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Abstract

The spectrum and potential of bottomonium mesons offer windows into strong
force phenomenology. This thesis investigates these two constructs at non-zero
temperature to explore thermal modifications of bound states. Lattice simula-
tions are performed on two generations of the fastsum ensembles using a non-
relativistic effective field theory of quantum chromodynamics, NRQCD. These
ensembles contain 2+1 flavours of dynamical sea quarks at temperatures span-
ning the pseudocritical temperature. Maximum likelihood estimation is used to
recover the spectrum of two representative bottomonium states, Υ and χb1, from
which the ground state mass and width are determined at non-zero temperature.
The central and spin-dependent potentials between the bottom quark and anti-
quark are calculated using the approach from the HAL QCD collaboration. The
standard implementation is used and then significant improvements are presented
that provide a validation of the use of the non-relativistic Schrödinger equation
at non-zero temperature.
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Chapter 1

Introduction

The development of Quantum Chromodynamics (QCD) by Yang and Mills [5];
Gell-Mann [6]; Ne’eman [7]; Han and Nambu [8]; Drell, Levy, and Yan [9]; Gross
and Wilczek [10]; Politzer [11]; and others was an outstanding achievement of the
mid-to-late twentieth century. Interesting historical accounts are given by [12,13].

The details of QCD pertinent to this thesis are outlined in Chapter 2. They
are presented in a way to motivate the need for a better understanding of the
thermal modifications of the bottomonium system. The Lagrangian of QCD is
stated alongside the definition and transformation properties of the constituent
elements. An outline of the current understanding of the QCD phase diagram
is given, with attention paid to the role played by chiral symmetry. The focus
shifts then to colour confinement and hierarchical suppression: the systematic
dissociation of different states at different temperatures that could be used to
infer the conditions in the quark-gluon plasma. Quarkonia, mesons formed of
a heavy quark and antiquark, are noted as excellent probes of this plasma and
some important properties of bottomonium are elucidated.

The focus of Chapter 3 is lattice QCD, a non-perturbative framework for
calculating hadronic observables in the strongly coupled regime of QCD. Monte
Carlo integration and importance sampling are introduced as means to efficiently
compute observables and the static quark potential is presented as a represen-
tative lattice observable. A prescription is given for altering the temperature of
lattice simulations before an effective field theory known as non-relativistic quan-
tum chromodynamics is outlined to make the calculations of heavy quarks more
feasible.

The author’s contributions begin in Chapter 4 with spectral reconstruction,
the task of recovering meson spectra from Euclidean correlation functions mea-
sured on the lattice. The inherent difficulties are identified and an overview of the
methods proposed for solving these is presented. Ansatze for spectral functions
are developed along with their corresponding correlation functions. Maximum
likelihood estimation is used to fit these ansatze to the lattice data and the
ground state mass and width are extracted at various temperatures spanning the
pseudocritical temperature. Careful checks are made to reduce, and extrapolate
away, the systematic dependencies of these measurements.
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Chapter 5 applies a method from the HAL QCD collaboration for calculat-
ing the interquark potential of bottomonium. The implementation follows the
currently established approach and constitutes the first report of the bottomo-
nium central potential at non-zero temperature using the HAL QCD method with
NRQCD quarks. The lattice calculation of the point-split correlation function,
the starting point of the HAL QCD method, is defined only along the axes of the
lattice to reduce the computational costs of the calculation.

Finally, Chapter 6 builds upon Chapter 5 by examining each step of the HAL
QCD method in further detail. This begins with an alternative calculation of
the point-split correlation function that significantly reduces the computational
costs; the calculation is then computed for all possible lattice sites. The specific
forms of the finite difference derivatives are examined, lattice discretisation errors
caused by a finite lattice spacing are quantified, and the importance of the quark
mass input into the calculation is highlighted. After which, an alternative form of
the HAL QCD method is developed with two improvements: firstly it allows the
validity of the HAL QCD approach to be examined, pertinent for the extension
of the method to non-zero temperature, and secondly it provides a self-consistent
determination of the quark mass, which otherwise requires external input. In
closing, the central and spin-dependent potentials are presented at a range of
temperatures, with the former being fit to the Cornell potential and the low
energy constants are presented as a function of temperature.
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Chapter 2

QCD

2.1 QCD Lagrangian

The theory of QCD prescribes that colour, a novel fundamental charge at QCD’s
inception, is a degree of freedom of quarks and gluons. On top of this, quarks also
carry degrees of freedom under the electromagnetic and weak nuclear forces. In
combination, quarks and gluons form colour-neutral states, hadrons, comprised of
two or three quarks: mesons and baryons respectively. Through e+e− collisions
and pion decays it was found that there are three colours of quark [14], yet
unlike these being three independent electromagnetism-like charges, they were
intimately connected through gauge transformations, what we now know to be
elements of SU(3).

QCD is a Yang-Mills theory with an SU(3) gauge group and six flavours of
quark: up (u), down (d), strange (s), charm (c), bottom (b), and top (t) [15].
The QCD Lagrangian density is

LQCD = q̄jf
(
i(γµDµ)

jk −mfδ
jk
)
qkf −

1

4
Ga
µνG

µν
a , (2.1)

for three colours j, k = 1, 2, 3; eight indices of Gell-Mann matrices a = 1, 2, ...8;
Lorentz indices µ, ν = 0, 1, 2, 3; with flavour indexed f ; and quark mass, mf .
Many of these indices will be dropped in subsequent formulae to simplify notation,
we are also implicitly using the summation convention. γµ are the Dirac matrices
that connect the spinor and vector representations of the Lorentz group. The
quark (anti-quark) fields q(x) (q̄(x)), defined at point x in spacetime, transform
under the fundamental representation of the gauge group, meaning

q(x) → q′(x) = Ω(x)q(x) ; q̄(x) → q̄′(x) = q̄(x)Ω(x)† (2.2)

where Ω is an element of SU(3). The gauge fields, Aaµ, transform under the adjoint
representation of SU(3) and appear in the Lagrangian through the covariant
derivative,

Dµ = ∂µ − ig
λa
2
Aaµ. (2.3)

3



The transformation properties of qi and Dµqi are the same by design. The cou-
pling constant, g, is analogous with the electric charge in Quantum Electrodynam-
ics (QED) and measures the strength of quark-gluon interactions. The matrices,
λa, are the Gell-Mann matrices which are in turn the generators of the group
SU(3); their Lie algebra reads

[λa, λb] = 2ifabcλc. (2.4)

fabc is the real, totally antisymmetric structure constant. Finally, for the terms
in the Lagrangian, the gluon field strength tensor is given by

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (2.5)

Whilst this Lagrangian is reminiscent of QED, the non-Abelian nature of
SU(3) (compared to the Abelian group U(1) for QED) adds significant complex-
ity. The final term in equation (2.5), which is not present in QED, leads to
interaction terms that are cubic or quartic in the gluon fields. These higher-order
terms are self-interactions of the gauge fields and give rise to the confining nature
of QCD [10,14].

The coupling in QCD is not fixed and instead runs with energy scale as cap-
tured in the renormalisation group equations [10, 11]. The way the coupling
(which we will rewrite as αs = g2/(4π) to make contact with α from QED) runs
with energy scale, µ, is given by the β-function which reads

µ2∂αs
∂µ2

= β(αs) = − β0
2π
α2
s +O(α4

s), (2.6)

with β0 = 11− 2
3
Nf , for Nf flavours of quark [16]. The key feature for non-Abelian

gauge theories, notably for us QCD, is that the sign of the β-function is negative
and thus the theory is asymptotically-free. This has interesting implications for
the study of QCD as one can formally define two regimes: perturbative and
non-perturbative. At low energies the coupling is large and any perturbative
expansion breaks down, this prohibits the study of low-energy states, such as
hadrons, with perturbative techniques. Chapter 3 introduces one method for
probing the non-perturbative regime of QCD, lattice QCD.

2.2 Phase diagram of QCD

Having access to the Lagrangian of QCD is currently not enough to describe the
whole landscape of the strong force and its interactions. It is interesting to study
the dynamics of QCD with varying temperature, T , and (baryon) chemical po-
tential, µB, for various reasons. One such reason is the expectation of a QCD
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Figure 2.1: One proposal of the phase diagram of QCD from [24]. Net baryon
density and baryon chemical potential are used interchangeably. Two existing
collider experiments, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider (LHC) at CERN probe the
region indicated by the red line. A new collider, Facility for Antiproton and Ion
Research (FAIR), is planned to probe physics along the navy line.

phase transition playing a significant role in early Universe dynamics [17–20], for
example, the nature of the QCD phase transition can affect the abundances of
light elements. The dynamics of QCD are both explored using, and required to
understand, heavy ion collisions at colliders like the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven National Laboratory and the Large Hadron Collider
(LHC) at CERN [21,22]. This offers insight into the axis of increased temperature
and nominal µB.

The mapping out of the various regions of the phase diagram is an active area
of research. The currently supported features are: an area of colour confinement
at small T and µB, quark-gluon plasma (QGP) formation at large T and moderate
µB where colour confinement no longer occurs, and a possible lens into neutron
star phenomenology at large µB [23]. These are summarised in Figure 2.1.

Although Figure 2.1 is only a representative figure, and there is much debate
about the details, a feature that is common to many depictions of the phase dia-
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gram is the chiral transition. It is also significant that chiral symmetry restoration
is expected to occur in the neighbourhood of the deconfining transition. For this
reason, we will explore some of the details of chiral symmetry here.

The Lagrangian introduced in Section 2.1 couples left and right handed fermions
only through the mass term [25]; the left (right) handed fields are defined as
qL,R = 1∓γ5

2
q, where γ5 = iγ0γ1γ2γ3

1. Therefore, for the case of massless light
quarks (u, d, s) there exists a chiral symmetry such that the Lagrangian is invari-
ant under the individual (or combined) applications ofuLdL

sL

→ UL

uLdL
sL

 ;

uRdR
sR

→ UR

uRdR
sR

 . (2.7)

UL,R ∈ SU(3)L,R (i.e. an element of SU(3) that only acts on the left (right)
handed quarks) and thus the chiral symmetry group is SU(3)L × SU(3)R. The
QCD vacuum is not invariant under these chiral transformations, even for mass-
less quarks: the interactions between quarks and gluons give the quarks an ef-
fective mass which breaks chiral symmetry. Therefore, this symmetry is spon-
taneously broken. Quarks in Nature are not massless, and so the symmetry is
explicitly broken, too. Nevertheless, at high enough energies we can consider
chiral symmetry breaking as a perturbation of the true Lagrangian for the light
quarks. However, the effect is too large for heavy quarks (c, b, t) for this to be
a valid perturbation theory [26]. This is why the effective number of flavours in
the chiral group is 3, rather than 6.

Despite the explicit breaking of this symmetry, the order parameter, the chiral
condensate, can still be used as a remnant order parameter to define a pseudo-
critical temperature of the spontaneous symmetry breaking for lattice QCD sim-
ulations [27]. This is how Tpc is established in the lattice configurations presented
in Section 3.6. The chiral condensate is defined as

⟨q̄q⟩ = T

V

∂lnZ

∂mq

, (2.8)

and the accompanying chiral susceptibility is

χq̄q =
T

V

∂2lnZ

∂m2
q

. (2.9)

T denotes the temperature, V the spatial volume, mq the quark mass, and Z the
partition function.

For the remainder of this work, we will consider µB = 0 and explore the
dependence on temperature.

1By convention the Dirac indices will run from 0− 3 in Minkowski spacetime but they will
change to 1− 4 for the Euclidean spacetime of the lattice.
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2.3 Quarkonium

Quarkonia are mesons comprised of a heavy quark and anti-quark of the same
flavour, pertinent for our discussions are charmonia and bottomonia, cc̄ and bb̄
respectively. They have several interesting properties, notably their large binding
energies and small radii: the lightest vector meson in charmonium (bottomonium)
is the J/ψ (Υ) with a binding energy of 0.6 GeV (1.1 GeV) and a radius of 0.5fm
(0.3fm) [28].

Eichten et al. accurately predicted the charmonium spectrum by considering a
simple non-relativistic interaction between quarks underpinned by a phenomeno-
logically inspired potential, the Cornell potential [29–31]. This potential inter-
polates between a repulsive, Coulomb-like, core and a linearly rising, confining,
large distance form, given by

VCornell(r;T ) = −α(T )
r

+ σ(T )r + C. (2.10)

The parameters α and σ are the coupling and string tension respectively (for
convention I will often report

√
σ rather than σ and refer to both as the string

tension).
√
σ was found to be 0.445 GeV in [28].

In Chapter 3 I will introduce non-relativistic QCD (NRQCD), a non-relativistic
effective field theory to reduce the computational demands of simulating QCD
on the lattice. Then, in Chapters 5 and 6, I will first assume, and then test,
the picture that quark dynamics can be modelled using a Schrödinger equation
with a single potential. Both of these simplifications gain support from the accu-
racy with which Eichten et al. were able to predict charmonium masses using a
non-relativistic potential model. I will study bottomonium throughout this the-
sis, and as the mass scales in bottomonium are larger than charmonium, these
simplifications are even more justified.

In their seminal paper, Matsui and Satz offer up the suppression of J/ψ pro-
duction in nuclear collisions as an “unambiguous signature of quark-gluon plasma
formation” [32]. They show how colour screening would prevent the binding of
cc̄ states as the screening radius becomes shorter than the radius of the bound
state. Colour screening is analogous to Debye screening in QED whereby the
polarisible medium screens the effect of electrical charge and thus reduces the
impact of long-range effects. In QED one replaces the Coulomb potential with a
screened form that reads

VQED(r) =
e2

r
→ e2

r
exp(−r/rD), (2.11)

which has only minor modification when the distance, r, is smaller than the Debye
radius, rD, but shows significant dampening of the potential at scales larger than

7



rD. In QCD we expect a similar effect, screening of the colour charges and a
reduction in the impact of long-range physics. Resultantly, for r ≫ rD, quarks
in a meson can no longer impact each other and thus a bound state, which is
dependent on their interaction, will become unbound or “melt”.

A further complexity that opens a window into the QGP is that the minimum
Debye radius that allows a bound state to exist is dependent on the temperature
through the running coupling of QCD, αeff(T ) [32]. Because different quarkonium
states vary in size, colour screening can cause the suppression of different states
at distinct temperatures, known as hierarchical suppression. Therefore, analysis
of charmonium, and bottomonium by extension, would offer a thermometer of
sorts. This thesis can be seen as work towards calibrating this thermometer: in
Chapter 4 through direct spectral analysis then in Chapters 5 and 6 through
thermal modifications to the interquark potential, through which spectra can be
recovered.
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Chapter 3

Lattice QCD

To understand the hierarchical suppression of quarkonium states we must probe
the non-perturbative regime of QCD. At these energy scales, as the name suggests,
perturbative methods fail due to the size of the coupling, so the powerful toolkit
developed for solving interactions of QED is of limited use. Instead, we use lattice
QCD: the only known first-principles method for calculating the non-perturbative
physics of QCD.

Lattice QCD is an application of the wider approach of lattice field theory
to QCD. Lattice field theories are formulated in a discrete space-time governed
by an Euclidean signature. The discretised space-time locations are separated
by a lattice spacing, a, which explicitly introduces an ultraviolet (UV) regulator
in the form of a momentum cut-off at order 1/a. The finiteness of the lattice
offers regularisation of the infrared (IR) physics and in combination with the UV
regulator these lead to a rigorously defined field theory. For much of this chapter
I will be following the notation of [16], a resource the reader is pointed to for
further details.

I will now introduce only a small selection of the necessary elements of lat-
tice QCD, focusing on those most pertinent to our goal of exploring quarkonium
spectra at non-zero temperature: calibrating the thermometer by which we mea-
sure the QGP. I will start with the fundamentals of taking a measurement using
Monte Carlo methods. Then I will introduce the formalism required to under-
stand the equations of lattice QCD, paired with an example of a specific lattice
measurement, the static quark potential. This is followed by a prescription of
simulating QCD at non-zero temperature and then present an effective field the-
ory that reduces the computational demands of simulations by narrowing the
range of energy scales considered. The chapter concludes with a report of the
lattice set-up used for these works aimed at the technical reader.
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3.1 Monte Carlo methods

To measure the expectation value of an observable, O, one must evaluate the
path integral over all possible configurations of the quark and gluon fields,

⟨O⟩ = 1

Z

∫
D[q, q̄, A]e−iSQCD[q,q̄,A]O[q, q̄, A]. (3.1)

The quark and anti-quark fields are again denoted by q and q̄ respectively, the
gluon fields are given by A, the measure of integration by D[q, q̄, A], and the
partition function, Z, which plays the same role as it does in statistical mechanics.
The partition function is the normalisation given by

Z =

∫
D[q, q̄, A]e−iSQCD[q,q̄,A], (3.2)

from which one can determine thermodynamic quantities.
When it comes to numerically solving the discretised version of equations (3.1)

and (3.2) for QCD one encounters a problem. The integrals quickly grow to an
intractable number of dimensions as the size of the lattice increases, as well as
when the complexity of the theory increases. We turn, therefore, to methods of
approximating equation (3.1), namely Monte Carlo methods of integration.

Consider, for a moment, a pure gauge theory. I will denote the representation
of gauge fields on the lattice Uµ(n), which is related to the continuum gauge fields,
Aµ(n), through

Uµ(n) = eiaAµ(n), (3.3)

for finite lattice spacing a, Lorentz index, µ, and lattice site, n. More details of
the QCD formalism will be given in Section 3.2. To approximate a measurement
using a Monte Carlo sum one calculates

⟨O⟩ ≈ 1

N

∑
UN∈ p(UN )

O[UN ]. (3.4)

That is to say one can take the average of N values of the observable, each eval-
uated on a particular configuration of a gauge field, UN , provided that a specific
distribution of configurations is sampled from, p(UN ). The probability distribu-
tion is known but collating an ensemble of fields that are truly a representation
of this distribution is challenging, yet mandatory. I will postpone the discussion
of measuring an observable on a single field configuration until Section 3.3, I
will, however, now briefly explore the way in which we arrive at a representative
ensemble of configurations upon which we take each measurement.

The probability distribution over field configurations, p(UN ), is proportional
to the Boltzmann weight, exp(−S[UN ]), for a given action S[UN ] (the specific
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form of the action is the topic of Section 3.2 and not required here). This prob-
ability distribution is highly skewed with most configurations contributing little
weight and relatively few configurations making up most of the total weight.
This means that randomly sampling fields and weighing their contribution with
exp(−S[UN ]) would be incredibly inefficient. Instead, we opt for importance
sampling. To perform importance sampling we adjust field values and use the
Metropolis-Hastings algorithm as an accept/reject step to build a Markov chain
of configurations. This allows us to correctly sample fields with probability
p(UN ) = exp(−S[UN ]). Readers wanting a broader review of update algorithms
are pointed towards [16, 33]. The notion that we will take forward is the idea
that to perform numerical simulations of lattice QCD one computes an ensemble
of representative gauge fields and only afterwards uses these for taking measure-
ments.

The addition of fermions into the theory is non-trivial but does not change
the picture elucidated above: an ensemble of gauge fields is generated first, upon
which a measurement is made afterwards.

The difficulties with fermions are that they obey Fermi statistics and are thus
difficult to represent computationally. Grassman numbers are anti-commuting
numbers that encode Fermi statistics but their algebra must be handled analyt-
ically. We draw a distinction between sea and valence quarks: defined through
the picture of a background of pair-creating and annihilating sea quarks in which
the valence quarks propagate, with the valence quarks being those of relevance
to hadronic measurements. The distinction is drawn purely for technical reasons
and the handling of each is vastly different. The inclusion of valence quarks will
be discussed in Section 4.1 when we consider meson correlators. Sea quarks, how-
ever, are incorporated during the generation of the gauge fields, the algorithms
through which they are included lie outside the scope of this work (see [16, 33]).
The takeaway is this: the gauge fields generated are those that are ‘aware’ of the
influence of the sea quarks, and measurements of valence quark behaviour are
made upon these gauge fields. Therefore, equation (3.4) is still valid for a theory
with fermions.

The gauge fields used throughout this thesis were generated by the fastsum
collaboration and more details will be provided in Section 3.6.

3.2 Lattice QCD formalism

To arrive at the lattice version of the QCD action we must first introduce the
building blocks of the theory: the lattice itself and the matter and gauge fields
as well as their transformation properties. We define a lattice, Λ, to be a four-
dimensional hypercube with three dimensions of space and one of time governed
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by an Euclidean space-time metric,

Λ = {n = (n1, n2, n3, n4)|n1, n2, n3 = 0, 1, ..., Ns − 1;n4 = 0, 1, ..., Nτ − 1}. (3.5)

The vectors, n, label space-time locations on the lattice which are each separated
by the lattice spacing, a, and therefore any physical distance would be x = an.

