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Abstract 
This is the first study analyzing the volatility connectedness and time-frequency 
interdependence between AI index and clean energy index. Specifically, we use the 
QVAR frequency connectedness, Wavelet Local Multiple Correlations (WLMC) and 
Granger causality quantile methods to check the risk spillovers and multivariate time 
and frequency relationships among the eight clean energy indexes and the AI index. 
This is over the period from December 18, 2017 to April 4, 2023. Our results show: (1) 
NASDAQ OMX Geothermal Index is the strongest net sender of short- and long-term 
shocks in the system during extreme upside market conditions. In downturn 
conditions, the S&P Global Clean Energy Index is the largest net shock sender. The 
AI Index exports shocks at all frequencies. In addition, market connectedness among 
markets is stronger under extreme market conditions. (2) We find that the AI Index 
predominantly exhibited positive co-movements with clean energy indices, primarily 
concentrated within the long-term frequency domain. However, they displayed robust 
cooperative dynamics across all frequency domains within the context of multivariate 
wavelet interconnections. (3) The quantile granger causality analysis revealed that 
below the extreme bullish threshold (0.95), the NASDAQ CTA Artificial Intelligence 
& Robotics index could predict changes in the risk associated with all clean energy 
indices. However, under extremely bullish quantile conditions, the NASDAQ CTA 
Artificial Intelligence & Robotics index statistically exhibited Granger causality only 
with respect to the NASDAQ OMX Renewable Energy Index, NASDAQ OMX 
Geothermal Index, and WilderHill Clean Energy Index. 
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1. Introduction 

Global climate change is the most notable environmental concern facing humanity 
today and one of the most complex challenges to which humanity must respond. This 
is because climate change impacts international politics, economics, and trade. This 
trend will continue to increase in the context of both economic globalisation and 
environmental globalisation (Ioannou et al., 2023; Horoshko et al., 2023). It cannot be 
ignored that fossil fuels—coal, carbon, oil, and gas—are today the most significant 
cause of global climate transition. They account for over 75% of global climate 



change gas emissions and close to 90% of all secondary carbon dioxide emissions. 
Fossil fuels currently account for 80% of worldwide primary energy demand, and 
two-thirds of worldwide CO2 emissions come from the energy system1. If greenhouse 
gas emissions continue to grow, the worldwide average temperature will rise by 4 
degrees by the end of this century2. Such high emissions will catastrophically affect 
the global climate. Therefore, global climate change and sustainable energy have 
become a major concern. In this context, clean energy has been seen as an inevitable 
solution to achieve the purpose of the Paris Agreement (Tiwari et al., 2022) and is 
becoming a crucial tool for countries around the world to promote sustainable 
economic development and environmental protection. Currently, sustainable clean 
energy, which includes various forms of energy such as solar, wind, hydro, and 
bioenergy, offers a more pragmatic and balanced alternative to the prevalent fossil 
energy dependency for temperature solutions (Farghali et al., 2023). In summary, a 
clean energy index specifically constructed to estimate the financial performance of 
listed firms related to clean energy has a strong appeal to investors due to their 
concerns about climate risk and environmental issues, and existing research suggests 
that environmental assets such as clean energy have diversification potential and 
benefits for investors' portfolios (e.g., Kuang, 2021; Saeed et al., 2020), especially 
during the period of financial market stress following the period of COVID-19 and 
the Russian-Ukrainian war of 2022 (e.g., Zeng et al., 2023). 

With the advent of the Fourth Industrial Revolution, human society has officially 
entered the era of artificial intelligence (Skilton and Hovsepian, 2018). Artificial 
intelligence (AI) is a rapidly evolving technology that has undergone many significant 
changes in the last two decades, as well as having a far-reaching impact. Venturini 
(2022) finds that AI technologies have a statistically and economically significant 
influence on total factor productivity. It is suggested that AI technologies may 
contribute to rapid productivity growth. Furthermore, Czarnitzki et al. (2023) found 
that AI application is connected with higher productivity of firms. They concluded 
that AI use and the intensity with which firms utilise its possible significantly 
increased sales and added value. With its efficiency and intelligence, AI technology 
has been widely used in many fields such as finance, intelligent manufacturing, 
robotics, autonomous driving, and healthcare (Zhang and Lu, 2021). As a result, AI 
has become a widely used tool that transforms all walks of life. It can rethink 
information integration, data analysis, and the use of insights generated to improve 
decision-making (Saggi and Jain, 2018). The digital overlay multiplier effect will be 
unleashed by AI technology. It will accelerate the development of strategic new 
industries and provide comprehensive competitive advantages. 

Previous literature has examined the connection between Artificial Intelligence (AI) 
technologies and clean energy. Entezari et al. (2023) conducted a systematic review of 
the literature, emphasising the synergistic relationship between clean energy and AI. 

 
1 https://www.un.org/en/climatechange/science/causes-effects-climate-change 
2 https://scied.ucar.edu/learning-zone/climate-change-impacts/predictions-future-global-climate 



They highlighted the significant role of AI in optimising clean energy production, 
environmental monitoring, and energy demand response. This integration is expected 
to propel the development of clean energy technologies and promote the sustainable 
development of the energy industry. Furthermore, Hu et al. (2022) investigated that 
AI algorithms have been widely applied in renewable energy systems, particularly in 
optimisation and control and fault detection applications. However, they also 
emphasised existing challenges, such as the interpretability of AI algorithms, and 
suggested that future work could accelerate the application of these methods in 
practical renewable energy systems. At the firm level, Liu et al. (2022) examined the 
influence and mechanisms of AI on the energy efficiency of manufacturing 
companies, employing both theoretical and empirical approaches. The findings 
demonstrated a substantial enhancement in the energy efficiency of these firms due to 
the integration of AI. Furthermore, the positive impact of AI on energy efficiency was 
predominantly achieved through expediting knowledge acquisition and creation, 
augmenting investment in research and development and talent, and fostering 
technological advancement within the manufacturing sector. Last but not least, Sharifi 
et al. (2021) discussed other technologies related to renewable energy and AI, such as 
health-oriented applications, disease tracking, and energy consumption management 
applications, which have grown with the outbreak of the pandemic. They also pointed 
out that only by focusing on new technologies, renewable energy, and AI can we 
address the various challenges brought about by COVID-19. The authors called for 
future research in the post-COVID-19 era to focus on new prospects for AI, energy 
efficiency and conservation, and the reduction and elimination of the environmental 
burden caused by electricity production, transmission, and distribution. 

We summarized the conclusions of previous works. Specifically, the theoretical 
connections between clean energy and artificial intelligence encompass several 
aspects. These applications were predominantly focused on enterprise-level clients in 
clean energy production and supply chains. However, they also held potential 
implications for investors, as they may incorporate the stocks of these companies into 
their investment portfolios, i.e., (1) Optimisation of clean energy production: AI can 
play a significant role in the process of clean energy production. For example, 
machine learning algorithms can be used to optimise the power generation efficiency 
of solar and wind energy, as well as intelligently manage energy storage systems, 
thereby improving the efficiency and reliability of energy production. (2) 
Environmental monitoring and control: AI can be utilised for environmental 
monitoring and control in clean energy systems. Through sensors and data analysis, 
indicators such as pollutant emissions and energy consumption can be monitored in 
real-time, ensuring the environmental friendliness of clean energy systems. (3) Clean 
energy forecasting and demand response: AI can leverage big data analysis for energy 
demand forecasting, thereby optimising energy distribution and utilisation. 
Additionally, real-time energy demand response can be achieved through intelligent 
systems, enhancing energy utilisation efficiency. (4) Intelligent management of clean 
energy systems: AI can facilitate intelligent management of the entire clean energy 



system, including aspects such as energy production, storage, distribution, and usage. 
This intelligent management can improve the overall efficiency and reliability of the 
energy system. (5) Promoting the development of emerging clean energy-related 
technologies: The combination of clean energy and AI has also given rise to many 
emerging technologies and innovations, such as data-driven energy production models 
and intelligent energy storage technologies. 

It is imperative to note that depending on the country, there may be legal and 
regulatory limitations that pose challenges to the meaningful collection or utilization 
of data for artificial intelligence applications in the clean energy sector. However, we 
contend that such concerns are relatively diminished for firm-level clients, 
underscoring the practical value of this article. 

The theoretical framework driving risk transmission among AI and clean energy 
markets raises key issues that need further elucidation. Given that the market under 
consideration is a sub-sector of the financial system, risk spillovers can be inferred 
from asset substitution (Broner et al., 2006), market expectations (Philippas et al., 
2021; Zeng et al., 2023), hedge demand (Tanin et al., 2022), risk appetite (Cui et al., 
2023; Zeng and Ahmed, 2023), financial contagion (Cheikh et al., 2022), herding 
effects (Gaies et al., 2022), news decomposition (Tiwari et al., 2022), etc. Our 
hypothesis is therefore based on the existence of risk spillovers among AI and clean 
energy indices. Further, we assume that the level of spillovers among market 
segments is asymmetric. In addition, we assume that the level of spillovers existing 
among all market conditions and among different investment horizons is 
heterogeneous. 

