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Abstract. We characterize the strength, in terms of Weihrauch degrees, of certain problems related to Ramsey-like theorems
concerning colourings of the rationals and of the natural numbers. The theorems we are chiefly interested in assert the existence
of almost-homogeneous sets for colourings of pairs of rationals respectively natural numbers satisfying properties determined by
some additional algebraic structure on the set of colours.

In the context of reverse mathematics, most of the principles we study are equivalent to Σ0
2-induction over RCA0. The associ-

ated problems in the Weihrauch lattice are related to TC∗
N, (LPO′)∗ or their product, depending on their precise formalizations.

Keywords: Weihrauch reducibility, Reverse mathematics, additive Ramsey, Σ0
2-induction

1. Introduction
The infinite Ramsey theorem says that for any colouring c of n-uples of a given arity of an infinite set X, there

exists a infinite subset H ⊆ X such that the set of n-tuples [H]n of elements of H is homogeneous. This statement
is non-constructive: even if the colouring c is given by a computable function, it is not the case that we can find
a computable homogeneous subset of X. Various attempts have been made to quantify how non-computable this
problem and some of its natural restrictions are. This is in turn linked to the axiomatic strength of the corresponding
theorems, as investigated in reverse mathematics [1] where Ramsey’s theorem is a privileged object of study [2].

This paper is devoted to a variant of Ramsey’s theorem with the following restrictions: we colour pairs of rational
numbers and we require some additional structure on the colouring, namely that it is additive. A similar statement
first appeared in [3, Theorem 1.3] to give a self-contained proof of decidability of the monadic second-order logic
of (Q, <). We will also analyse a simpler statement we call the shuffle principle, a related tool appearing in more
modern decidability proofs [4, Lemma 16]. The shuffle principle states that every Q-indexed word (with letters in a
finite alphabet) contains a convex subword in which every letter appears densely or not at all. Much like the additive
restriction of the Ramsey theorem for pairs over N, studied from the point of view of reverse mathematics in [5], we
obtain a neat correspondence with Σ0

2-induction (Σ0
2-IND).

Theorem 1. In the weak second-order arithmetic RCA0, Σ0
2-IND is equivalent to both the shuffle principle and the

additive Ramsey theorem for Q.

We take this analysis one step further in the framework of Weihrauch reducibility that allows to measure the
uniform strength of general multi-valued functions (also called problems) over Baire space. Let Shuffle and ARTQ be
the most obvious problems corresponding to the shuffle principle and additive Ramsey theorem over Q respectively
(see Definitions 24 and 48 for specifics). We relate them, as well as various weakenings cShuffle, cARTQ, iShuffle
and iARTQ that only output sets of colours or intervals, to the standard (incomparable) problems TCN and LPO′. We
also consider the ordered Ramsey principle, ORTQ, where the colours k come equipped with a partial order ⪯, and

*Soldà has since moved to Ghent University, Belgium.
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the colouring α : [Q]2 → k satisfying that α(r1, r2) ⪯ α(q1, q2) if q1 ⩽ r1 < r2 ⩽ q2. A weakening of Shuffle is the
principle (η)1<∞ introduced in [6] where we ask merely for an interval where some colour is dense; respectively for
a colour which is dense somewhere.

Theorem 2. We have the following equivalences

• Shuffle ≡W ARTQ ≡W TC∗
N × (LPO′)∗

• cShuffle ≡W cARTQ ≡W (LPO′)∗

• iShuffle ≡W iARTQ ≡W (η)1<∞ ≡W i(η)1<∞ ≡W TC∗
N

• ORTQ ≡W LPO∗

• c(η)1<∞ ≡W cRT1
+

Finally, we turn to carrying out the analysis of those Ramseyan theorems over N in the framework of Weihrauch
reducibility. The additive Ramsey theorem over N is also an important tool in the study of monadic second order
logic over countable scattered orders. As for the case of Q, we relate problems ARTN and ORTN as well as some
natural weakenings cARTN, cORTN, iARTN and iORTN, to TCN and LPO′ (the i variants of those principle return,
rather than an interval, some upper bound n on the first two points of some infinite homogeneous set).

Theorem 3. We have the following equivalences

• ORTN ≡W ARTN ≡W TC∗
N × (LPO′)∗

• cORTN ≡W cARTN ≡W (LPO′)∗

• iORTN ≡W iARTN ≡W TC∗
N

A diagram summarizing the relationship between the various problems we are studying is given in Figure 1.

LPO∗ ≡W ORTQ

cRT1
+ ≡W c(η)1<∞

(LPO′)∗ ≡W cX CN

TC∗
N ≡W ECT ≡W (η)1<∞ ≡W c(η)1<∞ ≡W iX

(TCN × LPO′)∗ ≡W X

Figure 1. Reductions and non-reductions between the problems studied in Theorem 3 and Theorem 2. An arrow from A to B means that problem
B Weihrauch reduces to problem A, and lack of an arrow means lack of such a reduction (except when implied by transitivity). The problem X is
any of ARTQ,ARTN,Shuffle, and ORTN.

2. Background
In this section, we will introduce the necessary background for the rest of the paper, and fix most of the notation

that we will use, except for formal definitions related to weak subsystems of second-order arithmetic, in particular
RCA0 (which consists of Σ0

1-induction and recursive comprehension) and RCA0+Σ0
2-IND. A standard reference for

that material and, more generally, systems of interest in reverse mathematics, is [1].

2.1. Generic notations
We identify k ∈ N with the finite set {0, . . . , k − 1}. For every linear order (X, <X), we write [X]2 for the set of pairs
(x, y) with x <X y. In this paper, by an interval I we always mean a pair (u, v) ∈ [Q]2, regarded as the set ]u, v[ of
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rationals; we never use interval with irrational extrema. Finally, for any sequence (xn)n∈N of elements taken from a
poset, write lim sup(x) for infk∈N supn⩾k xn.

2.2. Additive and ordered colourings
For the following definition, fix a linear order (X, <X). For every poset (P,≺P), we call a colouring c : [X]2 → P
ordered if we have c(x, y) ⪯P c(x′, y′) when x′ ⩽X x <X y ⩽X y′. Call c right-ordered if we have c(x, y) ⪯P c(x, y′)
when x <X y ⩽X y′ (in particular being right-ordered is less restrictive than being ordered). A colouring c : [X]2 → S
is called additive with respect to a semigroup structure (S , ·) if we have c(x, z) = c(x, y) · c(y, z) whenever x <X

y <X z. A subset A ⊆ X is dense in X if for every x, y ∈ X with x <X y there is z ∈ A such that x <X z <X y. Given
a colouring c : [X]n → k and some interval Y ⊆ X, we say that Y is c-densely homogeneous if there exists a finite
partition of Y into dense subsets Di such that each [Di]

n is monochromatic (that is, |c([Di]
n)| ⩽ 1). We will call those

c-shuffles if c happens to be a colouring of Q (i.e. X = Q and n = 1). Finally, given a colouring c : Q → k, and
given an interval I ⊆ Q, we say that a colour i < k occurs densely in I if the set of x ∈ Q such that c(x) = i is dense
in I.

Definition 4. The following are statements of second-order arithmetic:

• ORTQ: for every finite poset (P,≺P) and ordered colouring c : [Q]2 → P, there exists a c-homogeneous
interval ]u, v[ ⊂ Q.

• Shuffle: for every k ∈ N and colouring c : Q → k, there exists an interval I = ]x, y[ such that I is a c-shuffle.
• ARTQ: for every finite semigroup (S , ·) and additive colouring c : [Q]2 → S , there exists an interval I = ]x, y[

such that I is c-densely homogeneous.
• ORTN: for every finite poset (P,≺P) and right-ordered colouring c : [N]2 → P, there exists an infinite c-

homogeneous set.
• ARTN: for every finite semigroup (S , ·) and additive colouring c : [N]2 → S , there is an infinite c-

homogeneous set.

As mentioned before, a result similar to ARTQ was originally proved by Shelah in [3, Theorem 1.3 & Conclusion
1.4] and Shuffle is a central lemma when analysing labellings of Q (see e.g. [4]). We will establish that ARTQ and
Shuffle are equivalent to Σ0

2-induction over RCA0 while ORTQ is provable in RCA0.
We introduce some more terminology that will come in handy later on. Given a colouring c : Q → k, a set C ⊆ k

and an interval I = ]u, v[ that is a c-shuffle, we say that I is a c-shuffle for the colours in C, or equivalently that I is
c-homogeneous for the colours of C, if we additionally have c(I) = C.

2.3. Preliminaries on Weihrauch reducibility
We now give a brief introduction to the Weihrauch degrees of problems and the operations on them that we will use
in the rest of the paper. We stress that here we are able to offer but a glimpse of this vast area of research, and we
refer to [7] for more details on the topic.

We deal with partial multifunctions f : ⊆NN ⇒ NN, which we call problems, for short. We will most often
define problems in terms of their inputs and of the outputs corresponding to those inputs. Elements of NN serve as
names for the objects we are concerned with, such as colourings. Since the encoding of the objects of concern in our
paper is trivial, we handle this tacitly.

A partial function F : ⊆ NN → NN is called a realizer for f , which we denote by F ⊢ f , if, for every x ∈
dom( f ), F(x) ∈ f (x). Given two problems f and g, we say that g is Weihrauch reducible to f , and we write
g ⩽W f , if there are two computable functionals H and K such that K⟨FH, id⟩ is a realizer for g whenever F is
a realizer for f . We define strong Weihrauch reducibility similarly: for every two problems f and g, we say that g
strongly Weihrauch reduces to f , written g ⩽sW f , if there are computable functionals H and K such that KFH ⊢ g
whenever F ⊢ f . We say that two problems f and g are (strongly) Weihrauch equivalent if both f ⩽W g and g ⩽W f
(respectively f ⩽sW g and g ⩽sW f ). We write this ≡W (respectively ≡sW).
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We make use of a number of structural operations on problems, which respect the quotient to Weihrauch degrees.
The first one is the parallel product f × g, which has the power to solve an instance of f and and instance of g at the
same time. The finite parallelization of a problem f , denoted f ∗, has the power to solve an arbitrary finite number of
instances of f , provided that number is given as part of the input. Finally, the compositional product of two problems
f and g, denoted f ⋆g, corresponds basically to the most complicated problem that can be obtained as a composition
of f paired with the identity, a recursive function and g paired with identity (that last bit allows to keep track of the
initial input when applying f ).

Now let us list some of the most important* problems that we are going to use in the rest of the paper.

• CN : ⊆ NN ⇒ N (closed choice on N) is the problem that takes as input an enumeration e of a (strict) subset
of N and such that, for every n ∈ N, n ∈ CN(e) if and only if n ̸∈ ran(e) (where ran(e) is the range of e).

• TCN : ⊆ NN ⇒ N (totalization of closed choice on N) is the problem that takes as input an enumeration e
of any subset of N (hence now we allow the possibility that ran(e) = N) and such that, for every n ∈ N,
n ∈ TCN(e) if and only if n ̸∈ ran(e) or ran(e) = N.

• LPO : 2N → {0, 1} (limited principle of omniscience) takes as input any infinite binary string p and outputs 0
if and only if p = 0N.

• LPO′ : ⊆ 2N → {0, 1}: takes as input (a code for) an infinite sequence ⟨p0, p1, . . . ⟩ of binary strings such
that the function p(i) = lims→∞ pi(s) is defined for every i ∈ N, and outputs LPO(p).

