
Neurocomputing 573 (2024) 127225

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Survey Paper

A survey on vulnerability of federated learning: A learning algorithm
perspective
Xianghua Xie a,∗, Chen Hu a, Hanchi Ren a, Jingjing Deng b

a Department of Computer Science, Swansea University, United Kingdom
b Department of Computer Science, Durham University, United Kingdom

A R T I C L E I N F O

Communicated by J. Han

Keywords:
Federated Learning
Deep Learning
Model vulnerability
Privacy preserving

A B S T R A C T

Federated Learning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly
Deep Learning (DL) models on multiple devices or servers while maintaining data localized at owners’
sites. Without centralizing data, FL holds promise for scenarios where data integrity, privacy and security
and are critical. However, this decentralized training process also opens up new avenues for opponents
to launch unique attacks, where it has been becoming an urgent need to understand the vulnerabilities
and corresponding defense mechanisms from a learning algorithm perspective. This review paper takes a
comprehensive look at malicious attacks against FL, categorizing them from new perspectives on attack
origins and targets, and providing insights into their methodology and impact. In this survey, we focus on
threat models targeting the learning process of FL systems. Based on the source and target of the attack,
we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D), Model
to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed,
highlighting their effectiveness, assumptions and potential areas for improvement. Defense strategies have
evolved from using a singular metric to excluding malicious clients, to employing a multifaceted approach
examining client models at various phases. In this survey paper, our research indicates that the to-learn
data, the learning gradients, and the learned model at different stages all can be manipulated to initiate
malicious attacks that range from undermining model performance, reconstructing private local data, and
to inserting backdoors. We have also seen these threat are becoming more insidious. While earlier studies
typically amplified malicious gradients, recent endeavors subtly alter the least significant weights in local
models to bypass defense measures. This literature review provides a holistic understanding of the current FL
threat landscape and highlights the importance of developing robust, efficient, and privacy-preserving defenses
to ensure the safe and trusted adoption of FL in real-world applications. The categorized bibliography can be
found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning.
1. Introduction

In the era of Artificial Intelligence (AI) that is built upon big
data, the need to extract valuable insights from massive amounts of
information is driving innovation across industries. Achievements of
data-driven Deep Learning (DL) models have been witnessed in many
areas, ranging from Natural Language Processing (NLP) [1–3] to visual
computing [4–7]. It is generally agreed upon that the more training
data, the greater potential performance of the model. To illustrate, the
research work [8] claims if one were able to collect data from all med-
ical facilities, models trained on such dataset would have the potential
of ‘‘answering many significant questions’’, such as drug discovery and
predictive modeling of diseases. Data centralization scheme for training
AI model has been the predominant method for decades. However,

∗ Corresponding author.
E-mail addresses: x.xie@swansea.ac.uk (X. Xie), jingjing.deng@durham.ac.uk (J. Deng).

methods solely relying on centralized training scheme are becoming
less viable, not only due to the cost of computational resources, but
more importantly, the growing concerns related to privacy and secu-
rity, which has triggered the need for alternative learning paradigms.
FL [9,10], a distributed learning paradigm emerges as a pioneering so-
lution to address these challenges, where multiple decentralized parties
collaborate on a learning task while the data remains with its owner. In
contrast to traditional approaches, where all data has to be centralized,
FL stemming from the increasing concerns on data privacy allows
model to be trained at the source of data creation. This innovative
approach not only minimizes the risk of data leakage, maintains the
privacy of sensitive information, but also lifts the computational burden
vailable online 8 January 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2023.127225
Received 18 September 2023; Received in revised form 28 November 2023; Accept
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ed 30 December 2023

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning
mailto:x.xie@swansea.ac.uk
mailto:jingjing.deng@durham.ac.uk
https://doi.org/10.1016/j.neucom.2023.127225
https://doi.org/10.1016/j.neucom.2023.127225
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.127225&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Neurocomputing 573 (2024) 127225X. Xie et al.
Fig. 1. An overview of common vulnerabilities in FL. Malicious attackers can: (a) manipulate model updates to prevent the global model from converging; (b) tamper data labels
to induce erroneous predictions after training; (c) inject backdoors into the global model; (d) reconstruct data or inference data properties by eavesdropping model updates; (e)
steal the global model while contribute nothing.
Table 1
Our proposed taxonomy.
Type of attack Definition Example

Data to Model (D2M) Tampering the data alone to degrade model performance Label-flipping
Model to Model (M2M) Tampering updates to prevent learning convergence Byzantine attack
Model to Data (M2D) Intercepting model updates to inference private data information Gradient leakage
Composite (D2M+M2M) Tampering both data and updates to manipulate model behavior Backdoor injection
of cloud centers, which is considered as a potential alternative for
completing multi-party learning in many domains, such as: health-
care [11–13], finance [14–16], smart cities [17–19] and autonomous
driving [20–22]. We observed that there is a significant growth related
to FL in both academic research and industrial applications.

Recent studies on exploiting vulnerabilities of FL, have illuminated
the fact that the robustness of FL architectures is not as secure as
expected, where each building block in FL algorithms, ranging from
its data distribution, communication mechanisms, to aggregation pro-
cesses, is susceptible to malicious attacks [23–26]. These vulnerabilities
can potentially compromise the privacy and security of the participants,
meanwhile downgrade the integrity and effectiveness of the entire
learning system. Fig. 1 illustrates various common FL attacks and
provides a comprehensive overview on different stages and components
in the FL that can be targeted by opponents. Specifically, a variety of
tactics that a malicious attacker can employ, as follows:

• Data Tampering: By disrupting data label or introducing sample
noisy the adversary misguides the global model making inaccu-
rate or biased predictions.

• Model Manipulation: By changing the model weight during
aggregation, the attacker forces the global model to deviate from
the desirable convergence. It can be a subtle change over time, or
a drastic disruption that leads to significant performance degra-
dation.

• Data Reconstruction: By exploring the gradient information or
model weight, the opponent attempts to reconstruct or infer spe-
cific attributes of the original data, thereby breaching the privacy
of data owner.

• Backdoor Injection: By embedding backdoor into the global
model, the contestant deceives the trained model to give desig-
nated prediction when the corresponding trigger pattern in the
input is presented.
2

Despite the promising future of FL aimed at alleviating privacy con-
cerns, FL still faces a wide variety of threats. In contrast to reviewing FL
from system and network security perspectives, in this survey, we focus
on retrospecting the research advancements of FL vulnerability that is
inherited from the nature of machine learning algorithms. As shown in
Fig. 1, we identify that a malicious attacker can attack every component
in the FL system. For example, an opponent may masquerade as a
participating client of the system and provide toxic data to degrade the
prediction performance of the global model, or intercept client updates
and inject backdoor or reconstruct private training data. In this paper,
we propose a taxonomy of FL attacks centered around attack origins
and attack targets, which are outlined in Table 1. Our taxonomy of FL
attacks emphasizes exploited vulnerabilities and their direct victims.
For instance, label-flipping is a typical D2M attack, often described
as a data poisoning technique. If the local data is tampered by such
a designated attack, the trained global model can be compromised by
such training data and exhibit anomalous behavior.

The rest of survey is organized as such: In Section 2, we firstly
introduce the essential preliminaries of FL algorithm. Then, following
the proposed taxonomy, we review each type of attack, including D2M
Attack, M2M Attack, M2D Attack and Composite Attack in Sections
3, 4, 5 and 6 respectively. Within each section, both threat mod-
els and the corresponding defense strategies are presented, compared
and discussed. Section 7 concludes our findings and provides our
recommendation for future research directions.

2. Preliminaries of federated learning

FL can be categorized into horizontal FL, vertical FL, and federated
transfer learning, based on how the training data is organized [27].
Since the majority of research on FL vulnerabilities focuses on the
horizontal FL setting, therefore, we also focus on horizontal FL as

Neurocomputing 573 (2024) 127225X. Xie et al.

t
a
T
t
r
g
t

s
o
o
(
T
l
e
t

3

t
t
a
t
t
H
c
t
D

3

S
t

Table 2
Comparison of related surveys on federated learning attacks and defenses.

Surveys Federated learning attacks and defenses

D2M M2M M2D Composite

Threat Defense Threat Defense Threat Defense Threat Defense

Kairouz et al. [23] ◦ ✓ ◦ ✓ ◦ ✓

Nguyen et al. [37] ✓ ✓ ✓ ✓ ✓ ✓

Zhang et al. [38] ◦ ✓ ◦ ✓ ◦ ✓ ◦ ✓

Gong et al. [39] ◦ ◦ ◦ ✓

Yin et al. [40] ✓ ✓

Zhang et al. [41] ◦ ✓ ◦ ✓ ◦ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

◦: high-level overview ✓: detailed review.
S

the central topic in this review. FedAvg is the most classic horizon-
tal FL algorithm, where the global model is learned by averaging
across all local models trained on clients. Surprisingly, such a simple
aggregation scheme has been proven to be effective in many case stud-
ies [28–30], where the convergence is also mathematically sound [31].
Improvements upon FedAvg include incorporating local update cor-
rections [32,33] or adaptive weighting schemes [34–36], however,
the fundamental aggregation scheme remains similar. Therefore, we
present FedAvg [10] as an example to demonstrate the potential com-
ponents in FL system that can be targeted by malicious parties. Firstly,
all clients receive the identical global model 𝜔0 from the central server
that is randomly initialized. Then, the local model is trained on each
client with its local data. Once the local training steps finish (i.e., the
number of pre-set iteration or epoch is reached), individual clients
send either the updated local model 𝜔𝐸 or the model difference 𝑢
o the server. The central server aggregates the global model 𝜔𝑟 by
veraging the local models, and send the updated model to each client.
o speed up the training, a subset of clients are chosen randomly for
he current round of training, which is also considered as a dropout
egularization for FL. The pseudo code of original FedAvg algorithm is
iven in Algorithm 1, where the terms highlighted indicate the entities
hat can be compromised.