There is growing research into the relationship among traditional asset markets and 
technology-related markets (e.g., Le et al., 2021), but little is acknowledged about the 
risks of how artificial intelligence affects clean energy risks. Our paper is therefore 
motivated to provide insights into market behaviour and trends. This paper also 
provides market participants with accurate information and contributes to the 
dissemination of the technological revolution. It also contributes to the achievement 
of the Sustainable Development Goals. Specifically, the motivation for this paper is as 
follows: (a) As the development of clean energy markets is one of the key factors in 
combating climate change and reducing carbon emissions, AI has great potential in 
the energy sector to accelerate and support the global energy transition, thus helping 
to achieve more economic and sustainable energy systems. The development of clean 
energies and the achievement of sustainable development goals can be strongly 
supported by an in-depth study of the frequency and connectedness among these two 
markets. (b) Both the artificial intelligence (AI) index and the clean energy index are 
growing and emerging investment sectors are emerging. The rapid development of 
these two sectors has also attracted large amounts of investment capital. More and 
more investors are looking at investment opportunities in artificial intelligence (AI) 
technology and clean energy. In this paper, by examining frequency 
connectedness under different market conditions, we can better understand how 



market risk is transmitted among the AI and clean energy markets. This 
connectedness analysis can reveal the interactions and contagion effects among 
markets under various risk conditions, and our results provide insights into market 
behaviour and trends that can help market participants predict market volatility as 
well as potential risk factors, thus helping them to better understand the overall 
mechanics of market functioning. On the one side, investors may use the results of 
this research to improve their decision-making and risk measurement under both 
extremely negative and positive market conditions. Alternatively, policymakers can 
use this study to implement various policy mixes under heterogeneous market 
conditions. This study addresses the following research questions: (a). In different 
market conditions, what are the characteristics of AI index risk spillover patterns and 
clean energy indices? (b). What is the performance of risk spillover among the AI 
Index and multiple clean energy indexes at various frequencies (investment horizons)? 
(c). Is there asymmetry and heterogeneity in static and time-varying connectedness? 
(d) What was the influence of AI on specific clean energy indices within the context 
of the time-frequency domain multiscalar relationship, and how did their 
interconnected structures evolve over time? (e) Amidst the circumstances of 
multivariate temporal and frequency domain relationships, which variables emerged 
as dominant factors? 

To answer the questions from above, this work uses a new quantile frequency 
connectedness method to investigate the risk transmission mechanisms among the 
Clean Energy Index and the AI Index under heterogeneous market conditions and 
investment horizons (short- and long-term frequencies). This approach analyses the 
connectedness among quartiles at specific quartiles of market conditions and at 
specific frequencies, not only due to the use of frequency connectedness methods that 
make them sensitive to outliers (Barunk and Kehlk, 2018) but also considering the 
impact of quartile changes. Our frequency-based approach is based on the idea that 
different market participants and economic agents may be interested in heterogeneous 
market states (bearish, normal, and bullish market conditions) and information that 
occurs on a variety of frequencies (Naeem et al., 2021; Chatziantoniou et al., 2022).). 
To be more specific, this study uses the QVAR connectedness model and examines 
both frequency and time. An analysis of the relationship between the NASDAQ CTA 
AI & Robotics Index and eight clean energy indices is presented. In this case, 
December 18, 2017 through April 4, 2023. S&P Global Clean Energy Index, 
WilderHill Clean Energy Index, NASDAQ OMX Bio/Clean Fuels, OMX Renewable 
Energy, OMX Geothermal, OMX Fuel Cell, OMX Solar, and OMX Wind Energy 
Indices transmission relationships and spillover structures, will assist investors in 
portfolio risk analysis during periods of market calm and volatility and will increase 
awareness of asymmetric tail-dependence structures when dividing portfolios into 
assets for investors of different investment horizons. 

In addition, we extended our analysis with the innovative Wavelet Local Multiple 
Correlation (WLMC) method, yielding novel empirical outcomes. In contrast to 
conventional wavelet methods employed in prior research, such as Partial Wavelet 



Coherence, Continuous Wavelet Transform, Continuous Wavelet Coherence, and 
Multiscale Wavelet Coherence, their primary limitation lay in their incapacity to 
concurrently capture correlations among arbitrarily chosen multiple indicators. 
Addressing this shortcoming, Polanco-Martínez et al. (2020) devised a multivariate 
form of wavelet correlation. One notable advantage of WLMC resides in its capacity 
to accommodate multiple variables, enabling us to visualize dominant variables and 
maximize multiple correlations over time domain (Aysan, 2023; Zhou et al., 2023). 
Moreover, WLMC allows us to depict single-scale-time correlations within an array 
of multiscale interactions. Consequently, it furnishes exceptional clarity regarding 
statistical dynamics within multivariate time series, a pivotal consideration, rendering 
the dynamics comprehensible and manageable. Thus, through the application of the 
WLMC approach to assess the multifaceted interrelations between AI and clean 
energy indices, we enriched our understanding of the intricate relationships among 
research variables. Simultaneously, our study expanded the results concerning 
quantile-frequency connectedness. 

Furthermore, the controversies in the existing literature regarding risk transmission 
mechanisms are likely associated with the techniques employed. For instance, 
connectedness methods could only mechanically report the role of each variable in the 
system, or the temporal variation of connectedness, without offering a more 
comprehensive and clear perspective on the risk transmission mechanisms between 
two paired markets. To overcome these limitations in methodology, we subsequently 
employed cross-quantile Granger causality, enabling us to accurately infer the 
mechanisms of asymmetric impacts and the presence of quantile heterogeneity. 

Our research fills a gap in the previous literature and, as far as we know, this is one 
of the first works to comprehensively analyse the relationship among the clean energy 
index and AI index under different investment cycles. This paper reports that (a) the 
total connectedness index is heterogeneous in the quantile and time domains. In 
extreme market conditions, total connectedness is more significant than the median 
condition. Short- and long-term dynamics are asymmetric, highlighting different 
market crisis events and their short- and/or long-term impacts. (b) In bearish markets, 
the NASDAQ CTA Artificial Intelligence & Robotics index is a risk sender at all 
frequencies. In contrast, the NASDAQ CTA Artificial Intelligence & Robotics index 
is only a short-term risk transmitter in bullish markets. And the S&P Global Clean 
Energy Index functions as a net sender of volatility spillover across all market 
conditions and frequencies. Finally, the NASDAQ OMX Fuel Cell Index acts as a risk 
sender only in the median and market upside conditions, and the NASDAQ OMX 
Renewable Energy Index acts as a risk sender only in the median and market 
downside conditions; (c) while in the frequency domain perspective, in the bearish 
market conditions and in the median conditions, it is interesting to note that the total 
connectedness is mainly driven by the long frequency domain connectedness rather 
than short-term frequency domain connectedness. In contrast, the spillover in the 
short-term frequency domain is greater in bullish markets, and the time-varying 
connectedness is more oscillatory. (d) The findings from the paired wavelet 



correlation analysis revealed that the Nasdaq CTA Artificial Intelligence and Robotics 
Index exhibited predominantly positive linkages with clean energy indices, 
concentrating primarily in the long-term frequency domain. However, within the 
multivariate wavelet interconnections between Nasdaq CTA Artificial Intelligence 
and Robotics Index and clean energy indices, a robust cooperative motion was 
discerned across all frequency domains. (e) The variables NASDAQ OMX 
Renewable Energy Index and S&P Global Clean Energy Index emerged as pivotal 
factors (dominant variables) driving the dynamics of correlations. (f) The Granger 
causality quantile analysis found that, apart from the extreme bullish quantile (0.95), 
at other common quantile levels, the NASDAQ CTA Artificial Intelligence & 
Robotics index was capable of predicting changes in the risk associated with all clean 
energy indices. However, under extreme bullish quantile market conditions (0.95), the 
NASDAQ CTA Artificial Intelligence & Robotics index statistically exhibited 
Granger causality only with respect to the NASDAQ OMX Renewable Energy Index, 
NASDAQ OMX Geothermal Index, and WilderHill Clean Energy Index. 

The rest of the article is organised as follows: Section 2 shows the literature review 
and constructed the testable hypothesis. Section 3 explains the methodology and 
presents the data. Section 4 provides the descriptive analysis and main estimation 
discussion. Section 5 summarizes the study's conclusions. 

 
2. Literature Review 

Understanding the dynamics of AI and clean energy assets is critical for portfolio 
managers and policymakers alike. It can help increase clean energy investment and AI 
investment targets. As a result, the existing literature was compared to the main 
streams of research on the subject. The literature review aimed to i) explore the 
dynamic relationships between clean energy assets and other markets, and ii) 
investigate potential connections between green assets and artificial intelligence 
assets. 

Clean energy markets present new investment opportunities and challenges. Several 
previous studies have analysed the linkages among clean energy markets and related 
assets. Ren and Lucey (2022) examine the hedging and safe-haven assets of various 
clean energy indexes against two different types of cryptocurrencies. The empirical 
results show a weak link between clean energy and cryptocurrency. Sharma et al. 
(2022) discovered that both the Sustainability Index and the Green Index exhibit a 
bidirectional causal relationship, with both sets of indices influencing one another 
over time. In addition, after the COVID-19 outbreak, the linkage among the two sets 
of indices increased significantly. Ghosh et al. (2023) examine the connection among 
energy metals, clean and dirty energies during the COVID-19 period. The study 
shows that dirty and clean energy, and energy metals are most closely linked and most 
contagious under extreme market conditions. Naeem et al. (2023) evaluate the 
centrality of alternative energy markets and cryptocurrencies using the Minimum 



Spanning Tree (MST) in a rolling window estimation to show time variation in 
dependent and central networks. They find that the Wilderhill Clean Energy Index, 
S&P Global Clean Energy Index, Kensho Electric Vehicle Index, and ETH are other 
market and system-wide net risk transmitters. 

Countries demonstrated their commitment to comprehensive economic growth 
through technological advancements. In order to address climate disasters and a new 
wave of technological and industrial revolution, there was an urgent need to achieve 
sustainability and drive technological innovation. To attain these objectives, with the 
rapid development of artificial intelligence technology, utilizing it to aid in the 
advancement and proliferation of renewable energy technologies emerged as a crucial 
option. As a result, some previous studies have investigated the relationship between 
green assets and artificial intelligence assets. Huynh et al. (2020) investigated the role 
of AI, robot stocks, and clean bonds in portfolio management. In times of economic 
turmoil, portfolios consisting of these assets are likely to experience substantial losses 
due to their high levels of dependence. A large amount of volatility is also transmitted 
across all financial assets. As a result, portfolios are inherently risky, and 
diversification is essential. Hedge funds and general equities are not appropriate 
hedges. As a measure of artificial intelligence, Tiwari et al. (2021) explored the 
dependency framework among AI and carbon markets during the 4th Industrial 
Revolution. AI and carbon exhibit a negative dependency relationship in the return 
sequence. This suggests AI asset diversification advantages. Abakah et al. (2023) 
examined the distribution predictability among fintech, bitcoin, and AI assets. Results 
indicate that KFTX's predictive power for AI and Bitcoin volatility is largely 
dependent on normal market conditions. However, its strength weakens when the 
market moves towards extreme conditions. They also found a strong return correlation 
among highly extreme changes. As a result of these findings, portfolio investors can 
diversify their portfolios and avoid risk with technology-related assets. The fourth 
technological revolution and sustainable environmental management attract artificial 
intelligence and clean energy assets. Additionally, an investor's portfolio may include 
a wide variety of assets depending on their expected returns and the interconnection 
of the assets. It helps investors develop appropriate hedge plans. Currently, there is no 
specialized research focusing on the intricate dynamic connections between AI and 
clean energy assets. Therefore, the outcomes of this study broaden the potential for 
further investigations into the risks of the clean energy market within the context of 
artificial intelligence development. This aims to refine investor decision-making and 
guide policymakers in establishing policy priorities for investments in emerging 
technologies and green energy. Building upon the aforementioned review, particularly 
in light of prior findings that suggest specific connections between AI indices and 
green assets and energy assets, the study contributes to a more comprehensive 
understanding of the interplay between these domains, we have constructed the first 
testable hypothesis of this paper as below: 

H1: There is a dynamic connection between artificial intelligence and clean 
energy assets. 