Of lesser importance are the following problems:

• Ck (closed choice on k) takes as input an enumeration e of numbers not covering {0, 1, . . . , k−1}, and returns
a number j < k not covered by e.

• cRT1
k : kN ⇒ k (Ramsey’s theorem for singletons aka the pigeon hole principle) returns some j ∈ k on input

p ∈ kN if j occurs infinitely often in p. We point out that cRT1
k ≡W (Ck)

′ ≡W RT1
k (we refer to [10, 11]

for details): we prefer to use the “colour version” or RT for singletons since it makes many arguments more
immediate than the “set version” would do.

• cRT1
+ =

⊔
k>0 cRT1

k (denoted RT1,+ in [10]) is the disjoint union of the cRT1
k : it can be thought of as a problem

taking as input a pair (k, f ) where f ∈ N and f : N → k is a colouring, and outputting n such that f−1(n) is
infinite. By cRT1

N we denote the variant where the number of colours is not provided as part of the input.

The definition of LPO′ is a special case of the definition of jump as given in [7] applied to LPO. Intuitively, LPO′

corresponds to the power of answering a single binary Σ0
2-question. In particular, LPO′ is easily seen to be (strongly)

Weihrauch equivalent to both IsFinite and IsCofinite, the problems accepting as input an infinite binary string p and
outputting 1 if p contains finitely (respectively, cofinitely) many 1s, and 0 otherwise. We will use this fact throughout
the paper.

The ECT problem
Another problem of combinatorial nature, introduced in [12], will prove to be very useful for the rest of the paper.

Definition 5. ECT is the problem whose instances are pairs (n, f ) ∈ N× NN such that f : N → n is a colouring of
the natural numbers with n colours, and such that, for every instance (n, f ) and b ∈ N, b ∈ ECT(n, f ) if and only if

∀x > b ∃y > x ( f (x) = f (y)).

Namely, ECT is the problems that, upon being given a function f of the integers with finite range, outputs a b
such that, after that b, the palette of colours used is constant (hence its name, which stands for eventually constant
palette tail). We will refer to suitable bs as bounds for the function f .

A very important result concerning ECT and that we will use throughout the paper is its equivalence with TC∗
N.

*Whereas LPO and CN have been widely studied, TCN is somewhat less known (and does not appear in [7]): we refer to [8] for an account of
its properties, and to [9] for a deeper study of some principles close to it.
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Lemma 6 ([12, Theorem 9]). ECT ≡W TC∗
N

Another interesting result concerning ECT is the following: if we see it as a statement of second-order arithmetic
(ECT can be seen as the principle asserting that for every colouring of the integers with finitely many colours there
is a bound), then ECT and Σ0

2-IND are equivalent over RCA0 (actually, over RCA∗
0).

Lemma 7 ([12, Theorem 7]). Over RCA0, ECT and Σ0
2-IND are equivalent.

Hence, thanks to the results above, it is clear why TC∗
N appears as a natural candidate to be a “translation” of

Σ0
2-IND in the Weihrauch degrees.

Following [8], IsFiniteS : 2N → S is the following problem : for every p ∈ 2N, IsFiniteS(p) = ⊤ if p contains
only finitely many occurrences of 1 and IsFiniteS(p) = ⊥ otherwise *.

Lemma 8. IsFiniteS ̸⩽W ECT

Proof. Suppose for a contradiction that a reduction exists and is witnessed by functionals H and K. We build an
instance p of IsFiniteS contradicting this.

Let us consider the colouring H(0N), and let b0 ∈ ECT(H(0N)) be a bound for it. Since IsFiniteS(0
N) = ⊤,

the outer reduction witness will commit to answering ⊤ after having read a sufficiently long prefix of 0N together
with b0, say of length n0. Now consider the colouring H(0n010N), and a bound b1 > b0 for it. Again by the
fact that IsFiniteS(0

n010N) = ⊤, there is an n1 such that K commits to answering ⊤ after having read the prefix
0n010n1 together with b1. We iterate this process indefinitely and obtain an instance p = 0n010n110n21 . . . such that
IsFiniteS(p) = ⊥.

However, for the colouring H(p) there must be some bk which is a valid bound, as the sequence b0 < b1 <
b2 < . . . is unbounded. But K will commit to ⊤ upon reading a sufficiently long prefix of p together with bk by
construction, thereby answering incorrectly. □

We can now assert that the two main problems that we use as benchmarks in the sequel, namely (LPO′)∗ and
TC∗

N, are incomparable in the Weihrauch lattice.

Lemma 9. (LPO′)∗ and TC∗
N are Weihrauch incomparable. Thus (LPO′)∗ <W (LPO′)∗ × TC∗

N and TC∗
N <W

(LPO′)∗ × TC∗
N.

Proof. TC∗
N ̸⩽W (LPO′)∗: to do this, we actually show the stronger result that CN ̸⩽W (LPO′)∗. Suppose for a

contradiction that a reduction exists, as witnessed by the computable functionals H and K: this means that, for every
instance e of CN, H(e) is an instance of (LPO′)∗, and for every solution σ ∈ (LPO′)∗(H(e)), K(e, σ) is a solution
to e, i.e. K(e, σ) ∈ CN(e). We build an instance e of CN contradicting this.

We start by letting e enumerate the empty set. At a certain stage s, by definition of instances of (LPO′)∗,
H(e|s) converges to a certain n, the number of applications of LPO′ that are going to be used in the reduction.
Hence, however we continue the construction of e, there are at most 2n possible values for (LPO′)∗(H(e)), call
them σ0, . . . , σ2n−1. It is now simple to diagonalize against all of them, one at a time, as we now explain. We let
e enumerate the empty set until, for some s0 and i0, K(e|s0 , σi0) converges to a certain m0: notice that such an i0
has to exist, by our assumption that H and K witness the reduction of CN to (LPO′)∗. Then, we let e enumerate m0

at stage s0 + 1: this implies that σi0 cannot be a valid solution to H(e), otherwise K(e, σi0) would be a solution to
e. We then keep letting e enumerating {m0} until, for certain s1 and i1, K(e|s1 , σi1) converges to m1. We then let e
enumerate {m0,m1}, and continue the construction in this fashion. After 2n many steps, we will have diagonalized
against all the σi, thus reaching the desired contradiction.

(LPO′)∗ ̸⩽W TC∗
N is a consequence of Lemma 8, using the fact that TC∗

N ≡W ECT (see [12]). To see that
IsFiniteS ⩽W LPO′: given any string p ∈ 2N, we consider the instance ⟨p0, p1, . . . ⟩ of LPO′ defined as follows: for

*S is the Sierpinski space {⊤,⊥}, where ⊤ is coded by the binary strings containing at least one 1, and ⊥ is coded by 0N. IsFiniteS is strictly
weaker than IsFinite
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every i, pi takes value 1 until (and if) the ith occurrence of 1 is found in p, after which point it takes value 0. Then,
LPO′(⟨p0.p1 . . . ⟩) = 1 if and only if IsFiniteS(p) = ⊥. Hence, since IsFiniteS ̸⩽W ECT, we have in particular that
(LPO′)∗ ̸⩽W TC∗

N. □

Next, we show how the problems cRT1
n and TCm

N relate. This answers a question raised by Kenneth Gill related
to work in [13].

Theorem 10. cRT1
k+1 ⩽W TCm

N iff k ⩽ m.

To prove the theorem, we make use of some lemmas. First, we point out that if we have k + 1 instances of TCN,
but with the promise that at least one of them is non-empty, then k copies of TCN and one of CN suffice to solve the
problem.

Lemma 11. TCk+1
N |A(Nk+1)\{∅}k+1 ⩽W TCk

N ⋆ CN

Proof. As we know that one of the instances A0, A1, . . . , Ak for TCN is non-empty, we can use CN to find some (i, n)
such that n ∈ Ai. We then use the k copies of TCN to solve all instances A j for j ̸= i. □

Lemma 12. If cRT1
k+1 ⩽W TCm+1

N , then cRT1
k ⩽W TCm

N.

Proof. Consider the input kω to cRT1
k+1. The outer reduction witness for cRT1

k+1 ⩽W TCm+1
N will have to output

k upon reading a sufficiently long prefix kℓ of kω together with some tuple (a0, . . . , am) returned by TCm+1
N . Now

consider any input of the form kℓp for p ∈ kω. As k is a wrong answer, the inner reduction witness has to produce
an instance (A0, . . . , Am) for TCm+1

N which is not (∅, ∅, . . . , ∅) – otherwise, TCm+1
N could output (a0, . . . , am) and

thereby cause the wrong answer k.
Together with Lemma 11, this gives us a reduction cRT1

k ⩽W TCm
N ⋆ CN. Since cRT1

k is a closed fractal, we can
drop the CN by [14, Theorem 2.4]. This yields the claim. □

Proof of Theorem 10. If k > m, we could use Lemma 12 repeatedly to conclude that cRT1
2 ⩽W cRT1

1+k−m ⩽W

TC0
N ≡W id, but this is absurd. Conversely, we have cRT1

k+1 ⩽W
(
cRT1

2

)k
⩽W TCk

N. □

The finitary part of WKL′

In Subsection 3.4 we will use the notion of finitary part of a Weihrauch degree to sidestep somewhat troublesome
combinatorics. Introduced in [15], the k-finitary part of a Weihrauch degree f (denoted by Fink( f )) is the greatest
Weihrauch degree of a problem with codomain k which is Weihrauch reducible to f . We also write Fin( f ) =⊔

n∈N Finn( f ). The notion is similar to the more intensively studied first-order part of a Weihrauch degree [16–18].
Here we will calculate the k-finitary part of C′

2N , which we view as the problem “Given an enumeration of an
infinite binary tree, find a path through it”. Another representative of C′

2N is “Given the characteristic function of an
infinite tree T ⊆ ω<ω that happens to be finitely branching, find a path through it”, which is the computational task
associated to König’s Lemma. It holds that cRT1

N ⩽W C′
2N . Thus, the k-finitary part of C′

2N is an upper bound for the
k-finitary part of cRT1

m, which we exploit for Corollary 15 below.

Theorem 13. Fink(C′
2N) ≡W cRT1

k

Proof. Assume that f :⊆ NN ⇒ k satisfies f ⩽W C′
2N via ϕ and Ψ. On input x ∈ dom( f ), ϕ(x) enumerates a tree

Tx. We produce an input px to cRT1
k as follows: Whenever we find some w ∈ Tx such that Ψ(x,w) = i, we add an i

to p. We now claim that if some i appears infinitely often in px, then i is a correct output for f (x). Since Ψ(x, ·) has
to halt for every infinite path through Tx, a compactness argument shows that Ψ(x,w) is defined for all but finitely
many w ∈ Tx. Moreover, if Ψ(x,w) is defined, then Ψ(x,wu) = Ψ(x,w) for all extensions wu. Thus, if Ψ(x,w) = i
for infinitely many w, then by considering the infinite subtree of Tx obtained by those w together with the finitely
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v such that T (x, v) is undefined, we find that there is an infinite path through Tx having some prefix w such that
Ψ(x,w) = i. This concludes the claim. □

Corollary 14. Fin(C′
2N) ≡W cRT1

+

Corollary 15. Fink(cRT1
m) ≡W cRT1

min{k,m}

Sequential versus parallel composition

We use a technical result asserting that the sequential composition of LPO′×TCN after CN can actually be computed
by the parallel product of LPO′, TCn

N and CN. As customary, for every problem P we write Pn to mean P × · · · × P︸ ︷︷ ︸
n times

.

