074 − 0.2021 − 0.1136 − 0.0886 52.06 52.63 51.52 
RW 0.3703 − 0.4271 − 0.2260 − 0.2010 49.48 49.47 49.49 
B&S − 0.0250 0.1703 2.5727 − 2.5977 53.21 100.00 0.00 
ARIMA 0.6979 0.0879 0.0314 0.0565 46.39 50.53 42.42 
MLP 0.2905 2.4917 1.2333 1.2584 63.40 65.26 61.62 
LSTM − 0.2798 − 1.0300 − 0.5275 − 0.5025 43.81 36.84 50.51 
ARIMA+MLP 0.3896 1.6641 0.8196 0.8446 58.76 62.11 55.56 
ARIMA+LSTM 1.9158 0.4368 0.2059 0.2309 49.48 66.32 33.33 
AdaBoost − 0.3511 2.4100 1.1925 1.2175 63.40 60.00 66.67 
LightGBM − 0.3891 3.1973 1.5861 1.6111 70.62 67.37 73.74 
Simple RNN 0.5778 1.2719 0.6234 0.6484 54.12 57.89 50.51 
GRU 0.0796 1.8492 0.9121 0.9371 61.34 63.16 59.60  

After Covid-19 (2020-01-01 to 2023-08-31) 
Method MAPE ME MAE MPE RMSE R MIN-MAX 
WN 2.3029 0.0010 0.0251 1.2868 0.0323 0.0854 0.0429 
RW 3.4430 0.0016 0.0324 0.8488 0.0406 0.0469 − 0.0028 
B&S – – – – – – – 
ARIMA 1.5634 0.0009 0.0233 1.0570 0.0301 − 0.0489 0.0486 
MLP 1.7886 0.0010 0.0248 0.5186 0.0322 − 0.1178 0.0368 
LSTM 1.2102 0.0009 0.0231 1.0695 0.0295 − 0.2766 0.0691 
ARIMA+MLP 1.5049 0.0007 0.0202 0.4260 0.0260 0.4178 0.0200 
ARIMA+LSTM 1.5597 0.0008 0.0219 0.9105 0.0281 0.2511 0.0416 
AdaBoost 1.2122 0.0005 0.0170 0.3978 0.0223 0.6160 0.0476 
LightGBM 1.4518 0.0005 0.0168 0.2916 0.0221 0.6234 0.0486 
Simple RNN 2.1846 0.0008 0.0223 0.4604 0.0286 0.2939 0.0180 
GRU 2.1729 0.0013 0.0271 0.8790 0.0360 − 0.0443 0.0072 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN 0.2854 0.6972 0.3356 0.3615 57.67 65.63 49.46 
RW 0.3509 0.0025 − 0.0117 0.0142 47.62 48.96 46.24 
B&S − 0.0259 0.1392 2.0566 − 2.0825 51.12 100.00 0.00 
ARIMA 0.1363 − 0.2319 − 0.1289 − 0.1030 49.21 51.04 47.31 
MLP 0.0875 − 0.5718 − 0.2988 − 0.2729 49.21 51.04 47.31 
LSTM − 1.3067 − 1.2879 − 0.6569 − 0.6310 37.04 19.79 54.84 
ARIMA+MLP − 0.7757 1.9676 0.9709 0.9967 68.25 57.29 79.57 
ARIMA+LSTM 1.5317 0.6455 0.3098 0.3357 55.03 70.83 38.71 
AdaBoost 0.1852 2.6144 1.2942 1.3201 75.13 82.29 67.74 
LightGBM − 0.4340 2.3641 1.1691 1.1950 71.43 66.67 76.34 
Simple RNN 0.5629 1.2358 0.6050 0.6308 61.38 67.71 54.84 
GRU − 0.6326 0.2702 0.1222 0.1481 55.03 51.04 59.14  
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<0.01 (the Friedman statistics ranged from 35.3 to 56.2) indicates sig-
nificant differences between the compared forecasting models for all the 
four cryptocurrencies. Among the forecasting models, the Simple RNN 
ranked first for Ripple, while LightGBM ranked first for Ethereum, Bit-
coin and Litecoin. 