Although limited consideration has been given to the current linkages among the 
clean energy and AI index and other asset classes, there are still shortcomings. This 
paper extends the literature on clean energy and AI indexes, as our paper is the first to 
report empirical finding on the dynamic link among clean energy and NASDAQ CTA 
Artificial Intelligence & Robotics index under different market conditions and 
frequencies. 

 

3. Data and Methodology  
3.1. Data 

This paper collected daily closing prices from Datastream for 18 December 2017 to 4 
April 2023. We performed first-order log-differencing, transformed the log data into 
volatility data to examine cross-quartile and frequency risk volatilie among the clean 
energy and artificial intelligence (AI) indices. Referring to Huynh et al. (2020) and 
Abakah et al. (2023), we select the NASDAQ CTA Artificial Intelligence & Robotics 
index as our AI index benchmark. NASDAQ has partnered with CTA to develop the 
NASDAQ CTA Artificial Intelligence & Robotics Index, a adjusted equal-weighted 
index. The NASDAQ CTA Artificial Intelligence and Robotics Index will track 
relevant firms engaged in the development and application of artificial intelligence 
and robotics technologies, including semiconductor chip design, databases, algorithm 
development, software and robotics production, smart healthcare, and the use of AI to 
enhance core competencies. The Clean Energy Index was launched on December 18, 
2017, with a base value of US$1,000.00. To represent the clean energy market, eight 
clean energy indices were developed based on recent studies (Ren and Lucey, 2022; 
Zeng et al., 2023). This paper uses clean energy indices that consider fuel cells, solar, 
biofuels, wind, and geothermal companies. In addition to covering different 
renewable energy markets, the indices need to be composed so that they cover as 
many markets as possible. Table 1 shows used clean energy indices. 

 

TABLE 1 IS IN HERE 

3.2. Volatility Estimation 
Owing to the absence of abundant high-frequency data, this study employs the 
conditional variance derived from the GARCH (1,1) model for our empirical 
investigation. This methodology for variance construction also adeptly addresses the 
issue of heteroskedasticity in returns. Within this paper, let's consider the close price 
of index i at time t as 𝑆𝑆𝑖𝑖,𝑡𝑡. Subsequently, we formulate the one-step ahead conditional 
variance utilizing the GARCH (1,1) model as follows: 

𝑙𝑙𝑙𝑙 (𝑆𝑆𝑖𝑖,𝑡𝑡)
𝑙𝑙𝑙𝑙 (𝑆𝑆𝑖𝑖,𝑡𝑡−1)

= 𝜇𝜇𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑡𝑡 



𝜖𝜖𝑖𝑖,𝑡𝑡~𝑁𝑁�0,𝜎𝜎𝑖𝑖,𝑡𝑡2 �                            (1) 

𝜎𝜎𝑖𝑖,𝑡𝑡2 =  𝛼𝛼0 + 𝛼𝛼1𝜖𝜖𝑖𝑖,𝑡𝑡−12 + 𝛽𝛽1𝜎𝜎𝑖𝑖,𝑡𝑡−12  

Where 𝜇𝜇𝑖𝑖is the mean, 𝜎𝜎𝑖𝑖,𝑡𝑡2  indicates the index i’s conditional volatility at time t, 𝜖𝜖𝑖𝑖,𝑡𝑡 

points the i.i.d error term of the index i at time t. It is assumed that they adhere to a 

normal distribution characterized by a mean of zero and a variance pointed as 𝜎𝜎𝑖𝑖,𝑡𝑡2 . 

 

Next parts will describe methods for constructing frequency quantile tail 
connectedness. In order to examine the connectedness between AI and clean energy 
indices under distinct market conditions, alterations in quantiles signify varying 
market states. Lower quantiles could potentially signify heightened market risk, as 
they are associated with bearish market tendencies. For the above motivation, then we 
show the quantile-based VAR connectedness (QVAR) method introduced by Ando et 
al. (2022).  
 

3.3. The QVAR method 
According to Koenker and Bassett (1978), quantile method evaluates the connection 
among a group of variables and the outcome variable is a particular quantile τ (τ ∈ 
(0,1)), and the p-order quantile VAR (QVAR) for N variables will be showed as： 
 

𝑦𝑦𝑡𝑡 = 𝑐𝑐(𝜏𝜏) + ∑𝑖𝑖=1
𝑝𝑝  𝐵𝐵𝑖𝑖(𝜏𝜏)𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡(𝜏𝜏), t = 1, …,              (2) 

 
where 𝑦𝑦𝑡𝑡 is the N vector of the dependent variable at time 𝑡𝑡, 𝐵𝐵𝑖𝑖(𝜏𝜏) is the matrix of 
coefficients at lag 𝑖𝑖 with quantile level 𝜏𝜏, and 𝑖𝑖 = 1, . .𝑝𝑝, 𝑐𝑐(𝜏𝜏)and 𝜀𝜀𝑡𝑡(𝜏𝜏) denote the 
N vectors of the intercept and residuals at quantile 𝜏𝜏, respectively. 
The quantile connectedness measure for specify quantile 𝜏𝜏 will be computed by a 
generalized forecasts error variance decomposition (GFEVD). Clearly, the QVAR (p) 

in 𝑦𝑦𝑡𝑡 = 𝑐𝑐(𝜏𝜏) + ∑𝑖𝑖=1
𝑝𝑝  𝐵𝐵𝑖𝑖(𝜏𝜏)𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡(𝜏𝜏), t = 1, … , T can be expressed by converting 

to its QVMA (∞) applying Wold’s theorem as follows: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇(𝜏𝜏) + � 
∞

𝑖𝑖=0

Ψ𝑖𝑖(𝜏𝜏)𝜀𝜀𝑡𝑡−𝑖𝑖(𝜏𝜏),  t = 1, … , N 

With, 

                                                       𝜇𝜇(𝜏𝜏) = �𝐼𝐼𝑁𝑁 − 𝐵𝐵1(𝜏𝜏) −⋯− 𝐵𝐵𝑝𝑝(𝜏𝜏)�
−1
𝑐𝑐(𝜏𝜏)    (3) 



Ψ𝑖𝑖(𝜏𝜏) = �
0, 𝑖𝑖 < 0
𝐼𝐼𝑛𝑛, 𝑖𝑖 = 0

𝐵𝐵1(𝜏𝜏)Ψ𝑖𝑖−1(𝜏𝜏) + ⋯+ 𝐵𝐵𝑝𝑝(𝜏𝜏)Ψ𝑖𝑖−𝑝𝑝(𝜏𝜏), 𝑖𝑖 > 0
 

where 𝐼𝐼𝑁𝑁 denotes the N dimensional identity matrix. 
 

With the help of QVMA (∞), 𝑦𝑦𝑡𝑡 is represented by the sum of the residuals at each 
quantile. That is also to say that the GFEVD method of Koop et al. (1996), which is 
invariant to the ranking of the markets, could be applied to decompose the variance. 
The GFEVD can be calculated to account for the effect of shocks on the 𝑘𝑘 and 𝑗𝑗 
variables at quantile 𝜏𝜏. 

 

𝜃𝜃𝑗𝑗,𝑘𝑘
𝐻𝐻 (𝜏𝜏) =

𝜎𝜎𝑘𝑘𝑘𝑘
−1∑ℎ=0

𝐻𝐻−1 �𝑒𝑒𝑗𝑗
′Ψℎ(𝜏𝜏)Σ𝑒𝑒𝑘𝑘�

2

∑ℎ=0
𝐻𝐻−1 �𝑒𝑒𝑗𝑗

′Ψℎ(𝜏𝜏)ΣΨℎ
′ (𝜏𝜏)𝑒𝑒𝑗𝑗�

                        (4) 

where 𝜃𝜃𝑗𝑗,𝑘𝑘
𝐻𝐻 (𝜏𝜏) is the variance contribution of the 𝑘𝑘 variable at H steps ahead to the 𝑗𝑗 

variable, 𝑒𝑒𝑗𝑗 denotes the selection vector, where the 𝑗𝑗th element is equal to 1 and 0 
otherwise, ∑ indicates the covariance matrix of the error vector ε, and 𝜎𝜎𝑘𝑘𝑘𝑘  indicates 
the standard deviation of the error term at kth diagonal. Typically, each process of 
the covariance decomposition matrix can be normalised to： 
 

�̃�𝜃𝑗𝑗,𝑘𝑘
𝐻𝐻 (𝜏𝜏) =

𝜃𝜃𝑗𝑗,𝑘𝑘
𝐻𝐻 (𝜏𝜏)

∑𝑘𝑘=1
𝑁𝑁  𝜃𝜃𝑗𝑗,𝑘𝑘

𝐻𝐻 (𝜏𝜏)
                            (5) 

where �̃�𝜃𝑗𝑗,𝑘𝑘
𝐻𝐻 (𝜏𝜏) denotes the 𝑘𝑘 to the 𝑗𝑗 (pairwise spillover) at quantile level 𝜏𝜏. Then 

we may accumulate the spillover from �̃�𝜃𝑗𝑗,𝑘𝑘
𝐻𝐻 (𝜏𝜏) to get the connectedness measure at 

quantile level 𝜏𝜏. And at quantile 𝜏𝜏, the total spillover (QC) is, 
 

𝑄𝑄𝑄𝑄(𝜏𝜏) =
∑𝑗𝑗,𝑘𝑘=1,𝑗𝑗≠𝑘𝑘
𝑁𝑁  �̃�𝜃𝑗𝑗,𝑘𝑘

𝐻𝐻 (𝜏𝜏)