The fermions in our theory live on lattice sites labelled by n, so the quark and
anti-quark fields are defined at

q(n), q̄(n). (3.6)

These fields carry the same degrees of freedom as the continuum representation of
fermions: colour, spinor, and flavour indices. They also transform in the same way
as their continuum counterpart; for an element, Ω(n), of SU(3), they transform
as

q(n) → q′(n) = Ω(n)q(n) ; q̄(n) → q̄′(n) = q̄(n)Ω(n)†. (3.7)

The introduction of the gauge fields confronts one of the fundamental dif-
ferences between the lattice and continuum: the nature of derivatives. On the
lattice, one must take a discretised derivative whereby the value of the field at
two different lattice sites is considered. If we observe the transformation property
of, for example, a combination of fields separated by the unit distance along the
µ axis, namely

q̄(n)q(n+ µ̂) → q̄′(n)q′(n+ µ̂) = q̄(n)Ω(n)†Ω(n+ µ̂)q(n+ µ̂), (3.8)

then we can see that this term is not gauge invariant. We introduce our gauge
fields (also known as link variables), Uµ(n), an oriented element of SU(3) that
lives on the links between lattice sites to enforce gauge invariance. These are
exactly as defined in equation (3.3). If we insert a link variable into the bilinear

q̄(n)Uµ(n)q(n+ µ̂) → q̄′(n)U ′
µ(n)q

′(n+ µ̂) = q̄(n)Ω(n)†U ′
µ(n)Ω(n+ µ̂)q(n+ µ̂),

(3.9)
then we can make the whole object gauge invariant by proposing that the gauge
fields transform as

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†. (3.10)

Notationally, the link variable Uµ(n) joins the sites n and n+ µ̂ oriented from the
former to the latter. The hermitian conjugate is defined as

U−µ(n) ≡ Uµ(n− µ̂)†. (3.11)
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We now have enough gauge invariant objects to define the so-called naive
fermion action,

SF [q, q̄, U ] = a4
∑
n∈Λ

q̄(n)

(
4∑

µ=1

γµ
Uµ(n)q(n+ µ̂)− U−µ(n)q(n− µ̂)

2a
+mq(n)

)
.

(3.12)
This form of the fermion action actually gives rise to many more fermions than
were originally intended. To highlight this I will define the responsible term from
the action, namely the Dirac operator given by

D(n|m)αβ;ab =
4∑

µ=1

(γµ)αβ
Uµ(n)ab δn+µ̂,m − U−µ(n)ab δn−µ̂,m

2a
+mδαβ δab δn,m,

(3.13)
where I have included the colour (a, b) and Dirac (α, β) indices for completeness
here, yet they will again be dropped for notational clarity going forward. I will
also consider the trivial gauge, meaning Uµ(n) = I. The Fourier transform of the
Dirac operator, for a lattice of volume |Λ|, defined through

D̃(P |Q) = 1

|Λ|
∑
n,m∈Λ

e−iP ·naD(n|m)eiQ·ma, (3.14)

for momenta P and Q, reads

D̃(P |Q) = 1

|Λ|
∑
n∈Λ

e−i(Q−P )·na

(
4∑

µ=1

γµ
eiQµa − e−iQµa

2a
+mI

)
. (3.15)

Taking the massless case gives

D̃(P |Q) = δ(P −Q)
i

a

4∑
µ=1

γµ sin(Pµa). (3.16)

A single fermion corresponds to a pole in the propagator, which is the inverse of
this Dirac operator, D−1, such a pole is caused when equation (3.16) is zero.
The pole at P = (0, 0, 0, 0) corresponds to the fermion that we intended to
introduce, however, the lattice momenta are defined to lie in the range Pµ ∈
(−π/a, π/a] and thus we get spurious fermions at 15 different momenta (P =
(π/a, 0, 0, 0), (0, π/a, 0, 0) etc.). These unphysical fermions are called fermion
doublers and cannot be excluded without using an alternative form of the fermion
action.
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To counter these unphysical fermion doublers, Wilson proposed an additional
term to the Dirac operator that distinguishes the physical fermion from its dou-
blers. The so-called Wilson term is added to give

D̃(P ) =
i

a

4∑
µ=1

γµ sin(Pµa) + I
1

a

4∑
µ=1

(1− cos(Pµa)). (3.17)

This has the effect of attributing a mass proportional to 2/a to all of the fermion
doublers without changing the physical fermion. In the continuum, these doublers
become far heavier than the physical state and thus they decouple from the theory.
Using this altered form of the Dirac operator in the fermion action alleviates the
problem of fermion doublers.

Despite this alleviation of the fermion doublers, and as was alluded to in
Section 3.1, the handling of fermions on the lattice is highly non-trivial. The naive
action is seldom used in precision QCD calculations. The high-level details of the
action used by the fastsum collaboration is mentioned in Section 3.6 however
this is aimed at the technical reader and is not a first-principles introduction of
the fermion action. We will not provide further details regarding the fermion
action in this work.

For the gauge action, we can create the simplest gauge invariant object com-
prised purely of gauge fields, the trace of the plaquette. The plaquette, Uµν(n),
defined as

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)

= Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)
†.

(3.18)

The first line depicts how this is a closed 1 × 1 loop of links yet the second line
is used for notational convenience. To make explicit the gauge transformation
of this object, consider the transformation property given by equation (3.10): a
product of links where each link is connected to the former would transform as
a string of these expressions. Importantly, there would be a mass cancellation of
Ω(m)† and Ω(m) pairs because the links are connected, all that would remain is
an Ω(n) at the start of the loop and an Ω(n′)† at the end. This is to say that if
even the start and end points are connected, i.e. in a closed loop, and we take
the trace of this plaquette, then all of the transformation matrices cancel and the
object is gauge invariant. A gauge action can be formed by the sum over traced
plaquettes counted only along one orientation. The simplest implementation of
this sum is

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re tr[I− Uµν(n)]. (3.19)

Therefore, formally, the lattice QCD action is simply

S[q, q̄, U ] = SF [q, q̄, U ] + SG[U ]. (3.20)
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As I hope the wording has been suggesting, these are not unique definitions
of the fermion or gauge actions. Each definition used should reproduce the con-
tinuum expression when one takes the continuum limit (defined as a → 0), but
the size of the discretisation errors present before this limit can vary with specific
forms of the action. The exact action used for the fastsum configurations is
addressed in Section 3.6.

3.3 Static quark potential

Equipped with the formulation of lattice QCD, one measurement that can be
made upon these lattice configurations is that of the Wilson loop from which we
can extract the potential between two infinitely heavy quarks. We call this po-
tential the static quark potential as the infinitely heavy quarks cannot propagate
in space and are thus static. We will review the results extracted from the static
quark potential in Chapters 5 and 6 where we will also report research into the
potential of heavy (but finite mass) quarks.

The Wilson loop is a gauge-invariant trace over a particular closed loop of
link variables given by

L[U ] = Tr

[ ∏
n,µ∈L

Uµ(n)

]
. (3.21)

The closed loop, L, is constructed of four parts: two so-called Wilson lines con-
necting two spatial points, m and n, at different points in Euclidean time, 0 and
nτ , given by S(m,n, 0) and S(m,n, nτ ), respectively; and two temporal trans-
porters that connect the edges of each Wilson line at the same points in space,
given by

T (n, nτ ) =
nτ−1∏
j=0

U4(n, j) ; T (m, nτ ) =
nτ−1∏
j=0

U4(m, j). (3.22)

An example of a Wilson loop is shown in Figure 3.1.
As previously mentioned, this is a gauge-invariant quantity. However, choos-

ing a particular gauge makes the following physical interpretations of the Wilson
loop easier. A similar, albeit more detailed, heuristic argument can be found
in [16] and much more detail is provided in [34]. The chosen gauge is the tempo-
ral gauge with the only pertinent detail being that A4(n) = 0. Consequently, the
temporal transporters reduce to simply

T (n, nτ ) = T (m, nτ ) = I. (3.23)
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T (m, nτ ) T (n, nτ )
†

S(m,n, 0)†

S(m,n, nτ )

τ

x (m,0) (n,0)

(m,nτ ) (n,nτ )

Figure 3.1: An example of a Wilson loop. The arrows depict the directed path,
L, that is defined in equation (3.21).

With the temporal transporters trivialised, the Wilson loop is reduced to the
two-point correlator of the Wilson lines

L[U ] = Tr
[
S(m,n, nτ )S(m,n, 0)†

]
. (3.24)

The Hermitian conjugate of the second Wilson line is a result of orientation
around the loop. I will postpone the details of large time limits of the expectation
value of two point correlators until Section 4.3.1 but simply state here that, at
late times, the expectation value of the Wilson loop behaves as

⟨L⟩ =
∑
k

⟨0|Ŝ(m,n)|k⟩⟨k|Ŝ(m,n)†|0⟩e−ianτEk . (3.25)

Ŝ is the operator form of the functional S, a is the lattice spacing, and k indexes
the ground and excited states, each with energy Ek. All that remains is to make
contact with which system these energy levels refer to.

The hopping expansion is a series expansion of the quark propagator in terms
of the quark mass, valid in the limit of heavy quark mass. Whilst the details
are not covered here (the interested reader can consult [16, 34]) we will take the
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result that, in the limit of infinite quark mass, the quark propagator can be
approximated by the shortest path of link variables connecting two points: this is
exactly the Wilson line. Therefore, the physical system whose states are labelled
k in equation (3.25) is that of two infinitely heavy quarks. This means that the
energy of this ground state, E1, is the free energy between two bound quarks of
infinite mass: the static quark potential, V .

Calculating the expectation value in equation (3.25) at various quark separa-
tions (r = |m− n|) gives

⟨L(r)⟩ = e−ntaV (r)
(
1 +O(e−nta∆E)

)
, (3.26)

where ∆E is the difference between the ground and the first excited state of the
quark-antiquark pair. This means that in the large-nt limit, one can extract the
static quark potential with only a minor correction due to excited states.

We will return to the static quark potential in Chapters 5 and 6 when we
introduce the HAL QCD method for calculating the potential between two heavy
quarks.

3.4 Non-zero temperature

For a computation of an observable over the entire lattice, the lattice must be
finite. The finite spatial extent dictates the resolution of momenta available on
the lattice and the temporal extent dictates the temperature. The result evincing
the latter statement will just be stated here, but the interested reader is pointed
to [16, 33, 35] for more details. By considering a particular form of the partition

function on the lattice in terms of the Hamiltonian operator, Ĥ, and the number
of lattice sites in the time dimension, Nτ , as

Z = Tr
[
e−aNτ Ĥ

]
, (3.27)

we can draw a parallel with statistical mechanics where the partition function
reads

Z = Tr
[
e−βĤ

]
. (3.28)

We identify β, equal to 1/(kBT ) in that domain (with kB being the Boltzmann
constant), as aNτ in lattice field theory. Thus, we have the relation

aNτ = β =
1

kBT
, (3.29)

giving two ways to change the temperature in a lattice simulation: changing the
lattice spacing or changing the number of points in the time dimension. The
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lattice spacing is intimately related to the running of the gauge coupling and
quark mass through the renormalisation group equations, and therefore altering
a along a line of constant physics is highly non-trivial. It is for this reason
that the approach taken by the fastsum collaboration, and thus this work, is
to change temperature with a fixed a but varying Nτ , the so-called fixed scale
approach. This is beneficial as once a single temperature has been tuned to give
the desired physical setting, simulating other temperatures just requires changing
Nτ . However, the obvious drawback of this is that a naive comparison between
different temperatures is between different sized data and thus we must take care
to control the data in a way that minimises this systematic difference.

Given equation (3.29) it is clear that any notion of zero temperature in a
finite lattice simulation is not strictly accurate, instead one uses zero temperature
when referring to a temperature far below the region of any phase transitions.
The range of temperatures used for these works are shown in Tables 3.1 and
3.2; two generations of configurations were used, generation-2L (for Chapter 4)
and generation-2 (for Chapters 5 and 6). Chronologically, generation-2 preceded
generation-2L.

Lattice studies at non-zero temperature can certainly be done on isotropic
lattices: where the lattice spacing in the time and space dimensions are equal,
as = aτ = a. See, as examples, [36–41]. However, there are benefits to studying
anisotropic lattices, where as = ξaτ with ξ ̸= 1. Firstly, and most importantly for
these works, it increases the resolution in the time dimension as there are ξ times
more data available for analysis without having to change the spatial volume.
Secondly, a smaller aτ reduces the discretisation errors in the quark evolution
equation that will be introduced in Section 3.5. The exact value of the anisotropy,
ξ, changes between generations-2 and -2L of the fastsum configurations (see
Tables 3.1 and 3.2) but is approximately 3.5 for both.

3.5 Non-relativistic QCD

Following the argument of Thacker and Lepage [42], we consider the relevant
energy scales for bottomonium: the bottom quark mass, mb, its 3-momentum,
mbv, and its kinetic energy, mbv

2. If we take the case where v is small (measured
in units of the speed of light), then these scales are greatly separated: one needs a
lattice that is large relative to 1/(mbv

2) but a lattice spacing that is small relative
to 1/mb to control finite volume and lattice spacing effects respectively. For the
bottomonium vector meson Υ, v ∼ 0.1c and thus we are certainly in the regime
where both scales are hard to achieve simultaneously.

Non-relativistic quantum chromodynamics (NRQCD) is an effective field the-
ory (EFT) that explicitly removes the energy scale of mq by integrating it out
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of the theory. By this, it is meant that we introduce an energy cut-off, Ξ, along
with new local interactions into our theory to account for any relativistic physics
that occurs at scales beyond our cut-off. It would be our intention to write out
the resulting theory to all relevant orders in 1/Ξ and observe the effect of send-
ing the cut-off to infinity. However, as stated by Thacker and Lepage, if one
requires accuracy of order (p/Ξ)n then one need only include O(1/Ξn) interac-
tions. Therefore, if we set Ξ ∼ mq (and subsequently (p/Ξ)n ∼ vn) then we
can rephrase the new local interactions as a Taylor expansion in the heavy quark
velocity of the Lagrangian and any terms that are not accounted for are swept
away as corrections at a certain order in the Taylor series. One should note that
this series converges quickly for bottomonium with v ∼ 0.1c.

One further convenience of the theory is introduced by means of a Foldy-
Wouthuysen-Tani transformation [43] which decouples the quark and antiquark
fields. The immediate effect of this is that the particle and antiparticle number
of each field is conserved separately and thus there is no annihilation to gluons or
pair production. The former only offers a small contribution to the total decay
rate and the latter occurs at energy scales around that of our cut-off; both effects
can be reintroduced either as a new Fermi interaction term or as a perturbation
to the existing theory [42]. I will return to the other benefit of this decoupling
momentarily.

The fermionic part of the NRQCD Lagrangian expansion to O(v4) in terms
the decoupled quark and anti-quark fields, q and q̄ respectively, is given by

L = q†
(
Dτ −

D2

2mb

)
q + q̄†

(
Dτ +

D2

2mb

)
q̄

− c1
1

8m3
q

[
q†(D2)2q − q̄†(D2)2q̄

]
+ c2

ig

8m2
q

[
q†(D · E− E ·D)q + q̄†(D · E− E ·D)q̄

]
− c3

g

8m2
q

[
q†σ · (D× E− E×D)q + q̄†σ · (D× E− E×D)q̄

]
− c4

g

2mq

[
q†σ ·Bq − q̄†σ ·Bq̄

]
.

(3.30)

The first line contains the zeroth order term and the next-to-leading-order con-
tributions on the following lines [44]. The covariant derivative is Dµ = {D, Dτ}
in continuum NRQCD, but when discretised for the lattice it becomes the central
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derivative, ∆µ, built from forward and backwards finite differences

∆(+)
µ q(n) = Un,µq(n+ µ̂)− q(n)

∆(−)
µ q(n) = q(n)− U †

n−µ̂,µq(n− µ̂)

∆µq(n) =
1

2

(
∆(+)
µ q(n) + ∆(−)

µ q(n)
)
.

(3.31)

E and B are the chromoelectric and chromomagnetic fields respectively and σ are
the Pauli matrices. The unknown constants ci, mq, and g capture the relativistic
physics that was integrated out by the cut-off. Each ci can be computed using
perturbation theory if the quark mass is heavy enough: one can compare compu-
tations of amplitudes using QCD and NRQCD and adjust the coupling constants
until the two agree. At tree-level in perturbation theory ci = 1. Such constants
can also be numerically tuned to data (from relativistic QCD simulations) should
the perturbative treatment fail.

Another key result is that the decoupling of quark and antiquark fields leads
to a significantly simpler propagation of quarks. The propagation is solved as an
initial-value problem, given by

G(x, τ + aτ ) =

(
1− aτH0|τ+aτ

2k

)k
U †
4(x, τ)

(
1− aτH0|τ

2k

)k
(1− aτδH)G(x, τ).

(3.32)
The Lepage parameter, k, is introduced to add stability to the propagation of
quarks with high momentum, often k = 1 is sufficient but we will come back to
this in Section 6.1.2 when we consider a case where it must be increased. The
initial condition is G(x, 0) = S(x), where S(x) is a particular choice of source, this
will be explored more in Section 4.2.1. This expression contains the contribution
from the leading order kinetic operator,

H0 = − ∆2

2mb

(3.33)

where ∆2n =
∑3

i=1(∆
(+)
i ∆

(−)
i )n, as well as radiative corrections introduced through

δH =− (∆2)2

8m3
b

+
ig0
8m2

q

(∆± · E− E ·∆±)

− g0
8m2

b

σ · (∆± × E− E×∆±)− g0
2mb

σ ·B

+
a2s∆

4

24mb

− aτ (∆
2)2

16m2
b

.

(3.34)

The final correction of which we will mention is tadpole improvement whereby
we address corrections of O(a2s) in H0 and O(aτ ) in G(x, τ + aτ ) by means of
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altering the link variables through

Ui(x) →
Ui(x)

us
U4 →

U4(x)

uτ
. (3.35)

Here, us,τ are the average space-like (s) and time-like (τ) links, the former is
determined from the plaquette expectation value whereas the latter is actually
just set to unity for the work of the fastsum collaboration [45].

Given that the energy scale mq has been integrated out of the analysis, the
masses that one extracts from NRQCD simulations need to be additively renor-
malised. One actually calculates the mass splitting between particles and thus
one must set the scale using a known particle mass. For these works this is done
by comparing a lattice measurement of the ground state mass of the S-wave vector
state, Υ, to the physical value given in [46], and more recently [47]. The details
of the lattice estimation of this value are explored in Section 4.6.1.

3.6 Configuration parameters

Both generations of the fastsum configurations use 2+1 flavours of dynamical
sea quarks with stout-linked, clover-improved Wilson fermions and Symanzik-
improved gauge fields. Their differences are presented in Tables 3.1 and 3.2 for
generation-2 and generation-2L respectively; L is for light as that generation
contains lighter sea quarks. More details of the set-up are elucidated in [27]. The
tuning of the bare parameters and the lowest temperature configuration from each
generation were kindly supplied by the Hadron Spectrum Collaboration [48–51].
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Nτ T [MeV] T/Tpc Nconfigurations

40 141 0.760 500
36 156 0.844 500
32 176 0.950 1000
28 201 1.086 1000
24 235 1.267 1000
20 281 1.520 1000
16 352 1.900 1000

Table 3.1: fastum generation-2 configuration parameters. Constant across all
are the lattice size, (24as)

3×Nτaτ , with as = 0.1205(8) fm, aτ = 0.03506(23) fm,
and thus ξ = 3.444(6), pseudocritical temperature, Tpc ≈ 181 MeV, and a pion
mass of mπ = 384(4) MeV. More details can be found in [27,52]

Nτ T [MeV] T/Tpc
128 47 0.284
64 95 0.569
56 109 0.650
48 127 0.758
40 152 0.910
36 169 1.011
32 190 1.138
28 217 1.300
24 253 1.517
20 304 1.820
16 380 2.275

Table 3.2: fastum generation-2L configuration parameters. Constant across all
are the lattice size, (32as)

3 × Nτaτ , with as = 0.1121(3) fm, aτ = 0.003246(7)
fm, and thus ξ = 3.453(6), pseudocritical temperature, Tpc ≈ 167 MeV, a pion
mass of mπ = 239(1) MeV, and Nconfigurations ≈ 1, 000. More details can be found
in [27,53].

22



Chapter 4

Spectral reconstruction

In this chapter, I introduce the problem of spectral reconstruction whereby in-
medium properties of mesons are related to the two-point correlation function
measured on the lattice. I will highlight how the extraction of these physical
properties is hampered by spectral reconstruction being an ill-posed problem and
thus the recovered spectra are not unique. Once this is established, I will provide
more details of the calculation of the correlation functions and show that we can
observe temperature dependence of the correlation functions themselves. Then
the rest of the chapter will explore the approach of using maximum likelihood
estimation to fit some physics-informed ansatze to the correlation functions in
a way that alleviates the ill-posed nature of the reconstruction. This provides
estimates of the ground state mass and width of the Υ and χb1 at a range of
temperatures.

The analysis of this chapter will be performed on the fastsum generation-2L
ensembles.