5. Discussion 

Overall, three different patterns were observed in our forecasting 
results, with Bitcoin/Ethereum and Ripple/Litecoin representing these 
patterns. This finding is not surprising given the descriptive statistics of 
their time series. While the expected finding was that ensemble learning 
and deep learning methods outperform the conventional statistical 
methods and shallow neural networks, this study showed that, at least in 
terms of point forecasts, less complex conventional models can be more 

effective for some cryptocurrency time series. This finding is in contrast 
to recent review studies (Khedr et al., 2021; Ren et al., 2022), which 
highlighted the dominance of LSTM models. This may be because con-
ventional models are just as effective as deep learning models, particu-
larly when the data are univariate and there is no need to deal with 
additional variables or complex relationships. Traditional computa-
tional models are based on statistical principles and assumptions that are 
appropriate for univariate data, as these models take into account fac-
tors such as autocorrelation, seasonality and trend. Therefore, in the 
context of univariate time series analysis, where there are no additional 
variables or complex relationships to consider, traditional quantitative 
techniques can often be sufficient (Castán-Lascorz et al., 2022). 

We have shown that LSTM models can be overcome by GRU models, 
even when LSTM is combined with ARIMA. One reasonable explanation 
for this decrease is that the ensemble learning and deep learning 

Table 5 
Results of Ethereum forecasting performance – regression and investor metrics.  

Before Covid-19 (2016-04-01 to 2019-12-31) 

Method MAPE ME MAE MPE RMSE R MIN-MAX 

WN 9.1019 0.0026 0.0408 7.7331 0.0507 0.0279 − 0.0096 
RW 6.4210 0.0032 0.0446 2.9206 0.0569 0.0019 − 0.0186 
B&S – – – – – – – 
ARIMA 3.3405 0.0018 0.0331 1.1155 0.0429 0.0584 0.0245 
MLP 2.0626 0.0014 0.0276 0.5063 0.0371 0.4027 0.0192 
LSTM 1.2799 0.0017 0.0301 1.0748 0.0406 − 0.0113 0.0818 
ARIMA+MLP 3.5920 0.0015 0.0289 2.1820 0.0385 0.3814 0.0198 
ARIMA+LSTM 3.0440 0.0017 0.0310 1.3090 0.0409 0.2626 0.0315 
AdaBoost 3.2182 0.0012 0.0257 2.5112 0.0348 0.5126 0.0281 
LightGBM 1.7602 0.0011 0.0237 1.3562 0.0334 0.5690 0.0441 
Simple RNN 2.4482 0.0012 0.0260 1.4288 0.0347 0.5268 0.0016 
GRU 2.1173 0.0012 0.0261 1.3738 0.0348 0.5225 − 0.0126 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN − 0.1181 0.3712 0.1729 0.1983 48.45 46.32 50.51 
RW − 0.6564 0.2324 0.1035 0.1289 48.97 44.21 53.54 
B&S − 0.0254 0.7985 2.8866 − 2.9119 52.11 100.00 0.00 
ARIMA 0.7521 − 0.0252 − 0.0253 0.0001 48.45 49.47 47.47 
MLP 0.2905 2.4304 1.2025 1.2279 62.89 64.21 61.62 
LSTM − 0.8632 − 0.5598 − 0.2926 − 0.2672 47.94 48.42 47.47 
ARIMA+MLP 0.7856 1.7765 0.8756 0.9009 57.22 58.95 55.56 
ARIMA+LSTM 2.3276 0.9257 0.4502 0.4755 53.09 70.53 36.36 
AdaBoost 0.6268 3.2507 1.6127 1.6380 64.43 66.32 62.63 
LightGBM 0.6585 3.5207 1.7477 1.7730 67.53 70.53 64.65 
Simple RNN 0.4325 3.5054 1.7400 1.7654 65.98 68.42 63.64 
GRU 0.4298 3.3323 1.6535 1.6788 63.40 65.26 61.62  