∑𝑗𝑗,𝑘𝑘=1
𝑁𝑁  �̃�𝜃𝑗𝑗,𝑘𝑘

𝐻𝐻 (𝜏𝜏)
× 100                         (6) 

 
Secondly, the total directional connectedness (denoted as "to connectedness") from 
the 𝑗𝑗 market to the other markets in quartile 𝜏𝜏 is： 

                                                 

QC𝑗𝑗→∙(𝜏𝜏) =
∑𝑘𝑘=1,𝑘𝑘≠𝑗𝑗
𝑁𝑁  �̃�𝜃𝑘𝑘,𝑗𝑗

𝐻𝐻 (𝜏𝜏)

∑𝑗𝑗,𝑘𝑘=1
𝑁𝑁  �̃�𝜃𝑘𝑘,𝑗𝑗

𝐻𝐻 (𝜏𝜏)
× 100                           (7)  

Third, the total directional connectedness from all the other variables to 𝑗𝑗 at the 
quantile 𝜏𝜏 is：                                                

  QC𝑗𝑗←∙ (𝜏𝜏) =
∑𝑘𝑘=1,𝑘𝑘≠𝑗𝑗
𝑁𝑁  �̃�𝜃𝑗𝑗,𝑘𝑘

𝐻𝐻 (𝜏𝜏)

∑𝑗𝑗,𝑘𝑘=1
𝑁𝑁  �̃�𝜃𝑗𝑗,𝑘𝑘

𝐻𝐻 (𝜏𝜏)
× 100                  (8) 



Clearly, directional connectedness may be accumulated to get connectedness. 

3.4. Frequency base of QVAR connectedness 

To characterise the different frequency profile of tail risk connectedness among 
variables, we use spectral analysis to decompose quantile-based connectedness into 
three frequency bands (high, medium and low frequencies). Similar to Section 3.1, we 
pay attention to the GFEVD, which is the core part of spillover. In contrast to the 
quantile variance decomposition estimated by the shock impulse response, the 
spectrum of the variance decomposition represents the shock-based frequency 

response. The frequency response framework Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖; 𝜏𝜏� = ∑ℎ 𝑒𝑒−𝑖𝑖𝑖𝑖ℎΨℎ(𝜏𝜏),  which 

Ψℎ is estimated by the fourier transform,and 𝑖𝑖 = √−1, and the generalised causal 

spectrum at a specific frequency 𝜏𝜏 on quantile 𝜔𝜔 ∈ (−𝜋𝜋,𝜋𝜋)  is defined as： 

(𝑓𝑓(𝜔𝜔; 𝜏𝜏))𝑗𝑗,𝑘𝑘 =
𝜎𝜎𝑘𝑘𝑘𝑘
−1��Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖;𝜏𝜏�Σ�𝑗𝑗,𝑘𝑘�

2

�Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖;𝜏𝜏�ΣΨ′�𝑒𝑒+𝑖𝑖𝑖𝑖;𝜏𝜏��
𝑗𝑗,𝑗𝑗

                      (9) 

where (𝑓𝑓(𝜔𝜔; 𝜏𝜏))𝑗𝑗,𝑘𝑘 denotes the part of the spectrum of the 𝑘𝑘 at any frequency ω 
when the 𝑗𝑗 variable experiences a shock. 

Because measuring spillover on a frequency band is more informative than 
measuring spillover on a certain individual band ω, we aggregated the generalized 
causal spectrum on band 𝒟𝒟 = (𝑎𝑎, 𝑏𝑏):𝑎𝑎, 𝑏𝑏 ∈ (−𝜋𝜋,𝜋𝜋),𝑎𝑎 < 𝑏𝑏 . Thus, the GFEVD 
function on band 𝒟𝒟 can be estimated as below: 

𝜃𝜃𝑗𝑗,𝑘𝑘
𝒟𝒟 (𝜏𝜏) = 1

2𝜋𝜋
∫𝒟𝒟 Γ𝑗𝑗(𝜔𝜔; 𝜏𝜏)(𝑓𝑓(𝜔𝜔; 𝜏𝜏))𝑗𝑗,𝑘𝑘𝑑𝑑𝜔𝜔                (10) 

where Γ𝑗𝑗(𝜔𝜔; 𝜏𝜏)  is a weighting function, defined as Γ𝑗𝑗(𝜔𝜔; 𝜏𝜏) = 

�Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖;𝜏𝜏�∑Ψ′�𝑒𝑒+𝑖𝑖𝑖𝑖;𝜏𝜏��
𝑗𝑗𝑗𝑗

1
2𝜋𝜋∫−𝜋𝜋

𝜋𝜋  �Ψ�𝑒𝑒−𝑖𝑖𝑗𝑗;𝜏𝜏�∑Ψ′�𝑒𝑒+𝑖𝑖𝚤𝚤‾;𝜏𝜏)�𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑
, indicating the power of the 𝑗𝑗 at any frequency 𝜔𝜔. 

In the same way, the GFEVD function on the band 𝒟𝒟 can be regularized to： 
 

�̃�𝜃𝑗𝑗,𝑘𝑘
𝒟𝒟 (𝜏𝜏) =

𝜃𝜃𝑗𝑗,𝑘𝑘
𝒟𝒟 (𝜏𝜏)

∑𝑘𝑘=1
𝑁𝑁  𝜃𝜃𝑗𝑗,𝑘𝑘

∞ (𝜏𝜏)
                        (11) 

 

�̃�𝜃𝑗𝑗,𝑘𝑘
𝒟𝒟 (𝜏𝜏) denotes the pairwise spillover from the 𝑘𝑘 to 𝑗𝑗 on a specify band 𝒟𝒟 at 𝜏𝜏𝑡𝑡ℎ 

quantile. Therefore, we can aggregate the information from �̃�𝜃𝑗𝑗,𝑘𝑘
𝒟𝒟 (𝜏𝜏) to get some 

quantile spillover estimates on band 𝒟𝒟. Then, the total connectedness index can be 



caculated on band 𝒟𝒟(QC𝒟𝒟)： 
 
 

QC𝒟𝒟 (𝜏𝜏) =
∑𝑗𝑗,𝑘𝑘=1,𝑗𝑗≠𝑘𝑘
𝑁𝑁  �̃�𝜃𝑗𝑗,𝑘𝑘

ℛ (𝜏𝜏)

∑𝑗𝑗,𝑘𝑘=1
𝑁𝑁  𝜃𝜃�𝑗𝑗,𝑘𝑘

∞ (𝜏𝜏)
× 100                    (12) 

 
The NET connectedness on Band 𝒟𝒟 are： 
 

𝑄𝑄𝑄𝑄𝑗𝑗→∙𝒟𝒟 (𝜏𝜏) =
∑  𝑁𝑁
𝑘𝑘=1,𝑘𝑘≠𝑗𝑗  �̃�𝜃𝑘𝑘,𝑗𝑗

𝒬𝒬 (𝜏𝜏)

∑  𝑁𝑁
𝑗𝑗,𝑘𝑘=1  𝜃𝜃�𝑘𝑘,𝑗𝑗

∞ (𝜏𝜏)
× 100                     (13) 

and 

𝑄𝑄𝑄𝑄𝑗𝑗←∙𝒟𝒟 (𝜏𝜏) =
∑  𝑁𝑁
𝑘𝑘=1,𝑘𝑘≠𝑗𝑗  𝜃𝜃�𝑗𝑗,𝑘𝑘

𝒱𝒱 (𝜏𝜏)
∑  𝑁𝑁
𝑗𝑗,𝑘𝑘=1  𝜃𝜃�𝑗𝑗,𝑘𝑘

∞ (𝜏𝜏)
× 100                   (14) 

In summary, if we set band 𝒟𝒟 as the relevant interval, then this paper will break 
down the quantile connectedness (QC) into upper, medium, and low frequency 
(QC𝒟𝒟)  frequencies. In order to briefly, we will denote this as the frequency 
component of the tail risk spillover. 
 
Drawing from prior research (for instance, Chen et al., 2022), we apply three quantile 
levels—0.01, 0.5, and 0.99—to illustrate instances of significant downturns, typical 
market states, and positive market conditions correspondingly. And consistent with 
the configuration of Chatziantoniou et al. (2022), we designate the "1-5 days" interval 
as the short-term frequency domain, while the "5-Inf days" interval is regarded as the 
long-term frequency domain. 
 
3.5. Wavelet Local Multiple Correlations (WLMC) 
 
Then we will use the WLMC method proposed by Polanco-Martínez et al. (2020). 
This approach aims to quantify the time and frequency domain correlation structures 
in multivariate indices. Additionally, it evaluates the causal impact within the 
multivariate context in the multi-scale domain. The WLMC framework is especially 
suitable for analyzing variable series that exhibit noise or non-stationarity. This is due 
to its non-reliance on assumptions regarding the series distribution, rendering it a 
robust approach for investigating non-stationary or noisy series. 

Where 𝑈𝑈𝑖𝑖𝑡𝑡, 𝑡𝑡 = 1,⋯ ,𝑇𝑇, 𝑖𝑖 = 1,⋯N be a n-variate series. According to Aysan et al. 