The comparison between surveys on FL attacks and defenses is
ummarized in Table 2. While most surveys include detailed discussion
n defense strategies, some of them only give high-level overviews
n threat models, such as explaining the concept of Byzantine attacks
M2M) without delving into diverse attacks as we summarized in
able 4. Our work reviews FL vulnerabilities from the perspective of

earning algorithms. Our review includes major threat models that
xploits the learning paradigm of FL and discusses defense strategies
o counter these threats.

. Data to model attacks

We describe Data to Model (D2M) attacks in FL (see Fig. 2) as
hreat models that are launched by manipulating the local data while
he models in training are being targeted as victims. D2M attacks are
lso considered as black-box attacks because the attackers do not need
o access inside information such as client model weights or updates,
ampering the data alone is often suffice to launch a D2M attack.
owever, the attackers can also draw information from local dataset or
lient models to enhance the effectiveness of D2M attacks. We present
he timeline of D2M research in Fig. 3. The characteristics of discussed
2M attacks are shown in Table 3.

.1. D2M attacks on class labels

The D2M attack of poisoning data labels is called label-flipping.
uch an attack aims at misleading the training models by feeding
3

ampered labels for training. For instance, the attackers may switch the
Algorithm 1 FedAvg for Horizontal FL. (𝑇 𝑒𝑟𝑚𝑠 highlighted are the
vulnerable components can be targeted by adversaries.)
𝑛𝑖 is the number of local samples, 𝑁𝑆 is the total number of samples
among selected clients, 𝐷𝑖 is the local training data, 𝜔 is model weights
erver:
1: create and send model to all clients
2: clients own their respective data 𝐷𝑖
3: initialize 𝜔0
4: for each round 𝑟 = 1, 2, ..., 𝑅 do
5: sample |𝑆| clients, send 𝜔𝑟−1 to each clients in 𝑆
6: for each client 𝑖 ∈ 𝑆 do
7: 𝜔𝑖

𝑟 or 𝑢𝑖 ←Client(𝑖, 𝜔𝑟−1)
8: end for
9: 𝜔𝑟 ←

∑

|𝑆|
𝑖=1

𝑛𝑖
𝑁𝑆

𝜔𝑖
𝑟 or 𝜔𝑟 ← 𝜔𝑟−1 +

∑

|𝑆|
𝑖=1

𝑛𝑖
𝑁𝑆

𝑢𝑖
10: validate the model with 𝜔𝑟
11: end for
Client(𝑖, 𝜔):
1: for each epoch 𝑒 = 1, 2, ..., 𝐸 do
2: 𝜔𝑒 ← 𝜔𝑒−1 −𝜂⋅ ∇𝜔𝑒−1

(𝐷𝑖)
3: end for
4: 𝑢 ← 𝜔𝐸 − 𝜔
5: return 𝜔𝐸 or 𝑢 to server

labels for car images to ‘‘planes’’, resulting in the model to classify car
images as planes after training.

Label-flipping attack is first studied and proved its effectiveness
in the centralized setting [53]. Later on, [42,43] demonstrate label-
flipping attack in FL scenarios. Thees studies follow [53] and flip the
labels from the victim class to a different target class. Authors of [43]
show that with only 4% of total clients being malicious, label-flipping
attack can cause the recall on victim class to drop by 10% on the
Fashion-MNIST dataset [54], indicating that even a small number of
malicious clients can effectively degrade the performance of a defense-
less FL system through label-flipping attack. In PoisonGAN [48], the
label-flipping attack is further improved. Targeting a FL system for
image classification, the authors of PoisonGAN use the global model
received on clients as the discriminator for Generative Adversarial
Network (GAN). The attacker trains a local generator until the global
model classifies generated images as the victim class. The attackers can
then flip labels of generated images, compromising client models by
feeding fake images along with flipped labels. The noteworthy advan-
tage of PoisonGAN is that the attacker now does not need to access
clients’ data. The attacker can simply generate their own poisonous
data samples. Instead of arbitrarily choosing the target class to flip,
studies such as [45,46] investigate different heuristic for choosing
the target class. Semi-targeted attack proposed in [45] uses distance
measures to determine which target class can more easily affect model
predictions. The intuition of this attack is that if samples of two
different classes are relatively close in the feature space, then label-
flipping attack on these two classes is more likely to succeed as the

Neurocomputing 573 (2024) 127225X. Xie et al.
Fig. 2. An illustration for D2M attack.
Fig. 3. The timeline of research on FL attacks and defenses.
Table 3
Characteristics of D2M attacks.
Threat model Threat objective Poisoned data

Label-flipping [42–44] Mislassification Class labels
Semi-target poisoning [45] Misclassification Class labels
Edge-case attack [46] Misclassification Class labels
AT2FT [47] Misclassification General samples
PoisonGAN [48] Misclassification General samples and class labels
Covert channel [49] Secretly passing messages Edge samples
Fake sample size [50] Disrupting convergence Client dataset size
Local environment poisoning [51] Poisoning policy Agent rewards
Poisonous ratings [52] Controlling item recommendation Item ratings
proximity of features suggests easier learning convergence. The authors
of [45] consider both the Independent and Identically Distributed (IID)
and non-Independent and Identically Distributed (non-IID) scenarios.
If client data is IID, the attacker uses the global model to extract
features for the local training data. The geometric center of each class
is computed based on features of local data and the target class should
be the one closest to the victim class. In the non-IID scenario, the
local feature space no longer well represents the structure of the global
feature space. Thus, the authors leverages the scale of updates to
measure which class is closer to the victim class. The attacker feeds
local samples of the victim class to the global model and examines
the scale of gradients when these samples are annotated as different
classes. The class label that induces the smallest gradient is chosen as
the target class. Different from [45,48] that exploit the global model
for their attacks, the heuristic of the edge-case attack [46] is built on
the distribution of the training data. The edge-case attack flips labels
4

into classes in the tail of the data distribution. Although the edge-case
attack only affects a minority of samples, it can severely impair the
model’s fairness for underrepresented input and may pose great threats
in autonomous driving systems [46]. Experiments in [46] show that
the attack is most effective when the attacker holds most of the edge
samples. As honest clients possess larger portions of edge samples, the
attack is erased by benign updates.

3.2. D2M attacks on samples

Labels are not the only target in D2M attacks. Depending on the
FL scenario, the attackers may choose to poison other relevant client
data. A threat model that targets the sample size on clients is proposed
in [50]. Based on the fact that FedAvg computes the weighted average
of client weights based on the numbers of their corresponding local
samples, the attacker can simply falsely report the number of local

Neurocomputing 573 (2024) 127225X. Xie et al.

a
o
w
s
A
g
a
t
e
(
r
g
D
p
n
c
a
r

p
t
t
s
c
m
t
l
w
r
c

i
I
u
f
t
c
c
a
a

3

s
m
m
a

Table 4
Various M2M threat models.

Threat Model Approach Type Objective

Free-riding [55] Pretend as a client

A priori

Stealing global model

Byzantine Gaussian [56] Uploading Gaussian noise

Inhibiting convergence

Bit-flipping [57] Flipping significant bits of floating numbers
Same-value attack [58] Uploading vectors with identical values across all dimensions
Sign-flipping [58] Flipping signs of gradients on attacked clients
Median cheating [59] Cheating the aggregation rule to pick the false median

Negative gradient [57] Uploading the scaled sum of benign gradients from malicious clients

A posteriori

Norm attack [60] Scaling certain dimensions of gradients

Colluding attack [61] Deceiving the aggregation rule to pick the chosen malicious client Converging to an inferior minima

PipAttack [62] Generating item embeddings based on public information
Increasing 𝐸𝑅@𝐾 of target itemsFedRecAttack [63] Minimizing the rating scores of untargeted items

User Approximation [64] Generating item embeddings through approximated user embeddings
samples to be a large number such that the aggregated model will be
dominated by the attacker’s chosen model. AT2FT [47] is another D2M
attack that generate poisonous samples. The difference between AT2FT
nd PoisonGAN [48] is that the former does not flip labels. Authors
f AT2FT formulates their attack as a bilevel optimization problem in
hich the attacker tries to perturb subsets of local training samples

uch that losses on local clean data are maximized. In essence, the
T2FT algorithm maximizes local losses through gradient ascent where
radients w.r.t the perturbed data are approximated by minimizing
dual problem. The D2M attacks are also not limited to classifica-

ion tasks. The authors of [51] propose a D2M threat model, local
nvironment poisoning, targeting federated Reinforcement Learning
RL). The attacker can influence the learned policy by providing fake
ewards during local agent training. Fake rewards are derived from
radient descent such that they minimize the objective function of RL. A
2M threat model on Federated Recommendation (FedRec) systems is
roposed in [52]. Specifically, the authors of [52] focused on the graph
eural network based FedRec system proposed in [65]. By feeding
ompromised client models with fake item ratings during training, the
ttacker can force the recommendation system to show specified item
atings for specific users.