4.1 Spectral reconstruction as an ill-posed in-

version

In-medium properties of QCD bound states can be completely described by the
spectral function, ρλ(ω, T ), for a given channel indicated by λ, at an energy
ω [54]. We expect the spectral function to change with temperature, T , but
in a non-trivial way, a way which will be explored in this work1. The spectral
function is not an observable that is measured on the lattice, however, it can be
extracted from the meson correlator (whose name will be used interchangeably
with correlator and correlation function) through the following integral transform
[45]

Cλ(τ ;T ) =

∫ ∞

0

dω

2π
K(τ, ω;T )ρλ(ω;T ). (4.1)

1The temperature dependence will often be dropped from the notation as it seldom enters
analytic expressions.
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The kernel, K(τ, ω;T ), is set by the theory that is being considered. For NRQCD
the kernel is independent of temperature [55] and reads

K(τ, ω;T ) = K(τ, ω) = e−ωτ . (4.2)

The zero momentum meson correlator is defined2 as

Cλ(τ) =
∑
x

⟨Oλ(x, τ)O
†
λ(0, 0)⟩. (4.3)

The operator, Oλ, which is known as a meson interpolator, is given in terms of
quark fields, q(x), and anti-quark fields, q̄(x), by the expression

Oλ(x) = q̄(x)λq(x). (4.4)

The symmetry properties of λ define the channel represented by the correlator.
For the two states considered in this work, Υ and χb1, λ = σj and λ = (σ×∇)j
respectively; σi are the Pauli matrices (for three spatial dimensions given by
i = 1, 2, 3), j = 1, 2, 3 to account for each of the spin-triplet states, and the
covariant derivative operator is given by

∇iq(x, τ) =
[
Ui(x, τ)q(x+ î, τ)− U †

i (x, τ)q(x− î, τ)
]
. (4.5)

Combining equations (4.1) and (4.2) one arrives at the spectral function and
correlation function being related via a Laplace transform

Cλ(τ, T ) =

∫ ∞

0

dω

2π
e−ωτρλ(ω, T ). (4.6)

Finding the inverse Laplace transform of a general function is, at best, a non-
trivial task [56]. To further restrict the task of recovering ρλ(ω) from a given
Cλ(τ) there is the fact that the resolution of the latter is entirely limited by
computational resources. The correlation function is an observable in a lattice
simulation, and with the current resource is sampled O(10 − 100) times. The
resolution that one requires the spectral function to be sampled at in order to
resolve narrow peaks is, at least, O(1000). Furthermore, measurements of Cλ(τ)
are subject to error. The combination of these points makes spectral reconstruc-
tion an ill-posed problem [57,58]. The implications of this are that a large number
of spectral functions could recreate the correlator data measured on the lattice,
and thus any reconstructed spectral function is not unique.

2A word on notation: in Chapters 5 and 6 we will consider a ‘point-split’ meson correlator,
C(r, τ), which I mention here only for completeness. The form presented here will only exist in
this chapter.
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At this point, we have established the relationship between the correlator
that we can measure on the lattice and the spectral function from which we can
extract the physical properties of mesons. However, we have just seen that the in-
version required to recover the spectrum, equation (4.6), is ill-posed. There are a
plethora of approaches to circumvent this problem, from Bayesian methods: max-
imum entropy methods (MEM) [45,59–72] and the Bayesian reconstruction (BR)
method [73, 74]; to the Backus-Gilbert method [75–78]; novel machine learning
approaches [79–81]; and methods involving the fitting physics-inspired ansatze to
the correlators [82–85]. In this work, we will use maximum likelihood estima-
tion to fit interpretable ansatze to the correlators, and thus we are following the
works from the final of the aforementioned methods; this is the first application
of maximum likelihood estimation to extract the ground state width of mesons
from fastsum ensembles. Maximum likelihood estimation allows us to extract
the mass and width of bottomonium mesons at a variety of temperatures with
a smaller number of free parameters than the number of points in the correla-
tor, which alleviates part of the ill-posed nature. Finite measurement noise on
observables cannot be avoided. First, however, I will develop some more of the
necessary details for computing equation (4.3).

4.2 Correlation functions

4.2.1 Local and smeared correlation functions

Much of the subtlety of the calculation of the meson correlator is not needed
for this work. For more details, the reader is directed to [16, 33]. One such
subtlety that I will only briefly expand upon is in the introduction of the quark
propagator (also referred to as the inverse Dirac operator), D−1. Equation (4.3)
is written here in a formal form, in Chapter 6 I will introduce an alternative
form of calculating the meson correlator (albeit one must take r = 0 to match
equation (6.4) with this work) that contains D−1 and is the form one calculates in
practice. This propagator is a very sparse and highly correlated matrix, therefore
there is a lot of redundancy in its computation. Encapsulated in this matrix is the
quark propagation from all possible ‘source’ points to all possible ‘sink’ points. A
source (sink) can be considered the origin (end-point) of a quark’s propagation, it
has spacetime, colour, and Dirac indices. A particular source can be introduced
such that we need only calculate a single column of the quark propagator, which
is enough for the computation of meson correlators. The simplest source that
achieves this is the point source, a δ-function in all indices localising the source
to a single point in spacetime, colour, and Dirac index.

The meson interpolator was defined in equation (4.4). In theory, any operator
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with the correct quantum numbers could act as a valid meson interpolator. In
practice, however, the form can be optimised to give a stronger signal in the
correlator. This will become more apparent later, in equation (4.13), when we
see that the correlator is proportional to the overlap of the operator between
the vacuum and state of interest. One way of increasing this overlap is in the
choice of source. A source that mimics a realistic spatial wave function improves
the overlap of the operator [16, 86]. These are known as smeared sources, and
the same process applied to the sink gives a smeared sink. For this work, the
smeared source/sink was created to have a strong overlap with the ground state
in each channel, and thus one would expect fewer excited state contributions from
a correlator built of a smeared source and sink. The details of the smearing used
can be found in [27,52,53].

In this chapter, we will consider the correlator between a point source and
point sink (so-called local correlator) and the correlator between a smeared source
and identically smeared sink (called smeared correlator). All analysis will be done
on both local and smeared correlators, and, in theory, the ground state parameters
should remain the same between the two.

4.2.2 Temperature dependence of correlation functions

The goal of the maximum likelihood fits (which will be introduced in Section
4.3) is to track how the mass and width of bottomonium states change with
temperature. We can, however, just at the level of the correlators, show that
there are thermal effects in these lattice observables. We cannot attribute these
to any physically interpretable changes in the states, but the benefit of observing
changes at this level is that there are no modelling assumptions made yet.

Throughout this chapter, I will report results for the vector state, Υ, and the
axial-vector state, χb1, as representative S-wave and P-wave states respectively.
These are consistently reported by the fastsum collaboration so will lead to
better comparison. As well as this, the Υ is much more precisely measured by
the PDG of the two S-wave states, and, of the P-wave states, the χb1 has the
largest decay fraction into γΥ(1S) which is a clear detection channel [47].

Figure 4.1 shows the local correlators for the representative S- and P-wave
states. The statistical errors grow with time and are larger for χb1 than Υ. The
same is true for the smeared correlators shown in Figure 4.2. However, with the
correlators spanning so many orders of magnitude, and with thermal effects being
small, it is hard to notice any changes with temperature in this form.

To amplify any changes we consider the ratio of the of a correlator and the
coldest correlator, this is shown in Figures 4.3 and 4.4. This is made easier by the
NRQCD framework as there is no temperature dependence in the kernel. Some
immediate observations from Figure 4.3 are that the thermal effects are present
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in all correlators, yet they are larger for the χb1, as are the statistical errors.
With the exception of the correlators measured on the two coldest lattices, which
cannot be resolved within errors, there is a systematic change of the correlators
with temperature. Very early times notwithstanding, the correlators are larger
for hotter simulations. The same behaviour is evident in the ratio of the smeared
correlators to the coldest smeared correlator (see Figure 4.4).

One can also consider the effective mass, defined as

Meff(τ) = ln

(
C(τ)

C(τ + 1)

)
, (4.7)

to observe thermal effects. The details of the renormalisation of the masses ex-
tracted from these NRQCD simulations are postponed until Section 4.6.1, how-
ever, the result is that the effective mass, in GeV, is related to the values reported
in this section, Meff aτ , through

Meff[GeV] =Meff aτ × a−1
τ [GeV] + 7.463. (4.8)

The value of a−1
τ [GeV] for the generation-2L configurations was determined

using the mass of the Ω baryon in [51], it was found that a−1
τ [GeV] = 6.079 GeV.

Figure 4.5 shows the effective mass of the Υ and χb1 states from the local
correlators. From this we see that the thermal effects and errors are larger in the
χb1 correlator: the thermal effects are best seen by the difference between the data
in the range τ/aτ ∼ 10− 30. It is important to point out that for T > 127 MeV
the effective mass does not seem to have reached a plateau, therefore, for these
temperatures there is no significant ground state dominance even at late times.
However, they do appear to be following the behaviour of the colder lattices:
tending towards a plateau within a few per cent of each other.

The effective mass of the smeared correlators tells a different story. For both
S- and P-waves, shown in Figure 4.6, the different temperatures do not appear
to be converging on the same value. The approximate value of the plateau for
the T = 47 MeV lattice does not seem to have changed from the case of local
correlators, as we would hope. Nevertheless, the behaviour of bending downwards
of the hotter lattices was not present in the local correlators. This is indicative
of two possible causes: either the smearing used is not appropriate (the smearing
function had a poor overlap with the ground state), or the thermal width of the
ground state is more pronounced in the smeared data. Fine-tuning the smearing
of these correlators lies outside the scope of this work. The latter cause, however,
can be explored here. Given that the relation between the spectral function and
correlation function is a Laplace transform, one can think of the effect of finite
width as follows: as τ increases, the exponential suppression of higher energies
increases, this means the dominant contribution to the effective mass comes from
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further and further down the low-energy tail of the broad distribution and thus it
appears like a lower and lower energy peak, therefore the effective mass decreases
with time. We can’t attribute this behaviour directly to ground state parameters,
but, providing the smearing is appropriate, it is suggestive that the ground state
width increases with temperature in the smeared correlators. This argument is
developed in Appendix A where we consider the behaviour of the effective mass
for a correlator of a known form.

4.3 Maximum likelihood for spectral reconstruc-

tion

The previous section established that there are temperature dependent effects
present in the correlation functions. Also, we could see from the effective mass
that the mass, and to some extent the width, of the ground state could explain
the temperature dependence of the correlators. In this section, we will explore
this behaviour in more detail by developing three ansatze in order to use maxi-
mum likelihood estimation to extract the ground state mass and width at various
temperatures.

4.3.1 Developing the ansatze

A natural starting point is to see what we can glean about the form of the
correlator in the special case of zero temperature. We begin by introducing the
definition of the Euclidean two-point correlation function [16],

⟨O2(τ)O1(0)⟩ =
1

Z
Tr
[
e−(aNτ−τ)ĤÔ2e

−τĤÔ1

]
. (4.9)

The length of the temporal extent is aNτ , the Hamiltonian is given by Ĥ, and

the normalisation factor Z = Tr
[
e−aNτ Ĥ

]
can be identified with the partition

function in statistical mechanics. To be explicit about the trace we introduce a
complete set of Fock states, |n⟩, that are eigenstates of the Hamiltonian, leaving

⟨O2(τ)O1(0)⟩ =
1

Z

∑
n

⟨n|e−(aNτ−τ)ĤÔ2e
−τĤÔ1|n⟩. (4.10)

One can introduce a second complete set of states |m⟩ for convenience such that

⟨O2(τ)O1(0)⟩ =
1

Z

∑
m,n

⟨n|e−(aNτ−τ)ĤÔ2e
−τĤ |m⟩⟨m|Ô1|n⟩ (4.11)
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and then act on these states with the Hamiltonian operator to write this in terms
of eigen-energies

⟨O2(τ)O1(0)⟩ =
1

Z

∑
m,n

e−(aNτ−τ)Ene−τEm⟨n|Ô2|m⟩⟨m|Ô1|n⟩. (4.12)

In the case where Ô1 = Ô2 (which is the case for the meson correlators explored
in this work) and in the limit aNτ → ∞ (zero temperature) we arrive at

Cλ(τ) =
∑
n

|⟨0|Ôλ|n⟩|2e−Enτ . (4.13)

Where |0⟩ represents the vacuum whose energy, E0, is normalised to 0.
One can see that when the relationship between the correlator and the spectral

function is a Laplace transform, then a spectral function that is a sum over δ-
functions would recover a correlator in the form of (4.13).

With the previous result in mind, and following a similar process to that laid
out in [83], we consider the energy spectrum of an NRQCD meson to consist
of a set of δ-functions, peaks, with the lowest energy peak corresponding to the
ground state and all higher peaks being that of excited states. In the infinite
volume limit (i.e. the thermodynamic limit) we would expect some of these
higher energy peaks to form a continuum, and thus it is reasonable to prescribe
the following representation of the spectrum

ρ(ω) = 2π
∑
i

Aiδ(ω −Mi) + θ(ω − s0)ρcont(ω), (4.14)

where θ(ω − s0) is the Heaviside step function and Ai is related to the overlap
between the meson interpolator and the Fock states (see equation (4.13)). This
splits the spectrum into two parts: a part that would comprise the continuum
in the infinite volume limit, ρcont(ω), and then a sum over the remaining states
indexed by i. We assume that the continuum behaviour would only contribute
above some threshold energy, s0.

To further simplify this expression we consult the exponential suppression of
the high-energy contributions to the spectral function shown in equation (4.2),
noting that this suppression means that only a small number of early time lattice
points are sensitive to the nature of ρcont. By not placing much emphasis on these
early times we can neglect the continuum contribution and continue to simplify
the functional form we expect for the spectrum.

Further pushing the exponential suppression of the higher energies we can
consider the spectrum a combination of ground state and excited state contribu-
tions, without really speculating about this excited state behaviour but simply
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postulating that the spectrum will look like

ρ(ω) = 2πAδ(ω −M) + ρexcited(ω), (4.15)

where all the behaviour that is not captured by the ground state peak is amalga-
mated into a single spectral function ρexcited(ω). The excited state behaviour is
inherently a higher energy feature and thus suffers from more suppression. This
is the final form of how we expect the spectrum to look at finite volume and
strictly zero temperature.

To adjust our above reasoning to the non-zero temperature spectrum, we
simply ask how the increase in temperature would affect equation (4.15). The
non-zero temperature spectrum takes the general form

ρ(ω) = ρground(ω) + ρexcited(ω), (4.16)

with each term on the right-hand side to be parametrised by an ansatz.
The simplest ansatz that one could suggest given equations (4.15) and (4.16)

is
ρ(ω) = 2πAδ(ω −M). (4.17)

This would allow us to fit the ground state mass, M , and the overlap prefactor
A.

The next order of complexity could be either to: include thermal broadening
of the ground state, or to include excited states. The latter will be postponed
for the moment. To arrive at the next most natural ansatz, the δ-function is
generalised to include a width,

ρ(ω) =

√
2π

Γ
Ae

−
(

ω−M√
2Γ

)2

. (4.18)

The third parameter, Γ, is the width of the state. A changing width could be
caused by thermal effects or a finite lifetime of the state. Whilst [83] parameterise
the broadening with a Lorentzian, significantly distinguishing the two at the level
of numerical errors present in our lattice simulations is unclear. As will be shown
in equation (4.21) the Gaussian has a closed form inverse Laplace transform and
thus gives a simple ansatz.

Finally, for this analysis, we add the simplest extra term to represent the
excited states and arrive at the most complex ansatz considered,

ρ(ω) =

√
2π

Γ
A1e

−
(

ω−M1√
2Γ

)2

+ 2πA2δ(ω −M2), (4.19)

where it is understood that M2 > M1.
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We can formulate the correlation functions that would correspond to the spec-
tral functions given in equations (4.17), (4.18), and (4.19) using the Laplace trans-
form given in equation (4.6). These lead to three distinct ansatze, or models, to
compare to the correlator data:

C(τ ;A,M) = Ae−Mτ (4.20)

C(τ ;A,M,Γ) = Ae
−τ

(
M−Γ2τ

2

)
(4.21)

C(τ ;A1,M1,Γ, A2,M2) = A1e
−τ

(
M1−Γ2τ

2

)
+ A2e

−M2τ . (4.22)

I will refer to the ansatze in equations (4.20), (4.21), and (4.22) as the two-,
three-, and five-parameter ansatze respectively.

The Laplace transform in equation (4.6) is over half of the real line (ω ∈
[0,∞]), however, this leads to a more complex ansatz when it comes to the Gaus-
sian terms. In Section 4.3.3 we will explore how each of the parameters in these
correlator ansatze can be seeded from intuitive arguments, however, this is much
more difficult if we perform the integral over only half the real line due to the
increased complexity of the ansatz. We instead opt to extend the range of integra-
tion to all real ω ∈ [−∞,∞] and arrive at the ansatze shown in equations (4.21)
and (4.22). This simplification is discussed in Appendix A where it is shown that
the simpler forms of the ansatze do not differ from the true forms by more than
a few percent.

Now that we have established some ansatze that we would like to fit to our
correlators, I will cover some of the statistics underpinning maximum likelihood
estimation such that we can determine the values of the physical parameters.

4.3.2 Maximum likelihood statistics

The likelihood that a given model, y(x; θ), with a number of tunable parameters,
θ, ‘fits’ data, D = {xi, yi}, is denoted L(y(θ)|D). It describes the probability
density that the model, with specific parameters, would take the values of the
data. One approach to finding the best model to represent data is to maximise
this likelihood function.

To illustrate the way in which we find the parameters that maximise the
likelihood we consider the following example: each datum, yi, is independent and
has measurement error, σi, drawn from a Gaussian. We consider the likelihood in
this case, i.e. the probability that each datum being drawn from an independent
Gaussian centred at the model’s predicted value, y(xi; θ), gives the measured
value, yi, plus or minus some small, constant interval dy. This is

L(y(θ)|D) =
∏
i

[
e
− 1

2

(
yi−y(xi;θ)

σi

)2

dy

]
. (4.23)
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Then, if we define the least squares error as,

Least squares error =
∑
i

(yi − y(xi; θ))
2 , (4.24)

it becomes clear that one can maximise the likelihood by minimising the least
squares error: the maximum of the likelihood function is when the exponent is
minimised, and this exponent is minimised when

∑
i (yi − y(xi; θ))

2 is minimised
(for a fixed σi). Finally, to conclude I will define the χ2 statistic as

χ2 =
∑
i

(
yi − y(xi; θ)

σi

)2

. (4.25)

Minimising this quantity gives the same best-fit parameters as maximising the
likelihood. The χ2 per degree of freedom, which will be denoted χ2

ν , is often
reported as a means to compare between models of differing complexity.

Measurements on the lattice are not independent, there are spatial and tempo-
ral correlations in the gauge fields as well as correlations between configurations
within the ensemble. These all propagate into the correlator. The spacetime
correlations come from both the physical correlation of the system and from only
applying local updates to gauge fields during a single step of the accept/reject al-
gorithm. The correlations between configurations come from the autocorrelations
in the Markov chain itself. Nevertheless, in a more general sense than what was
laid out above, χ2 minimisation leads to the same estimating equations as max-
imum likelihood estimation [87] and thus the correlations do not undermine our
approach of χ2 minimisation. So, despite not applying directly here, equations
like (4.23) contextualise how the parameters fit by χ2 minimisation correspond
to the most likely model to fit the data.

The fits in this chapter do not account for correlations between the data at
different times, and are called uncorrelated fits; the cause of these correlations is
that at all times the correlation function is generated from the same gauge field.
Dealing with such correlations in lattice calculations is difficult (see, for example,
the discussions in [88]). To ignore correlations is also known as the diagonal
approximation, as one assumes that the covariance matrix, defined as

Sij =
1

N − 1

N∑
n=1

(yi(n)− ȳi)(yj(n)− ȳj), (4.26)

is non-zero only along the diagonal. Here we have defined the samples of set
i to be yi(n), of which there are N , and their mean is ȳi; the same is true for
the index j. Another common method for tackling the problems with correlated
fits is to perform singular value decomposition (SVD) cuts; by this it is meant
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that one removes the contribution to the covariance matrix that corresponds to
the smallest eigenvalue, as this eigenmode will dominate the calculation of the
correlated χ2. Using either the diagonal approximation or SVD cuts changes the
physical meaning of χ2, and the impact on this work is that our uncorrelated χ2

will be underestimated. As a final comment, one expects that the χ2
ν from a full,

correlated, fit should lie around 1 if the fit is valid [89]; thus in the uncorrelated
fits of this work we would expect slightly below 1.

The ansatze in equations (4.20), (4.21), and (4.22) take the form of the model
in equation (4.23) and the normalisation, mass, and width in these ansatze are
the parameters to be fit by this maximum likelihood minimisation.

4.3.3 Fitting algorithm

The χ2 landscape, i.e. χ2 as a function of all fit parameters, θ, is highly mul-
timodal, and the gradient of this landscape spans many orders of magnitude.
These factors make for a hard time minimising χ2(θ).

Given that the gradient is so varied we opted for the Nelder-Mede algorithm
(often called the simplex algorithm) as it only involves evaluations of the function,
and no information of the derivative is required [90].