(2023), 𝑈𝑈−𝑖𝑖 = 𝑈𝑈 ∖ {𝑢𝑢𝑖𝑖}⋃{1�⃗ } for any 𝑢𝑢𝑖𝑖 ∈ 𝑈𝑈. We get a linear   

structure𝑔𝑔𝑠𝑠(𝑈𝑈−𝑖𝑖) that for a fixed 𝑠𝑠 ∈ [1,⋯ ,𝑇𝑇], minimizes a weighted number of 
squared errors showed as bellows: 

𝑆𝑆𝑠𝑠 = ∑𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)�𝑔𝑔𝑠𝑠�𝑈𝑈−𝑖𝑖,𝑡𝑡� − 𝑢𝑢𝑖𝑖𝑡𝑡�
2
                       (15) 



Where the moving average weight function is denoted as δ(u). The definition of the 
local weighted least squares approximation is provided below: 

𝑔𝑔𝑠𝑠(𝑈𝑈−𝑖𝑖) = 𝑍𝑍𝑖𝑖𝛾𝛾𝑠𝑠,𝑍𝑍𝑖𝑖 = 𝑈𝑈−𝑖𝑖 − 𝑈𝑈‾−𝑖𝑖                         (16)   

Where 𝑈𝑈‾−𝑖𝑖 points to the vector of amounts of 𝑈𝑈−𝑖𝑖 at fixed s, and an calculate of the 
coefficients γs is 
𝛾𝛾�𝑠𝑠 = [∑𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)𝑍𝑍𝑖𝑖𝑡𝑡𝑍𝑍𝑖𝑖𝑡𝑡′ ]−1∑𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)𝑍𝑍𝑖𝑖𝑡𝑡𝑢𝑢𝑖𝑖𝑡𝑡                              (17)  

𝛾𝛾�𝑠𝑠 possessed the subsequent variance-covariance matrix: 
𝑉𝑉(𝛾𝛾�𝑠𝑠) = 𝜎𝜎𝑠𝑠2[∑𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)𝑍𝑍𝑖𝑖𝑡𝑡𝑍𝑍𝑖𝑖𝑡𝑡′ ]−1                                       (18)  

Here, 𝜎𝜎𝑠𝑠2  signifies the error variance within an approximately stationary local 
neighborhood of Us as established by Fernández-Macho (2018). As s progresses over 
time, the local regression is represented by 𝑔𝑔�𝑠𝑠(𝑈𝑈−𝑖𝑖) = 𝑍𝑍𝑖𝑖𝛾𝛾�𝑠𝑠 and the corresponding 
sum of squares is weighted by the errors: 

𝑅𝑅𝑎𝑎𝑈𝑈𝑈𝑈𝑠𝑠 = ∑𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)[𝑍𝑍𝑖𝑖𝑡𝑡′ �̂�𝛾𝑠𝑠 − 𝑢𝑢𝑖𝑖𝑡𝑡]2                                     (19)  

The aforementioned error terms (Eq.18) were subsequently utilized to calculate a 
sequence of local coefficients of determination (Eq.20). 
 
The discrete wavelet transform coefficients for the Maximum Overlap Discrete 
Wavelet Transform of each variables 𝑢𝑢𝑖𝑖𝑡𝑡 ∈ 𝑈𝑈  at scale 𝜆𝜆𝑗𝑗 , 𝑗𝑗 = 1,⋯𝐽𝐽  (where J 
determines the maximum scale of wavelet decomposition) were denoted as 𝐴𝐴𝑗𝑗𝑡𝑡 =

�𝑎𝑎1𝑗𝑗𝑡𝑡,⋯ , 𝑎𝑎𝑁𝑁𝑗𝑗𝑡𝑡�. In accordance with the findings of Polanco-Martínez et al. (2020), the 

WLMC coefficients for each scale 𝜆𝜆𝑗𝑗 are expressed as follows: 
 

�̃�𝜌𝑈𝑈,𝑠𝑠�𝜆𝜆𝑗𝑗� = �𝑅𝑅𝑗𝑗𝑠𝑠2 , 𝑗𝑗 = 1,⋯ , 𝐽𝐽, for fixed 𝑠𝑠 = 1,⋯𝑇𝑇                         (20)  

Where 

𝑅𝑅𝑠𝑠2 = 1 − 𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈𝑠𝑠
𝑇𝑇𝑅𝑅𝑈𝑈𝑈𝑈𝑠𝑠

, for fixed 𝑠𝑠 = 1,⋯ ,𝑇𝑇                                  (21)  

Where RaUUs is pointed in Eq. (18) and TaUU𝑠𝑠 = ∑𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)(𝑢𝑢𝑖𝑖𝑠𝑠 − 𝑢𝑢‾𝑖𝑖)2. 
The values RaUUs and TaUUs represent the error and the total weighted sum of 
squares, respectively. Given that 𝑅𝑅2 denotes the coefficient in the regression of zi 
(such as GMTV) on the remaining regressors within the system, the square correlation 
between the estimated values �̂�𝑧𝑖𝑖 derived from this regression is equivalent. In line 
with Fernández-Macho's approach (2018), the consistent sample estimate of the 
Wavelet Local Multiple Correlation (WLMC) is formulated as follows: 

𝜌𝜌�𝑈𝑈,𝑠𝑠�𝜆𝜆𝑗𝑗� = Corr �𝛿𝛿(𝑡𝑡 − 𝑠𝑠)1/2𝑎𝑎𝑖𝑖𝑗𝑗, 𝛿𝛿(𝑡𝑡 − 𝑠𝑠)1/2𝑎𝑎�𝑖𝑖𝑗𝑗�, 𝑠𝑠 = 1,⋯ ,𝑇𝑇                (22)  



Here, 𝑎𝑎𝑖𝑖𝑗𝑗 was selected in a manner that its local regression on the set of regressors 

�𝑎𝑎𝑘𝑘𝑗𝑗,𝑘𝑘 ≠ 𝑖𝑖� maximized the associated coefficient of determination, and 𝑎𝑎�𝑖𝑖𝑗𝑗 defined 

the corresponding vector of fitted values. 
 
3.3. Quantile Granger causality test 

 
This subsection elucidates the quantile method employed for examining causality 
between the carbon futures market and the green bond market. In essence, Granger 
causality posits that variable XT does not Granger-cause YT if it cannot forecast YT. 
The parameter T is adjustable based on the research objectives. In this section, we 
introduce the method, using Xt and Yt (during the same period t) as illustrative 

examples. Mathematically, Itdef(ItY, ItX)′ ∈ Rd, d = 𝑠𝑠 + 𝑞𝑞  denotes an explanatory 

vector, while 𝐼𝐼𝑡𝑡𝑋𝑋 represents the past information set of 𝑋𝑋𝑡𝑡, 𝐼𝐼𝑡𝑡𝑋𝑋: = �𝑋𝑋𝑡𝑡−1������, … . ,𝑋𝑋𝑡𝑡−𝑞𝑞�
′
∈

𝑅𝑅𝑞𝑞. The null hypothesis of Granger noncausality is formulated as follows: 

                                         𝐻𝐻0:𝐹𝐹𝑌𝑌(𝑦𝑦 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋) = 𝐹𝐹𝑌𝑌(𝑦𝑦 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌).∀𝑦𝑦 ∈ 𝑅𝑅            (23) 

In this context, 𝐹𝐹𝑌𝑌(𝑦𝑦 ∣.) signifies the conditional distribution of (𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋). 𝑋𝑋𝑡𝑡 does not 
exhibit Granger causality with respect to 𝑌𝑌𝑡𝑡 in terms of the mean if: 

                                                  𝐸𝐸(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋) = 𝐸𝐸(𝑌𝑌 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌)                   (24) 

Where 𝐸𝐸(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋)  and 𝐸𝐸(𝑌𝑌 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌)  denote the mean values of (𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋)  and 
(𝑌𝑌 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌), respectively. Nevertheless, the Granger test outcomes for the means fail to 
capture the influences on distinct quantiles and may be subject to diverse factors. 
Consequently, Jeong et al. (2012) introduced Granger causality within quantiles. If we 

define 𝑄𝑄𝑇𝑇
𝑌𝑌,𝑋𝑋(. ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋) as the 𝜏𝜏-quantile of 𝐹𝐹𝑌𝑌(. ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋), we derive the value of 

𝑄𝑄𝑇𝑇𝑌𝑌(. ∣ 𝐼𝐼𝑡𝑡𝑌𝑌). 

We reformulate the null hypothesis as follows (where 𝑇𝑇 pertains to the compact set 
and 𝑇𝑇 ∈ [0,1]): 

𝐻𝐻𝑂𝑂:𝑄𝑄𝜏𝜏
𝑌𝑌,𝑋𝑋(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋) = 𝑄𝑄𝜏𝜏𝑌𝑌(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌), a.s. ∀𝜏𝜏 ∈ T          (25) 

The conditional 𝜏𝜏-quantile of 𝑌𝑌𝑡𝑡 adheres to the following constraints: 

Pr {𝑌𝑌𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇𝑌𝑌(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌) ∣ 𝐼𝐼𝑡𝑡𝑌𝑌}: = 𝜏𝜏,  a. s.  ∀𝜏𝜏 ∈ T,
Pr �𝑌𝑌𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇

𝑌𝑌,𝑋𝑋(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋) ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋�: = 𝜏𝜏,  a. s.  ∀𝜏𝜏 ∈ T,
         (26) 

Considering the independent variable 𝐼𝐼𝑡𝑡  and the probability Pr {𝑌𝑌𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡)∣
𝐼𝐼𝑡𝑡} = 𝐸𝐸{1[𝑌𝑌𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡)] ∣ 𝐼𝐼𝑡𝑡} . where an event is represented by an indicator 



function 1[𝑌𝑌𝑡𝑡 ≤ 𝑌𝑌] . The Granger non-causality null hypothesis can thus be 
reformulated as follows: 

𝐸𝐸�1�𝑌𝑌𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇
𝑌𝑌,𝑋𝑋(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋)� ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋� = 𝐸𝐸{1[𝑌𝑌𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇𝑌𝑌(𝑌𝑌𝑡𝑡 ∣ 𝐼𝐼𝑡𝑡𝑌𝑌)] ∣ 𝐼𝐼𝑡𝑡𝑌𝑌}, a.s. ∀𝜏𝜏 ∈ T.    