To see that the lemma actually applies to CN, we point out that CN ≡W minCN, where minCN is the tightening of
CN asking for the minimal valid solution.

Lemma 16. For all a, b ∈ N and every singlevalued problem P :⊆ NN → NN with P ⩽W CN, it holds that
((LPO′)a × TCb

N) ⋆ P ⩽W (LPO′)a × TCb
N × P.

Proof. The proof of TC∗
N ≡W ECT in [12, Theorem 9] actually shows that TCb

N ≡W ECTb+1, where ECTb+1 is the
restriction of ECT to colourings with b + 1 colours. We can thus prove the following instead:

((IsFinite)a × ECTb) ⋆ P ⩽W (IsFinite)a × ECTb × P

We observe that IsFinite(p) = IsFinite(wp) for any w ∈ {0, 1}∗, and if n ∈ ECTb(wp) for some w ∈ {0, 1, . . . , b −
1}∗, then n ∈ ECT(p). In other words, both principles have the property that adding an arbitrary prefix to an input
is unproblematic. As we assume that P ⩽W CN, there is a finite mindchange computation that solves P.

In ((IsFinite)a × ECTb)⋆ P, we can run this finite mindchange computation to obtain the inputs for the isFinite
and ECTb-instances. Due to the irrelevance of prefixes mentioned above, the mindchanges have no problematic
impact. Thus, we can actually apply IsFinite and ECTb in parallel, which yields the desired reduction to (IsFinite)a ×
ECTb × P.

The singlevaluedness of P makes sure that in the parallel execution we get the same solution from P as the one
used to compute the instances for IsFinite and ECTb. □

The following shows that the restriction to singlevalued P is necessary in the statement of Lemma 16:

Proposition 17. LPO′ ⋆ C2 ≰W LPO′ × C2

Proof. The problem LPO′⋆C2 is equivalent to “given p0, p1 ∈ 2N and non-empty A ∈ A(2), return (i, isFinite(pi))
for some i ∈ A.”. Let us denote this problem with BI. We will also use C2× IsFinite instead of LPO′×C2 on the right
hand side. We furthermore assume that A(2) is represented by ψ : 2N → A(2) where i ∈ ψ(p) iff ∃ℓ p(2ℓ+ i) = 1.

First, we argue that BI ⩽W C2 × IsFinite would imply BI ⩽sW C2 × IsFinite. Let the outer reduction witness be
K :⊆ (2N × 2N × 2N)× (2× 2) → (2× 2). Note that the inner reduction needs to produce inputs to C2 × IsFinite
leading to all four values (i, b) ∈ 2× 2 – otherwise, it would even show that LPO′ ⋆ C2 ⩽W LPO′, which is known
to be false for reasons of cardinality. Thus, there are prefixes w0,w1 and 0k such that K(w0,w1, 0

k, 0, 0) converges.
Restricting BI to extensions of w0,w1, 0

k does not change its strong Weihrauch degree. We then look for extensions
w1
0 ≻ w0, w1

1 ≻ w1 and 0k+ℓ such that K(w1
0,w

1
1, 0

k+ℓ, 0, 1) converges, and do the same for the remaining two
elements of 2× 2. By restricting to extensions of those ultimate prefixes, we obtain an outer reduction witness that
only depends on the 2× 2-inputs, and thus witnesses a strong reduction.

Next, we disprove BI ⩽sW C2 × IsFinite. The outer reduction witness K : 2× 2 → 2× 2 has to be a permutation
(as all four values actually occur on the left). The inner reduction witness has to map any instance involving 0N as the
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last component to one involving 0N as the first component: If any prefix (w0,w1, 0
k) would lead to a C2 × IsFinite-

instance where the first component is not {0, 1}, then by restricting to the extensions of such an input, we would
obtain a reduction BI ⩽sW IsFinite.

Let us consider what happens on an input (p, p, 0ω). As above, this gets mapped to some (0N, q). We see that
the first component of K(i, b) can only depend on b. Moreover, as the inner reduction witness cannot map ps with
finitely many 1s to qs with infinitely many 1s and vice versa, we actually find that the first component of K(i, b) has
to be b. Due to the symmetry of 0, 1 ∈ 2, this leaves us with two candidates K1,K2 for the outer reduction witness
we need to consider: K1(i, b) = (b, i) and K2(i, 0) = (0, i), K2(i, 1) = (1, 1− i).

Next, we consider inputs of the form (p0, p1, 0N) satisfying that IsFinite(p0) = 1 − IsFinite(p1). As above,
the inner reduction witness will generate some instance (0N, q). Depending on q, using either K1 or K2 as outer
reduction witness yields either the answers (0, 0) and (0, 1); or the answers (1, 0) and (1, 1). However, the correct
answers are either (1, 0) and (0, 1) or (1, 1) and (0, 0). Thus, both K1 and K2 fail, and we achieved the desired
contradiction. □

2.4. Green theory
Green theory is concerned with analysing the structure of ideals of finite semigroups, be they one-sided on the left or
right or even two-sided. This gives rise to a rich structure to otherwise rather inscrutable algebraic properties of finite
semigroups. We will need only a few related results, all of them relying on the definition of the Green preorders and
of idempotents (recall that an element s of a semigroup is idempotent when ss = s).

Definition 18. For a semigroup (S , ·), define the Green preorders as follows:

• s ⩽R t if and only if s = t or s ∈ tS = {ta : a ∈ S } (suffix order)

• s ⩽L t if and only if s = t or s ∈ S t = {at : a ∈ S } (prefix order)

• s ⩽H t if and only if s ⩽R t and s ⩽L t
• s ⩽J t if and only if s ⩽R t or s ⩽L t or s ∈ S tS = {atb : (a, b) ∈ S 2}

(infix order)

The associated equivalence relations are written R, L, H, J ; their equivalence classes are called respectively R, L,
H, and J -classes.

We conclude this section reporting, without proof, three technical lemmas that will be needed in Section 4 and 5.
Although not proved in second-order arithmetic originally, it is clear that their proofs go through in RCA0: besides
straightforward algebraic manipulations, they only rely on the existence, for each finite semigroup (S , ·), of an index
n ∈ N such that sn is idempotent for any s ∈ S .

Lemma 19 ([19, Proposition A.2.4]). If (S , ·) is a finite semigroup, H ⊆ S an H-class, and some a, b ∈ H satisfy
a · b ∈ H then for some e ∈ H we know that (H, ·, e) is a group.

Lemma 20 ([19, Corollary A.2.6]). For any pair of elements x, y ∈ S of a finite semigroup, if we have x ⩽R y and
x, y J -equivalent, then x and y are also R-equivalent.

Lemma 21 ([19, Corollary A.2.6]). For every finite semigroup S and s, t ∈ S , s ⩽L t and s R t implies s H t.

3. The shuffle principle and related problems
3.1. The shuffle principle in reverse mathematics
We start by giving a proof* of the shuffle principle in RCA0 + Σ0

2-IND, since, in a way, it gives a clearer picture of
some properties of shuffles that we use in the rest of the paper.

*From Leszek A. Kołodziejczyk, personal communication.
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Lemma 22. RCA0 +Σ0
2-IND ⊢ Shuffle

Proof. Let c : Q → n be a colouring of the rationals with n colours. For any natural number k, consider the
following Σ0

2 formula φ(k): “there exists a finite set L ⊆ n of cardinality k and there exist u, v ∈ Q with u < v such
that c(w) ∈ L for every w ∈ ]u, v[”. Since φ(n) is true, it follows from the Σ0

2 minimization principle that there exists
a minimal k such that φ(k) holds. Consider u, v ∈ Q and the set of colours L corresponding to this minimal k. We
now only need to show that ]u, v[ is a c-shuffle to conclude.

Let a = c(x) for some x ∈ ]u, v[. We need to prove that a occurs densely in ]u, v[. Consider arbitrary x, y ∈ ]u, v[
with x < y. We are done if we show that there exists some w ∈ ]x, y[ with c(w) = a. So, suppose that there is no
such w. Consider the set of colours L \ {a} Clearly, φ(|L \ {a}|) holds. However, |L \ {a}| < |L| = k, contradicting
the choice of k as the minimal number such that φ(k) holds.

□

The proof above shows an important feature of shuffles: given a certain interval ]u, v[, any of its subintervals
having the fewest colours is a shuffle. Interestingly, the above implication reverses, so we have the following equiv-
alence.

Theorem 23. Over RCA0, Shuffle is equivalent to Σ0
2-IND.

We do not offer a proof of the reversal here; such a proof can easily be done by taking inspiration from the
argument we give for Lemma 32.

With this equivalence in mind, we now introduce Weihrauch problems corresponding to Shuffle, beginning with
the stronger one.

Definition 24. We regard Shuffle as the problem with instances (k, c) ∈ N× NN such that c : Q → k is a colouring
of the rationals with k colours, and such that, for every instance (k, c), for every pair (u, v) ∈ [Q]2 and for every
C ⊆ k, (u, v,C) ∈ Shuffle(k, c) if and only if ]u, v[ is a c-shuffle for the colours in C.

Note that the output of Shuffle contains two components that cannot be easily computed from one another. It
is very natural to split the principles into several problems, depending on the type of solution that we want to be
given: one problem will output the colours of a shuffle, whereas another will output the interval. As we will see, the
strength of these two versions of the same principle have very different uniform strength.

Definition 25. iShuffle (“i” for “interval”) is the same problem as Shuffle save for the fact that a valid output only
contains the interval ]u, v[ which is a c-shuffle. Complementarily, cShuffle (“c” for “colour”) is the problem that only
outputs a possible set of colours taken by a c-shuffle.

We will first start analysing the weaker problems cShuffle and iShuffle and show they are respectively equivalent
to (LPO′)∗ and TC∗

N. This will also imply that Shuffle is stronger than (LPO′)∗ × TC∗
N, but the converse will require

an entirely distinct proof.
Our definitions include the number of colours as part of the input. We discuss in Section 6 how the variants with

an unknown but still finite number of colours relate to the versions we focus on.

3.2. Weihrauch complexity of the weaker shuffle problems
We first provide a classification of cShuffle, by gathering a few lemmas. The first also applies to iShuffle and Shuffle.

Lemma 26. cShuffle∗ ≡W cShuffle, iShuffle∗ ≡W iShuffle and Shuffle∗ ≡W Shuffle.

Proof. Without loss of generality, let us show that we have cShuffle× cShuffle ⩽W cShuffle, iShuffle× iShuffle ⩽W

iShuffle and Shuffle×Shuffle ⩽W Shuffle. Consider the pairing of the two input colourings. To give more details, let
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(n0, f0) and (n1, f1) be instances of Shuffle. Let us fix a computable bijection ⟨·, ·⟩ : n0 × n1 → n0n1 and define the
colouring f : Q → n0n1 by f (x) = ⟨ f0(x), f1(x)⟩ for every x ∈ Q. Hence, (n0n1, f ) is a valid instance of Shuffle.

Let C ∈ cShuffle(n0n1, f ): this means that there is an interval I that is a f -shuffle for the colours of C. For i < 2,
let Ci := { j : ∃c ∈ C( j = πi( j))}, where πi is the projection on the ith component. Then, Ci ∈ cShuffle(ni fi), as
witnessed by the interval I.