As for the multimodality, this is a more challenging problem to solve, we chose
to tackle this in two ways. Firstly, the algorithm for fitting the spectrum contains
many physics-informed seeding routines to ensure that we begin the fit closest to
where we would expect the global minimum to be. This is a clear bias, albeit an
intuitive one. With that being said, we never restrict the fit parameters to lie in
specific ranges for the final optimisation, and thus if there were a global minimum
elsewhere then the parameters are able to find it, in theory. Secondly, once we
have found a minimum, we perturb the best-fit parameters slightly and rerun the
minimisation routine. We do not consider the minimum to be global if the same
minimum is not found the second time. It should be noted, however, that neither
method completely alleviates the problem of a multimodal landscape.

We explore three fitting functions in this work. However, I will only outline
the fitting procedure for the five-parameter ansatz (equation (4.22)), as the other
ansatze follow the same procedure, only they terminate after seeding fewer pa-
rameters. Therefore, I will be seeding the following parameters: A1,M1,Γ, A2,
and M2. The following algorithms will be based on heuristic arguments.

We begin with the intuition that eventually the ground state will dominate the
correlator, and we call the times for which this is the case, late times. Therefore,
at these late times, a single exponential ansatz for the correlator should be suitable
(thus assuming C(τ) = A1 exp(−M1τ)). With this in mind, we perform linear
regression on the logarithm of the correlator at late times, the gradient and y-
intercept can be trivially related to A1 and M1 through
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lnC(τ) = −M1τ + lnA1. (4.27)

To seed the third parameter, Γ, we begin with A1 and M1 fixed to the values
they were just seeded to. We then take the Gaussian fit function from (4.21) and
fit Γ using a single dimensional golden section search [89]. This one-dimensional
fit is simpler than if all three parameters were being varied at once to find their
optimal values. However, once Γ has been seeded then we do allow A1,M1, and
Γ all to vary and optimise these parameters using the simplex algorithm. This is
also fit to the correlator at late times to avoid excited state contributions.

Seeding A2 andM2 requires more steps. Firstly, we use the seed parameters of
A1,M1, and Γ and create something approximating a ‘ground state correlator’ by
use of equation (4.21), this is created for all times in the time window. We then
remove this from the full correlator, leaving, if the three parameters were perfectly
fit, only excited state contributions. Finally, linear regression is performed on the
logarithm of this remaining correlator to seed A2 andM2, analogous to the seeding
of A1 and M1.

These seeding steps are vital to fitting the ansatz to data and are essentially
required due to the complexity of the problem. However, the heuristics that
motivate them are imperfect and this leads to failures for known reasons. Firstly,
if the data contains too large a contribution from excited states then the final
five-parameter fit often does not converge to a stable minimum. This does not
affect the seeding of the first three parameters as they are fit to late times where
these excited states are suppressed. However, if the ansatz chosen contains only
the three parameters (equation (4.21)) then the final fitting step to the entire
time window can also fail to converge due to excited states. This failure often
occurs when the time window starts too soon. The second known cause of failure
is if the excited state contribution is too small. In this case, when trying to
remove the ground state contributions from the total correlator (the penultimate
seeding step) there can be negative values in the correlator. These negative values
cause the logarithm of the correlator to be undefined at certain points, and thus
the linear regression step fails. This kind of failure occurs when the time window
starts too late, and was found to be particularly common when fitting to smeared
correlators.

4.4 Time window effects

As the method used by the fastsum collaboration is to change temperature with
a fixed scale approach (meaning that the temperature is changed by changing
the number of sites in the time dimension, see Section 3.4), there are inherent
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systematic effects when making comparisons across different temperatures. Dif-
ferent temperatures correspond to correlators defined on differing numbers of
temporal points. Moreover, even without the systematic effect of the fixed scale
approach, the relative contributions of energy levels change with time: estimat-
ing the ground state parameters at, for example, τ = 15aτ , where there are large
excited state contributions, compared to at τ = 127aτ , where such contributions
are negligible, is unwise. This can easily be seen by how much the effective mass
changes with time, like in Figure 4.5.

There are two solutions to reduce these systematic effects: one could attribute
a systematic error to each measurement that accounts for varying the time win-
dow, or one could also make comparisons only between measurements taken from
the same time window. Both have their merits. The former allows the result to be
quoted out of the context of the specific time window in which it was measured.
The latter allows for better comparisons to be made within the data at the same
time window: the data would be left with only statistical errors and thus one can
resolve smaller significant differences between results at different temperatures.
Both approaches will be used in this work, Section 4.6.2 contains the comparisons
between data with the same time window and Section 4.6.3 reports the data after
the time windows dependence has been extrapolated out and integrated into a
systematic and statistical error.

For both methods, it still makes sense to analyse the data over a time window
that reduces the size of the systematic effects. The remainder of this section
will be dedicated to finding a time range, comprised of a start and end, τ1 and
τ2 respectively, that minimises the dependence of the fitted values on the time
range.

4.4.1 Start time, τ1

The smallest temporal extent considered in this work is Nτ = 16. One would
assume that as all temperatures contain the range τ/aτ = [0, 15] then there is
no reason to exclude any in this data. This is not the case. One such reason is
that during our heuristic arguments leading to the ansatze under investigation
(Section 4.3.1) we relied on the exponential suppression of high energy features
affecting only early times. In other words, we required insensitivity to early time
features of the correlator in order to develop our ansatze. Another reason is that
in NRQCD the correlator at τ = 0 is simply an initial condition (see Section 3.5)
and thus does not contain any relevant physics.

Conversely, if the start time is too late then we do not capture enough excited
state contributions in the correlator and the fits fail to converge (as was spoken
of in Section 4.3.3). Given then, that the choice of τ1 is more like a balance of
how much excited state contribution to include in the correlator, we can see how
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this affects fitted values of the ground state mass over different time ranges for
local as well as smeared correlators.

For this analysis, we will be using the ansatz given by equation (4.22). Figure
4.7 shows the ground state mass recovered from fits to the correlators at different
values of τ1 and τ2. The top panel shows the fitted mass for both local and
smeared correlators with differing τ1 being given by different colours. The bottom
panel of this figure shows the same analysis but for only the smeared correlators,
zoomed in as they vary on a smaller vertical scale. From Figure 4.7 we can clearly
see that for local correlators the choice of τ1 greatly impacts the fitted value of
the ground state mass. This effect is present, however markedly reduced, in the
smeared correlator; it is assumed that the effect is mitigated by the smearing
suppressing the excited state effects that are causing these systematic changes.
To disentangle physics from systematics, these plots consider a single temperature
and show how the choice of τ1 provides robustness against the choice of τ2. A
general trend exists that the larger τ1, the more stable the fit of the ground state
mass is upon changing τ2. This reaffirms the notion that at later τ1, the excited
state contributions provide less of an impact on the fit. The limit is clear, however.
For the local correlator, one cannot fit in the range (τ1, τ2) = (10, 15)aτ , likewise
for the smeared correlator in the range (5, 15)aτ . These are both one extreme of
the balance that we are trying to draw: the balance between the stability of the
fit and enough data to perform the fit. Fortunately, the difference in Figure 4.7
between the second-largest τ1 and the largest, for local and smeared, is small. So,
not much stability is lost by reverting to the τ1 values that allow for analysis of
all time ranges.

Another thing we can probe to assess the optimal time range is the quality
of the fits. We will consult the χ2

ν for a given time range, as well as the ratio of
the best fit over the correlators. The former will be the goodness-of-fit parameter
that will best define the quality, but the latter gives a more visual representation.
For this investigation, we chose a single temperature, T = 95 MeV (Nτ = 64),
which is the coldest lattice that does not suffer from large errors at large times.
Figure 4.8 shows the ratio of the fitted correlator to the actual correlator for both
Υ and χb1, local and smeared, for a range of start times, τ1. From this figure we
can see that the best fits always favour the largest τ1. This is reaffirmed by Table
4.1 that reports the χ2

ν for a range of fits. Therefore the time ranges that the χ2
ν

would suggest for both correlators are as late as possible. I also note that the fits
to smeared correlators are of much higher quality than to local correlators.

With that being said, one can see from Table 4.1 that although the five-
parameter ansatz leads to a better fit than the three-parameter ansatz, the χ2

ν for
the fits to the local correlator are significantly larger than 1. Further compounding
this is that the values reported are assuming uncorrelated data, and thus the true
χ2
ν would be larger.
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Type State τ1/aτ Three-parameter χ2
ν Five-parameter χ2

ν

Local Υ 0 N/A 1501758
Local Υ 3 7607046 10174
Local Υ 5 2815462 2093
Local Υ 8 669946 242*
Local Υ 10 150690 N/A
Local Υ 12 63862 N/A
Local χb1 0 N/A 734105
Local χb1 3 630451 1662
Local χb1 5 278905 427
Local χb1 8 84041 65*
Local χb1 10 38822 N/A
Local χb1 12 18458 N/A
Smeared Υ 0 36711 368
Smeared Υ 3 705 1*
Smeared Υ 5 276 0.2
Smeared Υ 8 87 N/A
Smeared Υ 10 24 N/A
Smeared Υ 12 14 N/A
Smeared χb1 0 N/A 241
Smeared χb1 3 119 0.3*
Smeared χb1 5 27 0.2
Smeared χb1 8 6 N/A
Smeared χb1 10 3 N/A
Smeared χb1 12 1 N/A

Table 4.1: Quality of fits to the T = 95 MeV (Nτ = 64) correlator using both the
three- and five-parameter ansatze given by equations (4.21) and (4.22) respec-
tively. All fits use the end time τ2/aτ = 63. The algorithm failed to fit for the
combinations labelled N/A and the causes for these are discussed in the body of
Section 4.3.3. Note that χ2

ν is the χ2 per degree of freedom and that only cells
denoted with an asterisk were used in the final analysis.
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χ2
ν is a function of the statistical uncertainties. In calculations of meson corre-

lators, larger errors would prohibit access to excited state contributions; therefore,
smaller statistical errors are beneficial. This, however, requires a suitable ansatz
to capture these excited states, and, given that it is reasonable to expect that
higher excited states could dissociate earlier than lower energy states, the number
of excited states may vary across the temperature ranges explored in this work.
It is for this reason that we expect even the five-parameter ansatz not to fully
represent the spectrum above the ground state. This manifests in high values of
χ2
ν . Evidence that it is, in fact, excited state contributions that are the cause of

the high χ2
ν comes from two sources: firstly, the χ2

ν for the five-parameter fits to
the smeared data, where the excited state contributions are smaller by construc-
tion, are around 1, a strong indication that the ansatz captures the ground state
behaviour well; and secondly, the larger one chooses the time window to start
the better the fit to local correlators, evincing that the size of the excited state
contributions are the cause of the high χ2

ν . As mentioned in Section 4.3.3 this can
only be done up to around τ = 8aτ as beyond that there is not enough excited
state signal for a stable fit to an ansatz that explicitly contains one excited state.

A more complex ansatz could be proposed to minimise the χ2
ν , perhaps one

with a larger number of excited states, but this would come at a cost of a more
difficult optimisation procedure and would be difficult to fit to all temperatures:
it can already be seen from Table 4.1 that including just one excited state limited
the time windows over which the fits converged.

It is for these reasons that we consider the five-parameter to strike the balance
between excited state representation and flexibility, and why we still put weight
on the ground state parameters recovered from the fits to local correlators in spite
of the χ2

ν .
To conclude, the local correlators will be analysed from τ1/aτ = 8 onwards,

and the smeared correlators from τ2/aτ = 3 onwards.

4.4.2 End time, τ2

The value of τ2 is much more dependent on temperature, unsurprising given that
the hottest simulation, Nτ = 16, only contains an eighth of the data present in
the coldest, Nτ = 128. In Section 4.6.2 I will report the fitted values multiple
times for each temperature. The maximum value of τ2 possible for a given Nτ

provides the most data for the fit, however, the colder lattices are also analysed
with τ2 corresponding to a hotter lattice’s maximum τ2 such that they can be
compared at the same time window. Thus, there is no general optimal time range
for all temperatures and the τ2 value will be stated alongside the result for that
analysis.
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4.5 Optimal ansatz

All of the fits from the previous section were for the five-parameter ansatz from
equation (4.22). However, our justification for this ansatz allowed for the two
other ansatze, equations (4.20) and (4.21), that we named the two- and three-
parameter ansatze respectively. In this section, the viability of each ansatz will
be assessed to determine which functional form is most appropriate to extract fit
parameters.

In Section 4.2.2 we introduced the effective mass, equation (4.7). It is easy
to see that if the correlation function were given by the two-parameter ansatz of
equation (4.20) then the effective mass would simply be M for all times. Figures
4.5 and 4.6 show that this is certainly not the case, for the local or smeared
correlators respectively. The only correlator and time range that this ansatz
would be appropriate would be the local Υ correlator at T = 47 MeV beyond τ ∼
60aτ because of the plateau of the effective mass; this is an important exception
as this is what was used to calibrate the renormalisation of the masses extracted
in NRQCD. In general, however, the two-parameter ansatz is not sufficient and
we will turn to consider the other ansatze.

As a technical aside, the cause for five-parameter fits not converging at τ1 ≥
10aτ was related to there not being enough signal from excited states. Given that
the three-parameter ansatz does not attempt to fit excited states this is not a
concern. Thus, the range of τ1 that results in a converged fit is larger than it is
for the five-parameter ansatz. However, the maximum value of τ1 is still limited
by the total range of the hottest lattice (where Nτ = 16).

Comparing the quality of fits for the three-parameter fit to the quality of the
five-parameter fits (Table 4.1) leads to a simple conclusion: the five-parameter
fits are more suitable. This table reports the fits of both ansatze to the T = 95
MeV lattice with τ2 fixed to 63aτ , the latest time on this lattice. When there are
large excited state contributions, i.e. when τ1 is small, the three-parameter ansatz
is simply not flexible enough to fit these data and thus the fits fail to converge.
Even at larger τ1 there must remain some features that cannot be captured by a
single state, perhaps lattice artefacts if not excited states, this is evidenced by the
large χ2

ν for the local correlator fits. Therefore, only the five-parameter ansatz
will be used going forward.

4.6 Results

I will perform fits to the local and smeared correlators, where each has its own
benefit. The local fits can be performed at all temperatures and allow for the
widest perspective to observe thermal modifications. The fitted smeared corre-
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lators recreate the data much better than is the case for local fits, evidenced
by Table 4.1. This means that there are likely fewer artefacts or features going
unrepresented by the five-parameter ansatz when fit to the smeared correlators.

As a result of the preceding sections, the analyses will use the five-parameter
ansatz given by equation (4.22), and τ1 = 8aτ (τ1 = 3aτ ) for the local (smeared)
correlators. Note that this work will only focus on the ground state parameters.

A general statement that can be made when it comes to the results of these
fits is that, when given two estimates of the same observable (mass or width), the
lower is more likely closer to the true value. As we saw with the effective mass
at early times, excited states interfere with the mass by increasing its value the
more they are present. A similar effect occurs with the width: the peaks widen to
account for the weight added to the high-energy part of the spectrum by excited
states.

What will also be noticeable in the figures in this section is that there are
temperatures that cannot be fit in a stable manner. This could be evidence
of lattice discretisation artefacts, more excited states, or excited states with a
finite width (all unaccounted for in this work). I will refrain from making such
prescriptions and simply note that fits could not be made to all temperatures.

4.6.1 NRQCD mass renormalisation

The masses that are to be reported in this section were subjected to the conversion
from equation (4.8). This contains both: converting from the units aτ to GeV and
adding the renormalisation inherent to NRQCD due to the integrating out of the
overall mass scale. The former will simply be stated from [51], yet the latter will
be discussed more at length as it relates intimately will the reported values of this
section. For this generation of fastsum ensembles, there is no published report
of the calculation of this additive shift, the analogous calculation for generation-2
was reported in [72]. The way in this the shift is calculated is as follows: the
ansatz from equation (4.20) (corresponding to the spectral function being a δ-
function) was fit to the local Υ correlator at the coldest temperature, T = 47
MeV, to extract an estimate of the ‘zero temperature’ Υ(1S) mass,Mlat(Υ). This
mass is then compared with the experimental value, Mexpt(Υ), from the Particle
Data Group (PDG) booklet [47], the difference between the two estimations is
thus the definition of the additive renormalisation [91],

E0 =Mexpt(Υ)−Mlat(Υ) = 7.463 GeV. (4.28)

This has interesting implications for the results of this work. Firstly, the
experimental Υ mass is used as an input to this work, and therefore, if both
the single exponential fit that set this scale and the fits from this work were
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equivalent, then our estimates of the Υ mass would equal the PDG value by
construction. We will see that this is not the case and we will address this in
Section 4.7. Secondly, the reported mass of χb1 is now subject to any systematic
uncertainties in the determination of the additive shift, correlating the results
with those of the Υ.

4.6.2 Fixed time window analysis

All of the figures in this subsection have the same format. Fit parameters are
extracted multiple times for the same lattice with the difference being the end of
the time window, τ2. Fits at different temperatures but with the same time win-
dow, and thus the same systematic errors, are shown in the same colour with the
same symbol: comparisons made between data of the same colour (and symbol)
are optimal for discerning temperature dependence. What this does not allow for
is a comparison between data from different colours, they will contain systematic
differences that are not accounted for. Data at the same temperature but in
different time ranges are not independent, so multiple time windows showing a
certain behaviour are not separate validations of that behaviour. However, the
systematic changes are different across different time ranges, so one would hope
that if there is a certain behaviour in one time range then this should be echoed
in the others, but this is not guaranteed. Even a cursory look at the figures in this
subsection (Figures 4.9, 4.10, 4.11, and 4.12) will show that the systematic effects
of the time window are often larger than the changes with temperature. Analysis
will focus on two regimes: T < Tpc and T > Tpc, where Tpc is the pseudo-critical
temperature of 167 MeV.

We begin with the temperature dependence of the ground state mass, shown
in Figures 4.9 and 4.10 where the top pane of both figures is the Υ and the
bottom is for the χb1. Below Tpc there is no statistically significant change in
the mass with temperature for Υ or χb1, local or smeared. This is evidenced by
following any set of same-coloured points in Figures 4.9 and 4.10. Above Tpc such
a sweeping statement cannot be made.

In Figure 4.9 (top) the fits to the local correlator for Υ do show a very small,
albeit statistically significant, increase in mass from 235 MeV to 304 MeV when
τ2 = 19aτ and again between 304 MeV and 380 MeV when τ2 = 15aτ . However,
given the lack of significant change between 235 MeV to 304 MeV when τ2 = 15aτ ,
the first of these two increases appears less consequential: it is not a general trend
between temperature increases, it only occurs for one of two time windows. This
leaves only a single point to suggest temperature dependence of the mass. With
that in mind, consider Figure 4.10 (top), the smeared correlator of the same state.
Fits could not be performed at the hottest temperatures, therefore no extra data
could support the very high-temperature behaviour. No temperature dependence
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is present for the data that exist. Therefore, the only evidence for a temperature
dependent Υ mass is the hottest datum in Figure 4.9 (top).

The behaviour of the χb1 mass above Tpc is very similar. The large increase in
the magnitude of statistical errors makes significance harder to achieve, however,
there are still two pairs of temperatures where the change in mass is larger than
the statistical errors: 235 MeV to 304 MeV when τ2 = 19aτ and 304 MeV to
380 MeV when τ2 = 15aτ . These are the same points that were significant for
Υ. Once again the first temperature change is not present in the other time
window, leaving just a single datum to suggest temperature dependence. The
smeared correlators failed to lead to a stable fit for the hottest lattices, and for
the temperatures that were fit, there is no temperature dependence (Figure 4.10
(bottom)).

I will now consider the fits to the ground state width, shown in Figures 4.11
and 4.12. The width of the Υ from the local correlator (Figure 4.11 (top)) exhibits
a systematic increase with temperature beginning around Tpc. Data from all
values of τ2 that allow for analyses hotter than Tpc show systematic and significant
increases of width with temperature. There are similarities in the data from
smeared correlators: a general trend of increasing width with temperature, shown
in Figure 4.11 (top). There are differences in how this manifests: firstly the
increase for the larger τ2s begins immediately and not around Tpc, there are larger
relative fluctuations of the width with temperature, and the relative increase
for the hottest lattices is much more pronounced than in the data from local
correlators.

The width of χb1 also shows a systematic increase with the temperature be-
ginning around Tpc for the local correlator, Figure 4.11 (bottom). This effect is
larger, relative to the values of width reported than in fits to Υ local correlators.
The fits to smeared data show more structure, Figure 4.12 (bottom). Between
95 and 152 MeV some time windows report a significant dip in width, yet others
steadily increase. It is hard to tell the significance of this behaviour when there is
such disagreement across time range. However, I must again stress that data in
different colours have different systematic effects that are not accounted for when
making naive comparisons. All time windows for which there are data above Tpc
agree that there is a large increase in the width, well beyond the level of statistical
errors.