After Covid-19 (2020-01-01 to 2023-08-31) 
Method MAPE ME MAE MPE RMSE R MIN-MAX 
WN 2.4354 0.0022 0.0350 0.6965 0.0465 0.0243 0.0841 
RW 3.7473 0.0027 0.0410 − 0.1798 0.0522 0.1100 0.0203 
B&S – – – – – – – 
ARIMA 1.1594 0.0016 0.0287 0.7467 0.0397 0.0353 0.1312 
MLP 1.6599 0.0011 0.0240 1.4470 0.0324 0.5900 0.0743 
LSTM 1.1763 0.0016 0.0290 0.9329 0.0400 − 0.0930 0.1270 
ARIMA+MLP 1.4629 0.0011 0.0250 1.0449 0.0336 0.5132 0.1086 
ARIMA+LSTM 1.1498 0.0013 0.0266 0.5360 0.0366 0.3767 0.1312 
AdaBoost 1.3491 0.0009 0.0230 1.1058 0.0294 0.6661 0.0497 
LightGBM 1.4344 0.0009 0.0219 1.0440 0.0300 0.6437 0.1044 
Simple RNN 2.0241 0.0019 0.0312 0.9193 0.0438 0.0566 0.0791 
GRU 1.4885 0.0014 0.0277 1.1412 0.0380 0.2405 0.1175 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN − 0.0661 − 0.4673 − 0.2550 − 0.2124 43.39 48.51 37.50 
RW − 0.5820 1.1031 0.5303 0.5729 56.08 50.50 62.50 
B&S − 0.0426 0.4142 2.6858 − 2.7284 52.84 100.00 0.00 
ARIMA 0.5349 − 0.1435 − 0.0930 − 0.0504 53.97 55.45 52.27 
MLP − 1.3096 3.0747 1.5161 1.5586 67.72 52.48 85.23 
LSTM − 1.1820 − 0.1093 − 0.0759 − 0.0333 51.85 44.55 60.23 
ARIMA+MLP − 1.1435 2.5770 1.2672 1.3098 64.55 54.46 76.14 
ARIMA+LSTM 1.9223 0.8068 0.3821 0.4247 60.32 72.28 46.59 
AdaBoost − 0.6104 3.1822 1.5698 1.6124 66.67 62.38 71.59 
LightGBM − 0.1119 3.3438 1.6506 1.6932 71.43 68.32 75.00 
Simple RNN 0.0379 1.0002 0.4788 0.5214 56.08 55.45 56.82 
GRU − 0.5029 1.1768 0.5671 0.6097 55.03 51.49 59.09  
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methods were overfitted for the less complex time series. The poor 
performance of the hybrid models might be due to the fact that there is a 
lot of noise in the residuals, so the hybrid models get overfitted by the 
noise. 

Different results were observed for the investor metrics, suggesting 
that more complex machine learning methods are needed to adequately 
perform in terms of forecasting cryptocurrency market direction. We 
have shown that remarkable returns can be achieved by following the 
trading strategy based on the forecasts produced by the LightGBM 
models. This remarkable performance can be attributed to effectively 
managing large datasets while exploiting its regularization mechanism 
that helps prevent overfitting, making it more robust for cryptocurrency 
price forecasting (Sun et al., 2020). The highest returns could be ob-
tained for Ripple in the pre-Covid-19 period and for Litecoin in the post- 
Covid-19 period, indicating that these cryptocurrencies are the most 

inefficient cryptocurrency markets, whereas Bitcoin appears to be the 
least inefficient market. This complexity effect might also be related to 
greater liquidity in the Bitcoin market (Al-Yahyaee et al., 2020). 

Our results indicate that the trading strategies based on deep 
learning (for Ripple) or ensemble learning (for Bitcoin, Ethereum, and 
Litecoin) could allow cryptocurrency investors to effectively predict 
market development, particularly in less complex cryptocurrency mar-
kets. The study's findings provide cryptocurrency investors with valu-
able insights into effective trading strategies, adjusting their investment 
strategy to either take a long position or a short position. The demon-
strated financial effectiveness of deep and ensemble learning techniques 
in cryptocurrency trading also offers new tools for financial analysts, 
enhancing their ability to predict market movements. Nonetheless, 
policymakers ought to implement financial market interventions with a 
view to enhancing the level of transparency and efficiency in these 

Table 6 
Results of Ripple forecasting performance – regression and investor metrics.  