Unlike the above methods that use D2M attacks to influence model
redictions, the covert channel attack proposed in [49] aims at secretly
ransmitting messages between two clients. On the receiver client,
he attacker first looks for edge samples from its local training data
uch that even a small perturbation in the data results in different
lassification outcomes. Perturbed edge samples along with the trans-
ission interval, the clean and poisoned class predictions are sent to

he sender client. The sender client decides whether to fine-tune its
ocal model with the perturbed data depending on the message bit it
ishes to send and the local model’s prediction. Once the receiver client

eceives the updated model, it can decode the message bit based on the
lassification outcome of perturbed samples.

For D2M attacks to be successful, studies in [42–44] show that it
s vital to ensure the availability of malicious clients during training.
f no malicious client are selected to participate in the global model
pdate, the effects of their attacks can be quickly erased by updates
rom benign clients [43]. Recent studies on FL threat models tend
o combine D2M attacks with M2M attacks to launch more powerful
omposite attacks. Since the attacker also manipulates model updates,
omposite attacks can be stealthier and more persistent. Such attacks
lso give the attacker more freedom of when and how to trigger the
ttack.

.3. Defense against D2M attacks

In this section we introduce defense strategies proposed along with
tudies on label-flipping attacks [42–44,51]. Since D2M attacks ulti-
ately induce changes in model updates, FL system administrators
ay also consider defense mechanisms designed for M2M or composite

ttacks.
5

Strategies proposed in [42,43] are both inspired by the observation
that gradients in FL behave differently in terms of benign and malicious
clients. In particular, because of the non-IID nature of data, it is ob-
served in [42] that gradients from benign clients are more diverse than
those from malicious clients. This is because benign gradients conform
to the non-IID distribution of local data while malicious models have
a shared poisoning goal. The defense strategy FoolsGold [42] thus
aims at reducing the learning rate of similar model updates while
maintaining the learning rate of diverse updates. To determine the
similarity of model updates, the history of all model updates are stored
and pair-wise cosine similarity between current and historical updates
are computed. The defense strategy in [43] requires prior knowledge on
the attack target. This method needs the user to first choose a suspect
class that is believed to be poisoned. Then only model updates directly
contributing to the prediction of the suspect class are collected. These
model weights subsequently go through Principal Component Analysis
(PCA) and are clustered based on their principal components. Principal
components of benign and malicious clients fall in different clusters.
Similar to gradients, model weights can also be used to differentiate
benign and malicious clients. Sniper [44] is a defense strategy based on
the Euclidean distances between model weights. The central server first
computes the pair-wise distances between received client models. Then
the server constructs a graph based on the distances. Client models are
the nodes of the graph, and if the distance between two client models
are smaller than the given threshold, these two models are then linked
by an edge. If the number of models in the maximum clique of the
graph is larger than half of the total number of clients, models in this
clique are aggregated to update the global model. Otherwise, the server
increases the distance threshold and repeat the above process until a
suitable clique can be found.

Parallel learning [66] is a paradigm of RL in which multiple agents
learn concurrently to solve a problem. Parallel learning not only alle-
viates data deficiency but also stabilizes training, as agents learn from
diverse experiences. Unlike multi-agent RL, which aims to develop com-
petitive or cooperative strategies among clients, parallel RL focuses on
solving single-agent problems through parallel training. This objective
is similar to that of conventional federated learning, in which the goal
is to obtain a global model through distributed local model training.
Therefore, federated reinforcement learning becomes imperative when
the learning environment of RL is privacy-sensitive. For the D2M threat
model targeting federated RL, a corresponding defense strategy was
also proposed in [51]. This method requires the central server to evalu-
ate client agent performance to determine their credibility. Specifically,
the central server tests client policies and computes their corresponding
rewards. The central server aggregates client policies based on a set of
weights derived from normalized rewards.

3.4. Evaluation metrics for attacks and defenses on classification tasks

Since the majority of studies on D2M attacks focus on image classifi-
cation, the most commonly used datasets for D2M attack evaluation are

Neurocomputing 573 (2024) 127225X. Xie et al.
Fig. 4. An illustration of M2M attack.
MNIST [67], Fashion-MNIST [54] and CIFAR-10 [68]. Natural language
and domain-specific datasets can also be seen [42,46,47,52]. Attack
Success Rate (ASR) is widely used to evaluate the effectiveness of an
attack. Specifically, for D2M attacks targeting classification tasks, ASR
is defined as the proportion of targeted test samples being misclassified,
namely,

𝐴𝑆𝑅 =
𝛴(𝑥𝑖 ,𝑦𝑖)∈𝐷1{𝑓 (𝑥𝑖) = 𝑦𝑡, 𝑦𝑡 ≠ 𝑦𝑖}

|𝐷|

(1)

where 𝐷 is the test set for evaluation, 𝑥𝑖 is the data sample while 𝑦𝑖
is its corresponding groundtruth label, 𝑦𝑡 is the label chosen by the
attacker, 𝑓 (⋅) is the attacked global model, and 1{⋅} equals to 1 if the
condition inside the brackets is met. ASR is also used to evaluate M2M
or composite attacks. The metric respectively reflects how severely the
attack disrupts model convergence and how sensitive the model is to
backdoor triggers. In addition, the performance of the attack can also
be demonstrated by the decrease in overall classification accuracy. For
regression tasks, mean absolute error and root mean squared error
are employed. While some defenses provide formal proof for their
effectiveness, most work on FL defenses is empirically validated by
demonstrating the robustness of model performance when the defense
is adopted in a malicious environment.

4. Model to model attacks

We define Model to Model (M2M) attacks in FL as threat models that
manipulate local model updates or weights to affect the global model,
as depicted in Fig. 4. The primary objective of an M2M attack is to
disrupt the convergence of FL algorithms. The presence of M2M attacks
is also described as the Byzantine problem [69]. In a distributed system
affected by the Byzantine problem, benign and malicious participants
coexist in the system. Malicious participants deliberately disseminate
confusing or contradicting information to undermine the system’s nor-
mal operations. Therefore the challenge for the system administrator
lies in achieving consensus among benign participants despite the pres-
ence of malicious ones. Defending against these M2M attacks means
ensuring that the learning algorithm to converge to an optimal minima
regardless of poisoned updates from malicious clients. In addition to
the above threat model, a special case of M2M attacks, called the free-
rider attack, aims to steal the global model itself, infringing on the
intellectual property rights of the model owner. An malicious party may
pretend to join the FL system solely to obtain the distributed global
model, without contributing to the learning task. Since the threat model
of free-rider attack is comparatively straightforward, we discuss this
type of attack along with its defense mechanisms in the same section.
The characteristics of discussed M2M attacks are shown in Table 4.
6

4.1. General M2M threat models

Existing M2M threat models can be divided into a priori and a
posteriori attacks.A priori attacks do not require any knowledge of
benign clients while a posteriori attacks need to forge poisonous model
updates based on information from benign clients.

4.1.1. Priori M2M attacks
A straightforward a priori M2M (prioM2M) attack is sending noise

to the central server. This method is dubbed as Gaussian Byzantine
in [56]. The Gaussian distribution for noise sampling often has zero
mean but large variance to disrupt the convergence of the learning
algorithm. Gaussian Byzantine is often used as the baseline attack [57,
58]. Bit-flipping is a prioM2M attack proposed in [57]. On malicious
clients, the bit-flipping attack flips four significant bits of certain 32-bit
floating numbers in the original gradients as poisoned model updates.
Another two prioM2M attacks, same-value attack and sign-flipping at-
tack, are proposed in [58]. For the same-value attack, malicious clients
upload vectors with an identical random value on each dimension
to the server. In the sign-flipping attack, malicious clients computes
their own gradient as normal but flip the sign of gradients before
uploading them to the central server. The prioriM2M attack proposed
in [59] takes secure aggregation rules into account. It specifically
attacks FL systems equipped with median-based aggregation rules such
as TrimMedian [70] or Krum [56]. The basic idea of the attack is to
report false updates on multiple malicious clients such that with high
probability the aggregation rule picks one of the malicious updates
as the median for global update. The authors of [59] use a statistical
heuristic to find the maximum deviation range which is used to forge
the malicious updates. The value on each dimension of the original
updates on malicious clients is transformed by the maximum deviation
range to attain forged malicious updates. The authors also augment this
attack with the D2M attack, which is discussed in Section 3.4.