With the same reasoning, if I ∈ iShuffle(n0n1, f ), then also I ∈ iShuffle(n0, f0) and I ∈ iShuffle(n1, f1). Finally,
if (I,C) ∈ Shuffle(n0n1, f ), then (I,C0) ∈ Shuffle(n0, f0) and (I,C1) ∈ Shuffle(n1, f1).

To conclude Shuffle∗ ≡W Shuffle from Shuffle × Shuffle ⩽W Shuffle, we just need to observe that Shuffle has a
computable instance; likewise for cShuffle and iShuffle.

□

Let cShufflen be the restriction of cShuffle to n-colourings. The following lemma is due to a suggestion by an
anonymous referee:

Lemma 27. (LPO′)n ⩽W cShufflen+1, but (LPO′)n ≰W cShufflen.

Proof. We will prove that (IsFinite)n ⩽sW cShufflen+1. Given an input (p0, p1, . . . , pn−1) for (IsFinite)n we define
a colouring c : Q → (n + 1) of the rationals by setting c( k

nm+ℓ ) = ℓ if pℓ(m) = 1 and c( k
nm+ℓ ) = n if pℓ(m) = 0,

where gcd(k, nm+ ℓ) = 1 and ℓ < n. Let C be a result from applying cShufflen+1. We find that ℓ ∈ C iff pℓ contains
infinitely many 1s – as a colour ℓ < n appears either only finitely many times, or is dense in every interval. The
colour n is only used as neutral, it is otherwise disregarded.

To see that (LPO′)n ≰W cShufflen we appeal to the cardinality of the possible outputs. For (LPO′)n there are
2n different outputs, and each finite prefix can be extended to instances having any one of them as the only correct
answer. On the other hand, cShufflen has only non-empty subsets of n as possible answers, i.e. there are only 2n − 1
possible answers. □

We can also prove that finitely many copies of LPO′ suffice to solve cShufflen. However, our construction in-
volves an exponential increase in the parameter. We do not know whether this is necessary.

Lemma 28. cShufflen ⩽W (LPO′)2
n−2

Proof. We actually show that cShufflen ⩽W IsFinite2n−1. Let (n, c) be an instance of cShuffle. The idea is that we
will use one instance of IsFinite for every non-empty strict subset C of the set of colours n, in order to determine for
which such Cs there exists an interval IC such that c(IC) ⊆ C. We will then prove that any ⊆-minimal such C is a
solution for (n, c).

Let Ci, for i < 2n − 2, be an enumeration of the non-empty strict subsets of n. Let I j be an enumeration of the
open intervals of Q, and let qh be an enumeration of Q. For every i < 2n − 2, we build an instance pi of IsFinite
in stages in parallel. At every stage s, for every component i < 2n − 2, there will be a “current interval” I jis and a
“current point” qhi

s
. We start the construction by setting the current interval to I0 and the current point to q0 for every

component i.
For every component i, at stage s we do the following:

• if qhi
s
̸∈ I jis or if c(qhi

s
) ∈ Ci, we set I jis+1

= I jis and qhi
s+1

= qhs+1. Moreover, we set pi(s) = 0. In practice,
this means that if the colour of the current point is in Ci, or if the current point is not in the current interval,
no special action is required, and we can move to consider the next point.

• If instead qhi
s
∈ I jis and c(qhi

s
) ̸∈ Ci, we set I jis+1

= I js+1 and qhi
s+1

= q0. Moreover, we set pi(s) = 1. In
practice, this means that if the current point is in the current interval and its colour is not a colour of Ci, then,
we need to move to consider the next interval in the list, and therefore we reset the current point to the first
point in the enumeration. Moreover, we record this event by letting pi(s) take value 1.
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We iterate the construction for every s ∈ N. After infinitely many steps, we obtain an instance ⟨p0, p1, . . . , p2n−3⟩
of IsFinite2n−2.

Let C be a Ci be such that IsFinite(pi) = 1 but IsFinite(p j) = 0 for all j such that C j ⊂ Ci; or C = {0, 1, . . . , n−
1} if no such i exists. We claim that C is a correct answer for cShufflen. If C = Ci, then the construction for Ci

only proceeded to a different interval finitely many times. The last interval I we consider for Ci has no colour in it
not appearing in Ci. Moreover, we know that for all C j ⊂ Ci the process never stabilized, which means that every
subinterval of I has all colours in Ci appearing. If C = {0, 1, . . . , n− 1}, then every colour is dense everywhere, and
thus C is the only correct answer to cShufflen. □

Putting the previous lemmas together, we have the following:

Theorem 29. (LPO′)∗ ≡W cShuffle

Proof. (LPO′)∗ ⩽W cShuffle is given by Lemmas 26 and 27. For the other direction, notice that cShuffle ≡W⊔
n∈N cShufflen. The result then follows from Lemma 28. □

While Theorem 29 tells us that for any finite number of parallel LPO′-instances can be reduced to cShuffle for
m-colourings for a suitable choice of m, and vice versa, a sufficiently large number of LPO′-instances can solve
cShuffle for m-colourings, one direction of our proof involved an exponential increase in the parameter. Before
moving on to iShuffle, we thus raise the open question of whether this gap can be narrowed:

Open Question 30. What is the relationship between (LPO′)n and cShufflem for individual n,m ∈ N?

Lemma 31. Let iShufflen be the restriction of iShuffle to the instances of the form (n, c). For n ⩾ 1, it holds that
iShufflen ⩽sW TCn−1

N .

Proof. Fix an enumeration I j of the intervals of Q, an enumeration qh of Q, a computable bijection ⟨·, ·⟩ : N×N →
N, and let (n, c) be an instance of iShufflen.

The idea of the reduction is the following: with the first instance en−1 of TCN, we look for an interval I j on which
c takes only n− 1 colours: if no such interval exists, then this means that every colour is dense in every interval, and
so every I j is a valid solution to c. Hence, we can suppose that such an interval is eventually found: we will then
use the second instance en−2 of TCN to look for a subinterval of I j where c takes only n − 2 values. Again, we can
suppose that such an interval is found. We proceed like this for n − 1 steps, so that in the end the last instance e1 of
TCN is used to find an interval I′ inside an interval I on which we know that at most two colours appear: again, we
look for c-monochromatic intervals: if we do not find any, then I′ is already a c-shuffle, whereas if we do find one,
then that interval is now a solution to c, since c-monochromatic intervals are trivially c-shuffles..

Although not apparent in the sketch given above, an important part of the proof is that the n − 1 searches we
described can be performed in parallel: the fact that this can be accomplished relies on the fact that any subinterval
of a shuffle is a shuffle. More formally, we proceed as follows: we define n − 1 instances e1, . . . , en−1 of TCN as
follows. For every stage s, every instance ei will have a “current interval” I jis and a “current point” qhi

s
and a “current

list of colours” Lki
s
. We start the construction by the setting the current interval equal to I0, the current point equal to

q0 and the current list of points equal to ∅ for every i.
At stage s, there are two cases:

• if, for every i, qhi
s
̸∈ I jis or |Lki

s
∪ {c(qhi

s
)}| ⩽ i, we set I jis+1

= I jis , qhi
s+1

= qhi
s+1 and Lki

s+1
= Lki

s
∪ {c(qhi

s
)}.

Moreover, we let every ei enumerate every number of the form ⟨s, a⟩, for every a ∈ N, except for ⟨s, jis⟩. We
then move to stage s + 1.
In practice, this means that if the set of colours of the points of the current interval seen so far does not have
cardinality larger than i, no particular action is required, and we can move to check the next point on the list.
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• otherwise: let i′ be maximal such that qhi
s
∈ I jis and |Lki

s
∪{c(qhi

s
)}| > i. Then, for every i > i′ we proceed as in

the previous case (i.e., the current interval, current point, current list of colours and enumeration are defined
as above). For the other components, we proceed as follows: we first look for the minimal ℓ > ji

′

s such that
Iℓ ⊆ I ji

′+1
s

(if i′ = n − 1, just pick ℓ = jn−1
s + 1). Then, for every i ⩽ i′, we set I jis+1

= Iℓ, qhi
s+1

= q0
and Lki

s+1
= ∅. Moreover, we let ei enumerate every number of the form ⟨t, a⟩ with t < s that had not been

enumerated so far, and also every number of the form ⟨s, a⟩, with the exception of ⟨s, jis⟩. We then move to
stage s + 1.
In practice, this means that if, for a certain component i′, we found that the current interval has too many
colours, then, for all the components i ⩽ i′, we move to consider intervals strictly contained in the current
interval of component i′.

We iterate the procedure for every s ∈ N, thus obtaining the TCn−1
N -instance ⟨e1, . . . , en−1⟩.

Let σ ∈ Nn−1 be such that σ ∈ TCn−1
N (⟨e1, . . . , en−1⟩). Then, we look for the minimal i such that Iπ2(σ(i)) ⊆

Iπ2(σ(i+1)) ⊆ · · · ⊆ Iπ2(σ(n−1)) (by πi we denote the projection on the ith component, so ⟨π1(x), π2(x)⟩ = x)). We
claim that Iπ2(σ(i)) is a c-shuffle, which is sufficient to conclude that iShufflen ⩽sW TCn−1

N .
We now prove the claim. First, suppose that en−1 enumerates all of N. Then, the second case of the construction

was triggered infinitely many times with i′ = n − 1: hence, no interval contains just n − 1 colours, and so, as we
said at the start of the proof, this means that every interval is a c-shuffle. In particular, this imples that Iπ2(σ(i)) is a
valid solution. Hence we can suppose that en−1 does not enumerate all of N.

Next, we notice that for every m > 1, if em enumerates all of N, the so does em−1, by inspecting the second case
of the construction. Let m be minimal such that em does not enumerate all of N. For such an m, it is easy to see that
Iπ2(σ(m)) is a valid solution to c: indeed, we know from the construction that c takes m colours on Ipi2(σ(m)), and that
for no interval contained in Iπ2(σ(m)) c takes m − 1 colours, which means that Iπ2(σ(m)) is a c-shuffle. Moreover, it
is easy to see that Iπ2(σ(m)) ⊆ Iπ2(σ(m+1)) ⊆ . . . Iπ2(σ(n−1)), which implies that i ⩽ m. Since every subinterval of a
c-shuffle is a c-shuffle, Iπ2(σ(i)) is a valid solution to c, as we wanted. □

Lemma 32. Let ECTn be the restriction of ECT to the instances of the form (n, f ). It holds that ECTn ⩽sW iShufflen.

Proof. Let (n, f ) be an instance of ECTn. We define c : Q → n by c( a
b ) = f (b) where gcd(a, b) = 1. Hence, all the

points of the same denominator have the same colour according to c. Let ( u
k ,

v
ℓ
) ∈ iShufflen(n, c). Let b be such that

1
b <

v
ℓ
− u

k . We claim that b is a bound for f . Suppose not, then there is a colour i < n and a number x ∈ N such that
x > b and f (x) = i, but for no y > x it holds that f (y) = i. Hence, all the reduced of the form w

x are given colour i,
but i does not appear densely often in any interval of Q. But by choice of b, there is a z ∈ Z such that z

b ∈
] u

k ,
v
ℓ

[
,

which is a contradiction. Hence b is a bound for f .
□

Putting things together, we finally have a characterization of iShuffle. We even get a precise characterization for
each fixed number of colours.