From the analyses in this section, the temperature dependencies most sup-
ported by data are: no significant change to the ground state mass of Υ or χb1,
yet a significant increase in the ground state width for both states, starting around
Tpc and being more significant in the χb1.
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4.6.3 Time window independent analysis

There are clearly time window effects in values of mass and width reported in the
previous subsection. I will now try and give a value of mass and width for each
temperature that has the time window effects extrapolated out and integrated
into a systematic and statistical error. This will be an extension of the work done
in [1, 2].

The ground state parameters would be most easily extracted in the regime
where only the ground state contributes to the correlator. This regime is the
infinite time limit, τ2 → ∞. Therefore, we would like to extrapolate the ground
state parameters to the τ2 → ∞ limit. Given that we have values of mass and
width at different τ2, we can plot these values against 1/τ2 and, assuming a linear
dependence on τ2, extrapolate the value at 1/τ2 = 0 using linear regression.
Two examples of this linear extrapolation are shown in Figures 4.13 and 4.14,
one for mass and the other for width. Both of these figures are for the Υ local
correlators. The linear relationship between the ground state mass and 1/τ2 is
incredibly well respected and the change in the extrapolated value is small across
the different extrapolations (when performed over different ranges of data). These
offer promising evidence that the extrapolation is valid. A linear relationship
between the ground state width and 1/τ2, however, is not very well respected.
A more complex relationship than linear could be proposed, a posteriori, but
as there is no clear justification for any specific relationship, no fine-tuning was
performed. Any poor linear fits will supply a larger error which more accurately
represents the uncertainty of this extrapolation.

On this note, two sources of error can be estimated from these extrapolations.
Firstly, there is a statistical error due to the errors in the estimates of mass
or width at each 1/τ2. These can be attributed to the fluctuations within each
ensemble of lattice configurations. Secondly, there is a systematic uncertainty due
to the choice of data to include in the extrapolations. To quantify this second
source of error the extrapolation is done for multiple sets of temperatures: all
temperatures, then all but one (ignoring the hottest), all but two (ignoring the
two hottest), etc. until only two temperatures remain. The value of the error is
taken to be half of the spread of the extrapolated value from each set. The two
errors, the one inherent to the linear regression, and the one due to the range
of temperatures, were added in quadrature to create the overall error estimate.
The central values that will be reported use the extrapolation that includes all
temperatures. As with the plots in Section 4.6.2, the fitting routine converged
for more temperatures when applied to the local correlators than to the smeared,
so there will be more data reported for local than smeared.

Figures 4.15 and 4.16 show the temperature dependence of the Υ (top panes)
and χb1 (bottom panes) for the local and smeared correlators respectively. There
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is no significant temperature dependence present in the extrapolated ground state
mass for Υ and χb1 fit to the local correlators (Figure 4.15), this is similar to the
time window dependent plots, for example, Figure 4.9. This is even more clear for
the ground state masses from the smeared correlators, see Figure 4.16. Therefore,
in all analyses of the ground state mass, there is no clear evidence of temperature
dependence.

The temperature dependence of the width has more structure, this is presented
for the local and smeared correlators in Figure 4.17 and 4.18 respectively. The
ground state width of the Υ increases monotonically with temperature. For the
local correlator, the changes between neighbouring temperatures are immediately
significant, shown in Figure 4.17. Likewise, from Figure 4.18 one can see that
the same is true for the data from smeared correlators: the increase between
neighbouring points is immediately beyond the level of errors. The ground state
width of the χb1 also increases with temperature, albeit only above approximately
Tpc. This change is smooth in the data from local correlators yet looks sharp
in the smeared case. With that being said, the magnitude of the increase is
much larger than it is for the Υ. These are similar findings to the time window
dependent plots of Section 4.6.2 with one exception, the temperature at which the
Υ width increases. In this time window independent analysis, the width appears
to increase for T ≥ 47 MeV, yet for local correlator in Section 4.6.2 it was not
until T = 152 MeV and later still for the smeared correlator.

4.7 Conclusion

Up to this point, there have been two kinds of analysis performed (time window
dependent and independent) on two kinds of correlators (local and smeared) for
two states (Υ and χb1) to observe two quantities (mass and width). From these
16 combinations there are two themes that are consistent. For both states, the
ground state mass does not appear to change with temperature, yet the ground
state width increases with temperature. The temperature at which this width
increase begins is unclear for Υ, either as soon as T ≥ 47 MeV or at T ∼ Tpc.
For the χb1 it is clear that the increase begins around Tpc and is larger than it is
for the Υ.

The correlators for both S- and P-wave, local and smeared, show thermal
modifications from as early as 0.76Tpc, being most significant above and around
Tpc. It was shown that these were not caused by temperature variations in the
ground state mass, yet the extent to which these modifications can be attributed
to an increasing ground state width is unclear: above Tpc the ground state width
increases for both Υ and χb1, however from (0.76−1)Tpc the width only increases
for Υ, with it appearing fixed for χb1. Only the ground state parameters were
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reliably extracted and thus any further change cannot be confidently attributed
to excited states.

These results are in qualitative agreement with a similar analysis of NRQCD
bottomonium spectra [83] who find no change in the ground state mass for either
the Υ or χb1 but an increase in the width for both. As was the case for the
work of this chapter, the increases in width and the statistical errors are larger
for the P-wave, and the temperature at which this width significantly increases is
unclear. However, a study on the S-wave bottomonium spectrum using NRQCD
quarks on the fastsum generation-2 ensembles reports that the mass increases
with temperature, as well as the width [45]. This was extended to P-wave states
using the same configurations in [72], however, only spectra were reported and
thus one cannot draw numerical comparisons. As such, it is difficult to assess the
significance of the changes in mass with regard to statistical errors. Qualitatively,
[72] reports an increase in width with temperature for both states. This chapter
is in agreement with both papers from the fastsum collaboration when it comes
to the increase in the χb1 width being much larger than it is for the Υ, supporting
their claims that the Υ would survive at higher temperatures than the χb1.

The reported masses at the lowest temperature do not agree with the values
stated by the PDG; the Υ ground state mass should have done so by construction.
This can be attributed to several factors. Firstly, the single exponential fit that
was used to determine the NRQCD additive normalisation introduces systematic
effects that were not accounted for in that estimation. For example, in Section
4.6.2 we showed how the time window used had a significant effect on the fitted
value, an effect that we try to address in Section 4.6.3 by extrapolating out the
dependence on the time window. No such treatment was done for the single
exponential fits that set the renormalisation and thus there are unaccounted for
systematic effects that impact both the S- and P-wave masses. Secondly, these
gauge configurations are calculated with a lower-than-physical pion mass, with
a non-zero lattice spacing, finite volume, and a plethora of systematic artefacts
that cannot be easily ignored. Finally, there are effects from non-QCD sources,
such as QED, that can affect hadron masses. All of these factors are kept equal
for studies of temperature dependence, but for comparing these results to those
from collider experiments, they cannot be ignored.

In closing, then, this work finds no temperature dependence of the Υ(1S)
or χb1(1P) masses, but clear, monotonic, and significant increases in their width
with temperature. The extent to which these states survive in the QGP cannot be
established from this work alone, but this does support the claim of the fastsum
collaboration that the χb1 melts before the Υ.
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Chapter 5

On-axis interquark potential

The potential between the quark and antiquark in a meson can offer a rich window
into the phenomenology of quark interactions. In Chapter 4 we calculated the
spectral function in order to glean some of this information. In this and the
following chapter, we will calculate the interquark potential of the bottomonium
system that can complement the results from spectral reconstruction.

It has been established that charmonium bound states at zero temperature
can be well described using the Schrödinger equation, modelling the interactions
between quark and anti-quark with a phenomenological potential [29–31], with
the latter work extending this to bottomonium. The HAL QCD method builds
upon this by formulating the Schrödinger equation from lattice observables to
calculate the potential. The method was developed by the HAL QCD collabora-
tion to calculate the internucleon potential [92–95] but has also been extended to
the interquark potential [96–102].

In this chapter, I will use the HAL QCD method to calculate the interquark
potential of the bottomonium system and extend the treatment to non-zero tem-
perature. This work builds upon [3], the first presentation of the central potential
of bottomonium using NRQCD quarks from the HAL QCD method at non-zero
temperature.

This analysis is performed on the fastsum generation-2 ensembles.

5.1 Related works

There are many lattice calculations of the static quark potential (introduced
in Section 3.3) at a range of temperatures around the critical temperature. The
results are consistent with the potential between two heavy quarks being captured
by a ‘Coulomb + linear’ Cornell-like potential. Works from [103–108] report
that the string tension (the slope of the linear part of the potential) decreases
with increasing temperature: in particular, it is found that the real part of the
complex-valued potential shows Debeye (colour) screening above Tpc. However,
more recently, [109] cast doubt upon the appearance of colour screening, reporting
that its existence with temperature is dependent on the method used to extract
the static quark potential. Further developments were reported in preliminary

64



work from [110]. All of these works agree that there is a non-zero imaginary part
of the potential that increases with temperature.

This introduces a significant difference between the HAL QCD method and
the calculation of the static quark potential: the HAL QCD method only gives
access to the real part of the potential. This can be traced back to the calculation
of the point-split correlator that will be introduced in Section 5.2.1. This quantity
calculated on a single configuration is complex, but the imaginary part averages to
zero over the entire ensemble of configurations, giving no access to the imaginary
part of the potential.

For this chapter, we will consider the leading order velocity expansion of the
interquark potential for S-waves. This expansion expresses the central potential,
VC(r), and spin-dependent potential, VS(r), in terms of the contributions from the
pseudoscalar and vector potentials. Following the notation of Chapter 4 we will
denote channels with the subscript λ. Thus, the potential expansion reads [111]

Vλ(r) = VC(r) + S1 · S2VS(r). (5.1)

S1,2 are the quark spins, with S1 ·S2 = −3/4, 1/4 for the pseudoscalar and vector
channels respectively.

Using the HAL QCD method, the central and spin-dependent potentials have
been calculated at zero [97, 98, 100] and non-zero [101] temperature in the char-
monium system. The zero temperature results are consistent with a Cornell form
for the central potential and report the spin-dependent potential and having a
repulsive core before plateauing to zero beyond the region of 0.2 − 0.5fm. It
should be mentioned, however, that in [98, 100] the spin-dependent potential at
large distance is zero by construction. The Cornell form is also exhibited at non-
zero temperature, where [101] finds that, with increasing temperature, the central
potential exhibits systematic flattening at large distance.

One study on the Nambu-Bethe-Salpete (NBS) wavefunctions1 (which we will
introduce in Section 5.2) of bottomonium using NRQCD quarks presents the
central potential at zero temperature but stops short of presenting the non-zero
temperature form [102]. The authors claim that care must be taken, particularly
to the τ dependence of the NBS wavefunctions, to extend the HAL QCD method
to non-zero temperature. The τ dependence will be explored in Section 5.4 and
a new method will be introduced in Chapter 6 to explicitly test the validity of
the HAL QCD approach at non-zero temperature. There are also works that
compute hadronic wavefunctions from lattice QCD data but do not extend their
analysis to the interquark potential, see [112] for example.

In its original domain of nuclear physics, the HAL QCD method appears to
be at tension with the alternative approach in that setting, the Lüscher method,

1Often called Bethe-Salpeter wavefunctions
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when it comes to the so-called two nucleon controversy [113]. Chiefly, two ques-
tions are asked about the HAL QCD method: one pertains to the range of validity
of the potential expansion in equation (5.1) and the other to the separation of the
excited states above threshold from those below. It certainly remains unclear if
the cause of the tension lies solely at the feet of the HAL QCD method, and the
HAL QCD collaboration has addressed several of the concerns in [95], but we are
more concerned with establishing if these concerns are relevant for the simpler
system of NRQCD mesons.

Addressing the order of the potential expansion, insofar as we are assuming
that the dominant contributions to the vector and pseudoscalar channels are S-
wave states (we will explicitly check for spherical symmetry in Section 6.3 to
assess this) then the extra terms included by higher order expansions, the spin-
orbit or tensor contributions for example, are zero. Therefore, the current order
of the potential expansion is sufficient for this work. As for the contributions
from states above threshold, this is much less challenging for heavy quarkonium,
especially bottomonium, as, taking the J/ψ states for example, the 1S, 2S, and
3S states are all below threshold and thus only the highly excited states would
be above [47]. Given that these highly excited states (4S and above) decay
exponentially quicker than the lower states, only the very early times would ever
contain enough contribution from above threshold for this to raise questions.
And as we will see in Tables 5.1 and 6.1, the very early times are not included
in the analysis. Therefore, the concerns raised against the HAL QCD approach
pertaining to the two nucleon controversy are much less, if at all, relevant here.

5.2 The HAL QCD method

The central quantity of this method is the NBS wavefunction and its relation
to the point-split meson correlator. There are two ways in which this correlator
is introduced into the Schrödinger equation resulting in the time-dependent and
time-independent HAL QCD methods. Section 5.2.1 will detail the calculation
of the point-split correlator (which is common to both methods) and then Sec-
tions 5.2.2 and 5.2.3 outline the time-dependent and time-independent methods
respectively.

5.2.1 Point-split correlation function

The point-split correlation function is defined as

Cλ(r, τ) =
∑
x

⟨Oλ(x, τ ; r)O
†
λ(0;0)⟩, (5.2)
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Figure 5.1: A representation of the point-split correlation function, as defined in
equation (5.2).

where the non-local meson interpolators are defined by

Oλ(x; r) = q̄(x)λU(x, x+ r)q(x+ r). (5.3)

For the two channels considered in the remaining chapters, the pseudoscalar and
vector channels, λ = I and λ = σj respectively. This correlator reduces to
equation (4.3) when r = 0. When r ̸= 0 however, the interpolating operator at
the sink is calculated on two lattice sites. To maintain gauge invariance the link
operator, U(x, x + r), is introduced. Going forward we will consider gauge fixed
fields, fixed to the Coulomb gauge, and thus the link operator is set to unity. A
pictorial representation of the point-split correlator is shown in Figure 5.1.

As equation (5.2) is a generalisation of equation (4.3), the calculation of this
correlation function is significantly more computationally expensive: it contains
the sum over all lattice sites x for every separation r. This generation of lattice
ensembles, generation-2, contains 243 sites per time-slice (see Table 3.1 for further
details of the generation-2 ensembles). Therefore, the expectation of the two
interpolators must be calculated Nr × 243 × Nτ times per configuration to get
Cλ(r, τ) for a single temperature (number of r values × number of x values ×
number of τ values respectively). Computational constraints meant that we chose
to calculate only on-axis separated sinks, and thus Nr = (3× 23) + 1 (three axes
each of length 24 but sharing the same r = 0 point). Therefore, the whole
calculation requires roughly a factor of 200 fewer expectation calculations than
if we had chosen every possible r value. We will see in Section 6.1.1 that a
momentum space representation exposes redundancies in the calculation which
reduces the size of the computation, but for the remainder of this chapter we will
work with the on-axis data calculated using equation (5.2). Figure 5.2 shows the
dependence of these correlators on r and τ for each of the temperatures available.
Due to the large range over which these correlators span, the data are plotted on
a logarithmic scale but these correlators are not positive definite and thus there
are some data that do not have a defined logarithm; non-positive data will still
be used for further analysis, however.
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5.2.2 Time-dependent method

This method was first applied to the interquark potential in [100] and will be the
method used, and later developed upon, in this thesis.

This point-split correlation function can be expressed in terms of eigenstates
of the Hamiltonian,

Cλ(r, τ) =
∑
j

Ψj(r)e
−Ejτ , (5.4)

where the energy of each eigenstate, j, is given by Ej. The indexing j is chosen
such that Ej < Ej+1 ∀j. The unnormalised wavefunction Ψj(r) is related to the
NBS wavefunction, ψj(r), by

Ψj(r) =
ψ∗
j (0)ψj(r)

2Ej
, (5.5)

and is written in this form for convenience. Once this equivalence between
our lattice observable (the point-split correlator) and the NBS wavefunction has
been established, we can introduce the Schrödinger equation. We use the time-
independent form with a reduced quark mass, µ,(

−∇2

2µ
+ Vλ (r)

)
Ψj (r) = EjΨj (r) . (5.6)

The value of µ was set to 1
4
mΥ. For a system of two bottom quarks interacting

via a central potential, the reduced mass is half the mass of the bottom quark,
and the Υ is comprised of two bottom quarks. Similar reasoning was applied
in [96,101]. Later, in Sections 6.4 and 6.5 we will discuss an improved method of
determining µ. Combining this Schrödinger equation with equation (5.4) yields

−∂Cλ(r, τ)
∂τ

=
∑
j

EjΨj(r)e
−Ejτ =

∑
j

(
−∇2

2µ
+ Vλ (r)

)
Ψj (r) e

−Ejτ

=

(
−∇2

2µ
+ Vλ (r)

)
Cλ(r, τ).

(5.7)

From which we can express the interquark potential for a given channel as

Vλ(r) =
1

Cλ(r, τ)

(
∇2

2µ
− ∂

∂τ

)
Cλ(r, τ). (5.8)

It is convenient to define the central potential, VC, which is built to not have
any spin-dependent contributions. This is obtained from equation (5.1) via the
spin-average

VC =
1

4
VPS +

3

4
VV. (5.9)
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Subscripts V and PS denote the vector and pseudoscalar channels respectively.
We assume that the recovered potential is spherically symmetric (true in the
continuum for purely S-wave states), and thus VC(r) = VC(r). There are, however,
known spherical symmetry breaking effects due to finite lattice spacing and D-
wave contributions to the vector channel that are not spherically symmetric. In
Chapter 6 we will explicitly test this assumption of spherical symmetry.

5.2.3 Time-independent method

The time-independent method was the precursor to the time-dependent approach.
It will not be used in this thesis yet I will mention it briefly as it relates to previous
works to obtain the interquark potential using NRQCD quarks [102].

Rather than considering the correlation function as a linear combination of
states, constructing a linear combination of Schrödinger equations, and solving
for a single potential which governs all states (including radially excited states),
the time-independent approach only considers one state at a time. If we consider
equation (5.4) at late times, the correlator becomes dominated by the ground
state and one can write a single Schrödinger equation. Using the Υ(1S) state for
example,

lim
τ→∞

CΥ(1S)(r, τ) = ΨΥ(1S)(r)e
−EΥ(1S)τ . (5.10)

Therefore, one can formulate a single Schrödinger equation to extract the poten-
tial, VΥ(1S)(r), that governs only the Υ(1S), through(

−∇2

2µ
+ VΥ(1S)(r)

)
ΨΥ(1S)(r) = EΥ(1S)ΨΥ(1S)(r). (5.11)

This method relies on precise determinations of NBS wavefunctions and whilst
states above the ground state can be accessed through a generalised eigenvalue
problem (GEVP) method, each potential is only defined insofar as the correlator
is dominated by the state of interest. For our example of considering the ground
state at late times, the potential would only be defined in a time range where the
effective mass of the correlator reaches a plateau and thus it is clear that only
ground state contributions exist.

This is not the method that will be explored in this work due to these limita-
tions.

5.3 Finite difference derivatives

The derivatives in equation (5.8) are defined in the continuum where the notion
of a continuous derivative is valid. On the lattice, we must approximate these
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derivatives with finite differences. A much more rigorous investigation into the
effect of the particular choice of finite difference derivative will be explored in
Section 6.2.

For the work covered in this chapter we only had access to on-axis data, i.e.
C(x, 0, 0, τ) (and the y and z axis permutations). With this limitation, we do
not have the data to calculate the Cartesian form of the Laplacian. We therefore
considered the form in polar coordinates. It was assumed that because we are
considering S-wave correlators the data respect rotational symmetry. As a result
of this, we can use the polar form of the Lagrangian and ignore any angular
dependence, leaving

∇2f(r) =
∂2f(r)

∂r2
+

2

r

∂f(r)

∂r
. (5.12)

We use the finite difference form of each derivative that considers only the nearest
neighbours. The lattice version of the Laplacian used is

∇2f(r) =

(
f(r + as)− 2f(r) + f(r − as)

a2s
+
f(r + as)− f(r − as)

ras

)
, (5.13)

valid up to O(a2s) corrections, as well as unquantified rotational symmetry break-
ing corrections. We will explore the validity of this spherical symmetry in Section
6.3. In [98] it was shown that this polar form of the Laplacian shows fewer lattice
discretisation errors at smaller distances than a Cartesian equivalent on the same
data.

The time derivative is approximated by

∂f

∂τ
=

(
f(τ + aτ )− f(τ − aτ )

2aτ

)
. (5.14)

This is valid up to O(a2τ ) corrections.
Not all lattice sites have a neighbour on both sides. For example, in the

temporal axis, the τ/aτ = 0 site does not have a neighbour earlier in time,
likewise, the τ/aτ = Nτ − 1 site does not have a neighbour later in time. The
same effect occurs in the spatial dimensions with the r/as = 0 and r/as = Ns− 1
points; there are periodic boundary conditions in the spatial axes, and these would
alleviate this problem, but these were not exploited in this chapter. As a result
of the lattice sites that do not have a neighbour on each side, the derivatives are
only defined for τ/aτ ∈ [1, Nτ − 2] and r/as ∈ [1, Ns − 2].