4.1.2. Posteriori M2M attacks
For a posteriori M2M (postM2M) attacks, omniscient negative gradi-

ent approach proposed in [57] is an equally straightforward approach
compared to Gaussian Byzantine. This method assumes that the at-
tacker have full knowledge of benign clients, then malicious clients
only need to send scaled negative sum of benign gradients to the
central server. The scaling factor is a large number on the order
of magnitude of 1020. The postM2M attack proposed in [60] takes
Bayzantine-resilient aggregation rules into account. Specifically, this
attack targets aggregation rules that compute the norms of client gra-
dients to filter out malicious updates. The problem with norm-based
aggregation rules is that 𝐿𝑝 norms cannot tell if two norms only differ
in one specific dimension or every dimension. Thus, the attacker can
exploit this by only poisoning one dimension of the gradients. The

Neurocomputing 573 (2024) 127225X. Xie et al.
poisoned value can be scaled by a large factor while still being accepted
by the aggregation rule as its norm is not far away from those of the
benign gradients. Moreover, as the norm chosen by the aggregation rule
approaches the infinite norm, the attacker can poison every dimension
of model updates.

The above attacks can be launched individually on clients controlled
by the attacker, these approaches does not require malicious clients to
coordinate with each other. A colluding postM2M attack is later pro-
posed in [61]. This method targets aggregation rules such as Krum [56]
and Buylan [60] that use the Euclidean distance between client models
as the criterion for choosing trustworthy models. The threat model
in [61] aims at pushing the global model toward the opposite of the
benign update direction. To achieve this at the presence of aforemen-
tioned aggregation rules, a chosen malicious client is responsible for
generating model updates that maximizes the global model update in
the opposite direction. Other malicious clients generate updates that are
close to the chosen one, conceiving the aggregation rules that malicious
clients form a benign cluster and the chosen malicious client should be
picked by the aggregation rule.

4.2. M2M threat models on federated recommendation systems

As mentioned in the introduction section, FL is well-suited for
recommendation systems thanks to its ability to provide personalized
recommendations and reduce privacy risks. A commonly used FedRec
framework is proposed in [71]. Research on the vulnerabilities of
domain-specific FL like FedRec is still a nascent area. In this section,
we introduce three noteworthy studies [62–64] focusing on exploiting
security vulnerabilities of FedRec.

The common goal of existing attacks on FedRec is to increase the
exposure rate of certain items. The affected recommendation system
may always present or never show certain items to users. In [62–64],
the attackers are assumed to only have access to item embeddings,
local and global models. Embeddings that characterize users are always
hidden from the attackers. In PipAttack [62], the attacker increases
target items’ exposure rate by forging their embeddings to be similar
to those of popular items. Since the attacker have no access to the
popularity of items in the system, this information is retrieved from
the Internet. Based on the retrieved information, the attacker locally
train a popularity classifier with item embeddings as input. The weights
of the classifier are then fixed, target item embeddings are poisoned
by enforcing them to be classified as popular by the classifier. The
poisoned item embeddings are uploaded to the central server to mislead
the FedRec system.

Authors of FedRecAttack [63] later points out that major limitations
of PipAttack include that it may severely degrade the recommendation
performance and it needs around 10% of clients to be attacked for
it to be effective. Since the exposure rate at rank 𝐾 (𝐸𝑅@𝐾) [62],
meaning the fraction of users whose top-𝐾 recommended items include
the target item, is a non-differentiable function, FedRecAttack uses
a surrogate loss function to facilitate the attack. FedRecAttack also
assumes that around 5% of user–item interaction histories are publicly
available for the attacker to use. The loss function of FedRecAttack
encourages the rating scores of recommended non-target items to be
smaller than the scores of target items with no interaction history,
then the gradients of target item embeddings w.r.t this loss function
are uploaded to the central server. To further eschew being detected
by secure aggregation rules, these gradients are normalized before
uploading if their norms are larger than the threshold.

Both PipAttack and FedRedAttack require public prior knowledge to
work. In contrast, the 𝐴− 𝑟𝑎∕𝐴−ℎ𝑢𝑚 attack proposed in [64] does not
have this requirement. 𝐴−𝑟𝑎∕𝐴−ℎ𝑢𝑚 also uses a surrogate loss function
to promote the 𝐸𝑅@𝐾 for target items, but this attack focuses on
approximating the user embeddings which are inaccessible in FedRec.
𝐴−𝑟𝑎 assumes that the user embeddings are distributed by a zero mean
7

Gaussian with the variance as a hyper-parameter. The attacker first
Table 5
Characteristics of M2M defenses.

Type of defense Aggregation criterion

GeoMed [72] Geometric median
RFA [73] Weiszfeld-smoothed geometric median
MarMed [57] Dimension-wise median
MeaMed [57] Mean-around median
TrimMean [70] Dimension-wise trimmed mean
Krum/Multi-Krum [56] Euclidean distance
Bulyan [60] Euclidean distance and mean-around median
ELITE [74] Gradient information gain

samples a number of user embeddings from the Gaussian distribution,
then maximized the interaction scores target items and sampled user
embeddings to derive poisonous item embeddings. Instead of sampling
from a Gaussian, 𝐴−ℎ𝑢𝑚 uses online hard user mining to generate user
embeddings. The attacker first generate hard user embeddings that are
not likely to interact with existing items. Then target item embeddings
are optimized to increase their interaction chances with the synthesized
hard users.

4.3. Defense against M2M attack

Because the median is robust to outliers in statistics, it is widely
used in M2M defenses (see Table 5) to filter out malicious updates. Ge-
oMed [72] is an exemplar of median-based M2M defenses. In GeoMed,
the central server first divides received client gradients into multiple
groups and computes the mean of each group. Then the geometric
median of group means is used as the gradient for updating the global
model. The approach of using geometric median for robust aggregation
is further improved by authors of RFA [73]. In RFA, clients compute
their aggregation weights based on the aggregation rule inspired by
the Weiszfeld algorithm [75]. Including the geometric median, more
median-based defenses are studied in [57]. Marginal Median (MarMed)
is a generalized form of median proposed in [57]. It computes the
median on each dimension for client gradients. Mean-around-Median
(MeaMed) in [57] further leverages more values around the median.
Built upon MarMed, MeaMed finds the top-𝑘 values that are nearest to
the median of each dimension, then the mean of these nearest values
is used as the gradient on their corresponding dimensions.

Besides median, trimmed mean also has the benefit of being less
sensitive to outliers. The authors of [70] introduce coordinate-wise
trimmed mean as an aggregation rule. For each dimension of client
gradients, this rule removes the top-𝑘 largest and smallest values,
the mean of the remaining values is treated as the gradient on the
corresponding dimension.

Another criterion for filtering out malicious updates is the Euclidean
distance between norms. Krum [56] and Bulyan [60] are two exem-
plary defenses built on this criterion. Krum is motivated by avoiding
the drawbacks of square-distance or majority based aggregation rules.
The problem pointed out in [56] is that malicious attackers can collude
and misguide the center of norms to a bad minima for the square-
distance based aggregation, and the majority based aggregation is too
computationally expensive as it needs to find a subset of gradients with
the smallest distances among them. For a central server that adopts
Krum as its aggregation rule, it first finds the (𝑛−𝑓−2) nearest neighbors
for each client based on the Euclidean distances between their updates,
where 𝑛 is the number of clients that participate the training, 𝑓 is the
estimated number of malicious clients. Then the central server sums up
the distances between each client and their corresponding neighbors
as Krum scores. The client with lowest score is chosen by the central
server, and its gradient is used to update the global model for the
current training round. Multi-Krum [56] is a variation of Krum that
balances averaging and Krum. It chooses top-𝑘 clients with highest

Krum scores. The average of chosen clients’ updates is used to update

Neurocomputing 573 (2024) 127225X. Xie et al.

o
p
S
d
K
c
i
s

g
p
a
a
t
g
t
i
t
t
o
d
m
g

4

m
l
m
u
n
k
s
w
i
a
m
a

i
W
b
w
r
w
f
m
t
e
m
l
t
c
e
p
b
g
F
o

the global model. The prerequisite for Krum to be effective is that the
number of malicious clients needs to satisfy 𝑓 > (𝑛 − 2)∕2.

Although the convergence of Krum has been proven in [56], authors
f Bulyan [60] point out that the attacker can simply deceive Krum to
ick the malicious client that converges to an ineffective local minima.
uch an attack is launched by manipulating the gradient norms as
iscussed above. Bulyan refines norm-based aggregation rules such as
rum by adding an extra stage after a client has been chosen by the
entral server. The added stage is akin to MeaMed [57]. Bulyan first
teratively move clients chosen by Krum or other rules to a candidate
et. Once the number of candidates passes the threshold 2𝑓 +3, Bulyan

computes the MeaMed on each dimension of candidate gradients. The
resulting vector is regarded as the output of Bulyan and subsequently
used to update to global model. For Bulyan to be effective, the number
of malicious clients needs to satisfy 𝑓 > (𝑛 − 3)∕4.

Different from the above approaches, ELITE [74] uses information
ain to filter out malicious updates. ELITE first computes the empirical
robability density function for each dimension of gradients, which
llows for deriving the dimension-wise information entropy. The sum of
ll entropy is computed as the total entropy of updates for the current
raining round. Then for each participating client, their information
ain is defined as the difference between the original total entropy and
he total entropy with this client being removed. Clients with largest
nformation gains are considered as malicious and hence excluded from
he aggregation. The intuition behind ELITE is that benign gradients
end to roughly point at the same direction, namely the direction of the
ptimal gradient, whereas malicious gradients tend to point at rather
ifferent directions. When the majority of clients are benign, removing
alicious gradients results in less total entropy as the uncertainty of

radients is reduced.