Theorem 33. We have the Weihrauch equivalence

ECTn ≡W iShufflen ≡W TCn−1
N whence ECT ≡W iShuffle ≡W TC∗

N

Proof. We get TCn−1
N ⩽W ECTn by inspecting the second half of [12, Theorem 9]. Then Lemma 32 gives us

ECTn ⩽W iShufflen. Lemma 31 closes the cycle by establishing iShufflen ≡W TCn−1
N . □

3.3. The full shuffle problem
The main result of this section is that Shuffle ≡W TC∗

N × (LPO′)∗, which will be proved in Theorem 36. For one
direction, we merely need to combine our results for the weaker versions:
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Lemma 34. TC∗
N × (LPO′)∗ ⩽W Shuffle

Proof. From Theorem 29 and Theorem 33, we have that TC∗
N × (LPO′)∗ ⩽W iShuffle × cShuffle, and since clearly

iShuffle ⩽W Shuffle and cShuffle ⩽W Shuffle, by Lemma 26 we have that TC∗
N × (LPO′)∗ ⩽W Shuffle. □

For the other direction, again, we want to be precise as to the number of TCN- and (LPO′)-instances we use to
solve an instance of Shuffle. Note that we will use a far larger number of TCN-instances to obtain a suitable interval
than we used in Lemma 31.

Lemma 35. Let Shufflen be the restriction of Shuffle to the instances of the form (n, c). Then, Shufflen ⩽W (TCN ×
LPO′)2

n−1

Proof. Let (n, c) be an instance of Shuffle. The idea of the proof of Shufflen ⩽W (TCN × LPO′)2
n−1 is, in essence,

to combine the proofs of Lemma 31 and of Lemma 28: we want to use TCN to find a candidate interval for a certain
subset C of n, and on the side we use LPO′ (or equivalently, IsFinite) to check for every such set C whether a c-shuffle
for the colours of C actually exists. The main difficulty with the idea described above is that the two proofs must be
intertwined, in order to be able to find both a c-shuffle and the set of colours that appears on it.

We proceed as follows: let Ci be an enumeration of the non-empty subsets of n. Moreover, let us fix some
computable enumeration I j of the intervals of Q, some computable enumeration qh of the points of Q, and some
computable bijection ⟨·, ·⟩ : N×N → N. For every Ci, we will define an instance ⟨pi, ei⟩ of IsFinite × TCN in stages
as follows: at every stage s, for every index i, there will be a “current interval” I jis and a “current point” qhi

s
. We

begin stage 0 by setting the current interval to I0 and the current point to q0 for every index i.
At stage s, for every component i, there are two cases:

• if qhi
s
̸∈ I jis or if c(qhi

s
) ∈ Ci, we set I jis+1

= I jis and qhi
s+1

= qhi
s+1. Moreover, we set pi(s) = 0 and we let ei

enumerate all the integers of the form ⟨s, a⟩, except ⟨s, jis+1⟩. We then move to stage s + 1.
In plain words, for every component i, we check if the colour of the current point is in Ci, or if the current
point is not in the current interval: if this happens, no special action is required.

• If instead qhi
s
∈ I jis and c(qhi

s
) ̸∈ Ci, we set I jis+1

= I jis+1 and qhi
s+1

= q0. Moreover, we set pi(s) = 1, and we
let ei enumerate all the numbers of the form ⟨t, a⟩, for t < s, that had not been enumerated at a previous stage,
and also all the numbers of the form ⟨s, a⟩, with the exception of ⟨s, jis+1⟩. We then move to stage s + 1.
In plain words: if we find that for some component i the colour of the current point is not in Ci, then, from the
next stage, we start considering another interval, namely the next one in the fixed enumeration. We then reset
the current point to q0 (so that all rationals are checked again), and we record the event by letting pi(s) = 1
and changing the form of the points that ei is enumerating.

We iterate the procedure for every integer s. Let σ ∈ (2× N)2n−1 be such that

σ ∈ (IsFinite × TCN)
2n−1(⟨⟨p1, e1⟩ . . . , ⟨p2n−1, e2n−1⟩)⟩

Let k be the minimal cardinality of a subset Ci ⊆ n such that IsFinite(pi) = 1: notice that such a k must exist, because
c-shuffle exist. Then, we claim that the corresponding Iπ2(σ(i)) is a c-shuffle (by πi we denote the projection on the
ith component, so ⟨π1(x), π2(x)⟩ = x)). If we do this, it immediately follows that Shuffle ⩽W ((LPO′)× TCN)

2n−1.
Hence, all that is left to be done is to prove the claim. By the fact that IsFinite(pi) = 1, we know that the second

case of the construction is triggered only finitely many times. Hence, ei does not enumerate all of N, and so Iπ2(σ(i))
is an interval containing only colours from Ci. Moreover, by the minimality of |Ci|, we know that no subinterval of
Iπ2(σ(i)) contains fewer colours, which proves that Iπ2(σ(i)) is a c-shuffle. □

Putting the previous results together, we obtain the following.

Theorem 36. Shuffle ≡W TC∗
N × (LPO′)∗
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3.4. The (η)1<∞-problem
A weakening of the shuffle principle was studied in [6] under the name (η)1<∞. The principle (η)1<∞ asserts that for
any colouring of Q in finitely many colours, some colour will be dense somewhere. We formalize it here as follows:

Definition 37. The principle (η)1<∞ takes as input a pair (k, α) where k ∈ N and α : Q → k is a colouring, and
returns an interval I and a colour n < k such that α−1(n) is dense in I. The principle i(η)1<∞ returns only the interval
I, c(η)1<∞ only the dense colour n. Let (c(η)1<∞)k be the restriction of c(η)1<∞ to k-colourings.

An important aspect of the definition above to notice is that we require a bound on the number of colours used
to be declared in the instance of (η)1<∞. We discuss what happens if the number of colours is unknown and merely
promised to be finite in Section 6.

While (η)1<∞ also exhibits the pattern that we can neither compute a suitable interval from knowing the dense
colour nor vice versa, we shall see that as far as the Weihrauch degree is concerned, finding the interval is as hard as
finding both interval and colour. Our proof does not preserve the number of colours though - we leave open whether
this can be avoided.

Proposition 38. (η)1<∞ ≡W i(η)1<∞ ≡W TC∗
N ≡W iShuffle

Proof. Taking into account Theorem 33, it suffices for us to show that (η)1<∞ ⩽W iShuffle and that ECT ⩽W i(η)1<∞.
For (η)1<∞ ⩽W iShuffle we observe that an interval which is a shuffle not only has a dense colour in it, but every
colour that appears is dense. Thus, we return the interval obtained from iShuffle on the same colouring, together with
the first colour we spot in that interval.

It remains to prove that ECT ⩽W i(η)1<∞. Given a k-colouring c of N, we will compute a 2k-colouring α of
Q. We view the 2k-colouring as a colouring by subsets of k, i.e. each rational gets assigned a set of the original
colours. To determine whether the n-th rational qn should be assigned the colour j < k, we consider the number
mn, j = |{s | s ⩽ n ∧ c(s) = j}| of prior ocurrences of the colour j in c. If the integer part of qn · 2mn, j is odd, qn is
assigned colour j, otherwise not.

If j appears only finitely many times in c, then mn, j is eventually constant, and the distribution of j in α follows
(with finitely many exceptions) the pattern of alternating intervals of width 2−mn, j . This ensures that none of the
2k-many colours for α can be dense on an interval wider than 2−mn, j . Subsequently, we find that the width of the
interval having a dense colour returned by i(η)1<∞ provide a suitable bound to return for ECT. □

Open Question 39. How do the restrictions ((η)1<∞)k and (i(η)1<∞)k to k-colourings compare to TCℓ
N?

The proposition above implies that c(η)1<∞ has to be weaker than (LPO′)∗, since it is immediate to see that it is
computed by both (η)1<∞ and cShuffle. We now give more bounds on its strength.

Lemma 40. (c(η)1<∞)k+1 ⩽W cRT1
k+1 × (c(η)1<∞)k

Proof. Fix some enumeration (In)n∈N of all rational intervals. The forwards reduction witness is constructed as
follows. We keep track of an interval index n and a colour c, starting with n = 0 and c = 0. We keep writing the
current value of c to the input of cRT1

k+1, and we construct a colouring β : Q → {0, 1, . . . , k − 1} by scaling the
colouring α restricting to In up to Q, while excluding c and subtracting 1 from every colour d > c. The fact that we
may have already assigned β-colours to finitely many points in a different way before is immaterial.

If we ever find a rational q ∈ In with α(q) = c < k, we increment c. If we find q ∈ In with α(q) = c = k, we
set c = 0 and increment n. In particular, we stick with any particular In until we have found points of all different
colours inside it.

The backwards reduction witness receives two colours, c ∈ {0, 1, . . . , k} and d ∈ {0, 1, . . . , k − 1}. If d < c, it
returns d. If d ⩾ c, it returns d + 1.

To see that the reduction works correctly, first consider the case where every colour is dense everywhere. In this
case, everything is a correct answer, and the reduction is trivially correct. Otherwise, there has to be some interval
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In and some colour c such that α−1(c) ∩ In = ∅. In this case, our updating of n and c will eventually stabilize at
such a pair. The answer we will receive from cRT1

k+1 is c. Apart from finitely many points, β will be look like the
restriction of α to In with c skipped. Thus, any colour d which is dense somewhere for β will be dense somewhere
inside In for α if d < c, or if d ⩾ c, then d + 1 will be dense. Thus, the reduction works. □

Corollary 41.

(c(η)1<∞)k ⩽W cRT1
k × cRT1

k−1 × . . .× cRT1
2

⩽W (cRT1
2)

k−1 × (cRT1
2)

k−2 × . . . (cRT)12

≡W (cRT1
2)

k(k−1)/2

These bounds allow us to characterize the strength of (c(η)1<∞)k by virtue of our considerations of the k-finitary
part of cRTm.

Corollary 42. (c(η)1<∞)k ≡W cRT1
k , whence c(η)1<∞ ≡W cRT1

+.

Proof. Corollary 41 tells us that (c(η)1<∞)k ⩽W cRT1
m for some m ⩾ k. As (c(η)1<∞)k has codomain k, this already

suffices to conclude that (c(η)1<∞)k ⩽W cRT1
m by Corollary 15. Next we show cRT1

k ⩽W (c(η)1<∞)k. Fix a com-
putable bijection ν : N → Q. Given a colouring f : N → k as input for cRT1

k , we define the colour α f : Q → k by
α f (q) = f (ν−1(q)). Clearly, any colour appearing somewhere dense in α f must have appeared infinitely often in
f . □

Our result that c(η)1<∞ ≡W cRT1
+ stands in contrast to the reverse mathematics results obtained in [6]. In reverse

mathematics, RT1
N is equivalent to BΣ0

2 [20], yet [6, Theorem 3.5] shows that BΣ0
2 does not imply (η)1<∞ over RCA0.

4. ARTQ and related problems
We now analyse the logical strength of the principle ARTQ. As in the case of Shuffle, we start with a proof of

ARTQ in RCA0 + Σ0
2-IND. This will give us enough insights to assess the strength of the corresponding Weihrauch

problems.

4.1. Additive Ramsey over Q in reverse mathematics
As a preliminary step, we figure out the strength of ORTQ, the ordered Ramsey theorem over Q. It is readily provable
from RCA0 and is thus much weaker than most other principles we analyse. We can be a bit more precise by
considering RCA∗

0 which is basically the weakening of RCA0 where induction is restricted to ∆0
1 formulas (see [1,

Definition X.4.1] for a nice formal definition).