Equation (5.8) expresses the potential as a sum of two terms: one related
to the spatial derivative, ∇2C/(2µC), and the other from the time derivative,
(1/C)∂C/∂τ . These will be referred to as the reduced spatial and temporal
derivative terms respectively. Figure 5.3 shows the behaviour of the first of these
contributions; plotted is the reduced spatial derivative against τ for a range of r
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and at each of the available temperatures. For all temperatures, the r = 0 data
show a mild increase with time and when the temporal extent is large enough
(equivalent to lattices where T <281 MeV) it plateaus to a τ -independent value.
For r ̸= 0 the data decay with time and these, too, would appear to tend towards
a plateau, albeit for high temperature or large separation the plateau is less clear.
Clearly, however, when this plateau is reached it does so at different values for
each r. Figure 5.4 is the analogous plot but for the reduced time derivative, it
shows a similar pattern: all data show a decay with time and at late times appear
to plateau, although from the T = 141 MeV result the data for all separations
tend towards the same value.

5.4 Time window choices

The HAL QCD method uses the time-independent Schrödinger equation. In the
previous section, we saw that the constituent terms of equation (5.8) showed time-
dependence up to a point, however, there were windows in τ and r that showed
approximate τ -independence. Figure 5.5 presents the potential calculated in the
vector channel, VV, against τ for a few separations and across all temperatures.
One can see that in Figure 5.5 the τ -dependence is reduced in VV(τ) compared
to the individual reduced derivative terms, shown in Figures 5.3 and 5.4, perhaps
with the exception of the reduced spatial derivative at r = 0. The same is true
of VPS(τ). For the HAL QCD method to be valid we would only use ranges of
Vλ(τ, r) that showed no τ dependence. This is in contrast to the time-independent
HAL QCD method where one requires ground state dominance and can only use
time ranges where there is a plateau in ∇2C/(2µC) [98]. So, by using the time-
dependent approach we have extended the range of validity in τ , allowing for more
data to be incorporated into observables. We can use Figure 5.5 to prescribe valid
ranges of τ and r based on plateaus of τ -independence in Vλ(τ).

Table 5.1 shows the largest range of r and τ where there exists a clear plateau
in both VV(r, τ) and VPS(r, τ) for each temperature. The optimal time range for
each lattice will be different: the data with the least τ -dependence resides at late
times, and not all lattices extend as far in time. To make a comparison across
different temperatures, in a way that minimises systematic errors, the data will be
presented in the following way: for each temperature, there is a longest possible
time range determined by that temperature’s Nτ , all temperatures with Nτ large
enough to span this range will be compared with each other using this same time
range. This will be done for each of the possible longest time ranges, one per
Nτ corresponding to each row in Table 5.1. Resultantly, each temperature can
be reported multiple times and thus not all data will be independent; this is the
same treatment as in Section 4.6.2.
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Time window [aτ ] r range [as] r range [fm] Temperatures [MeV]
13− 14 1− 3 0.12− 0.37 352− 141
17− 18 1− 4 0.12− 0.49 281− 141
19− 22 1− 5 0.12− 0.61 235− 141
21− 26 1− 5 0.12− 0.61 201− 141
24− 30 1− 6 0.12− 0.74 176− 141
24− 33 1− 6 0.12− 0.74 156− 141

Table 5.1: Range of displacements and τ ranges allowed to best approximate
time-independence in both VV(r, τ) and VPS(r, τ). Note that Tpc = 181 MeV
and thus the time windows below the solid line do not span this pseudocritical
temperature.

5.5 Central potential results

Alongside presenting the central potentials calculated from the HAL QCDmethod,
we will also present fits to the Cornell potential from equation (2.10). There are
three free parameters in the Cornell potential, we chose to keep the additive con-
stant, C, the same across all of the fits and thus only the coupling, α, and string
tension,

√
σ, were allowed to vary. The value of C was fit to the coldest data over

the longest time range available, T = 141 MeV and τ ∈ [24− 38]aτ , this resulted
in C = 0.98(1) GeV.

Figures 5.6 and 5.7 show the central potential averaged over the time ranges,
and plotted over the distances, prescribed in Table 5.1. The first two rows of
Table 5.1 correspond to Figure 5.6 and the third and fourth rows to Figure 5.7;
the temperature ranges that do not span Tpc are not shown. The panels in
these figures are presented in this way (with the same time range across the
temperatures) to isolate any temperature dependence of the central potential.
The symbols show the data calculated from the lattice and the curves are Cornell
potentials fit to these data. One can see that there is consistent and significant
flattening of the potential with increased temperature above Tpc (which, for the
generation-2 ensembles, is ∼ 181 MeV).

Fits of the Cornell potential were performed on the data shown in Figures
5.6 and 5.7. Figure 5.8 shows the coupling, α, and the string tension,

√
σ, that

results from these fits against temperature. From Figure 5.8 (bottom) one can
see that the string tension decreases fairly consistently with temperature and the
decreases are often larger than statistical errors. One would expect this to be how
the flattening of the potentials manifests, however the reported values are much
larger than was found in [28,98,101,105]. From Figure 5.8 (top), one could argue
that α decreases with temperature, however, there are a few anomalous data
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that disagree with this statement. These anomalous data could be an indication
that these fits are not suitable, and thus the fit parameters do not carry much
weight. Compounding this is the fact that the Cornell potential contains two free
parameters (once the shift, C, has been established) and certain time windows
only allow for analysis over three distances. Perhaps this leads to the fits fine-
tuning to statistical errors which could manifest in fluctuating fit parameters.
In Chapter 6 we rectify this with off-axis data increasing spatial resolution and
giving more data to fit.
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5.6 Conclusion

In this chapter, I presented our first attempt to calculate the interquark potential
for bottomonium using NRQCD quarks. We find evidence for temperature de-
pendence in the form of flattening of the central potential with increased temper-
ature. Fits were performed to the Cornell potential which showed an increase in
the string tension with temperature, however, the values of the string tension were
much larger than expected. As well as this, the coupling shows non-monotonic
variations with temperature. The clearest limitation of this first analysis was
the size of the data: there were not enough separations to make robust fits to
the Cornell potential. An increase in the resolution of data, by including off-axis
separations, along with more rigour across other elements of the method will be
developed in the next chapter. As such, further interpretation of the non-zero
temperature behaviour of the central potential will be postponed until Section
6.7.
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Chapter 6

Improved interquark potential

The previous chapter laid out the initial approach to observe the effect of in-
creasing temperature on the interquark potential. The analysis was limited to
only on-axis separations in the sink and it transpired that this coarseness in
data affected the analysis: there were not enough data to perform robust fits
to phenomenological models and thus we could not reliably extract low energy
parameters such as the string tension. The reason for such sparsity of data was
the size of the calculation for the point split correlator in equation (5.2). This
required a sum over all lattice sites for each separation of the sink, and thus the
number of separations was reduced to make this manageable.

In this chapter, we explore a method to drastically reduce the number of
computations required to calculate Cλ(r, τ) for every possible sink separation r.
The size of the computation will end up similar to when we calculated only the
on-axis separations. Further work will also be shown that explores the effect
of different forms of finite derivatives used in calculating the Laplacian, we will
explore the lattice discretisation errors present due to the inclusion of off-axis
separations, and we will offer an improvement on the HAL QCD method that
explicitly tests for time-independence and gives a self-consistent determination of
the reduced quark mass µ that differs from that used by the HAL QCD collab-
oration. Many of these investigations transcend temperature-dependent studies
and instead offer a wider review of the HAL QCD methodology and the details
of its implementation.

The calculations of this chapter are performed on the fastsum generation-2
ensembles.

6.1 Improved point-split correlation function cal-

culation

This section will outline an improvement to the calculation of the point-split
correlator that is the basis of the HAL QCD method. Figure 6.1 shows two
recipes for calculating this correlator, the method used in Chapter 5 follows the
red solid line, and the improved method will follow the blue dashed lines.
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Generation-2 gauge fields

Position space quark propagator

Position space correlator

Momentum space quark propagator

Momentum space correlator

V 2

V log2 V

V

V log2 V

Figure 6.1: The estimated number of terms in the two calculations of the position
space point-split correlator if one used every possible quark separation, r. Both
methods start from the position space quark propagator and thus the black arrow
is common for both. The momentum space representation follows the blue dashed
arrows and the terms required for each step are labelled along the arrow; this path
corresponds to equations (6.5), (6.8), and (6.7) respectively. The method that
did not require a momentum space representation, equation (6.4), is simply the
single calculation along the red arrow, this was the approach used in Chapter
5 albeit for fewer separations. V = 243 = 13824 for this calculation and thus
the sum of terms along the blue arrows is significantly fewer than along the red
arrow. This is the time-efficient method introduced in this chapter.
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6.1.1 Momentum space representation

We begin by combing the two equations pertinent to the calculation of the point-
split correlator, equations (5.2) and (5.3). Considering gauge fixed fields, as in
Chapter 5, we get

Cλ(r, τ) =
∑
x

⟨q̄(x)λq(x+ r)q̄(0)λ†q(0)⟩. (6.1)

Then we apply Wick’s theorem and keep only the terms with non-zero overlap
with the vacuum from the connected contribution, meaning we only take the
contractions present in

Cλ(r, τ) =
∑
x

⟨q̄(x)λq(x+ r)q̄(0)λ†q(0)⟩. (6.2)

This gives the correlator in terms of the quark propagator, D−1,

Cλ(r, τ) = −
∑
x

⟨D−1(x+ r, τ ;0, 0)λD−1(0, 0;x, τ)λ†⟩. (6.3)

Notationally, D−1(0, 0;x, τ) represents the propagation of a quark from the lo-
cation (x, τ) to (0, 0). Currently, equation (6.3) requires computing the prop-
agator from all sources to sinks, and then again for propagating from all sinks
to all sources. To avoid this, and to leave only the calculation of the propaga-
tion from source to sink, we exploit the γ5-hermiticity of the quark propagator,
D−1(0, 0;x, τ) = γ5 (D

−1(x, τ ;0, 0))
†
γ5, to give the rewritten form of the point-

split correlator. I will refer to this as the position space point-split correlator for
reasons that will become apparent, it reads

Cλ(r, τ) = −
∑
x

⟨D−1(x+ r, τ ;0, 0)λγ5
(
D−1(x, τ ;0, 0)

)†
γ5λ

†⟩. (6.4)

The rewriting of equation (5.2) into equation (6.4) does not change any details
of the calculation, but we will use this newer form to introduce the momentum
space representation of the quark propagator. This, in turn, will highlight the
time savings that make this calculation feasible for all separations r. To perform
the calculation for all possible sink separations requires calculating the expec-
tation value in equation (6.4) N3

s × N3
s times for each time-slice. I will define

V = N3
s and say this calculation requires O(V 2) calculations per τ . The direct

calculation of equation (6.4) corresponds to the red line in Figure 6.1.
We define the momentum space quark propagator, D̃−1(q, τ), as the Fourier

transform of the position space quark propagator through

D−1(x, τ ;0, 0) =
1

V

∑
p

D̃−1(p, τ)eix·p. (6.5)
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We have introduced a 3-momentum, p, that is conjugate to the separation of
the two quarks, it is not, therefore, the overall quark momentum. Inserting this
definition into equation (6.4) yields

Cλ(r, τ) =
1

V

∑
p

⟨D̃−1(p, τ)λγ5D̃
−1(−p, τ)γ5λ

†⟩eip·r. (6.6)

We can use this form to implicitly define the momentum space quark propagator

Cλ(r, τ) =
1

V

∑
p

C̃λ(p, τ)e
ip·r, (6.7)

such that
C̃λ(p, τ) = ⟨D̃−1(p, τ)λγ5D̃

−1(−p, τ)γ5λ
†⟩. (6.8)

It would seem there are more steps to calculating equation (6.7) than before,
but I will now stress how each is computationally cheaper such that the combina-
tion of the extra steps still costs less than the original one-step of equation (6.4).
A result used twice here is that a discrete Fourier transform (DFT) contains a lot
of redundancy. The fast Fourier transform (FFT) algorithm is an exact algorithm
to compute the DFT without any redundancy, it scales, for a system of size V , as
V log2(V ) operations; the naive DFT implementation scales as V 2. With that in
mind, the conversion from the position space quark propagator to the momentum
space propagator (equation (6.5)) is a Fourier transform and thus, using the FFT
algorithm, this requires V log2(V ) terms. The calculation of the momentum space
correlator from the momentum space quark propagator (equation (6.8)) does not
depend on the source separation and thus requires only V terms. Finally, the con-
version back from momentum space to get the position space quark propagator
(equation (6.7)) is also a Fourier transform, so it, too, requires V log2(V ) terms.
Summing up these contributions, one arrives at a rough cost of 2×V log2(V )+V
terms. For Ns = 24, V = 13824 and thus comparing the cost of the two recipes for
this specific lattice size, one see that V 2 >> 2× V log2(V ) + V . Approximately
200,000,000 terms are reduced to around 400,000. These two calculation recipes
are shown in Figure 6.1.

For this consideration, we have assumed that the cost of a single term in a
sum (for example, the expectation value in equation (6.4) for a single r, x, and τ)
is fixed and any variation in its complexity does not contribute as significantly to
the total cost as the number of terms that need to be calculated does. However,
given the magnitude of the reduction in the number of terms, an extra few basic
numerical operations per term would not overcome the computational saving and
thus this assumption is not strictly needed.

85



6.1.2 Validating the correlation function

The discrete Fourier transform as a pairing between samples is exact. One can
say that the data C(r) take values in a position space of size N3

s with a particular
basis of vectors, and C̃(p) is simply a rewriting of the same information in a
momentum space of the same size but with a different set of basis vectors. The
problem becomes when one tries and represent an underlying continuous function
with a set of discrete samples [114].

In general, one cannot take a function, perform a Fourier transform, perform
an operation on this new representation and then expect the inverse Fourier
transform of this final product to relate simply with the original function. This is
what we did when we rewrote the calculation of the position space correlator in
terms of momentum space representations. However, in this case, the convolution
property of Fourier transforms allowed for a simple relation between the position
and momentum space correlators.

We can check the convergence of a Fourier transform, that is to say how well
the momentum space representation captures the information from the position
space representation. Here it is helpful to consider a Fourier transform as a Fourier
series, and the values of the momentum space representation being the Fourier
coefficients of the finite series. For example, rather than considering C̃(p, τ) a
set of points sampling an underlying function, one could consider each C̃(p, τ)
the Fourier coefficient of the series with momentum p. If the coefficients keep
growing with momentum then it could be said that the momentum basis is not
large enough to capture all of the information. This is known as the problem of
aliasing whereby a discrete Fourier transform is calculated up to an insufficiently
large momentum. (Often analogies are drawn to time and frequency domains,
I will stick with position and momentum here but the reader should be aware
of the dictionary between the two.) In this case, effects caused by one momen-
tum may be attributed to another momentum, and thus the Fourier-transformed
samples do not fully represent the original underlying function. Consider two
sinusoids sampled at equally spaced positions, x, for an integer, n, and a small
number, ϵ: cos[π(n+ ϵ)x+ϕ] and cos[π(n− ϵ)x−ϕ]. The values of both sinusoids
are the same at the sampled points (x = 1, 2, 3, etc.), but different elsewhere.
Therefore, equipped with only the knowledge of the sampled points one cannot
discern between the contributions from either wave and thus effects from differ-
ent frequencies can be erroneously mixed [115]. The sampling theorem tells us
that the solution is to make the sampling frequency larger than twice the max-
imum frequency of the system (i.e. to make the lattice spacing small enough
to capture the highest momentum contributions). This is not possible given the
computational demands of a lattice QCD simulation, so we know we are likely
not avoiding aliasing completely but we observe the coefficients of the highest
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through time. The size of this parameter, which takes integer values of O(1), was
found to take different optimal values for propagating a quark in position space
(see Chapter 5) than for propagating in momentum space (this chapter). Despite
the momentum space representation only having fewer computational operations
if the fast Fourier transform is used, the regular discrete Fourier transform was
actually used for this work. This increase in the number of computational op-
erations makes the calculation more susceptible to rounding errors: the Lepage
parameter was increased to circumvent this. As a result of different values for
the Lepage parameter, a direct comparison between the two results is non-trivial.
One should note that both simulations, despite using different Lepage parame-
ters, are physically representative and that the parameter is only to control the
order of a Taylor expansion. To allow for an easier comparison, we generated a
single correlator from both methods using the same Lepage parameter (the value
used in Chapter 5 rather than the rest of this chapter). This comparison of the
on-axis correlator from Chapter 5 and the correlator from this chapter with the
same Lepage parameter (and all other NRQCD parameters that were always the
same) is shown in Figure 6.3. To interpret this figure one must acknowledge
the periodic boundaries, meaning that the data at x = 1 and x = 23 (and all
x, Ns − x pairs) would be identical if the symmetries we expect on the lattice
(explored in Section 6.3.1) were perfectly upheld. The data, at the late times
shown, show remarkable agreement for x/as < 4 and x/as > 20, agree within
0.5% up to x/as = 7 and from x/as = 17 onwards, and then exhibit worsening
agreement towards the centre of the lattice. This is likely due to the presence
of rounding errors but it cannot be solely attributed to one computation being
superior: neighbouring lattice sites are more correlated as the updates that are
made to gauge fields during the MCMC procedure are only local, therefore large
separations are less correlated and inherently more noisy. Care must be taken
when making statements significantly beyond 7as, but these data still carry some
validity.

With the comparison to the old data concluded, we can now exploit the off-
axis sink separations to increase the granularity of our data. See Figure 6.4 for
the time dependence of the coldest correlator at the first 20 sink separations. For
ease of comparison the separations have been converted into polar distance, r,
however, as will be explored in Section 6.3.2, this is not always a trivial change
of coordinates. The spatial dependence of the correlator is shown in Figure 6.5
for late times.

88









6.2 Finite derivatives

In Section 5.3 we used the simplest form of the finite difference derivative to
calculate both the Laplacian and time derivative. For both, we used the nearest
neighbour finite derivative that did not take into account the periodic boundary
conditions (PBC). In this section, I will consider two possible improvements to
the Laplacian: increasing the number of neighbours considered in the finite dif-
ference derivative (Section 6.2.1), and exploiting the momentum space correlator
to perform the derivative (Section 6.2.2). I will then consider improvements to
the time derivative (Section 6.2.3) that, as it transpires, do not overcome their
shortcomings.

In the previous work, we only had access to on-axis data and thus we could
not take nearest neighbours in more than one dimension at a time, this limitation
is not present in this chapter. For both new Laplacian methods, the PBC will be
used as well as the entire space of on- and off-axis points. Therefore each method
will calculate

∇2C(r, τ) =
d2

dx2
C(r, τ) +

d2

dy2
C(r, τ) +

d2

dz2
C(r, τ). (6.9)

6.2.1 Increased accuracy finite difference Laplacian

When approximating a continuous derivative with a finite difference derivative
there is a choice of how accurate that approximation is. The more neighbours
included in the finite difference the more accurate the approximation. On a finite
lattice, there is a natural limit to this as there are only Ns−1 neighbours to each
point. However, there is also a trade-off between accuracy and the cost of the
calculation, therefore some time will be spent finding this balance.

Using a Taylor series of an arbitrary function, f(x), one can build up more
and more accurate finite derivatives and quantify the order of corrections. The
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first four lowest order central difference second derivatives are [116]

d2

dx2
f(x) =

1

a2

(
f(x− a)− 2f(x) + f(x+ a)

)
+O(a2),

d2

dx2
f(x) =

1

a2

(
− 1

12
f(x− 2a) +

4

3
f(x− a)− 5

2
f(x)

+
4

3
f(x+ a)− 1

12
f(x+ 2a)

)
+O(a3),

d2

dx2
f(x) =

1

a2

(
1

90
f(x− 3a)− 3

20
f(x− 2a) +

3

2
f(x− a)− 49

18
f(x)

+
3

2
f(x+ a)− 3

20
f(x+ 2a) +

1

90
f(x+ 3a)

)
+O(a4),

d2

dx2
f(x) =

1

a2

(
− 1

560
f(x− 4a) +

8

315
f(x− 3a)− 1

5
f(x− 2a)

+
8

5
f(x− a)− 205

72
f(x) +

8

5
f(x+ a)− 1

5
f(x+ 2a)

+
8

315
f(x+ 3a)− 1

560
f(x+ 4a)

)
+O(a5).