.3.1. Defense against free-rider attacks
Since the objective of free-rider attacks is to obtain the global

odel in the FL system, free-rider clients need to upload their own
ocal model such that they can pretend to be benign clients. Free-rider
odels are constructed with minimum cost. The free-rider can simply
pload their received global model to the server [55], or Gaussian
oise may be added to the received model before uploading [76]. The
ey of defending against free-rider attacks is to identify which clients
ubmit free-rider models. Existing defenses can be categorized into
atermarking methods and anomaly detection methods. Watermark-

ng methods incorporate watermark learning tasks on clients, while
nomaly detection approaches are learned on the server. If a client
odel fails to trigger watermarked behaviors or being classified as an

nomaly, such client is considered as a free-rider.
Watermarking neural networks has been studied in the central-

zed setting [77,78] to verify the ownership of deep neural networks.
atermarks are commonly embedded into intermediate features or

ackdoored test samples. In the FL scenario, WAFFLE [79] is an early
ork of FL watermarking in which the server embeds watermarks by

etraining the aggregated model with backdoored samples. However,
atermarking on the server side is not suitable for defending against

ree-rider attacks, as the free-rider model is identical to the global
odel. FedIPR [80] addresses the problem by generating secret wa-

ermarks on clients. At the initialization stage of FL, FedIPR requires
ach client to generate their own trigger dataset, watermark embedding
atrix and the location of watermarks. In addition to the primary

earning task, local models now learns to embed watermarks in both
he intermediate features and local trigger set. In the verification stage,
lient models are fed with their respective trigger set. If the detection
rror of trigger samples is smaller than a given threshold, this client
asses the verification. FedIPR also verifies feature-based watermarks
y evaluating the Hamming distance between the watermark in the
lobal model and local secret watermark. One major challenge of
edIPR is that clients may generate conflicting watermarks. Authors
8

f FedIPR proves that different client watermarks can be embedded
without conflicts when the total bit-length of watermarks is bounded by
the channel number of the global model. If the bit-length exceeds the
threshold, FedIPR also gives a lower bound for detecting watermarks.

Anomaly detection based free-rider defense are inspired by anomaly
detection approaches in the centralized setting, such as [81,82]. Au-
thors of [76] concatenate client updates on the server to train an
auto-encoder. The auto-encoder learns to reconstruct received client
updates. In the verification stage, if the reconstruction error induced
by updates from one client is larger than then given threshold, this
client is deemed as a free-rider. Another approach proposed in [76]
is using DAGMM [82] instead of the vanilla auto-encoder. DAGMM
detects anomaly data by feeding the latent representation of the auto-
encoder to a Gaussian mixture network to estimate the likelihood of
the representation being abnormal.

5. Model to data attacks

In this section, we will introduce the Model to Data (M2D) attacks in
FL, which is to reveal a specific attribute, partial or full of the data (see
Fig. 5). We summarized the methods to be non-gradient-based leakage
and gradient-based data leakage.

5.1. Non-gradient-based data leakage

We define non-gradient-based data leakage as the disclosure of
private information that occurs independently of the gradient generated
during the training stage. For instance, the leakage can involve identify-
ing specific attributes or membership details within the training data, or
recovering original training images from obscured or masked versions.
Typically, such leakage exploits the capabilities of a well-trained model
to execute these attacks.

5.1.1. Attribute inference
The paper [83] is one of the earliest works that targets the leakage

of private information from an Machine Learning (ML) model. In this
paper, the authors construct a novel meta-classifier that is used to at-
tack other ML classifiers with the aim of revealing sensitive information
from the training data. This is considered a white-box attack, as the
adversary has knowledge of both the structure and the parameters
of the target model. Specifically, the method assumes full access to
a well-trained target model and pre-sets a particular attribute to be
identified, determining whether or not it exists in the training data.
To do this, the authors first create multiple synthetic training datasets,
some of which partially contain the pre-set attributes, while the rest
do not. They then train several classification models on these synthetic
datasets; the architecture of these classification models is identical
to that of the target model. Subsequently, the parameters of these
classification models are used as input for training the meta-classifier.
Finally, the parameters from the well-trained target model are fed into
this meta-classifier to determine if the particular attribute exists in the
training data. Both the target model and the meta-classifier are ML
models, e.g., Artificial Neural Network (ANN), Hidden Markov Model
(HMM) [84], Support Vector Machine (SVM) [85], or Decision Tree
(DT). The authors provide two example cases to evaluate their method.
In one example, they identify the speaker’s nationality using a speech
recognition dataset processed by an HMM. Later, they use an SVM to
set up a network traffic classifier to distinguish between two kinds of
traffic conditions, using the meta-classifier to identify the type of traffic.

In both examples, the meta-classifiers are DTs.

Neurocomputing 573 (2024) 127225X. Xie et al.
Fig. 5. M2D attack.
5.1.2. Membership identification
The above work is further improved by [86], who focus on member-

ship identification attacks. They propose a shadow training technique
to identify whether specific samples are part of the training dataset.
The membership inference problem is formulated as a classification
task. An attack model is trained to distinguish between the behavior
of shadow models when fed with forged training data. These shadow
models are designed to behave similarly to the target model. The
approach qualifies as a black-box attack, meaning that the attacker only
possesses knowledge of the output for a given input. Several effective
methods have been developed for generating forged training data for
the shadow models. The first method utilizes black-box access to the
target model to synthesize the data. The second method leverages
statistical information related to the target model’s training dataset. In
the third method, it is assumed that the adversary has access to a noisy
version of the target model’s training dataset. While the first method
operates without assuming any prior knowledge about the distribution
of the target model’s training data, the second and third methods allow
the attacker to query the target model just once before determining
whether a particular record was part of its training dataset.

5.1.3. Image recovery
In terms of recovering valuable information from obfuscated im-

ages, [87] is one of the earliest works to the best of our knowledge.
Obfuscated images are easily accessible through various data protection
techniques (e.g., blur, mask, corrupt, and P3) [88,89]. In the study [87],
the authors utilized a DL model to recover valuable information from
obfuscated images for classification tasks. They assumed that the adver-
sary has access to a portion of the original training data and applied one
of the encryption methods to those images to train the attack model. For
this reason, their method is generally not suitable for most real-world
scenarios.

To demonstrate how neural networks can overcome privacy pro-
tection measures, they employed four commonly used datasets for
recognizing faces, objects, and handwritten digits. Each of these tasks
carries substantial privacy concerns. For instance, the successful iden-
tification of a face could infringe upon the privacy of an individual
featured in a captured video. Recognizing digits could enable the
deduction of written text content or vehicular registration numbers.

The final results are impressive. On the MNIST [67] dataset, they
achieved an accuracy of about 80% for images encrypted by P3 with a
recommended threshold level of 20. Conversely, the accuracy exceeds
80% when the images are masked by windows of resolution 8 × 8.
On the CIFAR-10 [68] dataset, only vehicle and animal images were
used for experiments, achieving an accuracy of 75% against P3 with
a threshold of 20. When deploying a 4 × 4 mask on the images, the
accuracy is approximately 70%, and it drops to 50% when masking
with 8 × 8 resolution. On the AT&T [90] dataset, the proposed method
9

Fig. 6. Overview of the GMI attack method [92].

achieved a remarkable accuracy of 97% against P3 with a threshold
of 20, over 95% against various mask sizes, and 57% against face
blurring. On the FaceScrub [91] dataset, they achieved an accuracy of
57% against masking the face with a 16 × 16 window and 40% against
P3 with a threshold of 20.

In more recent work [92], the authors utilize a GAN, trained on a
public dataset, to recover missing sensitive regions in images; this is
termed the GMI attack, as shown in Fig. 6. A diversity loss is proposed
to encourage diversity in the images synthesized by the generator when
projected into the target network’s feature space. This is essential dur-
ing the training of the GAN on the public dataset because the adversary
aims for the generated images to be distinct in the feature space of the
target model. If different images map to the same feature space, the
adversary cannot discern which generated image corresponds to the
private data’s features, thus failing to reveal the private information.

The authors assume that the adversary has access to the well-trained
target model, which serves as a discriminator, as well as to the target
label of the input corrupted image. Initially, the generator is used to
create an image, which is then fed into two separate discriminators
to calculate the prior loss and identity loss. In subsequent rounds,
these two losses, along with the corrupted image, are used as inputs
for the generator to produce the next iteration of the reconstructed
image. Upon completing the training of the GAN, the adversary, during
the reveal phase, only needs to continue optimizing the generator’s
inputs so that the generated images are sufficiently realistic while also
maximizing likelihood in the target model.

The datasets employed for evaluation are MNIST [67], ChestX-
ray8 [93], and CelebA [94]. The experimental results indicate that
without using the corrupted image as an input for the generator,
the attack’s success rate is approximately 28%, 44%, and 46% on
target networks VGG-16 [95], ResNet-152 [96], and face.evoLVe [97],
respectively. However, when the corrupted image is incorporated, the
accuracy increases to 43%, 50%, and 51% for blurred input images;
78%, 80%, and 82% for center-masked images; and 58%, 63%, and

Neurocomputing 573 (2024) 127225X. Xie et al.

c

64% for face T-masked images. Consequently, the inclusion of cor-
rupted images as auxiliary information has a significant impact on the
attack’s accuracy.