Lemma 43. RCA0 ⊢ ORTQ. Moreover, if we substitute “finite poset P” with “bounded poset P”, RCA∗
0 ⊢ RCA0 ⇒

ORTQ

Proof. We start by proving ORTQ in RCA0. Let c : [Q]2 → P be an orderd colouring, where (P,≺P) is a finite
poset. Then, RCA0 proves that there exists a ≺P-minimal p ∈ P such that, for some x′ < y′ in Q, c(x′, y′) = p
(this follows, for instance, from bounded Σ0

1 comprehension: consider the set {q ∈ P : ∃x′, y′(c(x′, y′) = q}, and
take any ≺P-minimal element of this set). Then, however we take x < y such that x′ ⩽ x < y ⩽ y′, we have that
c(x, y) = p, by ≺P-minimality of p and orderedness of c. It follows that ]x′, y′[ is c-homogeneous (the same would
be true for [x′, y′]), as we needed.

We now move to prove the second claim. We point out that this claim plays no part in the rest of the paper, and
it is only added for completeness. We also point out that the use of “bounded posets” as opposed to “finite posets” is
due to the fact that the term “finite” is not well-defined when working over RCA∗

0 (see for instance [21] for more on
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the matter): by this, we do not claim that the result would fail for other notions of “finiteness”, we simply selected
the notion that seems to be the most standard in the literature.

Suppose that φ(i) is a Σ0
1 formula such that ∀i, j((φ( j) ∧ i < j) → φ(i)), and that n ∈ N is such that ∀i(φ(i) →

i < n). We claim that there exists m ∈ N such that ∀i(φ(i) ↔ i < m). By Lemma 2.5 of [22], this gives RCA∗
0 ⊢

ORTQ ⇒ Σ0
1-induction.

Suppose that φ(i) is ∃kθ(i, k), for θ a ∆0
1 formula. We define a colouring c(x, y) of pairs of rationals as follows.

For x ̸= y, let h(x, y) be the largest integer h such that |x − y| < 2−h. For rationals x < y, we let c(x, y) be the least
i ⩽ n such that ∀k < h(x, y)¬θ(k, i). Let us consider the poset ([0, n],⩾): then, c : [Q]2 → [0, n] is ordered, since
x′ ⩽ x < y ⩽ y′ implies h(x, y) ⩾ h(x′, y′), and so the minimal i ⩽ n such that ∀k < h(x, y)¬θ(k, i) cannot be
⩽N-smaller than the minimal i ⩽ n such that ∀k < h(x′, y′)¬θ(k, i).

By ORTQ, there is a c-homogeneous interval ]x′, y′[. Let m be the colour for which ]x′, y′[ is homogeneous. It is
easy to see that this m is the bound we were looking for. □

We now show that the shuffle principle is equivalent to ARTQ. So overall, much like the Ramsey-like theorems
of [5], they are equivalent to Σ0

2-induction.

Lemma 44. RCA0 + Shuffle ⊢ ARTQ. Hence, RCA0 +Σ0
2-IND ⊢ ARTQ.

Proof. Fix a finite semigroup (S , ·) and an additive colouring c : [Q]2 → S . Say a colour s ∈ S occurs in X ⊆ Q if
there exists (x, y) ∈ [X]2 such that c(x, y) = s.

We proceed in two stages: first, we find an interval ]u, v[ such that all colours occurring in ]u, v[ are J -equivalent
to one another. Then we find a subinterval of ]u, v[ partitioned into finitely many dense homogeneous sets. For the
first step, we apply the following lemma to obtain a subinterval I1 = ]u, v[ of Q where all colours lie in a single
J -class.

Lemma 45. For every additive colouring c, there exists (u, v) ∈ [Q]2 such that all colours of c
∣∣
]u,v[ are J -equivalent

to one another.

Proof. If we post-compose c with a map taking a semigroup element to its J -class, we get an ordered colouring.
Applying ORTQ yields a suitable interval. □

Moving on to stage two of the proof, we want to look for a subinterval of I1 partitioned into finitely many dense
homogeneous sets. To this end, define a colouring γ : I1 → S 2 by setting γ(z) = (c(u, z), c(z, v)).

By Shuffle, there exist x, y ∈ I1 with x < y such that ]x, y[ is a γ-shuffle. For l, r ∈ S , define Hl,r : =
γ−1({(l, r)})∩ ]x, y[; note that this is a set by bounded recursive comprehension. Clearly, all Hl,r are either empty or
dense in ]x, y[, and moreover ]x, y[ =

⋃
l,r Hl,r. Since there are finitely many pairs (l, r), all we have to prove is that

each non-empty Hl,r is homogeneous for c.
Let s = c(w, z) such that w, z ∈ Hl,r with w < z. By additivity of c and the definition of Hl,r,

s · r = c(w, z) · c(z, v) = c(w, v) = r. (1)

In particular r ⩽R s. But we also have r J s, which gives r R s by Lemma 20. This shows that all the colours
occurring in Hl,r are R-equivalent to one another. A dual argument shows that they are all L-equivalent, so they are
all H-equivalent. The assumptions of Lemma 19 are satisfied, so their H-class is actually a group.

All that remains to be proved is that any colour s occurring in Hl,r is actually the (necessarily unique) idempotent
of this H-class. Since r R s, there exists a such that s = r · a. But then by (1), s · s = s · r · a = r · a = s, so s is
necessarily the idempotent. Thus, all sets Hl,r are homogeneous and we are done. □

We conclude this section by showing that the implication proved in the Lemma above reverses., thus giving the
precise strength of ARTQ over RCA0.
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Theorem 46. RCA0 + ARTQ ⊢ Shuffle. Hence, RCA0 ⊢ ARTQ ↔ Σ0
2-IND.

Proof. Let f : Q → n be a colouring of the rationals. Let (S n, ·) be the finite semigroup defined by S n = n and
a · b = a for every a, b ∈ S n. Define the colouring c : [Q]2 → S n by setting c(x, y) = f (x) for every x, y ∈ Q. Since
for every x < y < z, c(x, z) = f (x) = c(x, y) · c(y, z), c is additive. By additive Ramsey, there exists ]u, v[ which is
c-densely homogeneous and thus a f -shuffle. □

4.2. Weihrauch complexity of additive Ramsey
We now start the analysis of ARTQ in the context of Weihrauch reducibility. We will mostly summarize results,
relying on the intuitions we built up so far. First off, we determine the Weihrauch degree of the ordered Ramsey
theorem over Q.

Theorem 47. Let ORTQ be the problem whose instances are ordered colourings c : [Q]2 → P, for some finite poset
(P,≺), and whose possible outputs on input c are intervals on which c is constant. We have that ORTQ ≡W LPO∗.

Proof. LPO∗ ⩽sW ORTQ: let ⟨n, p0, . . . , pn−1⟩ be an instance of LPO∗. Let (P,≺) be the poset such that P = 2n,
the set of subsets of n, and ≺=⊃, i.e. ≺ is reverse inclusion.

We define an ordered colouring c : [Q]2 → P in stages by deciding, at stage s, the colour of all the pairs of
points (x, y) ∈ [Q]2 such that |x − y| > 2−s.

At stage 0, we set c(x, y) = ∅ for every (x, y) ∈ [Q]2 such that |x − y| > 1. At stage s > 0, we check pi
∣∣

s
for every i < n (i.e., for every i, we check the sequence pi up to pi(s − 1)), and for every (x, y) ∈ [Q]2 with
2−s+1 ⩾ |x − y| > 2−s, we let

c(x, y) = {i < n : ∃t < s(pi(t) = 1)}.

It is easily seen that c defined as above is an ordered colouring: if x ⩽ x′ < y′ ⩽ y′, then |x′ − y′| ⩽ |x − y|,
which means that to determine the colour of (x′, y′) we need to examine a longer initial segment of the pis. Let
I ∈ ORTQ(P, c), and let ℓ ∈ N be least such that the length of I is larger that 2−ℓ: since I is c-homogeneous, we
know that for every i < n, ∃t(pi(t) = 1) ⇔ ∃t < ℓ(pi(t) = 1). Hence, for every pair of points (x, y) ∈ [I]2, the
colour of c(x, y) is exactly the set of i such that LPO(pi) = 1.

ORTQ ⩽W LPO∗: Let (P, c) be an instance of ORTQ, for some finite poset (P,≺P). Let <L be a linear extension
of ≺P, and notice that c : Q → (P, <L) is still an ordered colouring. Let r0 <L r1 <L · · · <L r|P|−1 be the elements
of P. The idea of the proof is to have one instance of LPO per element of P, and to check in parallel the intervals of
the rationals to see if they are c-homogeneous for the corresponding element of P. Anyway, one has to be careful
as to how these intervals are chosen: to give an example, if we find that a certain interval I is not c-homogeneous
for the <L-maximal element r|P|−1, because we found, say, x < y such that c(x, y) ̸= r|P|−1, then not only do we
flag the corresponding instance of LPO by letting it contain a 1, but we also restrict the research of all the other
components so that they only look at intervals contained in ]x, y[. By proceeding similarly for all the components,
since c is ordered, we are sure that we will eventually find a c-homogeneous interval.

We define the |P| instances p0, p1, . . . , p|P|−1 of LPO in stages as follows. Let an be an enumeration of the
ordered pairs of rationals, i.e. an enumeration of [Q]2, with infinitely many repetitions. At every stage s, some
components i will be “active”, whereas the remaining components will be “inactive”: if a component i is inactive, it
can never again become active. Moreover, at every stage s, there is a “current pair” ans and a “current interval” ams

(for this proof, it is practical to see ordered pairs of rational as both pairs and as denoting extrema of an open interval).
We begin stage 0, by putting the current pair and the current interval equal to a0. Moreover, every component is set
to be active.

At stage s, for every inactive component j < |P|, we set p j(s) = 1. For every active component i, there are two
cases:
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• if, for every active component i, c(ans) ⩾L ri, then we look for the smallest ℓ > ns such that aℓ ⊆ ams (i.e.,
we look for a pair of points contained in the current interval), and set ans+1 = aℓ, and ams+1 = ams . We set
pi(s) = 0 and no component is set to inactive. We then move to stage s + 1.

• suppose instead there is an active component i such that c(ans) <L ri: let i be the minimal such i, then we
set every j ⩾ i to inactive (the ones that were already inactive remain so) and we let p j(s) = 1. We then let
ams+1

= ans , and we look for the least ℓ > ns such that aℓ ⊂ ans : we set ans+1
= aℓ, and we set pk(s) = 0 for

every active component k < |P|. We then move to stage s + 1.

We iterate the procedure above for every integer s.
Let σ ∈ 2|P| be such that σ ∈ LPO∗(⟨|P|, p0, . . . , p|P|−1⟩). Notice that σ(0) = 0, since no pair of points can

attain colour <L-below r0. Moreover, notice that σ(i) = 0 if and only if the component i was never set inactive.
Hence, let i be maximal such that σ(i) = 0, and let t be a state such all components j > i have been set inactive by
step t. Hence, after step t, the current interval I never changes, and thus we eventually check the colour of all the pairs
in that interval. Since the second case of the construction is never triggered, it follows that I is a c-homogeneous
interval. Hence, in order to find it, we know we just have to repeat the construction above until all the components
of index larger than i are set inactive. This proves that ORTQ ⩽W LPO∗. □

Now let us discuss Weihrauch problems corresponding to ARTQ.