(6.10)

Figure 6.6 shows the potential computed using various accuracies of the Lapla-
cian, the four from equation (6.10) and the form used in Chapter 5 (equation
(5.13)). Taken for this example is the pseudoscalar potential at T = 235 MeV
at time τ/aτ = 22, however, the effect present is replicated across different tem-
peratures and times. The data are shown along a single axis, labelled x for
convenience, as this was all that was available for the analysis in Chapter 5. All
data in the figure are from the same correlator that is defined for every separation
on the lattice, however treating it in this way, i.e. exactly like the data from the
previous chapter, allows us to probe those results. The effect of increasing the
accuracy of the Laplacian has two features: firstly, the direction of the correction
flips with each subsequent increase, and secondly, the magnitude of the correc-
tion diminishes with the increased accuracy. The fact the corrections get smaller
with each subsequent increase in accuracy is promising, it suggests that the finite
derivatives are converging on the true derivative. These diminishing returns led
us to stop at the four neighbour finite derivative and use this to calculate the
Laplacian in this work. What can also be seen from Figure 6.6 is that the one
neighbour d2/dr2 Laplacian used in Section 5.3 leads to a potential that grows
much quicker than the higher accuracy derivatives. This is likely the explanation
for such large string tensions reported in the Cornell potential fits of Section 5.5.
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6.2.2 Momentum space Laplacian

In Section 6.1.1 we introduced the momentum space correlator as a stepping stone
that reduced computational costs. However, this representation can be further
exploited by noting the following identity for Fourier transforms: let the Fourier
transform of F (p) be f(x) (i.e. f(x) = F [F (p)](x)), then

d2

dx2
f(x) =

1

V

d2

dx2

∑
p

F (p)e−ipx =
1

V

∑
p

−p2F (p)e−ipx = −F [p2F (p)](x).

(6.11)
Using this identity we can calculate the derivative of the position space corre-
lator from the momentum space correlator without needing nearest neighbour
derivatives. Therefore, the form of the Laplacian using this approach is

∇2C(r, τ) = −F [(p2x + p2y + p2z)C(p, τ)](r). (6.12)

There comes a word of caution when calculating the derivative of functions
this way. A Fourier transform of a finite set of data will always capture the
information from this set, however, due to the finite sampling it may not always
capture the information about the true, underlying, continuous function that gave
these sampled data. This can lead to an incorrect calculation of the gradient or
Laplacian.

Figure 6.7 shows the reduced spatial derivative term in the potential when
calculated using two different forms of the Laplacian, the momentum space rep-
resentation that has just been introduced and the four-neighbour form from the
previous subsection, i.e. the final expression of (6.10). By comparing the two
resulting reduced spatial derivative terms in this figure one can see “filaments”
where the two methods strongly disagree. As this plot contains all x, y, z con-
verted into polar distance r, it contains multiple values for certain r for which
there is a degeneracy in the coordinate conversion (I will go into more details of
the symmetries and coordinate systems in Section 6.3). From this multivalued
nature one can see that although these filaments occur near the on-axis values, it
does not occur for all points and is suggestive of a discrepancy between on- and
off-axis data: this is an artefact of discretisation errors on the lattice.

Figure 6.8 shows the reduced spatial derivative term from the momentum
space Laplacian in the two-dimensional x, y plane at z = 0. This figure reaffirms
that these filaments are caused by discretisation effects as the data that lie within
a small cone centred along each axis contain very different values to the rest of
the lattice. Combined, Figures 6.7 and 6.8 show that this method is too prone to
discretisation errors to be used.

In an effort to address why the momentum space Laplacian is not appropriate,
we consider the convergence of the transform. To test this we consider the size
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Figure 6.8: The reduced spatial derivative term from the Nτ = 28, T = 201 MeV
vector channel correlator, viewing a slice of the lattice where z = 0. The data are
shown in the range [-12,12) rather than [0,24) to highlight the symmetry. The
colour scale is designed to show the order of magnitude differences between the
very off-axis data and the data that lie near the axis. The highly oscillatory areas
are the cause of the filaments in Figure 6.7.
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of each term in the Fourier transform as a function of momenta, i.e. (p2x +
p2y + p2z)C(p, τ). An increasing contribution from higher momentum terms is
suggestive that our momentum range is not large enough to truly represent the
data. Figure 6.9 shows the size of each on-axis term that enters into the Fourier
transform calculation of the Laplacian, equation (6.12). From this we can see that
these terms are still increasing in magnitude at large momentum; this suggests
that there are higher momentum contributions that are not being accounted for
in our range of allowed momenta (consider how this figure differs from Figure
6.2). This range is fixed by the number of spatial points in our lattice, and for a
fixed physical size the only way to increase the range of momenta is to decrease
the lattice spacing. Therefore, this is a manifestation of a lattice discretisation
effect.

Moving forward, the Laplacian will be calculated using the four-neighbour
finite derivative from Section 6.2.1.

6.2.3 Time derivative

The time direction does not have PBC, therefore there will always be points in
time that do not have enough neighbours to take the nearest neighbour derivative.
Earlier, in Section 5.3, we identified that using a single neighbour for the finite
distance in time lost access to the τ/aτ = 0 and τ/aτ = Nτ − 1 points. The data
at large times are expected to contain the least time-dependence and thus are the
most important data for calculating the potential: losing more data at late times
would not be ideal. Therefore, we chose against increasing the accuracy of this
derivative at the expense of the data at late times. As an alternative to the central
finite difference derivative, there is the backwards finite difference derivative which
would only prevent access to the derivative at early times. However, this is known
to be less accurate for the same number of neighbours considered; even higher
order approximations of the backwards derivative contained more noise than the
one-neighbour approximation of the central derivative that was used in Chapter 5.
For both reasons, it was decided against changing the form of the time derivative
and we will continue to use equation (5.14).

6.3 Spatial symmetries

Considering only the spatial dimensions, the action of lattice QCD is invariant
under transformations of the cubic group. These transformations are built from
any combination of reflections in the plane of either x = 0, y = 0, or z = 0,
and/or rotations about the x, y, or z axes by an angle of π/2. In the continuum,
QCD is invariant under these reflections but also rotations of an arbitrary angle,
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it is the finite lattice spacing that breaks the continuous rotational symmetry.
Calculating observables on the lattice requires Monte Carlo integration and

thus the symmetries of the cubic group are only exact in the limit of infinite
statistics. In this section, we will explore the extent to which these exact symme-
tries are conserved as well as the size of symmetry breaking effects caused by the
non-zero lattice spacing. We will end with an approach to minimise the impact
of these symmetry breaking effects.

6.3.1 Exactly conserved symmetries

With finite data, we can explore how well the symmetries are respected and
how this changes with the number of data. Figure 6.10 shows the correlator at
three different sets of (x, y, z), for each set we plot the value of the correlator at
every point that is related to (x, y, z) by a reflection and/or rotations of π/2, for
example (−z, y, x). This is shown for a correlator comprised of 10, 100, and 1,000
configurations and one can see how the spread shrinks with increased statistics.
Once the correlator is the mean of 1,000 configurations, the spread of data is
between 2 and 4 per cent for the separations shown. The relative spread is larger
with increased separation.

For values of x, y, z that are all different there are 48 symmetric partners,
therefore, there is a huge statistical benefit to averaging over these points. Since
the data have passed this cubic symmetry check, all results shown beyond this
and the following subsections will be for data that has been averaged over the
symmetries of this group.

Averaging over the cubic symmetries of the correlator commutes with taking
the finite difference derivative, therefore, as the space spanned by the set of points
after averaging is more complex than the original lattice, the derivative is taken
before averaging over symmetries.

6.3.2 Continuous rotation symmetry breaking

A relic of the broken continuous rotational symmetry is that the polar distance,
r =

√
x2 + y2 + z2, is not a good measure of distance. Consider two point-split

sinks at (x, y, z) = (2, 2, 1)as and (3, 0, 0)as, there are 5 and 3 links separating
these sinks from (0, 0, 0) respectively, yet in the continuum they are both a dis-
tance of 3as from the origin. Figure 6.11 presents the difference between points
that are related due to the cubic symmetries of the previous subsection and the
points that are related by continuous rotational symmetry. The correlator is plot-
ted at a few values of r, where at each r there are two different symbols (but the
same colour), points that are the same symbols are related by exact symmetries
and points given by different symbols are related only by continuous rotation.
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Any difference between points of different symbols is attributed to the breaking
of the continuous rotational symmetry introduced by the finite lattice spacing.
Take, for example, the value of the correlator at (x, y, z) = (3, 0, 0), (0, 3, 0), and
(0, 0, 3), these are approximately the same as each other, yet very different from
(x, y, z) = (2, 2, 1), (2, 1, 2), and (1, 2, 2). These discretisation errors become less
apparent at larger distances as the ratio of (x + y + z)/

√
x2 + y2 + z2 (which is

the ratio of the distance in discrete space against the polar distance) approaches√
3, and this is shown clearly in Figure 6.11. Given that we expect this symmetry

breaking to be largest when (x + y + z)/
√
x2 + y2 + z2 is furthest from

√
3, we

can say that this is mostly a short distance effect.

6.3.3 Tree-level improvement

The short distance discretisation errors shown in the previous subsection are not
unique to the calculation of correlators, they are an inherent lattice artefact. We
can build upon this by contrasting the perturbative lattice calculation of the static
energy with its known continuum counterpart to compute a correction that will
also apply to our data [117, 118]. This correction procedure is called tree-level
improvement.

In this perturbative expansion, we consider that the leading contribution to
the static energy is the one gluon exchange and we do not include a running
coupling. The constant coupling will be denoted ᾱs. The lattice calculation of
the free energy takes the form

Elat
free(r) = ᾱs

4π

as

∫ π

−π

d3q

(2π)3
eiq·r

4
∑

i(sin
2( qias

2
) + 1

3
sin4( qias

2
))
, (6.13)

where qi are dimensionless lattice momenta1. The continuum counterpart is

Econt
free (r) =

ᾱs
r
. (6.14)

The difference between these two quantities is exploited by [117] as an estima-
tion of the lattice discretisation errors in the potential. Ignoring, for the moment,
ᾱs, the difference reads

δG(r) =
4π

as

(∫ π

−π

d3q

(2π)3
eiq·r

4
∑

i(sin
2( qi

2
) + 1

3
sin4( qi

2
))

)
− 1

r
, (6.15)

and is included in the Cornell potential via

V (r) = −α
r
+ σr + C + αfδG(r). (6.16)

1This equation is reduced to a discrete Fourier transform when calculated on a finite lattice
of size (asL)

3, thus qi = 2πni/L for ni = −L/2 + 1,−L/2 + 2, ..., L/2.
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Here we have turned the strong coupling constant, ᾱs, into a free parameter, α,
and we have also introduced another free parameter, f , to control the size of the
correction contributions. This inclusion of δG into the Cornell ansatz is added
to correct, at leading order, for the systematics of finite lattice spacing. This
method will be referred to as improvement scheme I.

Alternatively, [118] equates the lattice and continuum free energies to define
so-called improved distances, rI , through

as
rI

=

∫ π

−π

d3q

(2π)3
eiq·r

4
∑

i(sin
2( qi

2
) + 1

3
sin4( qi

2
))
. (6.17)

In this form, rI/as is in lattice units. Equation (6.17) gives a mapping from x, y, z
input into the right-hand-side (inside r) to the improved distance rI on the left.
One key difference is that this approach does not require a free parameter to be
fit to the data, there is a unique shift from r = (x, y, z) → rI . Defining the data
at rI , rather than r, accounts, at leading order, for the errors introduced by the
finite lattice spacing. We will refer to this method as improvement scheme II.

Both improvement schemes require a calculation of the free energy on the lat-
tice. As we are concerned with ultra-violet (UV) effects (the short distance, finite
lattice spacing corrections) we would like to calculate this in the thermodynamic
limit (Ns → ∞). Another justification for this limit mimics [119, 120] whereby
the lattice calculation only equates to the continuum in the thermodynamic and
continuum limits, and therefore in the thermodynamic, but not continuum, limit
we would expect only finite lattice spacing effects present. These are the effects
we are trying to correct for.

One problem with computing equation (6.13) is the pole at q = 0. For a
similar calculation in SU(2) pure gauge theory the author sets the value of the
integrand at q = 0 to zero [121]. We can check this prescription by considering
that as equation (6.13) is a Fourier transform then the q = 0 term only offers an
additive renormalisation. To clarify this, consider that as the continuous integral
in equation (6.13) becomes a discrete sum due to discretised momenta, Elat

free(r)
is calculated via a DFT. The zero momentum term in a DFT is multiplied by
e0·r and thus is a constant over r, impacting the total result only by means of a
constant additive shift. All that remains is to establish the value of this additive
shift, and as the large r behaviour of each method is known, we can use this to
confirm that setting this term to zero gives the appropriate behaviour for the
renormalisation.

Infinite volume extrapolations

To extrapolate δG(r) and rI , from equations (6.15) and (6.17) respectively, to
the thermodynamic limit they are computed on lattices of differing sizes and then
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We will apply each of these corrections separately in Section 6.6.3 to assess
their ability to correct for discretisation errors.

6.4 Importance of µ

The first use of the HAL QCD method was in the domain of nuclear physics [92].
In this setting, the reduced mass, µ, that enters into the Schrödinger equation is
that of a baryon and thus precision particle collider measurements can be used
as inputs. For the interquark potential of bottomonium, the reduced mass refers
to the bottom quark, and colour confinement prohibits a simple attribution of a
number to the mass of the bottom quark. Nevertheless, as stated in Section 5.2,
we must provide a value as input.

In early work from the HAL QCD collaboration and others, the reduced charm
quark mass was set to one quarter of the vector meson mass (J/ψ for their
work on charmonium) [96, 101]. Later works argued that the quark mass can be
determined by asserting that the spin-dependent potential, defined as

VS(r) = VV(r)− VPS(r) (6.18)

should vanish at large distance [97–100]. They therefore claim that

mq = lim
r→∞

−1

Ehyp

(
∇2CV(r, τ)

CV(r, τ)
− ∇2CPS(r, τ)

CPS(r, τ)

)
, (6.19)

where, for a system of two equal mass quarks, mq = 2µ. Here the hyperfine
splitting, Ehyp = EV − EPS, can be measured using hadron spectroscopy. This
self-determination of the quark mass is proposed alongside, and to be used for,
the time-dependent HAL QCD approach, however, the appearance of the energy
is very much in the language of the time-independent approach. Taking the
formalism of equation (5.8) one would instead get

mq = lim
r→∞

1

∂CV(r, τ)/∂τ

CV(r, τ)
− ∂CPS(r, τ)/∂τ

CPS(r, τ)

(
∇2CV(r, τ)

CV(r, τ)
− ∇2CPS(r, τ)

CPS(r, τ)

)
.

(6.20)
This is made more clear by considering that, in the presence of only a single state,
j, and using the vector channel as an example,

∂CV,j(r, τ)/∂τ

CV,j(r, τ)
=

−EV,jΨV,j(r)e
−EV,jτ

ΨV,j(r)e−EV,jτ
= −EV,j, (6.21)

but this is certainly not the case in the time-dependent approach where the
correlator is considered as a linear combination of states. Figure 6.16 shows

109





−(1/C)dC/dτ against r for a range of τ . There is clear dependence on r and
thus replacing this term with Ehyp for all r would not capture the true behaviour.

There are also considerations one must take due to the statistical uncertainties
in each term in equation (6.20). Studies [97, 98] use quenched simulations and
thus have small enough errors for a precise determination of µ this way, the full
QCD calculation of [99,100] also determines µ with this method but only at zero
temperature. For the configurations of this study, which span many temperatures,
the statistical fluctuations lead to a much larger error estimate and no such precise
determination of µ using equation (6.20) can be made.

The role of µ in equation (5.8) is to balance the contributions from the reduced
spatial and temporal derivatives terms. Examining them separately shows the
importance of a precise determination of µ as it pertains to non-zero temperature
studies and confinement signals. Figure 6.17 presents the dependence of the
reduced spatial derivative term on τ and r. Comparing Figures 6.16 and 6.17,
keeping in mind that the potential is a sum of these two quantities balanced
by 1/(2µ), one can see how there is an interplay at large r between the terms
decreasing, or increasing slower, and the time: the time derivative term decreases
more at early times, the spatial derivative term increases slower at late times. If
one wants to ascertain the behaviour of the potential with increasing temperature,
paying particular attention to the flattening at large distance, then one must be
careful to disentangle physical effects from simply using an incorrect value of µ.
Figure 6.18 depicts the effect of varying µ on the potential. At large distance and
early times, an increase of µ by 25% causes significant flattening of the potential.
There is also a difference at short distance for all times when µ is changed.

With the importance of the reduced quark mass established, and doubt cast
upon the prescribed approach for calculating it, the following section will explore
an alteration to the HAL QCD method that gives a self-consistent value of µ.
This method accounts for the r dependence in the time and spatial derivatives
and offers, simultaneously, a calculation of the potential and explicit checks of
the validity of the Schrödinger equation formulation at each separation r.

We will come full circle in Section 6.6.2 by showing that this µ is still consistent
with limr→∞ VS(r) = 0 and thus satisfies the condition of the HAL QCD approach.

6.5 Linear regression method

In Chapter 5 we implemented the original time-dependent HAL QCD approach,
this assessed the validity of the equation for the potential, given in equation
(5.8), by requiring that the potential was independent on τ . This method also
required an external determination of the reduced quark mass, µ, which we have
just raised issues with. In this section, we propose an alternative way to calculate
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the potential that comes with a metric of how well the Schrödinger equation, and
potential picture in general, is respected (important for non-zero temperature
studies); it also comes with its own estimate of the reduced quark mass.

The approach of the previous chapter was to average values of the reduced
temporal and spatial derivative terms over a time window and then combine them
in equation (5.8). For this alteration we will expand and rearrange this equation
slightly, giving

∂Cλ(r, τ)/∂τ

Cλ(r, τ)
=

1

2µ

∇2
rCλ(r, τ)

Cλ(r, τ)
− Vλ(r). (6.22)

In this form it can be compared to the equation for a straight line: for fixed
r, a line in the plane of (1/Cλ(r, τ))∂Cλ(r, τ)/∂τ against (1/Cλ(r, τ))∇2

rCλ(r, τ)
(with τ changing) would have gradient 1/(2µ) and y-intercept of−Vλ(r). Not only
does this give us a prescription of the potential, but also the reduced quark mass.
Furthermore, if the HAL QCD method is to hold, then the linear relationship
explicit in equation (6.22) must also hold. So the extent to which these data fit
to a straight line offers a validation of the whole HAL QCD method and potential
picture, at least numerically.

Whilst this is written in a linear form, the two terms that depend on the
correlator are functions of τ and r, the potential is a function of r, and the
gradient has no explicit dependencies. Naively splitting equation (6.22) into a set
of independent linear equations for each separation ri in the set of all separations
{r} would allow for the value of Vλ(ri) to be completely determined by linear
regression (leading to Nr different two-parameter fits), however, it would also
have the consequence of allowing µ to vary with distance. Conversely, trying to
fit all τ and r at once would require fitting Nr + 1 parameters concurrently, a
much more demanding minimisation. To keep µ fixed with r but without needing
such a high dimensional minimisation, I perform the following steps:

1. Select a trial µ̃. Using µ̃ = mΥ/4 is a reasonable value to start with.

2. For each ri in {r}, and τ ∈ [τ1, τ2], fit the y-intercept of a line, whose
gradient fixed to be 1/(2µ̃), to equation (6.22). The choice of τ1 and τ2 will
be explored below.

3. Combine the goodness-of-fit values from each fit of Vλ(ri). The fit metric
chosen is the orthogonal residual distance which accounts for errors in both
observables, see [122] for more details.

4. Steps 1− 3 constitute a goodness-of-fit algorithm that assesses the use of a
single µ̃ to recover Vλ(r) whilst only ever performing one-dimensional fits,
giving a χ2(µ̃). One need only perform one more single-dimension optimi-
sation to minimise χ2(µ̃) and recover the optimal µ̃. This also gives the

114



accompanying estimate of Vλ(r). Note that without access to the gradient
of χ2(µ̃) we opted for the golden section search from [89].

Figure 6.19 shows the quality of the linear fits for five example values of
r = |r| using the T = 235 MeV ensemble. These values of r were chosen to
represent the set of all distances without reducing the clarity of the figure, many
more analogous figures are shown in Appendix B to exhibit the quality of the
fits at a range of temperatures. Plotted in the same colour is the reduced time
derivative against the reduced spatial derivative (with 2µ not included in the
reduced spatial derivative) at all different τ in the range dictated by Table 6.1.
The different colours are data at different values of r. The horizontal and vertical
error bars come from the statistical errors in the reduced time derivative and
reduced spatial derivative terms respectively, which in turn come from bootstrap
resampling the ensembles. The value of µ is fixed across r which is evidenced by
the gradient being fixed between colours in Figure 6.19.

From Figure 6.19, alongside Appendix B, we can see that the linear relation-
ship is very strongly respected with an orthogonal residual distance per degree
of freedom of ∼ 1. This value of orthogonal residual distance means that there
is, on average, one average errorbar’s length between each datum and the line
of best fit. Therefore, by using the method introduced in this section, we have
shown that the data respect the Schrödinger equation at non-zero temperature,
even above Tpc. This is a development on the traditional HAL QCD method
where this behaviour is assumed.

From Chapter 5 we could see that at the very earliest times there was still time-
dependence in the potential. In the setting of these linear fits that corresponds
to ranges of τ where the linear relationship is not upheld and we do not want to
include these times in our analysis. These time ranges are easily distinguished
in this regime as there is a goodness-of-fit parameter, the orthogonal residual
distance.