5.2. Gradient-based data leakage

Concerning gradient-based data leakage, this refers to techniques
that exploit gradients from the target model to expose privacy-sensitive
information. DL models are trained on datasets, and parameter up-
dates occur through alignment with the feature space. This estab-
lishes an inherent relationship between the weights or gradients and
the dataset. Consequently, numerous studies aim to reveal private
information by leveraging these gradients. The effectiveness and suc-
cess rates of gradient-based approaches have consistently surpassed
those of non-gradient-based methods. Unlike non-gradient-based leak-
age, gradient-based data leakage can occur even in models that have
not yet converged.

5.2.1. Partial recovery
Hitaj et al. [98] proposed a data recovery method that utilizes a

trained victim model and a target label. The method aims to generate
new data closely resembling the distribution of the training dataset.
This attack is formulated as a generative process using a GAN. In a
FL system, an attacker can pose as a participant to reveal private data
from the victim by modeling the feature space. Suppose the attacker
masquerades as a malicious participant with a portion of training
samples that have correct labels, along with a portion of samples
generated via GAN with incorrect labels. The attacker’s goal is to
produce a dataset that shares the same feature distribution as the other
participants, leveraging GAN and the global gradients downloaded from
the parameter server.

In Algorithm 2, the victim trains its local model on its own dataset
for several iterations until it achieves an accuracy beyond a preset
threshold. Subsequently, the malicious actor uses the updated local
model as the discriminator. The weights in the discriminator are fixed,
and a generator is trained to maximize the confidence of a specific
class. This is an indirect data recovery method, sensitive to the variance
in the victim’s training data [99]. Although the generated images are
consistent with the data distribution, they do not correspond to the
actual training dataset. In other words, the generated images cannot
be mapped back to the training data.

Another related work by GGL [100] also employs a GAN to generate
fake data. In this approach, the weights of the GAN are pretrained and
fixed, while the trainable parameters in GGL are the input sequences
to the GAN. The label inference part is adapted from Improved DLG
(iDLG) [101], requiring a batch size of 1. Unlike other methods, GGL
uses Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and
Bayesian Optimization (BO) as optimizers to reduce the variability in
the generated data. Although the data generated by GGL is not identical
to true data, it is sufficiently similar (see Table 6), providing GGL
with robustness against various defense strategies like gradient noising,
clipping, or compression. The generated images are influenced by two
factors: (1) the inferred ground-truth label, which specifies the image
classification, and (2) fine-tuning based on gradient information to
make the image as similar as possible to the true image.

5.2.2. Full recovery (discriminative)
Zhu et al. [103] introduced Deep Leakage from Gradients (DLG),

framing the image recovery task as a regression problem. Initially, the
shared local gradient is derived from a victim participant, and a batch
of ‘‘dummy’’ images and labels is randomly initialized. These are then
used to calculate the ‘‘dummy’’ gradient through standard forward–
backward propagation, employing the L-BFGS optimizer [104]. This
process leverages regression techniques to decipher intricate patterns
10

within the gradient, thereby reconstructing the private image data.
Algorithm 2 The proposed work from [98]
Assume: two participants V and M who have common learning goals.
Require: V’s local dataset 𝐷𝑣 with label 𝐿𝑎 and 𝐿𝑏.

M’s local dataset 𝐷𝑚 with label 𝐿𝑏 and 𝐿𝑐 .
a. Parameter Server
1: build model and initialize weights.
2: send the initial weights to the clients.
3: local training on victim and malicious clients.
4: receive the trained local weights and generate the global model.
5: repeat Step 2 and 3 until the model converges.
b. Victim Client
1: download the global weights from parameter server.
2: train the local model on its local dataset 𝐷𝑣.
3: upload the local model to the parameter server.
. Malicious Client
1: download the global weights from parameter server.
2: train a GAN model to generate fake data of class 𝐿𝑎.
3: generate many fake data using GAN and relabel them with 𝐿𝑐 to

update the local dataset 𝐷𝑚.
4: train the local model on the updated local dataset 𝐷𝑚.
5: upload the local model to the parameter server.

The approach provides a powerful framework for M2D attacks. Impor-
tantly, it is the input ‘‘dummy’’ data that is updated—not the model
parameters—by minimizing the Mean Square Error (MSE) between
the ‘‘dummy’’ gradient and the shared local gradient. This strategy
prioritizes the fidelity of the reconstructed image, ensuring preservation
of essential features and details. Among existing leakage methods,
DLG is unique in achieving precise pixel-wise data revelation with-
out requiring additional information. The technique is innovative and
deploys unique algorithms to achieve an unparalleled level of preci-
sion. Some results from DLG of batch data are provided in Fig. 7.
It marks a significant advancement in the field of gradient leakage,
opening new avenues for research and application. Although DLG can
perform attacks on multiple images simultaneously, the accuracy in
label inference remains suboptimal. This limitation is an active area
of research, with ongoing efforts to improve label inference accuracy
without compromising image recovery fidelity. In conclusion, DLG
offers a novel approach to image recovery, utilizing groundbreaking
algorithms to attain high precision. Its potential applications extend far
beyond existing methods, positioning it at the forefront of technological
advancements in the field.

Zhao et al. [101] introduced a novel method known as iDLG, which
focuses on the identification of labels in a more accurate manner. This
technique involves calculating the derivative of the cross-entropy loss
with respect to one-hot labels for each class in the classification task.
The crux of this approach lies in the distinct ranges of the derivative
values that correspond to different labels. The authors discovered that
the derivative value for the ground-truth label uniquely falls within
the range of [−1, 0], while the derivatives corresponding to incorrect
labels lie within the range of [0, 1]. This separation of value ranges
provides a solid basis for identifying the correct label. By simply exam-
ining the derivative value, the system can distinguish the correct label
from incorrect ones. However, this method has a limitation concerning
the batch size: the batch size must not exceed 1 during the process.
While this constraint may affect efficiency in large-scale applications,
the iDLG method’s unique approach to label identification through
derivative analysis represents a significant contribution to the field of
gradient leakage. It opens avenues for future research to potentially
refine this technique and mitigate its limitations.

In addition to the low accuracy of label inference, DLG often fails
to recover the image from the gradient when the data variance is

large, see Fig. 8. This is particularly common for datasets with a

Neurocomputing 573 (2024) 127225X. Xie et al.
Table 6
Typical experimental results performed on GGL are shown below. The backbone network is ResNet-18 and the dataset is ILSVRC2012 with a
resolution of 256 ∗ 256 [102].
Fig. 7. Although the sequence might differ and additional artifact pixels are present, deep leakage in batched data still generates images that closely resemble the original
versions [101].
11

Neurocomputing 573 (2024) 127225X. Xie et al.
Fig. 8. Reconstructed image using its gradient features. On the left is the ground true
image taken from the validation dataset. The center image is reconstructed using a
trained ResNet-18 model that has been trained on ILSVRC2012 dataset. On the right
is the image rebuilt using a trained ResNet-152 model [105].

large number of classes. Inverting Gradient (IG) [105] improved the
stability of DLG and iDLG by introducing a magnitude-invariant cosine
similarity metric for the loss function, termed Cosine Distance (CD).
This approach aims to find images that yield similar prediction changes
in the classification model, rather than images that produce closely
matching values with a shared gradient. The method demonstrates
promising results in recovering high-resolution images (i.e., 224 × 224)
when trained with large batch sizes (i.e., #𝐵𝑎𝑡𝑐ℎ = 100); however, the
Peak Signal-to-Noise Ratio (PSNR) remains unacceptably low.

Similar to [105], Jeon et al. [106] argued that relying solely on
gradient information is insufficient for revealing private training data.
They introduced GIAS, which employs a pre-trained model for data
revelation. Yin et al. [107] reported that in image classification tasks,
the ground-truth label can be easily inferred from the gradient of
the last fully-connected layer. Additionally, Batch Normalization (BN)
statistics can significantly improve the efficacy of gradient leakage
attacks and facilitate the revelation of high-resolution private training
images.

Another approach to gradient leakage attacks is based on generative
models. Wang et al. [108] trained a GAN with a multi-task discrim-
inator, named mGAN-AI, to generate private information based on
gradients.

5.2.3. Full recovery (generative)
In the work [109], the GRNN was proposed as a method for re-

constructing private training data along with its associated labels. The
model is capable of handling large batch sizes and high-resolution
images. Some examples are provided in Fig. 9 Inspired by both GAN
and DLG methods, GRNN introduces a gradient-driven approach for
image creation that effectively addresses the challenges of stability and
data quality commonly associated with DLG methodologies.

The novel GRNN, which serves as an innovative data leakage at-
tack technique, is capable of retrieving private training images with
resolutions up to 256 × 256 and batch sizes of 256. This makes it
particularly well-suited for FL applications, as both the local gradient
𝑔 and the global model (∙) are easily accessible within the system’s
configuration. The GRNN algorithm employs a dual-branch structure to
generate fake training data �̂� and corresponding labels �̂�. It is trained
to estimate a fake gradient �̂�, computed from the generated data �̂� and
labels �̂�, such that it closely matches the true gradient 𝑔 associated with
the global model. The divergence between the true and fake gradients
is evaluated using a combination of MSE, Wasserstein Distance (WD),
and Total Variation Loss (TVLoss) metrics.