Definition 48. Regard ARTQ as the following Weihrauch problem: the instances are pairs (S , c) where S is a finite
semigroup and c : [Q]2 → S is an additive colouring of [Q]2, and such that, for every C ⊆ S and every interval I of
Q, (I,C) ∈ ARTQ if and only if I is c-densely homogeneous for the colours of C.

Similarly to what we did in Definition 25, we also introduce the problems cARTQ and iARTQ that only return the set
of colours and the interval respectively.

We start by noticing that the proof of Theorem 46 can be readily adapted to show the following.

Lemma 49. • cShuffle ⩽sW cARTQ, hence (LPO′)∗ ⩽W cARTQ.
• iShuffle ⩽sW iARTQ, hence TC∗

N ⩽W iARTQ.
• Shuffle ⩽sW ARTQ, hence (LPO′)∗ × TC∗

N ⩽W ARTQ.

The rest of the section is devoted to find upper bounds for cARTQ, iARTQ and ARTQ. The first step to take is a
careful analysis of the proof of Lemma 44. For an additive colouring c : [Q]2 → S , the proof can be summarized as
follows:

• we start with an application of ORTQ to find an interval ]u, v[ such that all the colours of c
∣∣
]u,v[ are all J -

equivalent (Lemma 45).
• define the colouring γ : Q → S 2 and apply Shuffle to it, thus obtaining the interval ]x, y[.
• the rest of the proof consists simply in showing that ]x, y[ is a c-densely homogeneous interval.

Hence, from the uniform point of view, this shows that ARTQ can be computed via a composition of Shuffle and
ORTQ. Whence the next theorem.

Theorem 50. • cARTQ ⩽W (LPO′)∗ × LPO∗, therefore cARTQ ≡W (LPO′)∗.
• iARTQ ⩽W TC∗

N × LPO∗, therefore iARTQ ≡W TC∗
N.

• ARTQ ⩽W (LPO′)∗ × TC∗
N × LPO∗, therefore ARTQ ≡W (LPO′)∗ × TC∗

N.

Proof. The three results are all proved in a similar manner. We recall that LPO∗ ⩽W CN and observe that LPO∗ is
single-valued. This enables us to use Lemma 16 with LPO∗ in place of P.

For x ∈ {c, i, s} and every n ∈ N, let xARTQ,n be the restriction of xARTQ to instances of the form (S , c) with S
of cardinality n. Hence, by the considerations preceding the statement of the theorem in the body of the paper, we
have the following facts:



A. Pauly et al. / On the Weihrauch degree of the additive Ramsey theorem 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

• cARTQ,n ⩽W cShufflen2 ∗ ORTQ, hence, by Lemma 28 and Theorem 47, we have that cARTQ,n ⩽W

(LPO′)2
n2−1 ∗ LPO∗. By Lemma 16, we have that cARTQ,n ⩽W (LPO′)2

n2−1 × LPO∗, from which the claim
follows.

• iARTQ,n ⩽W iShufflen2 ∗ ORTQ, hence, by Lemma 31 and Theorem 47, we have that iARTQ,n ⩽W TCn2−1
N ∗

LPO∗. By Lemma 16, we have that iARTQ,n ⩽W TCn2−1
N × LPO∗, from which the claim follows.

• ARTQ,n ⩽W Shufflen2 ∗ ORTQ, hence, by Lemma 35 and Lemma 16, we have that ARTQ,n ⩽W (LPO′ ×
TCN)

2n2−1 ∗ LPO∗. By Lemma 16, we have that ARTQ,n ⩽W (LPO′ × TCN)
2n2−1 × LPO∗, from which the

claim follows.

□

5. ARTN and ORTN

We finally turn to the case of the additive and ordered theorems over N and prove Theorem 3. We obtain results
which are completely analogous to the case of Q when it comes to the additive Ramsey theorem. However, in
contrast to Theorem 47, the ordered Ramsey theorem for N exhibits the same behaviour as the additive Ramsey
theorem.

That the principles ORTN and ARTN are equivalent to Σ0
2-induction was established in [5], so we only focus on

the analysis of the Weihrauch degrees below. We first start by defining properly the principles involved, and then we
give the proof that TC∗

N, (LPO′)∗ or their product reduces to them. We then give the converse reductions, first for
the principles pertaining to the ordered colourings, and then we handle the additive colourings. The proof for the
ordered colouring is a simple elaboration on [5, Lemma 4.3]. For the additive colouring, formally the corresponding
statement in that paper, [5, Proposition 4.1], depends on the ordered version in a way that would translate to a
composition in the setting of Weihrauch degrees. It turns out that we can avoid invoking the composition by carefully
interleaving the two steps in our analysis.

5.1. Definitions
We have already covered the principles ORTN and ARTN in Section 2. The corresponding Weihrauch problems are
relatively clear: given a colouring as input, as well as the finite semigroup or finite ordered structure, output an
infinite homogeneous set. The principles cORTN and cARTN instead only output a possible colour for an infinite
homogeneous set – much like in the case for Q. However, the principles iORTN and iARTN will require some more
attention; now it is rather meaningless to ask for a containing interval. Nevertheless, the analogous principle will
also output some information regarding the possible location of an homogeneous set, without giving away a whole
set or a candidate colour, so we keep a similar naming convention.

Definition 51. Define the following Weihrauch problems:

• ORTN takes as input a finite poset (P,⪯P) and a right-ordered colouring c : [N]2 → P, and outputs an infinite
c-homogeneous set ⊆ N.

• ARTN takes as input a finite semigroup S and an additive colouring c : [N]2 → S , and outputs an infinite
c-homogeneous set ⊆ N.

• cORTN takes as input a finite poset (P,⪯P) and a right-ordered colouring c : [N]2 → P, and outputs a colour
p ∈ P such that there exists an infinite c-homogeneous set ⊆ N with colour p.

• cARTN takes as input a finite semigroup S and an additive colouring c : [N]2 → S , and outputs a colour s ∈ S
such that there exists an infinite c-homogeneous set ⊆ N with colour s.

• iORTN takes as input a finite poset (P,⪯P) and a right-ordered colouring c : [N]2 → P, and outputs a n0 ∈ N
such that there is an infinite c-homogeneous set X ⊆ N with two elements ⩽ n0.

• iARTN takes as input a finite semigroup S and an additive colouring c : [N]2 → S , and outputs a n0 ∈ N such
that there is an infinite c-homogeneous set X ⊆ N with two elements ⩽ n0.
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5.2. Reversals
Lemma 52. We have ECT ⩽sW iORTN and ECT ⩽sW iARTN.

Proof. Let f : N → k be a would-be instance of ECT. Then one may define the colouring f̃ : [N]2 → P(k) by
setting a ∈ f̃ (n,m) if and only if there is n′ with n ⩽ n′ ⩽ m and f (n′) = a. This colouring is both additive for
the semigroup (P(k),∪) and ordered by ⊆, and can be fed to either iORTN or iARTN. Let n0 be such that there is an
infinite f̃ -homogeneous set with first two elements k0 < k1 ⩽ n0. Clearly, every colour occuring in f after n0 needs
to occur in f̃ (k0, k1); so n0 is a solution of the given instance for ECT. □

Lemma 53. cORT∗
N ≡W cORTN and cART∗

N ≡W cARTN

Proof. The non-trivial reductions are easily made by amalgamating finite sequences of colouring via a pointwise
product, which will always still carry an additive or ordered structure. □

Lemma 54. LPO′ ⩽sW cORTN and LPO′ ⩽sW cARTN.

Proof. We use IsFinite in place of LPO′. We start with an input f : N → 2 for IsFinite. We compute f̃ : [N]2 → 2
where f̃ (n,m) = 1 iff 1 ∈ f−1([n,m]). This yields an additive and ordered colouring. The colour of any given
f̃ -homogeneous set indicates if f has infinitely many ones or not, thus answering IsFinite for f . □

5.3. Reducing the ordered Ramsey theorem over N to (LPO′)∗ and ECT
We now explain how to bound the Weihrauch degree of ORTN and its weakenings. To do so, it will be helpful to
consider a construction approximating would-be homogeneous sets for a given right-ordered colouring c : [N]2 → P
and a target colour p ∈ P. With these parameters, we build a recursive sequence of finite sets Y(p) : N → Pfin(N)
meant to approximate a p-homogeneous set (we shall simply write Y instead of Y(p) when p may be inferred from
context). If the construction succeeds, lim sup(Y) will be an infinite homogeneous set with colour p, otherwise
lim sup(Y) will be finite. But the important aspect will be that a fixed number of calls to (LPO′)∗ will let us know if
the construction was successful or not, while ECT can indicate after which indices n we shall have Yn ⊆ lim sup(Y)
when it succeeds.

Now let us describe this construction for a fixed c and p. We begin with Y0 = ∅ and will maintain the invariant
that max(Yn) < n and for every (k, k′) ∈ [Yn]

2, c(k, k′) = p. Then, for Yn+1, we have several possibilities;

• If min(Yn) exists and for any min(Yn) ⩽ k < n, we have that p ≺P c(k, n), we set Yn+1 = ∅ and say that the
construction was injured at stage n.

• Otherwise, if we have some k′ < n such that c(k′, n) = p and, for every k ∈ Yn, k < k′ and c(k, k′) = p, then
we set Yn+1 = Yn ∪ {k} and say that the construction progressed at stage n.

• Otherwise, set Yn+1 = Yn and say that the construction stagnated.

Clearly, we can also define recursive sequences injury(p) : N → 2 and progress(p) : N → 2 that witness whether
the construction was injured or progressed, and we have that lim sup(Y) is infinite if and only if injury contains
finitely many 1s and progress contains infinitely many 1s. lim sup(Y) is moreover always c-homogeneous with
colour p.

Lemma 55. For any ordered colouring c, there is p such that lim sup(Y) is infinite

Proof. The suitable p may be found as follows: say that a colour p occurs after n in c if there is k > m ⩾ n with
c(m, k) = p. There is a n0 such that every colour occuring after n0 in c occurs arbitrarily far. For the ⪯P-maximal
such colour occuring after n0, the construction above will succeed with no injuries after stage n0 and infinitely many
progressing steps (this is exactly the same argument as for [5, Lemma 4.3]). □

Lemma 56. We have that cORTN ⩽sW (LPO′)∗.
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Proof. Given an input colouring c, compute in parallel all injury(p) and progress(p) for every colour p and feed each
sequence to an instance of LPO′. By Lemma 55, there is going to be some p for which there are going to be finitely
many injuries and infinitely many progressing steps, and that p is the colour of some homogeneous set. □

Lemma 57. We have that ORTN ⩽W (LPO′)∗ × ECT.

Proof. Given an input colouring c, compute in parallel all injury(p) and progress(p) for every colour p and feed each
sequence to an instance of LPO′ and all injury(p) to ECT. As before, use LPO′ to find out some p for which the
construction succeed. For that p, ECT will yield some n0 such that injury(p)

n = 0 for every n ⩾ n0, so in particular,
lim sup(Y(p)) =

⋃
n⩾n0 Y(p)

n , which is computable from n0. □

Lemma 58. We have that iORTN ⩽sW ECT.