Before Covid-19 (2016-04-01 to 2019-12-31) 

Method MAPE ME MAE MPE RMSE R MIN-MAX 

WN 7.2913 0.0019 0.0342 − 2.3405 0.0441 0.0001 0.0637 
RW 9.2486 0.0028 0.0421 − 4.3758 0.0527 − 0.0828 0.0299 
B&S – – – – – – – 
ARIMA 0.9997 0.0013 0.0255 0.9997 0.0358 0.0892 0.1486 
MLP 1.5667 0.0014 0.0267 1.2493 0.0377 − 0.3116 0.1290 
LSTM 1.8834 0.0013 0.0261 0.3450 0.0366 − 0.2481 0.1388 
ARIMA+MLP 3.6238 0.0014 0.0278 2.5354 0.0368 0.1993 0.0868 
ARIMA+LSTM 2.6338 0.0014 0.0293 0.8290 0.0380 0.1868 0.0908 
AdaBoost 3.5384 0.0009 0.0220 2.7337 0.0305 0.5321 0.0829 
LightGBM 2.8600 0.0008 0.0197 2.3387 0.0285 0.6182 0.1078 
Simple RNN 3.6358 0.0027 0.0348 0.7220 0.0523 0.5112 0.1761 
GRU 3.8229 0.0039 0.0447 1.7255 0.0627 0.1772 0.2071 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN 0.0156 0.0054 0.0048 0.0006 45.36 42.39 48.04 
RW − 0.4854 − 0.2821 − 0.1390 − 0.1431 47.42 45.65 49.02 
B&S 0.0041 0.9591 2.4816 − 2.4775 52.01 100.00 0.00 
ARIMA − 4.7639 − 0.0265 − 0.0112 − 0.0153 52.58 1.09 99.02 
MLP − 2.5181 − 1.5176 − 0.7567 − 0.7608 44.33 11.96 73.53 
LSTM − 1.1531 − 1.5355 − 0.7657 − 0.7698 40.72 35.87 45.10 
ARIMA+MLP 0.4418 0.7275 0.3658 0.3617 51.55 60.87 43.14 
ARIMA+LSTM 2.0134 1.0897 0.5469 0.5428 52.06 72.83 33.33 
AdaBoost 0.7292 3.2439 1.6240 1.6199 69.07 78.26 60.78 
LightGBM 0.5372 3.4476 1.7258 1.7217 71.13 75.00 67.65 
Simple RNN − 0.2844 4.9318 2.4881 2.4437 71.65 65.69 78.26 
GRU − 0.2782 1.3665 0.7055 0.6610 54.12 51.96 56.52  

After Covid-19 (2020-01-01 to 2023-08-31) 
Method MAPE ME MAE MPE RMSE R MIN-MAX 
WN 5.5345 0.0040 0.0460 − 0.4069 0.0630 − 0.0075 0.0569 
RW 7.0524 0.0054 0.0542 1.3672 0.0734 − 0.0037 0.0136 
B&S – – – – – – – 
ARIMA 0.9998 0.0027 0.0301 0.9998 0.0517 − 0.1947 0.1724 
MLP 1.9275 0.0019 0.0262 1.0353 0.0440 0.5252 0.0052 
LSTM 1.5035 0.0030 0.0321 1.1093 0.0545 − 0.4740 0.1443 
ARIMA+MLP 2.4915 0.0032 0.0333 0.7799 0.0563 0.1655 0.0586 
ARIMA+LSTM 2.5516 0.0035 0.0364 1.3587 0.0594 − 0.0738 0.1335 
AdaBoost 1.1980 0.0022 0.0262 0.8145 0.0464 0.4479 0.1284 
LightGBM 1.4219 0.0021 0.0252 0.7566 0.0459 0.4602 0.1004 
Simple RNN 1.6898 0.0021 0.0267 0.6932 0.0457 0.4750 − 0.0053 
GRU 1.4707 0.0020 0.0256 0.7454 0.0442 0.5184 0.0356 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN − 0.9814 0.7209 0.3550 0.3659 50.79 39.08 60.78 
RW − 0.2337 − 0.1856 − 0.0982 − 0.0874 55.03 51.72 57.84 
B&S − 0.0108 0.6931 2.8411 − 2.8520 53.52 100.00 0.00 
ARIMA − 5.3480 − 0.3342 − 0.1725 − 0.1617 53.44 0.00 99.02 
MLP 0.9483 2.5124 1.2508 1.2616 66.67 81.61 53.92 
LSTM 1.9768 − 1.8340 − 0.9224 − 0.9116 41.27 78.16 9.80 
ARIMA+MLP 0.2686 1.6379 0.8135 0.8244 59.26 58.62 59.80 
ARIMA+LSTM 2.5810 − 1.2910 − 0.6509 − 0.6401 45.50 67.82 26.47 
AdaBoost 1.0692 2.3798 1.1845 1.1953 66.67 82.76 52.94 
LightGBM 0.6917 2.9912 1.4902 1.5010 72.49 77.01 68.63 
Simple RNN 0.3032 2.7200 1.3546 1.3654 69.31 71.26 67.65 
GRU 0.5134 2.7135 1.3513 1.3621 69.84 74.71 65.69  
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markets. According to our findings on the predictability of crypto-
currency price trends, this seems particularly important in the post- 
pandemic period. 