Through empirical testing on various image classification chal-
lenges, the GRNN approach has been rigorously compared to cutting-
edge alternatives, showing significantly better results across multiple
metrics. The trial findings confirm that the proposed method is notably
more stable and capable of generating images of superior quality,
especially when applied to large batch sizes and high resolutions.

Compared to the most latest work [101,103,105], GRNN takes a
generative approach, which shows high stability for recovering high-
resolution images (i.e. up to 256 × 256) with a large batch size (i.e.
12
Fig. 9. Examples of data leakage attack using the GRNN on the global model [109].

#𝐵𝑎𝑡𝑐ℎ = 256). Table 7 presents the key differences between DLG, iDLG
IG and GRNN.

Algorithm 3 GRNN: Data Leakage Attack [109]
1: 𝑔 ← 𝜕((< 𝑥, 𝑦 >, 𝜃))∕𝜕𝜃; #Produce true gradient on local client.
2: 𝑣 ← Sampling from (0, 1); #Initialize random vector inputs.
3: for each iteration 𝑖 ∈ [1, 2, ..., 𝐼] do
4: (�̂�𝑖, �̂�𝑖) ← (𝑣|�̂�𝑖); #Generate fake images and labels.
5: �̂�𝑖 ← 𝜕((< �̂�𝑖, �̂�𝑖 >, 𝜃))∕𝜕𝜃; #Get fake gradient on global

model.
6: 𝑖 ← ̂(𝑔, �̂�𝑖, �̂�𝑖); #Loss between true and fake gradient.
7: �̂�𝑖+1 ← �̂�𝑖 − 𝜂(𝜕𝑖∕𝜕�̂�𝑖); #Update GRNN model.
8: end for
9: return (�̂�𝐼 , �̂�𝐼); #Return generated fake images and labels.

5.3. Defense against M2D attacks

The issue of M2D attack methods has garnered significant attention
in the world of ML and DL. This issue has sparked concern as it can
lead to the unintended exposure of information. In response, numerous
methods and techniques have been proposed to understand, mitigate,

Neurocomputing 573 (2024) 127225X. Xie et al.

d
1
t
c
a
a
i
o
t
r

d
t
m
a
b
c
Z
L
o
t

Table 7
Comparison of different related works on gradient leakage [109].
Method Recovery mode #Batch Resolution Loss function

DLG [103] Discriminative Small, up to 8 Low 64 × 64 MSE
iDLG [101] Discriminative Small, only 1 Low 64 × 64 MSE
IG [105] Discriminative Medium, up to 100 High 224 × 224 CD & TVLoss
GGL [100] Generative Small, only 1 High 224 × 224 CMA-ES & BO
GRNN [109] Generative Large, up to 256 High 256 × 256 MSE & WD & TVLoss
and control this leakage, e.g., gradient perturbation [103,109–112],
ata obfuscation or sanitization [113–117], and other methods [36,
02,118–121]. These methods aim to limit the extent of information
hat can be exposed, ensuring that models operate with the requisite
onfidentiality and integrity. Defense against M2D attacks has emerged
s a compelling and dynamic research area within the field. M2D
ttacks involve malicious attempts to extract or manipulate sensitive
nformation directly from the data used in training models. This field
f research explores various strategies and mechanisms to shield against
hese attacks, preserving the privacy of the data and maintaining the
obustness of the models.

Numerous measures have been undertaken to safeguard personal
ata against the M2D attack. Techniques such as gradient perturba-
ion, data obfuscation or sanitization, Differential Privacy (DP), Homo-
orphic Encryption (HE), and Secure Multi-Party Computation (MPC)

re among the most prominent methods for ensuring the privacy of
oth the private training data and the publicly shared gradient ex-
hanged between the client and server. Experiments conducted by
hu et al. [103] focused on two specific noise types: Gaussian and
aplacian. Their findings revealed that the key factor affecting the
utcome was the magnitude of the distribution variance, rather than
he type of noise itself. When the variance exceeds 10−2, the leakage

attack fails; concurrently, there is a significant decline in the model’s
performance at this variance level. Chamikara et al. [117] introduced
a technique for perturbing data, affirming that this approach maintains
model performance without compromising the confidentiality of the
training data. In this context, the dataset is treated as a data matrix,
and a multidimensional transformation is applied to project it into
a new feature space. Various degrees of transformation are used to
perturb the input data, guaranteeing an adequate level of alteration. A
central server is responsible for creating global perturbation parameters
in this technique. Notably, a potential drawback is that the perturbation
process could distort the architectural structure of image-related data.
Wei et al. [121] employed DP to introduce noise into the training
datasets of each client and formulated a per-example-based DP method
known as Fed-CDP. They developed a dynamic decay noise injection
strategy to improve both inference performance and the level of gradi-
ent leakage defense. Nevertheless, experimental findings indicate that,
despite successfully hindering the reconstruction of training data from
the gradient, this method leads to a considerable decline in inference
accuracy. Additionally, since DP is applied to every training instance,
the computational overhead becomes substantial.

When computing the gradient, Privacy Enhancing Module
(PRECODE) [122] aims to prevent the input information from
propagating through the model. PRECODE introduces a module
before the output layer to transform the latent representation
of features using a probabilistic encoder–decoder. This encoder–
decoder is comprised of two fully-connected layers. The first layer
encodes the input features into a sequence and then normalizes this
sequence based on calculated mean and standard deviation values.
The mean is computed from the first half of the sequence, while
the standard deviation is derived from the remaining half. Finally,
the decoder translates the normalized sequence back into a latent
representation, which then serves as input to the output layer.
This normalization step between the encoder and decoder prevents
the input information from affecting the gradient, thereby allowing
13

PRECODE to resist the leakage of input information through the
gradient. However, the insertion of two fully-connected layers in
front of the output layer results in a significant computational cost.
This is why only three very shallow neural networks were used for
experiments in their paper.

Recent studies have uncovered that shared gradients can result in
the potential exposure of sensitive data, leading to privacy violations.
The work in [102] presents an exhaustive examination and offers a
fresh perspective on the issue of gradient leakage. These theoretical
endeavors have culminated in the development of an innovative gra-
dient leakage defense strategy that fortifies any model architecture
by implementing a private key-lock mechanism. The only gradient
communicated to the parameter server for global model aggregation
is the one that has been secured with this lock. The newly formulated
learning approach, termed FedKL, is designed to withstand attacks that
attempt to exploit gradient leakage.

The key-lock component has been meticulously designed and
trained to ensure that without access to the private details of the key-
lock system: (a) the task of reconstructing private training data from the
shared gradient becomes unattainable, and (b) there is a considerable
deterioration in the global model’s ability to make inferences. The
underlying theoretical reasons for gradients potentially leaking confi-
dential information are explored, and a theoretical proof confirming
the efficacy of our method is provided.

The method’s robustness has been verified through extensive em-
pirical testing across a variety of models on numerous widely-used
benchmarks, showcasing its effectiveness in both maintaining model
performance and protecting against gradient leakage.

In the study [102], a theoretical foundation is laid to demonstrate
that the feature maps extracted from the fully-connected layer, convo-
lutional layer, and BN layer contain confidential details of the input
data. These details are not only encompassed within the feature maps
but also coexist within the gradient during the process of backward
propagation. Furthermore, it is posited that gradient leakage attacks
can only succeed if there is adequate alignment between the gradient
spaces of the global and local models.

As a solution, they proposed FedKL, a specialized key-lock module
that excels at differentiating, misaligning, and safeguarding the gradi-
ent spaces using a private key. This is accomplished while preserving
federated aggregation comparable to conventional FL schemes. Specif-
ically, the operations of scaling and shifting in the normalization layer
are restructured. A private key, generated randomly, is fed into two
fully-connected layers. The resulting outputs function as exclusive coef-
ficients for the scaling and shifting procedures. Both theoretical analysis
and experimental results affirm that the proposed key-lock module is
efficient and effective in protecting against gradient leakage attacks.
This is achieved by masking the uniformity of confidential data in the
gradient, thus making it challenging for a malicious attacker to perform
forward–backward propagation in the absence of the private key and
the lock layer’s gradient. Consequently, the task of approximating the
shared gradient in the FL framework to reconstruct local training data
becomes unachievable.

6. Composite attacks

We define composite attacks as threat models that corrupt multi-
ple aspects of FL. The attacker can combine D2M and M2M attacks

to launch backdoor attacks. The attacker surreptitiously adds trigger

Neurocomputing 573 (2024) 127225X. Xie et al.
Table 8
Characteristics of composite attacks.
Name of attack Distinctive feature

Direct boosting [123] Boosting malicious updates
Separated boosting [123] Regularized update boosting
Model replacement [124] Replace converging global model
PGD [125] Bounded update projection
Edge case + PGD [46] PGD on minority samples
Median interval [59] Median cheating with normalized updates
DBA [126] Distributed backdoor trigger
TrojanDBA [127] Distributed and learnable trigger
Neurotoxin [128] Tampering insignificant model weights
RL Neurotoxin [129] Searching Neurotoxin parameters with RL
F3BA [130] Sign-flipping on insignificant weights
Rare word embedding [131] Tampering stale word embeddings
Future update approximation [132] Estimating future updates from malicious clients
Sudden collapse [133] Estimating potent malicious gradients
Fig. 10. An overview of trigger patterns. Among these trigger types, a and b are mostly associated with label-flipping. Type c is a common strategy for injecting triggers into
arbitrary samples. Type d uses samples at the tail of the data distribution to induce erroneous predictions for underrepresented data. Type d appears in more recent studies.
patterns to local training data, then poisons model updates such that
the global model learns how to react to triggers. Backdoored models
behave normally when fed with clean data. In the presence of trigger
data, these models are trained to give predictions designated by the
attacker.