(27) 

If we assume that 𝑄𝑄𝑇𝑇(. ∣ 𝐼𝐼𝑡𝑡) is appropriately specified through a parametric model 
referencing a family of functions defined by 𝑀𝑀 = {𝑚𝑚(. ∣ 𝜃𝜃(𝜏𝜏)) ∣ 𝜃𝜃(. ): . 𝜏𝜏 → 𝜃𝜃(𝜏𝜏) ∈
Θ ⊂ 𝑅𝑅𝑝𝑝, then the dependence of Granger non-causality is as follows: 

𝐻𝐻𝑂𝑂:𝐸𝐸{1[𝑌𝑌𝑡𝑡 ≤ 𝑚𝑚(𝐼𝐼𝑡𝑡𝑌𝑌,𝜃𝜃0(𝜏𝜏))] ∣ 𝐼𝐼𝑡𝑡𝑌𝑌, 𝐼𝐼𝑡𝑡𝑋𝑋} = 𝜏𝜏, a.s. ∀𝜏𝜏 ∈ T.     (28) 

Where 𝑚𝑚(𝐼𝐼𝑡𝑡𝑌𝑌,𝜃𝜃0(𝜏𝜏)) represents the actual conditional quantile for 𝑄𝑄𝑇𝑇𝑌𝑌(. ∣ 𝐼𝐼𝑡𝑡𝑌𝑌). We 
have subsequently redefined the null hypothesis based on a sequence of unconditional 
moment restrictions, as illustrated below: 

𝐸𝐸{1[𝑌𝑌𝑡𝑡 − 𝑚𝑚(𝐼𝐼𝑡𝑡𝑌𝑌,𝜃𝜃0(𝜏𝜏)) ≤ 0] − 𝜏𝜏}exp (𝑖𝑖𝜔𝜔′𝐼𝐼𝑡𝑡)} = 0.       (29) 

Utilizing the test statistic as introduced by Troster (2018), we obtain: 

     
𝑃𝑃𝑇𝑇: = ∫  𝜏𝜏 ∫  𝑍𝑍  |𝑣𝑣𝑇𝑇(𝜔𝜔, 𝜏𝜏)|2𝑑𝑑𝐹𝐹𝑖𝑖(𝜔𝜔)𝑑𝑑𝐹𝐹𝜏𝜏(𝜏𝜏),

𝑣𝑣𝑇𝑇(𝜔𝜔, 𝜏𝜏): = 1
√𝑇𝑇
∑  𝑇𝑇
𝑡𝑡=1  {1[𝑌𝑌𝑡𝑡 − 𝑚𝑚(𝐼𝐼𝑡𝑡𝑌𝑌,𝜃𝜃0(𝜏𝜏)) ≤ 0] − 𝜏𝜏}exp (𝑖𝑖𝜔𝜔′𝐼𝐼𝑡𝑡).

   (30) 

Let 𝜙𝜙𝜏𝜏𝑗𝑗(.) denote the function, and by applying the test statistic  𝜙𝜙𝜏𝜏𝑗𝑗(𝜀𝜀): = 1(𝜀𝜀 ≤

0) − 𝜏𝜏𝑗𝑗, we derived the estimation for the test statistics. 

𝑃𝑃𝑇𝑇 = 1
𝑇𝑇𝑛𝑛
∑  𝑛𝑛
𝑗𝑗=1 �𝜗𝜗𝑗𝑗′𝑍𝑍𝜗𝜗𝑗𝑗�                (31) 

In the context of this paper, 𝑍𝑍 was defined as the TxT matrix, with 𝜗𝜗𝑗𝑗 representing 
the jth column of 𝜙𝜙 . Troster (2018) illustrated a subsampling procedure for 
estimating critical values of 𝑃𝑃𝑇𝑇. While the Granger causality test did not reveal a 
significant causal relationship, our initial step encompassed the conduction of the 
Granger causality test to assess any correlation between the two variables and to 
establish whether this relationship was unidirectional or bidirectional. 
 
 
 
4. Empirical results 

Table 2 reports the descriptive characteristics of the return data. We observe the 
lowest mean value for BI (-0.003833) and the highest mean value for FUEL 
(0.089904). The skewness values indicate a negative skewness for all variables except 
WILDER, GEO, and FUEL. For all return series considered, the kurtosis test statistic 



indicates fat tails. We can infer that all return series show a spikey, thick-tailed 
pattern.  

TABLE 2 IS IN HERE 

FIGURE 1 IS IN HERE 

 

At the same time, the Jarque-Bera test does not obey the null hypothesis of normality 
at the 1% statistic level. Consequently, models with non-constant variance (such as 
GARCH) are appropriate for non-normality and hefty tails in log-return 
series (Lobato et al., 2021). Finally, the ERS test indicates that the return series is 
stationary for all variables. Finally, the volatility data is determined by a GARCH(1,1) 
model. Figure 1 shows a time series plot of daily log returns, where all variables 
experienced common and significant extreme jumps in early 2020. 

Quantile and frequency market risks are discussed in the following subsections. 
Accordingly, the lower and upper quartiles have high total connectedness (TCI). 
Therefore, when markets are in extremely positive or negative states, markets are 
more tightly connected. For example, at the 1st, 50th and 99th percentiles, total TCI 
reaches 64.77%, 58.27% and 87.98% respectively. 
 
 
4.1 Spillover analysis during extreme lower quantile (q=0.01) 

Under the bear market condition (q = 0.01) of Table 3, we find that the highest 
owning spillover occurs for the AI index, at 29.42%. Of this 29.42%, 27.41% is 
long-term own risk spillover, while 2.01% is short-term own risk spillover. This 
shows that all other factors reach 70.58% of the AI Index forecast error variance. In 
addition to RE (12.72%), we find that 11.92% of long-term spillovers are caused by 
RE, while 0.8% are short-term spillovers. Overall, we see that the AI index has a high 
level of spillover among 76.54% to the system sending and 70.58% to the receiving 
system. This indicates that the AI index is a net shocker (5.96%). At the same time, 
we see that the AI index is a net sender of shocks across the frequency domain. Figure 
2 shows that the long-term net connectedness of the AI index on the system equals 
3.97%, while the short-term net connectedness is 1.99%. It is not surprising that the 
AI index is a net sender of risk shocks across the system, as AI is shaping humanity's 
future in almost all industries. It is already a significant driver of new technologies 
like big data, robotics, and the Internet of Things, and it will continue to serve as a 
technology pioneer for the foreseeable future (Willcocks, 2020). We then focus on 
systemic risk shocks driven by the clean energy index. On the one hand, we note that 
the major net propagator of risk shocks in the system is SP (19.50%). Shocks are also 
propagated primarily in the frequency domain by this network (14.92%). Secondly, 
RE has also been shown to be a strong net propagator of shocks (19.38%), as well as 



of long-run market downside conditions (15.61%). On the other hand, the biggest 
net recipient of the strongest shocks across the frequency domain in the system is 
Wilder. This outcome is in line with Tan et al. (2021), who find that the WilderHill 
Clean Energy Index receives strong volatility spillovers from other markets during 
difficult economic conditions. Finally, by looking at the Total Connectedness Index 
(TCI) in Figure 3, the results reveal that the long-term spillover effect (59.67%) is 
more than eleven times bigger than the short-term spillover effect (5.10%), proving 
once again that long-term spillover volatility in the system is more significant than 
short-term spillover volatility in a market downturn. Overall, as Table 3 only 
measures static connectedness, which may mask the effects of time-specific and 
investment horizon (time-domain) changes (Lu and Zeng, 2023), we continue to focus 
on dynamic connectedness plots. 

 

TABLE 3 IS IN HERE 

 

This paper explains in detail the lower tail of dynamic sum frequency connectedness. 
Figure 2 shows the results. It is evident that the long-term spillover (green block) 
dominates the frequency domain propagation mechanism between 2019 and 2020, 
market spillover will be higher for total and long-term TCI, at around 60%. The total 
TCI and long-term TCI then rise abruptly in early 2020, showing the highest value of 
the entire survey period at around 80%. This indicates that the amount of risk 
connectedness increases with extreme events (the COVID-19 pandemic). A decline 
ensues until a 50% trough is reached in early 2022. Afterwards, we see an increase in 
market risk until a small peak (70%) in early 2022, possibly influenced by the 
Russian-Ukrainian war. It is worth reminding that the short-term TCI remains at a low 
volatility spillover level of less than 10% over the whole period, regardless of the 
volatility of the total TCI and long-term TCI. It is therefore critical to examine the 
trends in the short and long term, which should be considered separately. Analysing 
only the aggregate TCI would ignore investment horizon information. This is 
particularly pertinent when looking at crises covering the recent past (e.g., COVID-19 
and the Russia-Ukraine war in 2022). A frequency analysis reveals that long-term 
dynamics drive total TCI increases during market downturns, not short-term dynamics. 
A significant change in the long-term TCI indicates a serious change in the overall 
market framework for fund managers and institutional investors. Long-term dynamics 
are more unstable than short-term dynamics, according to additional information on 
short- and long-term TCI dynamics. 

 

FIGURE 2 IS IN HERE 



4.2 Medium quantile spillover analysis (q=0.5) 

Panel A of Table 4 reports the static total volatility connectedness measure among the 
AI Index and the Clean Energy Index. Panel B and Panel C represent the different 
frequency components for the short and long terms. First, the total volatility 
connectedness is 58.27%, which means that on average, approximately 41% of the 
forecast error variance in the systematic network can be attributed to risk transmission 
in the markets under study. The situation is different when an overall connectedness is 
decomposed into medium and long-term frequencies. We note that the inter-market 
volatility correlations are primarily driven by long-term volatility connectedness 
(51.77%) rather than short-term volatility transmission (6.50%). Wang et al. highlight 
the long-term volatility transmission pattern. (2023) and Huang et al. (2022), argue 
that many black swan events in recent years (e.g., COVID-19) may have led to 
significant changes in investor preferences and preferences, thereby increasing 
long-term systemic risk. 