However, like as Chapters 4 and 5, to make comparisons across temperatures
we must be careful with time window systematics: certain effects are a result
of only the time window changing and we want to remove these effects to make
observations of physical effects. Table 6.1 shows the range of τ and r that can be
analysed whilst maintaining orthogonal residual distance ∼ 1, corresponding to
times where the method is valid. Exactly as in Section 5.5 there will be multiple
reports of the potential from a single temperature done in such a way that a
comparison with an equal time window can be made.

By comparison with Table 5.1 one can see that a longer range of r and τ
has been prescribed for the data in this chapter. We suggest that this is caused
by a combination of factors: the estimation of the time windows is now done
using a goodness-of-fit parameter rather than human assessment and therefore
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is not prone to over/underestimation, the coarseness of the data from Table 5.1
meant that the exact cut off between valid and invalid data was not as clear
and so there are larger rounding-like errors, and the off-axis data have smaller
statistical fluctuations than the on-axis data because there are more degenerate
combinations (under the cubic symmetry of the lattice) that can be made from
points like (x, y, z) than from (x, 0, 0). This final point needs the extra clarification
that this goodness-of-fit parameter is measured over a range of r, rather than
each value in turn, and thus any values of r that would be deemed invalid can
be accounted for by neighbouring, valid, values of r such as off-axis points with
smaller statistical variation. One further difference is that for these data it was
found, empirically, that not including the final available point in time led to a
better linear regression fit, this is why the time window ends at τ/aτ = Nτ − 3
(the lattice ends at Nτ − 1, but the time derivative is only defined up to Nτ − 2,
so the penultimate point where the data are defined is Nτ − 3).

6.6 Results

6.6.1 Temperature dependence of µ

We established that the potential is sensitive to the value of µ used for the analysis
(Section 6.4). We have just now proposed a method that would determine µ from
that data, which is good for self-consistency but does mean the value of µ may
fluctuate with temperature. The quark mass itself is not a constant and runs with
the energy scale considered and thus it is not unreasonable to assume that µ may
change with temperature. It therefore remains to be seen if we can use a single
value of µ for our analysis or if we must allow it to change with temperature.

Table 6.1 established the optimal time windows for drawing comparisons be-
tween the data, and thus there are two kinds of analysis that can be performed:
once per temperature using the most appropriate time window for each temper-
ature, or many times per temperature at many time windows. The goal of this
subsection is to establish if µ changes significantly enough with temperature for
us to need to include this effect in our analysis. It should be noted, however,
that using a temperature dependent µ causes significant short range discrepan-
cies between potentials at different temperatures, this was clear in Figure 6.18.
Figure 6.20 shows the value of µ prescribed by the linear fits when the optimal
time range for each individual temperature is used, therefore each data on this
figure is fit to a different time range; overlaid is the line of best fit, complete with
error estimate in grey, to estimate the behaviour of µ with temperature. The data
from this figure is consistent with µ being constant with temperature when we
consider the optimal time window for each temperature. This is evidenced by the
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linear fit being indistinguishable from a constant within errors. A similar, albeit
less concise, trend comes from the analysis across temperature multiple times for
each time window. The gradient of a linear fit of µ(T ) fluctuates between zero
and slightly above zero (although still below a 2σ deviation from zero), and there
seems no pattern between the time window and whether or not the gradient is
zero. Therefore, there is not enough evidence to say that there is certainly tem-
perature dependence of µ. For the rest of the analysis µ is kept fixed and is
recovered from a constant fit of µ(T ) = µ. For the vector channel, this is shown
by the cyan line in Figure 6.20.

A success of this approach is that when the linear fits were applied to VPS
and VV independently, the fitted values of µ from each channel agree remarkably,
µ = 2.584(26) GeV and µ = 2.573(27) GeV respectively; for the remainder of
the work the same value, µ = 2.58 GeV, will be used for both channels. These
correspond to a bottom quark mass, mb = 2µ, that is consistent with the zero
temperature result from a similar study of NBS amplitudes using NRQCD quarks,
mb = 5.52± 0.33 GeV [102] and the value of mb = 5.17 GeV used for the original
Cornell model work [31].

Another interesting result of Figure 6.20 is that the prescription that µ =
mΥ/4 ∼ 2.37 GeV, extending the methodology of [96, 101] to bottomonium,
does not seem to be supported by the data. This becomes more important in
combination with Section 6.4 when it was shown that an incorrect value of µ
could be incorrectly attributed to physical mechanisms, such as the flattening of
the potential at large distance.

Equipped with the value of µ, we can alter the linear regression procedure
presented in Section 6.5 such that the value of µ is fixed and yet we still fit a
value of Vλ(ri) for a range of τ at each distance ri. Potentials will be calculated
for each row in Table 6.1 such that any comparison across temperatures can be
made without systematic changes caused by different time windows for different
temperatures.

6.6.2 Spin-dependent potential

Figure 6.21 shows the spin-dependent potential, defined in equation (6.18), against
quark separation for a range of temperatures. The spin-dependent potential shows
no significant change with the time window, Figure 6.21 therefore acts as a rep-
resentation of all time windows.

As explained in Section 6.3.1, there are many cubic symmetry operations on
the lattice and thus the data was averaged over these, what remains are the
unique coordinates that cannot be transformed into any other coordinates by
any of these symmetry operations. When these unique coordinates are converted
into polar distance, ignoring any dependence on the angular polar coordinates,
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there are degeneracies, for example (3, 0, 0)as and (2, 2, 1)as. These are the cause
of the multivalued nature in the plots for the remainder of this section.

From Figure 6.21 it can be seen that the spin-dependent potential has a re-
pulsive core and then plateaus to zero beyond ∼ 0.2fm. There is also exceptional
consistency across temperatures at short distances. The size of the errors at large
r are an indication of why the behaviour of the spin-dependent potential could
not be used to determine the reduced quark mass (discussed in Section 6.4).

In [98,100] the long distance behaviour of the spin-dependent potential is zero
by construction: the value of µ was set according to this condition. In [97], a
charmonium calculation, the assignment of µ = mJ/ψ/4 was consistent with a zero
spin-dependent potential beyond 0.5fm, however, in [101], another charmonium
calculation with the same definition of µ, the spin-dependent potential plateaued
at a negative value from 0.2fm onwards. This final result was calculated on the
same gauge configurations as the work in this chapter and it would be interesting
to rerun that analysis with the improvements introduced in this chapter.

The spin-dependent potential reported in this work is therefore consistent
with the results of the HAL QCD collaboration.

6.6.3 Central potential

Figures 6.22 and 6.23 show the central potential for the first four time windows
of Table 6.1. From Figures 6.22 and 6.23 it is clear that there is a systematic
flattening of the potential with increased temperature, and that the effect is
monotonic with differences often larger than statistical errors. Given that the
same data are used multiple times, not every difference between temperatures
is independent, but in each individual pane of the two figures all the data are
independent.

Also present in these figures are significant discretisation errors, particularly
at short distance. This is addressed below, using the results from Section 6.3.3.

Discretisation corrections

Whilst we don’t know the exact form of the potential at increasing temperature,
the zero temperature form is known to be well captured by the Cornell potential
in the continuum and from lattice studies. With this in mind, we can say, with
some confidence, that the potentials at short distance in Figures 6.22 and 6.23
are showing discretisation errors and a corrected version would increase smoothly.
We stop short of defining this smoothness but we will observe the effects of
discretisation corrections with this heuristic in mind. We can identify the 4th and
5th left-most points of Figures 6.22 and 6.23 as being from lattice sites (1, 1, 1)as
and (2, 0, 0)as respectively: this pair of points differ greatly in discrete space but
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only slightly in continuous space, therefore, they act as a good guide for these
discretisation corrections.

We have already outlined two approaches to correcting the discretisation errors
present in the potential. In Section 6.3.3 we introduced improvement scheme I
that gave an extra correction term to the Cornell potential ansatz, as well as
improvement scheme II that leaves the values of the potential unchanged but
changes the values of r over which they’re defined. We will explore each method
in that order.

Improvement scheme I requires us to fit the data to the Cornell potential. I
will postpone reporting the values of the parameters until the next subsection
and instead present only the impact of the tree-level improvement. To show the
effects of this ansatz, the potential data is fit to the form of equation (6.16)
and then the term responsible for the correction, αfδG(r), is removed from the
data. The resulting potential is shown in Figure 6.24 for a single temperature,
T = 141 MeV. The Coulomb-like increase at short distance is certainly less jagged,
especially for the third and fourth left-most points, and the correction makes
negligible change at larger distance. A fit of the T = 141 MeV data (over the
time window τ ∈ [16− 37]aτ ) to the corrected Cornell potential yields a χ2

ν of 15,
this is markedly lower than the value of 73 from the fit to the uncorrected version.
Visually, too, it would seem like this is partially correcting for the discretisation,
although it does not seem to correct discretisation errors completely. The latter
point is clear as the correction does not offer enough change to overcome the
continuous rotational symmetry breaking effects that are seen around r = 0.38fm
in the figure, these are the two points at (3, 0, 0)as and (2, 2, 1)as.

The second approach to discretisation corrections, improvement scheme II,
was shown in equation (6.17). It gives a mapping from the Cartesian coordinate
r to an improved distance rI . This conversion contains no free parameter to
adjust the strength of the correction and thus is less flexible than improvement
scheme I, however, in Section 6.3.2 we noted that the naive conversion from
Cartesian to polar coordinates was inappropriate on the lattice and thus this is
well motivated. Figure 6.25 shows the effects of this method on the same data as
Figure 6.24, but immediately apparent is the fact the improved distances do not
change enough from the original distances to smoothen out the short distance
jaggedness. Fitting the Cornell potential at the improved distances leads to
χ2
ν = 37, which is better than when fit to the polar distances where χ2

ν = 73 but
worse than the previous correction method. This is evidence that the method
does offer partial corrections, however, given the lack of a free parameter there
is no way to increase this correction beyond this level and thus we conclude that
this method is not appropriate for our data.

Table 6.2 summarises the quality of fits from this section. We conclude by
saying that improvement scheme I is more appropriate for these data and thus
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this is the treatment that will be applied to the final analysis.

Fits to the Cornell potential

In order to quantify the changes to the potential with increased temperature, we
compare the data to the Cornell potential to extract the coupling, α, and string
tension,

√
σ. The behaviour of these two quantities with increasing temperature

can offer insight into how the potential binding bottomonium states changes in
the transition from hadrons to QGP.

There are four free parameters in the form of the Cornell potential that ac-
counts for discretisation errors, equation (6.16). Two of these, the added vertical
shift, C, and the magnitude of the corrections, f , are fixed using the lowest tem-
perature data at the longest time window (T = 141 MeV over range [16− 37]aτ )
and thus only the coupling and string tension are measured for all other fits. The
values are: C = 1.26(2) GeV and f = 4.08(48). Whilst C has changed from the
value reported in the previous chapter, it is just an additive normalisation that
is not of importance to this work. Figures 6.26 and 6.27 show the temperature
dependence of the other two fit parameters, α and

√
σ respectively.

By considering Figure 6.26 one can see that the dependence of the coupling,
α, on temperature is not statistically significant. The reported values at differ-
ent time windows almost always agree within errors and considering the time
range that spans all temperatures ([10 − 13]aτ ) there is no temperature change
beyond the level of statistical errors. Comparing to the results of Chapter 5,
specifically Figure 5.8 (top), we can see that the statistical errors and variation
in α actually increase with the addition of the off-axis data. This is likely due to
the short distance discretisation errors discussed in Section 6.6.3, as this is the
region most sensitive to the value of α. This increase in uncertainty could be
more representative as the fluctuations depicted in Figure 5.8 (top) could not be
explained. The level of agreement between the two chapters is a testament to
the tree-level corrections: the inclusion of off-axis data introduces discretisation
errors not present in the on-axis data, however, the agreement suggests that these
effects are, at least in part, accounted for. Further supporting this is that a fit of
the potential at T = 141MeV to the Cornell potential that does not account for
the discretisation errors gives α = 0.51(7). This value does agree with the results
from Chapter 5, albeit with a significantly larger statistical error than when the
corrections are used.

The string tension shows a significant and monotonic decrease with increasing
temperature in Figure 6.27. There is reasonable agreement between different time
ranges for the same temperature, with T = 281 MeV being the largest exception.
That datum notwithstanding, there is certainly a pattern of decreasing string
tension beyond the level of errors with increasing temperature when considering
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6.7 Conclusion of interquark potentials

The results of this chapter are more than the non-zero temperature analysis of
Section 6.6. There are checks and developments to the HAL QCD method that
also apply to zero temperature studies. In Section 6.2 we showed that increasing
the accuracy of the finite difference derivative that approximates the Laplacian
has a significant effect on the potential; when the resulting potential was fit
to the Cornell ansatz in Section 6.6.3 this effect manifested in the reduction
of the string tension towards physical values (when compared to the results of
Chapter 5). We introduced a new formulation of the HAL QCDmethod in Section
6.5 that provided two new elements: a method of assessing how well the data
respect the Schrödinger equation at non-zero temperature, and a self-consistent
determination of the reduced quark mass. The first of these was present in Figure
6.19 where we saw how the non-relativistic Schrödinger equation is respected
above Tpc, reflected in the quality of the linear relationship introduced by this new
method. The second of these new elements brought into question the treatment of
the reduced quark mass at non-zero temperature, whether it should remain fixed
at different temperatures or be allowed to vary. In Section 6.6.1 we concluded
that the data do not show significant indications in favour of varying across
temperature and it was chosen to keep the mass fixed. Furthermore, the analysis
of both the vector and pseudoscalar channels gave estimates of the quark mass
that are consistent with each other within errors, moreover, the resulting quark
mass agrees with [31, 102]. Establishing the reduced quark mass did not require
the assertion that the spin-dependent potential vanishes at large distance, the fact
that this result was shown to still be the case strongly supports the HAL QCD
method. Finally, through fits of the Cornell potential to the central potential
it was shown that the coupling exhibits no significant temperature dependence
yet the string tension systematically, and significantly, decreases with increasing
temperature. This is a reflection of the central potential flattening with increased
temperature, which is in agreement with results from static quark calculations
[103–108] (recent result from [109] notwithstanding) and charmonium interquark
potentials from [101].

130



Chapter 7

Conclusion

In Chapter 4 we performed spectral reconstruction to extract the ground state
mass and width of the Υ and χb1 states. Care was taken to reduce, and then
extrapolate out, the systematic dependencies on the time window over which
the analysis was performed. The resulting narrative was that the mass does not
change with temperature for either state and that the width increases for both.
The increase was larger for the χb1 suggesting that this would dissociate earlier
than the Υ. The excited state values were not reported as they varied greatly due
to statistical uncertainties. Further work could be done to develop a more robust
spectrum ansatze, reducing the dependence on the time window, increasing the
quality of the fits, and providing access to excited state information.

In Chapters 5 and 6 the central and spin-dependent potentials were calcu-
lated for the S-wave bottomonium states. Improvements made to the HAL QCD
method confirmed that the non-relativistic Schrödinger equation is still respected
above the pseudocritical temperature and that the quark mass used for this analy-
sis does not change with temperature. The central potential flattens with increas-
ing temperature and exhibits clear Cornell-like behaviour. The spin-dependent
potential shows a repulsive core and then returns to zero beyond 0.2fm with
temperature having no impact on the spin-dependent potential. Discretisation
errors were reduced using tree-level improvement, however not eliminated. Per-
forming the same analysis on lattices with smaller lattice spacing would reduce
these errors and give a better estimation of the short distance behaviour of the
potential.

Further work could explore agreement between the Υ mass recovered from
spectral reconstruction and the spectrum of S-wave states calculated via the
Schrödinger equation using the potential obtained from the HAL QCD method.
This is beneficial as spectral reconstruction complements the HAL QCD method.
The former offers a measurement of the width of states, whereas the latter does
not contain this information; the HAL QCD method does not grant access to the
imaginary part of the potential from which the width could be estimated.
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Appendix A

Simplifying the Gaussian integral

In Section 4.3.1 we used maximum likelihood estimation to fit three physically
justified ansatze to the correlation functions calculated on the lattice. As part
of this analysis, we motivated three functional forms of the spectral function
that were given in equations (4.17), (4.18) and (4.19). To convert a spectral
function into a correlation function, within the framework of NRQCD, one takes
the Laplace transform of the spectral function, given by equation (4.6). However,
a simplification was made when calculating the Laplace transformation of the two
spectral functions that contained a Gaussian peak (equations (4.18) and (4.19)).
This appendix will explore the simplification used and quantify the difference
between the simplified and full treatments of the Gaussian integral.

The ansatze stated in Section 4.3.1, equations (4.21) and (4.22), are the result
of this simplification.

A.1 Correlator ansatz

The correlation function in NRQCD is the Laplace transform of the spectral
function. This integral is over the range of non-negative, real energies, ω ∈ [0,∞].
However, the Laplace transform results in a ‘simpler form’ of correlation function
if one instead evaluates the integral over the range ω ∈ [−∞,∞]. I will soon
clarify what is meant by simpler form.

First, we consider the spectral function

ρ(ω) =
A
√
2π

Γ
e
−τ

(
(ω−M)2

2Γ2

)
. (A.1)

Then we consider the Laplace transform of this, but importantly with the range
of integration extended to the range ω ∈ [−∞,∞], i.e.

C(τ)simplified =

∫ ∞

−∞

A

Γ
√
2π
e
−τ

(
(ω−M)2

2Γ2

)
dω. (A.2)

We can evaluate this by completing the square to leave the form of the correlation
function that we gave in equation (4.21),

C(τ)simplified = Ae
−τ

(
M−Γ2τ

2

)
. (A.3)
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This form is considered simple as the logarithm of this correlator is a polynomial
in τ and as such it is easy to fit curves that estimate M and Γ.

By splitting the integral over all real ω into two integrals, one over positive ω
and the other over negative ω, we can relate the true Laplace transform to the
simpler version that we have just calculated. And so,∫ ∞

0

A

Γ
√
2π
e
−τ

(
(ω−M)2

2Γ2

)
dω =

∫ ∞

−∞

A

Γ
√
2π
e
−τ

(
(ω−M)2

2Γ2

)
dω −

∫ 0

−∞

A

Γ
√
2π
e
−τ

(
(ω−M)2

2Γ2

)
dω,

= Ae
−τ

(
M−Γ2τ

2

)
− Ae

−τ
(
M−Γ2τ

2

)
2

(
1 + Erf

(
Γ
(
τ − M

Γ2

)
√
2

))
.

(A.4)

The error function, Erf(z) is defined as

Erf(z) =
2√
π

∫ z

0

e−t
2

dt. (A.5)

If we further define the complementary error function, Erfc(z) = 1−Erf(z), then
we can write the true Laplace transform in terms of the simpler form times a
correction factor,∫ ∞

0

A

Γ
√
2π
e
−τ

(
(ω−M)2

2Γ2

)
dω := C(τ)true = C(τ)simplified ×

1

2
Erfc

(
Γ
(
τ − M

Γ2

)
√
2

)
.

(A.6)
In the rest of this this Appendix, we assess the viability of using just C(τ)simplified

as the ansatz and neglecting the correction factor.
From the general properties of Erfc(x), namely that

Erfc(x) =


∼ 0 if x > 0

1 x=0

∼2 x < 0

(A.7)

we can say that if the argument is suitably smaller than 0 then the correction

from
1

2
Erfc

(
Γ(τ−M

Γ2 )√
2

)
is approximately 1. Therefore, as this is a multiplicative

correction, if M/Γ2 > τ then the correction is negligible. To see the impact this
correction term has, Figure A.1 shows how much it deviates from 1 in the case
where the values chosen for M and Γ were 10 GeV and 0.4 GeV respectively.
These values lie roughly in line with the fits to the χb1 (with the mass also
being apparent from the effective mass in Figure 4.5), as well as similar to those
reported by [83]. From this one can see that providing we don’t consider the
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Appendix B

Linear fit approach to the HAL
QCD method

B.1 Fits at all temperatures

In Section 6.5 we introduced a new approach to the HAL QCD method that
treated the Schrödinger equation as a linear relationship captured in equation
(6.22), repeated here for convenience

∂CΛ(r, τ)/∂τ

CΛ(r, τ)
=

1

2µ

∇2
rCΛ(r, τ)

CΛ(r, τ)
− VΛ(r). (B.1)

In Figure 6.19 we showed how this linear relationship is upheld for a range of r
at a single temperature, T=235 MeV. In this appendix, the analogous plots are
shown for all temperatures of generation-2 ensembles, with the data from Figure
6.19 shown again here. The time ranges for each plot are given in Table 6.1.
Multiple time ranges are shown for certain temperatures in this table, the data
in the following plots are performed over the longest time window available for
each temperature. For example, for T=176 MeV the time range is (16− 29)aτ .

Figures B.1, B.2, B.3, and B.4 show the quality of the linear fits at decreas-
ing temperature. As per Section 6.6.1 the gradient was fixed to correspond to
µ = 2.58 GeV for each fit at all temperatures, despite this restriction the data
closely follow the linear relationship. This shows that the HAL QCD method,
when treated in this method introduced in this work, can be applied at non-zero
temperature, even above Tpc.
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