Proof. Given an input colouring c, consider for every colour p the sequence u(p) : N → {0, 1, 2} defined by
u(p)

n = min(3, |Yn|). Clearly it is computable from c. Applying ECT we get some np such that

• either there are infinitely many injuries after np

• or u(p)
k = u(p)

np for every k ⩾ np

By Lemma 6, a single instance of ECT can provide the finitely many answers for the finitely many colours.
By Lemma 55, we even know there is a p0 such that lim sup(Y(p0)) is infinite; additionally we defined u in

such a way that necessarily, np0 bounds two elements of lim sup(Y(p0)) because we shall have u(p0)
k = 2 for every

k ⩾ np0 . So we may simply take the maximum of all np to solve our instance of iORTN. □

This concludes our analysis of the ordered Ramsey theorem.

5.4. Reducing the additive Ramsey theorem over N to (LPO′)∗ and ECT
We now turn to ARTN. The basic idea is that, given an additive colouring c, it is useful to define the composite
colouring L ◦ c, with L being a map from a finite semigroup to its L-classes. ⩽R then induces a right-ordered
structure on the colouring. Constructing a L◦c homogeneous set X such that we additionally have that c(min X, x) =
c(min X, y) for every x, y ∈ X \ {min X} ensures that X is c-homogeneous by Lemma 21. So we will give a recipe
to construct exactly such an approximation, similarly to what we have done in the previous section.

So this time around, assume a semigroup S and a colouring c : [N]2 → S to be fixed. For every s ∈ S , we shall
define a recursive sequence of sets Y(s) : N → Pfin(N) (we omit the superscript when clear from context) such that
max(Yn) < n and Yn \ {min(Yn)} be homogeneous, with, if Yn ̸= ∅, c(min(Yn), k) = s for k ∈ Yn \ {min(Yn)}.

For n = 0, we define Y0 = ∅. For Yn+1, we have a couple of options:

• If Yn is empty and there is k < n such that c(k, n) = s and there is no k ⩽ k′ < n′ ⩽ n with c(k′, n′) <R s,
then set Yn+1 = {k} for the minimal such k and say that the construction (re)starts.

• If Yn is non-empty and there is some k with min(Yn) ⩽ k < n with c(k, n) <R s, set Yn+1 = ∅ and say that
the construction was injured at stage n.

• Otherwise, if Yn is non-empty and we have some min(Yn) < k < n with c(min(Yn), k) = s and c(k, n) R s,
set Yn+1 = Yn ∪ {k} and say that the construction progresses.

• Otherwise, set Yn+1 = Yn and say that the construction stagnates.

We can define auxiliary binary sequences injury(s) and progress(s) that witness the relevant events, and an infinite
homogeneous subset will be built as long as we have finitely many injuries and infinite progress.

Lemma 59. If injury(s) has finitely many 1s and progress(s) has infinitely many 1s, then X = lim sup(Y) \
{min(lim sup(Y))} is a c-homogeneous infinite set. Furthermore the colour of X is computable from s.
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Proof. That the condition is sufficient for X to be infinite is obvious; it only remains to show it is homogeneous.
Note that all elements in lim sup(Y) are necessarily R-equivalent to one another. Call y0 = min(lim sup(Y)). For
(l,m) ∈ [X]2, we necessarily have s ⩽L c(l,m). So by Lemma 21, we necessarily have c(l,m) H s. Additionally, we
know they belong to a H-class which is a group, so by algrebraic manipulations, we have that [X]2 is monochromatic
and the corresponding colour is the neutral element of that group. □

Lemma 60. There is some s such that injury(s) has finitely many 1s and progress(s) has infinitely many 1s.

Proof. Consider, much as we did in the proof of Lemma 55, a n0 such that all R-classes occurring after n0 occur
arbitrarily far. Consider a minimal such R-class R. For the minimal k0 such that no R-class strictly lower than R
occurs after k0, there is some s such that the set {n | c(k0, n) = s} is infinite; but, by construction, this set is exactly
lim sup(Y(s)) \ {k0}. □

With these two lemmas in hand, it is easy then to carry out a similar analysis as in the last subsection. We do not
expand the proof, which are extremely similar, but only summarize the results.

Lemma 61. We have the following reductions:

• ARTN ⩽W (LPO′)∗ × ECT
• cARTN ⩽sW (LPO′)∗

• iARTN ⩽sW ECT

5.5. Wrapping things up: deriving Theorem 3
Let us now combine the lemmas above to prove each item of Theorem 3:

• ORTN ≡W ARTN ≡W TC∗
N× (LPO′)∗: by combining the trivial observation that we have cARTN× iARTN ⩽W

ARTN × ARTN and all of the lemmas of Subsection 5.2, we have that TC∗
N × ECT ⩽W ARTN, which is hald

the equivalence required (recall that TC∗
N ≡W ECT (Lemma 6)). The reversal that improves this to an equality

is given by the first item in Lemma 61. The equivalence between TC∗
N × (LPO′)∗ and ORTN is established

similarly, the only difference being that the reversal is obtained by Lemma 57.
• cORTN ≡W cARTN ≡W (LPO′)∗: cARTN ⩽W (LPO′)∗ is a conclusion of Lemma 61, cORTN ⩽W (LPO′)∗ is

from Lemma 56 while the reversals are given by Lemma 54.
• iORTN ≡W iARTN ≡W TC∗

N: similarly, Lemmas 61 and 52 establish that iARTN ≡W TC∗
N, and the equivalence

iORTN ≡W TC∗
N is proven using Lemmas 58 and 52.

6. How the colours are coded
All principles we have studied that receive as input a colouring of some sort also receive explicit finite infor-

mation about the finite set/finite poset/finite semigroup of colours. This is not the approach we could have taken: in
the case of a plain set of colours, the colouring itself contains the information on how many colours it is using. In
the cases where the colours carry additional structure, this could have been provided via the atomic diagram of the
structure. This would lead to the requirement that only finitely many colours are used to be a mere promise.

We will first demonstrate the connection between the two versions on a simple example, namely cRT1
+. Let us

denote with cRT1
N the principle that takes as input a colouring α : N → N such that the range of α is finite, and

outputs some n ∈ N such that α−1(n) is infinite.

Proposition 62. cRT1
+ ⋆ CN ≡W cRT1

N

Proof. Instead of cRT1
+ ⋆CN ⩽W cRT1

N we show that cRT1
+ ⋆Bound ⩽W cRT1

N, where Bound receives as input an
enumeration of a finite initial segment of N, and outputs an upper bound for it. Here is how we produce the input to
cRT1

N given an input A to Bound and a sequence (ki, αi)i∈N of partial inputs to cRT1
+: We search for some ki0 to be
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defined, and then start copying αi0 until i0 gets enumerated into A (if this never happens, αi0 is total and becomes the
input to cRT1

N). Then we search for some i1 > i0 such that ki1 is defined, and then continue to produce the colouring
αi1 + k0; either forever or until i1 gets enumerated into A. We repeat this process until some iℓ is reached which is
never enumerated into A (this has to happen).

Given a colour c that appears infinitely often in the resulting colouring, we can retrace our steps and identify what
iℓ was. We can then un-shift c to obtain a colour appearing infinitely often in αiℓ , and thereby answer cRT1

+ ⋆ CN.
For the converse direction, we observe that CN can compute from a colouring α : N → N with finite range some

k ∈ N such that α is a k-colouring. □

The very same relationship holds for all our principles, i.e. the Weihrauch degree of the version without finite
information on the colours is just the composition of the usual version with CN. The core idea, as in the proposition
above, is that we can always start over by moving to a fresh finite set of colours. For the interval versions we may
have to do a little bit more work to encode the CN-output by ensuring that all “large” intervals can never be a valid
answer. As a second example, let us consider the variant iShuffleN of iShuffle where the number of colours is not part
of the input.

Proposition 63. iShuffle ⋆ CN ≡W iShuffleN

Proof. Again, we show iShuffle⋆Bound ⩽W iShuffleN. We have an enumeration of a finite initial segment A of N as
input to Bound, together with a sequence (ki, αi)i∈N of partial inputs to iShuffle. We produce a colouring α : Q → N
which will use only finitely many colours. We first search for the first i0 for which we learn that ki0 is defined. We
start copying αi to α. If i0 is enumerated into A at stage t, we assign every rational k

2−t the colour 0 in α. We search
for some i1 > i0 is defined, and then start assigning α(q) = αi1(q) + ki0 . This continues until potentially i1 gets
enumerated into A, and so forth.

The process has to eventually stop, as A is finite. Moreover, the final iℓ is such that αiℓ is total. We thus construct
a valid input for iShuffleN. By considering the length of a resulting interval I, we obtain an upper bound for the time
tfinal when we last saw a new i j number being enumerated into A – as any such interval cannot contain a rational of
the form k

2−tfinal
. Knowing an upper bound for tfinal enables us to find an upper bound kiℓ for A. We also know that

restricted to the interval I, αiℓ and α differ by a constant. Thus, I is also a valid output to iShuffle(kiℓ , αiℓ).
For the other direction, we again use the fact that CN can compute from a colouring α : N → Q with finite range

some k ∈ N such that α is a k-colouring. □

To see that this observation already fully characterizes the Weihrauch reductions and non-reductions between
the usual and the relaxed principles, the notion of a (closed) fractal from [14, 23] is useful.

Definition 64. A Weihrauch degree f is called a fractal, if there is some F :⊆ NN ⇒ NN with f ≡W F such that
for any w ∈ N∗ either wNN ∩ dom(F) = ∅ or F|wNN ≡W f . If we can chose F to be total, we call the Weihrauch
degree a closed fractal.

If f is a fractal and f ⩽W
⊔

i∈N gi, then there has to be some n ∈ N with f ⩽W gn. If f is a closed fractal
and f ⩽W g ⋆ CN, then already f ⩽W g. Of our principles, the versions with a fixed number of colours are closed
fractals, the versions with a given-but-not-fixed number of colours are not fractals at all, and the versions without
explicit colour information are fractals, but not closed fractals. From this, it follows that the versions with no explicit
colour information are never Weihrauch equivalent to our studied principles, and that versions without explicit
colour information are equivalent to one-another if and only if their counterparts with explicit colour information
are equivalent.

7. Conclusion and future work
Summary. We have analysed the strength of an additive Ramseyan theorem over the rationals from the point

of view of reverse mathematics and found it to be equivalent to Σ0
2-induction, and then refined that analysis to a
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Weihrauch equivalence with TC∗
N × (LPO′)∗. We have also shown that the problem decomposes nicely: we get the

distinct complexities (LPO′)∗ or TC∗
N if we only require either the set of colours or the location of the homogeneous

set respectively. The same holds true for another equally and arguably more fundamental shuffle principle, as well as
the additive Ramsey theorem over N that was already studied from the point of view of reverse mathematics in [5].

Perspectives. It would be interesting to study further mathematical theorems that are known to be equivalent
to Σ0

2-IND in reverse mathematics: this can be considered to contribute to the larger endeavour of studying princi-
ples already analyzed in reverse mathematics in the framework of the Weihrauch degrees. In the particular case of
Σ0

2-IND, it can be interesting to see which degrees are necessary for such an analysis. We refer to [10] for more on
this topic, and for a more comprehensive study of Ramsey’s theorem in the Weihrauch degrees.

Two contemporary investigations in the Weihrauch degrees concerning similar principles to (η)1<∞ are found in
[13] and [24]. The former is concerned with the problem of finding a monochromatic copy of Q as a linear order,
given a colouring of Q. The latter studies the problem of finding a monochromatic copy of 2<ω (seen as the structure
with the “prefix of” predicate) given a colouring of 2<ω. The corresponding Weihrauch degrees do differ from the
ones explored here, though.
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