 
 

TABLE 4 IS IN HERE 

 

We extend the findings on static connectedness by examining time-varying measures 
of volatile connectedness. Figure 3 clearly illustrates the overall trend of the total 
volatility connectedness index (corresponding to the black-shaded part) in a calm 
market state and shows the decomposition of short-term (i.e., the red-banded area) 
and long-term frequencies (i.e., the clean shaded part). There are several significant 
time-varying features of total volatility transmission dynamics in Figure 3. First, the 
TCI rises sharply after 2020, suggesting that the COVID-19 outbreak has led to a 
sharp increase in the global financial market's risk level. Second, there is a clear 
downward trend in total volatility contiguity following the announcement of the end 
of the COVID-19 epidemic in the US in mid-2021. Thirdly, the decomposition of 
aggregate frequency volatility spillover is documented. This suggests that the 
aggregate spillover in the sample period is mainly driven by long-run spillover, which 
indicates longer-term shock transmission. Finally, we note that since February 2022, 
dynamic volatility contagion has reversed the downward trend since mid-2021, which 
is inevitably closely related to the financial market turmoil and commodity shortages 
brought about by the Russia-Ukraine war in 2022. In sum, we note that long-term 
spillovers dominate short-term spillovers, and for value investors and fund managers, 
it is critical to know the increased risk associated with holding a portfolio in the 
underlying market for the long term (Barunk and Kehlk, 2018). Also, in periods of 
increased market uncertainty, uncertainty drives aggregate connectedness (Akyildirim 
et al., 2022). 



FIGURE 3 IS IN HERE 

 
4.3 Spillover analysis during extreme upper quantile (q=0.99) 

As Table 5 reports, under bull market (q = 0.99), volatility transmission to other 
variables is significantly influenced by SP, GEO, and FUEL. Consistent with 
expectations, SP, GEO, and FUEL are also net propagators of shocks across 
frequencies. Of these, GEO is the biggest net cross-frequency sender in the system 
(11.35%), dominating all other markets in the network. Conversely, WIND is the most 
vulnerable to shocks and the largest recipient in the system (-6.13%). We further 
explore the notion that each variable has different roles over different periods by 
dividing total connectedness into short-term and long-term. Notably, Wilder is the 
most significant short-term net shock receiver, but its impact diminishes as the 
investment horizon progresses, and then we observe a transition from a short-term 
net shock recipient to a long-term net sender of risk shocks. Finally, it is imperative to 
mention that GEO and WIND are also net propagators of shocks across frequencies 
throughout the period. In the case of the AI index, which is our main target, the 
short-term connectedness results confirm that the AI index is an active sender of 
shocks (0.64%), but only temporarily, and that the AI index is subject to volatility 
spillovers from the system in the long-run frequencies, making it primarily a receiver 
of risk shocks (-2.43%). This situation can be explained by externalities affecting the 
AI index, which can be of various types, such as assets invested in AI moving to green 
financial markets for more lucrative short-term returns when markets are optimistic 
(Sharma et al., 2022). 

 

TABLE 5 IS IN HERE 

 

As shown in Figure 4, in marked contrast to median and downside market conditions, 
bullish market conditions are primarily responsible for the total TCI's rise (q = 0.99). 
This suggests that speculators' short-term investment behaviour dominates the market 
under boom market conditions (q = 0.99). This also confirms Mensi et al.’s findings. 
(2021). However, the time-domain variation shows a clear oscillation in the 
time-varying spillover effect of the TCI, with long-term connectedness overwhelming 
short-term connectedness from time to time. The increase in long-term frequency 
connectedness seems to be associated with a vision of long-term growth, which seems 
to be concentrated in periods of market booms, especially during periods when many 
technological changes occur (Chatziantoniou et al., 2022). Finally, we observe that the 
magnitude of the volatility spillover of the total TCI remains largely unchanged over 
the sample period, at around 85%. 



FIGURE 4 IS IN HERE 

Overall, the above results suggest that extreme risk spillovers need to be considered 
when designing portfolio diversification strategies and developing appropriate policy 
responses. In order to maintain financial stability, global events must be 
mitigated. The findings of the frequency study also provide investors with different 
investment horizons (such as speculators and fund managers) with critical 
perspectives into the structures of financial markets (Lu et al., 2023), allowing the 
identification of risky or undervalued assets associated with investment horizons and 
creating investment opportunities for investors. 

4.4 Network plot analysis 

Table 6 extracts the connectedness networks at different quantile levels in the 
distribution. This allows us to observe how connectedness varies across the quantile 
fluctuations network. For example, the connectedness at the lower quartile reveals 
how a significant volatility shock is transmitted through the network. This is when the 
market is downward. Also, this visual comparison illustrates the main differences in 
network connectedness across the system at different investment horizons (short or 
long-term), which is key information of interest to market participants. Variables in 
the system are represented by their colours (yellow for receivers and blue for senders), 
while their sizes indicate their net sender or receiver roles. Moreover, the arrow 
denotes the direction of net connectedness among the pair variables on the line. 

 

TABLE 6 IS IN HERE 

We first observe network pairing frequency band at the 0.01 quantile level (extreme 
bear) at the top of Table 6. First, we find that consistent with the results for static 
connectedness, only the RE, SP, and AI index play the role of net spillover senders. 
This occurs in a system that is completely interconnected. Wilder receives net 
spillovers from all other markets in the time domain, while the AI index sends 
net volatility spillovers to all other markets. It is mainly GEO in the short-term, while 
FUEL and BI act as risk takers in the long-term for the risks sent by the AI index. 
Interestingly, SOLAR, FUEL, and WIND translate into net spillover senders in the 
short-term, while they maintain their net receiver roles in the long-term and in terms 
of total connectedness. Our findings agree with Naeem et al. (2020), who observe that 
clean energy is more active as a network spillover in the short-term. 

 Next, the connectedness networks in the median of Figure 3 In the time domain, 
mainly SP, FUEL, and RE are the sources of net spillover across the frequency 
domain. The largest recipient of net spillover in the system is Wilder. Also, consistent 
with the short-term frequency network spillover pattern at bearish moments, SOLAR, 
fuel, and WIND only play the role of senders of net spillover in the short-term. 



Notably, the AI index is the major net receiver of net pairing spillovers from clean 
energy in the long-term frequency (5-Inf Days), receiving mainly pairing volatility 
shocks from RE while assuming a net sender role in the long-term frequency and on 
the total connectedness network. In a previous study, Abakah et al. (2023) noted that 
AI index returns are predictable under normal market conditions. However, their 
study failed to address the differences in risk spillover across all different 
time-frequency domains, whereas our study highlights the heterogeneity of 
cross-frequency domain risk spillover for the AI index. 

Finally, in the bullish state (q = 0.99), the net pairwise directional time-frequency 
correlation network emerges as the net pairwise volatility spillover senders across the 
frequency domain in the system. However, WIND appears to be the largest risk 
receiver, which seems to change at bearish and normal quantile levels. For the AI 
index, we are surprised to find that the AI index is a risk taker for clean energy in the 
long-term frequency domain (5-Inf Days), receiving mainly paired volatility shocks 
from GEO. In sum, under heterogeneous market conditions (all tails of distribution), 
the AI index maintains a shock to the clean energy market in the short-run frequency 
domain. Another result of interest is that by analysing Table 6, we observe the SP as a 
sender of risk at all frequencies at each quartile level. This is in line with previous 
papers (Tiwari et al., 2022; Chatziantoniou et al., 2022). 

4.4 The result of Wavelet Local Multiple Correlations (WLMC) 

Due to the prior outcomes in frequency connectedness merely providing a succinct 
summary of the frequency connectedness status of variables, without delving into the 
intricate time-frequency dependencies observed among AI and various clean energy 
indices, there existed a demand for more detailed and diversified time-frequency 
dependency outcomes. This arose from the fact that investors, based on their 
investment horizons, favored trading within distinct investment time frames. For 
instance, fund managers exhibited interest in medium-term investments (Baruník and 
Křehlík, 2018), while institutional investors and policy makers focused on the 
long-term due to their enduring investment strategies. To address this research query, 
the latest Wavelet Local Multiple Correlation (WLMC) approach will be employed. 
WLMC concurrently captures frequency-domain relationships among two or more 
variables, thereby furnishing a more intricate exploration of variables and their 
time-frequency relationships, while simultaneously extending the findings of the 
earlier QVAR frequency connectedness results. 

Figures 5 and 6 illustrate WLMC in the bivariate and multivariate contexts, 
incorporating the interplay between AI indices and clean energy indices. Firstly, it is 
imperative to elucidate that the bivariate analysis presents a general overview of the 
interlinkages across various time scales, encompassing long, medium, and short terms. 
The vertical axes in each figure denote time frequency, while the horizontal axes 
indicate periods. WLMC shows regions where the two series interact across distinct 
time frequencies. The black lines indicate the correlations among the two sequences, 



while blank areas indicate insignificant correlations across different time frequencies 
and domains. In the time-frequency domain, warmer and cooler tones respectively 
signify the strongest and weakest linkages. 

 

FIGURE 5 IS IN HERE 

Figures 5(a)-(h) exhibit the WLMC between AI and various clean energy indices. It is 
evident that, when considering the short to medium-term time frequencies (2-32) for 
all combinations of AI and clean energy, significant correlations do not appear to exist, 
and evidence of negative correlations even emerges. This implies that within the 
medium-term time frequencies, AI does not significantly impact most periods of the 
clean energy indices, or in some cases, exerts a negative influence. However, at higher 
frequencies, particularly before the 400-day mark (2019-07-23) and after the 800-day 
mark (2021-02-23) in the sample period, correlations become significantly positive. 
This is evident in the concentration of positive linkages (warm colors) primarily 
within the frequency range of 64-128 and beyond. In other words, the positive 
correlation between AI and clean energy indices' volatility strengthens as the 
frequency increases. In summary, the interactions between AI and various clean 
energy indices are predominantly concentrated in the long-term frequency domain, 
aligning closely with the findings of previous frequency connectedness analyses. 

Based on the aforementioned outcomes, we present the following investment 
recommendations. The notable evidence of a substantial correlation in the long-term 
frequency domain between AI and clean energy implies that investors inclined toward 
long-term investment strategies for AI indices and clean energy should be mindful of 
devising appropriate risk mitigation strategies to hedge against potential risks. 