Given the study design, caution must be exercised when interpreting 
the results, as the second sub-period period included the Covid-19 
pandemic period, which positively affected cryptocurrency market ef-
ficiency (Mnif et al., 2020), as well as its role as a store of value (Corbet 
et al., 2020). Although we used the most recent data available, more 
research is needed to validate our findings for the post-pandemic data. 
This study also failed to account for the portfolio returns, suggesting that 
future studies should focus on the construction of trading strategies for 
portfolio investors. 

6. Conclusion 

In this study, we have provided a comparative study of univariate 
ensemble learning and deep learning models for forecasting crypto-
currency prices. We have conducted extensive experiments using his-
torical time-series data from four major cryptocurrencies. For the 
regression results, the results show the higher effectiveness of complex 
machine learning methods for all four cryptocurrency time series. More 
importantly, we investigated the efficacy of trading strategies based on 
forecasting models, showing that LightGBM may provide highly profit-
able trading strategies for investors in the Bitcoin, Ethereum and Lite-
coin markets. For the Ripple market, Simple RNN is recommended as the 
best forecasting model for investors. Strikingly, these findings appear to 
be robust to the sub-periods studied. Taken together, these findings 
suggest that ensemble learning and deep learning models can effectively 

Table 7 
Results of Litecoin forecasting performance – regression and investor metrics.  

Before Covid-19 (2016-04-01 to 2019-12-31) 

Method MAPE ME MAE MPE RMSE R MIN-MAX 

WN 12.7863 0.0035 0.0432 4.6522 0.0592 0.0114 0.1668 
RW 13.6119 0.0042 0.0494 − 2.8895 0.0651 0.0034 0.1641 
B&S – – – – – – – 
ARIMA 1.0051 0.0020 0.0235 0.9942 0.0444 − 0.0340 0.2863 
MLP 2.2688 0.0012 0.0196 ¡0.0703 0.0351 0.6398 0.2427 
LSTM 1.2487 0.0021 0.0243 0.8344 0.0458 − 0.2085 0.2534 
ARIMA+MLP 4.9575 0.0018 0.0266 1.8160 0.0428 0.3245 0.2269 
ARIMA+LSTM 3.6209 0.0018 0.0257 1.3296 0.0424 0.3529 0.2300 
AdaBoost 3.1387 0.0015 0.0216 0.2177 0.0386 0.5106 0.2526 
LightGBM 2.4554 0.0014 0.0196 − 0.1327 0.0371 0.5663 0.2406 
Simple RNN 2.5022 0.0014 0.0222 − 0.2846 0.0379 0.5342 0.2245 
GRU 2.8096 0.0014 0.0217 − 0.3606 0.0369 0.5598 0.2114 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN − 0.6098 0.1510 0.0696 0.0814 49.48 46.46 52.63 
RW 0.0433 0.3973 0.1927 0.2045 53.09 51.52 54.74 
B&S − 0.0118 0.5278 2.2580 − 2.2698 50.29 100.00 0.00 
ARIMA 3.6668 0.0241 0.0062 0.0179 51.03 95.96 4.21 
MLP 0.1161 2.5623 1.2752 1.2870 67.01 66.67 67.37 
LSTM − 1.7866 − 1.2000 − 0.6059 − 0.5941 47.42 29.29 66.32 
ARIMA+MLP − 0.0941 2.5942 1.2912 1.3030 60.31 52.53 68.42 
ARIMA+LSTM 2.7781 0.4407 0.2145 0.2263 56.70 70.71 42.11 
AdaBoost − 0.2214 2.6827 1.3354 1.3472 66.49 54.55 78.95 
LightGBM − 0.2178 2.6739 1.3311 1.3428 68.04 63.64 72.63 
Simple RNN − 0.3447 2.2188 1.1035 1.1153 64.95 62.63 67.37 
GRU − 0.1891 2.4517 1.2200 1.2317 65.98 65.66 66.32  

After Covid-19 (2020-01-01 to 2023-08-31) 
Method MAPE ME MAE MPE RMSE R MIN-MAX 
WN 5.3427 0.0031 0.0397 3.2827 0.0557 − 0.1341 0.1282 
RW 14.4445 0.0036 0.0459 − 8.4577 0.0604 0.0856 0.1208 
B&S – – – – – – – 
ARIMA 0.9989 0.0020 0.0290 0.9989 0.0444 0.0633 0.2086 
MLP 2.6556 0.0016 0.0277 0.4133 0.0403 0.4409 0.1507 
LSTM 1.5458 0.0021 0.0298 1.3016 0.0453 − 0.0191 0.1783 
ARIMA+MLP 1.2830 0.0012 0.0274 0.9887 0.0347 − 0.5306 0.0890 
ARIMA+LSTM 1.1576 0.0011 0.0263 0.8930 0.0333 0.5702 0.0972 
AdaBoost 2.9554 0.0010 0.0229 1.1805 0.0319 0.6975 0.0000 
LightGBM 3.4677 0.0012 0.0224 1.4952 0.0353 0.6198 0.1566 
Simple RNN 2.2888 0.0008 0.0216 1.0384 0.0287 0.5444 0.0120 
GRU 2.2607 0.0018 0.0278 0.4635 0.0425 0.3090 0.1680 
Method SP Return Return_long Return_short MDA[%] MDAþ[%] MDA-[%] 
WN − 0.5277 − 0.3957 − 0.1953 − 0.2005 47.09 43.62 50.53 
RW − 0.0799 0.9031 0.4542 0.4490 52.91 57.45 48.42 
B&S 0.0052 0.5019 2.7536 − 2.7484 51.36 100.00 0.00 
ARIMA 5.2291 0.2005 0.1028 0.0976 50.26 97.87 3.16 
MLP − 0.5707 2.0535 1.0293 1.0241 58.73 54.26 63.16 
LSTM 0.4309 − 0.8283 0.4116 0.4168 48.15 50.00 46.32 
ARIMA+MLP 1.1153 2.6573 1.3402 1.3171 48.04 52.50 44.09 
ARIMA+LSTM 2.0505 0.9450 − 0.4840 − 0.4610 41.27 15.63 67.74 
AdaBoost 0.7442 2.9949 1.5000 1.4948 66.14 78.72 53.68 
LightGBM 0.3632 3.3869 1.6960 1.6908 74.60 76.60 72.63 
Simple RNN 0.3974 2.6986 1.3552 1.3435 68.25 74.19 62.50 
GRU − 0.7234 1.5542 0.7797 0.7745 63.49 57.45 69.47  
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guide investors in their trading decisions. In the future, we will examine 
more frequent real-time data to better exploit the advantages of deep 
learning models. In a similar manner, we seek to utilize multivariate 
data, including the determinants of cryptocurrency supply and demand, 
in order to compare the performance of univariate and multivariate 
models. In this way, we would also be able to interpret the models more 
effectively in terms of the contribution of the determinants. 
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