 

 FIGURE 6 IS IN HERE 

Figure 6(a) presents the scenario involving nine variables in wavelet correlation. 
Combining these nine variables in a single model enables the detection of dominant 
variables and facilitates an understanding of each variable's contribution to 
multivariate correlations across frequencies (Shah et al., 2022). As depicted in Figure 
6, all nine variables exhibit positive correlations. At lower frequencies (2-16), the 
correlation exceeds 65%. At higher frequencies (64-128 and beyond), it even reaches 
80%-90%. In the temporal domain, particularly post the outbreak of the COVID-19 
crisis (early 2020), correlations among variables substantially escalate across all 
frequencies. This outcome can be explained by the rapid growth in remote working 
and other AI-related applications during COVID-19, positioning the AI industry as a 
superior technological solution, receiving substantial financial support and 
governmental policies (He et al., 2021). Furthermore, from a macroeconomic 



standpoint, the AI domain was considered a primary battleground for technological 
competition within major global geopolitical conflicts such as the U.S.-China tensions. 
In some countries, the AI sector was intertwined with national security, enhancing the 
industry's market standing and attention (Khan et al., 2022). From the perspective of 
clean energy, it gained prominence alongside AI as an investment target sought by 
investors due to increasing global concern about climate change and environmental 
issues. 

Figure 6(b) redefines SP and RE as dominant factors. Specifically, in low and 
approximately half of the medium-frequency instances, the volatility of SP played a 
significant role across all markets for the majority of the sample period. In 
approximately half of the medium and high-frequency cases, RE exhibited a dominant 
impact on the volatility of other markets. Therefore, it can be deduced that the 
volatility of SP and RE played crucial roles in defining other markets. Finally, as 
observed, AI only contributed positively to the volatility correlations within the clean 
energy market in the high-frequency domain towards the end of the sample period. 
Hence, based on this, AI cannot be regarded as a dominant force driving volatility 
impacts within the clean energy market. This finding resonates with the previous 
quantile connectedness results, which suggest that AI is not the dominant transmitter 
of volatility spillovers. Conversely, SP and RE consistently assume the role of net 
senders of spillovers in all cases. 

To further validate the correlation between AI and clean energy indices, we employed 
the Wavelet Local Multiple Correlation (WLMC) approach, using AI as the dependent 
variable. In this context, we aimed to investigate multiple correlations to discern 
where positive correlations between AI and clean energy indices predominantly 
occurred in terms of time domains and frequencies. Figure 7 presents the heatmap 
results of the WLMC multiple correlations among AI and clean energy indices. 

 

FIGURE 7 IS IN HERE 

Figure 7 illustrates that the correlation between AI and clean energy indices is most 
pronounced at medium and long-term time frequencies (32-64 and beyond). However, 
the graph also presents intriguing results that mutually support prior findings and 
highlight a structurally impactful outcome resulting from the COVID-19 pandemic. It 
is discernible that prior to the 400-day mark in the sample period (before 2019-07-23), 
AI and clean energy indices exhibited merely modest levels of positive correlation in 
the low frequency range (2-8) and the medium frequency range (8-64). Subsequent 
results, post the 400-day mark, demonstrate an incremental escalation in correlations, 
further accentuated by the onset of the COVID-19. It is our understanding that 
individually, AI had a comparable influence on clean energy indices (bivariate 
analysis). However, within the framework of a multivariate correlation model, they 
imply distinct correlation dynamics (Shah et al., 2022), evident in AI's interlinkage 



behavior observed across all frequency domains with clean energy indices. 
 
 
                        TABLE 7 IS IN HERE 
 
Furthermore, we utilized quantile Granger causality tests to investigate the spillover 
mechanisms of AI on the segmented Clean Energy Index under varying market 
conditions. As connectedness methods can only descriptively report which nodes 
acted as net senders, and net receivers, or whether connectedness increased or 
decreased during a specific period within the system, they do not authenticate the 
existence and specific manifestations of relationships between these two markets. 
According to Table 7, through Granger causal quantile analysis, we determined that in 
extremely bullish market conditions, AI statistically exhibited no Granger causality 
with respect to clean energy indices other than RE, GEO, and Wilder. However, in 
scenarios outside of extreme bullish quantiles, AI demonstrated an inevitable 
risk-dependence relationship with all clean energy indices. 
 
4.5 Robustness Test 

In this part, for robustness aims, we use the mean based QVAR connectedness method 
(Ando et al., 2022) for robustness checks. We update the rolling days to 150 days and 
otherwise set the same settings as the main results for robustness testing. Looking at 
the time-varying total connectedness at different quartiles in Figure 8, we find that the 
robustness test results are almost identical to the primary empirical findings. It is easy 
to see similar trends to the main empirical findings for the tail and median conditions 
under market extremes. We can therefore conclude that our robustness tests confirm 
that our primary empirical findings are reliable. 

 

FIGURE 8 IS IN HERE 

 

4.6 Impact mechanisms and discussion of results 

The purpose of this study was to investigate the interdependence of risk between AI 
and clean energy indices. Our results underscored the importance for investors and 
policymakers to monitor the cross-quantile connections and time-frequency linkages 
of risk between AI and clean energy indices. 

Regarding the practical significance of the empirical results, we found robust 
evidence indicating that the risk dependence between AI and clean energy indices was 
asymmetric at different quantile levels. At the frequency level, the risk between AI 
and clean energy indices exhibited long-term domain cooperation. In this scenario, 



empirical research results did not support the notion of artificial intelligence serving 
as a safe haven in the long-term frequency domain of the clean energy market. 
Possible factors include the influence of multiple uncontrollable elements on the 
energy market, many of which are beyond the control of any artificial intelligence 
system. While AI may contribute to understanding certain patterns or correlations, it 
is less likely to predict or manage all aspects of these complex systems. Especially for 
short-term forecasts, there are often high demands on the accompanying facilities of 
AI such as algorithms, computing power, servers, and chips. 

Furthermore, due to risks such as potential unexpected developments in AI 
technology, chip supply shortages, concerns about privacy, and legal risks associated 
with the disabling of large-scale models, investors, though optimistic about the 
long-term broad market prospects of AI as an emerging technology, tend to prefer 
long-term holdings to mitigate short-term market and economic uncertainties. In this 
scenario, long-term linkage may be the dominant mechanism. Additionally, empirical 
results confirm our viewpoint on the importance of information about the tail 
distribution of AI and green energy assets (Abakah et al., 2023). The risk formation of 
these new assets is influenced by economic outlooks and market expectations. For 
example, during a bull market, topics promoting economic growth through innovation 
tend to receive more attention (Huynh et al., 2020). 

Moreover, the significant role played by emerging tech assets in an eco-friendly 
financial context is of paramount importance. The findings of this study will 
contribute to achieving the dual goals of social technological development and 
environmental sustainability. For instance, the use of artificial intelligence often raises 
concerns about privacy, especially when it involves the collection and analysis of 
sensitive information. If an investigation could potentially infringe on privacy, it may 
not be worth the potential backlash or legal consequences. The incorporation of 
legislative mechanisms to promote the use of artificial intelligence will enhance its 
integration with clean energy technology and its broader application - not only at an 
industrial level but also in everyday social life. These measures will contribute to 
achieving SDG-13 on climate action and SDG-8 on technological innovation in the 
context of the Fourth Industrial Revolution. Thus, governments should actively 
strengthen relevant legislative practices and enhance environmental standards while 
guiding investors in their investments in emerging tech assets. This will align the 
vision of innovation driving social development with the realization of sustainable 
development goals. 

 

4 Conclusions and Policy Implications 

This paper investigates the risk correlation mechanisms between eight clean energy 
indexes (S&P Global Clean Energy Index, WilderHill Clean Energy Index, NASDAQ 
OMX Bio/Clean Fuels, OMX Renewable Energy, OMX Geothermal, OMX Fuel Cell, 



OMX Solar, and OMX Wind Indices) and the NASDAQ CTA Artificial Intelligence 
& Robotics index for the period from December 2017 to April 2023 using both 
inter-temporal and quantile connectedness methods. As opposed to Ando et al. 
According to the standard quantile connectedness method, the cross-time and quantile 
connectedness approach examines heterogeneous risk spillover effects across 
frequencies by decomposing the time-domain connectedness metric into different 
temporal frequencies. And utilizing the estimation outcomes based on Wavelet Local 
Multiple Correlation (WLMC) and Granger causal quantile analysis, novel evidence 
is furnished regarding the intricate time-frequency dynamic correlations and quantile 
risk dependence between AI and clean energy indices. Our results of frequency 
connectedness are also robust compared to those of quantile frequency connectedness. 

For policymakers, competition in the semiconductor sector, on which artificial 
intelligence devices depend, is becoming an important aspect of the game in the 
high-tech sector among major powers in the context of the 4th industrial revolution 
and increased global geopolitical competition. For example, the Science Act in the US 
supports cutting-edge technologies such as artificial intelligence. Relevant 
policymakers must pay more attention to the dynamics of spillover effects between 
the indices investigated in this research. This is to make predictable long-term policies 
in the current situation of increased geo-environmental competition. Furthermore, at 
the market level, policymakers must understand risk spillover patterns, particularly 
under extreme market conditions. In response to extremely positive or negative 
market conditions, policymakers need to intervene by implementing policies and 
strategies. 

For investors, our findings will enhance their insights into the asymmetric tail 
dependence structure when segmenting their portfolios into different assets. They 
need to understand the risk patterns of market segments with different investment 
horizons while ensuring that they should pay more attention to the trends of 
net directional spillovers among the indices under study. The spillover dynamics of 
normal market periods and bear markets, for example, should be of more interest to 
long-term investors while short-term investors should have opportunities during bull 
markets. As investors consider portfolio diversification strategies and risk 
management in the future, they should consider these findings.  

Overall, our research results deepened policymakers' clear understanding of the risk 
transmission mechanisms between the artificial intelligence market and the clean 
energy market from various perspectives. For instance, we found that risk spillover 
activities in extreme market conditions were more pronounced compared to normal 
conditions. To validate our findings and provide additional reference dimensions for 
the risk transmission mechanisms, we employed different methods to estimate the risk 
transmission patterns between the artificial intelligence market and the clean energy 
market, enhancing the reliability of our empirical findings. 



Given the limitations of this study, there are several additional topics to investigate in 
future research. Firstly, another potential area for future study may be the uncertainty 
index for system variables, such as social network uncertainty or other measures of 
uncertainty. In addition, future research can apply different approaches to observe 
relationships between system assets. 
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