Trigger patterns vary from one attack to the other. We summarize
existing triggers in Fig. 10. Generic samples of a class or samples
with shared patterns are commonly used in label-flipping attacks,
these attacks can be further enhanced by incorporating M2M attacks.
Triggers based on certain natural patterns are also known as semantic
triggers [124] . Handpicked logos or icons are common trigger patterns
for backdoor injection. Edge samples, namely samples at the tail of the
data distribution, are used in attacks targeting underrepresented data,
which can significantly damage the fairness for the minority group.
Lastly, learnable triggers is a relatively new strategy appears in recent
studies.

Compared to D2M or M2M attacks, now that the attacker also
has control over client model updates, composite attacks tend to be
stealthier and more destructive. A high-level view of such attacks is
illustrated in Fig. 11. We group recent composite attacks based on their
most notable features. These attacks may also use techniques proposed
in other groups. We show the characteristics of composite attacks in
Table 8.

6.1. Composite threat models

6.1.1. Update boosting
To boost the effectiveness of model updates derived from poisoned

data, scaling up malicious updates is a common strategy in early studies
on composite attacks [123,124]. Given poisoned data with their labels
14
being flipped, authors of [123] propose two types of threat models.
The explicit approach is to train client models with the poisoned data,
then boost model updates by scaling it up with a predefined coefficient.
Although this approach is easy to implement, the boosted updates
are statistically different from benign updates, suggesting that secure
aggregation rules can easily identify boosted malicious updates. As for
the stealthy approach in [123], the attacker instead trains client models
on both the clean and poisoned data. Updates from the poisoned data
are boosted as the explicit approach while a regularization term is used
to ensure that the differences between current malicious updates and
last round’s average benign updates are bounded. Instead of boosting
only the malicious updates, the model replacement attack proposed
in [124] seeks to entirely replace the global model with the backdoored
model. As the training goes on, benign updates from converging client
models tend to cancel each other out. By solving the linear aggregation
equation, the attacker can find the solution to scale up malicious
updates such that the global model is equal to the model trained with
poisoned data, namely the global model is replaced with the one with
backdoors.

6.1.2. Bounded updates
Boosting model updates is an effective way to inject backdoors.

However, these updates have distinctive norms compared to benign
updates. As mentioned above, boosted updates can be easily filtered
out by norm-based aggregation rules. Projected Gradient Descent (PGD)
proposed in [125] aims at bypassing norm-based aggregation by pro-
jecting boosted updates onto a small ball around the norm of global
model weights. PGD can be also seen in later studies [46]. On top of
the edge case D2M attack in [46], the attacker can further cover up
their intention by projecting model updates derived from edge case

Neurocomputing 573 (2024) 127225X. Xie et al.
Fig. 11. A high-level view of injecting backdoors with a composite attack. The attacker chooses a preferable trigger and tampers local data with the trigger. Local model is also
trained on clean data to avoid detection. Most attacks aim at poisoning the global model with only a few clients.
data. Another threat model proposed in [46] combines PGD with model
replacement [124] in which the boosted malicious updates is bounded
through projection before replacing the global model. Another way to
generate bounded updates is proposed in [59]. In stead of projecting
malicious updates, they are normalized by the maximum deviation
range discussed in the M2M attack section.

6.1.3. Distributed triggers
One common trait of the above composite attacks is that their

backdoor triggers are stand-alone, namely the trigger patterns are
identical across all clients and tampered samples. Even though there
are experiments on concurrently employing multiple triggers [125],
these triggers are still independent from each other and they lack the
ability to collude. The Distributed Backdoor Attack (DBA) [126] instead
assigns local triggers to multiple clients. Local triggers can be assembled
to form a stronger global trigger. The triggers used in DBA is similar to
the ones used in BadNets [134], which are colored rectangles placed
around the corners of images. Malicious updates of DBA are scaled up
by a coefficient similar to [123]. Another attack with distributed trig-
gers is proposed in [127]. Unlike DBA whose triggers are predefined,
triggers in [127] are based on [135] with learn-able parameters that
generate local trigger patterns. In the trigger generation stage of [127],
the attacker first determines the target class. By feeding various samples
of the target class to the received global model, the attacker finds
the internal neuron that is most sensitive to the target class. This is
achieved by comparing the sum of connected weights and the number
of activation. The attacker then optimizes trigger pattern parameters
such that they maximize the activated value of the most sensitive
neuron. In the distributed training stage of [127], each malicious client
only trains from the most sensitive neuron’s layer to the final output
layer.

6.1.4. Insidious tampering
More recent composite attacks focus on making malicious updates

more insidious and persistent, which is usually achieved by tampering
with weights that are unimportant to the clean data. For instance,
Neurotoxin [128] only updates insignificant parameters to prevent
backdoors from being erased by benign updates. Neurotoxin considers
parameters with largest gradients to be most used by benign clients,
therefore parameters with smaller gradients are less accessed by benign
clients. The attacker can only optimize less important parameters to
achieve their backdoor objectives. Neurotoxin is recently enhanced by
authors of [129] who employ RL to find better hyperparameters for
the attack. Rare word embedding attack proposed in [131] shares a
similar idea with Neurotoxin in the sense that it manipulates word
embeddings of rare words as they are not likely to be updated by
15
benign clients. The effectiveness of the rare word embedding attack can
be further amplified by the gradient ensembling method [131]. The
attacker intentionally stores the global models from multiple rounds,
then gradients of backdoor word embeddings are computed for all
these models. The exponential moving average of these gradients is
used to update backdoor embeddings in the current round. Focused
Flip Federated Backdoor Attack (F3BA) is a recent threat model that
falls into the category of insidious tampering. Intuitively, F3BA tries
to flip the signs of lease important weights such that they are most
sensitive to trigger patterns. The importance of a weight is measured
by the product of its gradient and weight value. F3BA only modifies
least important weights found by this metric, and empirically 1% of
weights are enough to degrade model performance. Sign-flipping of
F3BA is conducted between consecutive layers. In the first layer, the
attacker reshapes the trigger patterns such that it aligns with the
convolution kernel. Signs of least important weights of this kernel
are flipped if they are different from the signs of the aligned trigger
pixels. In subsequent layers, the attacker respectively feeds the model
with clean and poisoned data, records their activation differences, and
flips signs of the chosen weights such that the activation differences
are maximized. When sign-flipping is completed, the model is fine-
tuned to associate flipped weights with the labels of poisoned data. The
model’s local updates will also be more similar to benign updates after
fine-tuning. Like [127], trigger patterns is also learn-able. F3BA learns
the trigger pattern’s pixel values by maximizing the clean-poisoned
activation difference of the first layer.

6.1.5. Update approximation
Composite attacks introduced so far directly optimize model weights

on the backdoor classification task. There are also attacks seeking to
optimize niche objectives. These objectives are often intractable (e.g.
estimating future updates of other clients), thus the attacker needs to
find proper approximations to implement practical solutions. If an om-
niscient attacker knows all future updates of a FL system, the optimal
way of injecting backdoors is differentiating through the computation
graph of all future updates w.r.t the weights of the attacker’s model.
This is the intuition behind [132] and the authors propose a method to
approximate updates in the near future. The attack in [132] requires
the attacker to control a subset of client models. The attacker uses these
models to simulate future updates by running FedAvg. Throughout
the simulation, only clean data sampled from the malicious client is
used. In the first round of the simulation, all models are fed with data.
The malicious models are left out in the following rounds, which is
simulating the scenario in which the malicious client is not chosen
by the central server. Once future updates are approximated, client
model weights are optimized through the classification losses on both

Neurocomputing 573 (2024) 127225X. Xie et al.
clean and poisoned data similar to [123]. Accumulative Poisoning
Attack (APA) [133] is another method that indirectly optimizes model
weights for the backdoor task. The objective of APA is to clandestinely
poison model weights while maintaining a good test performance.
As soon as the model is fed with trigger data, its performance dras-
tically drops, leaving the system administrator with minimum time
to respond to the attack. APA learns two functions: an accumulative
function and a poisoning function. The accumulative function is used
to manipulate model updates such that the model is more sensitive to
trigger gradients. The poisoning function is used to transform benign
gradients from validation data into malicious gradients, leading to
performance degradation. Intuitively, degrading model performance
can be viewed as maximizing the validation loss. By taking the first
order Taylor polynomial of the validation loss, the maximization prob-
lem is transformed into minimizing the first order gradient w.r.t the
accumulative and poisoning functions. The authors of APA further
simplify the minimization problem with its first order approximation.
The final optimization objective then becomes simultaneously aligning
the directions of poisoned gradients with benign gradients as well as the
second order gradients of the validation loss. All gradients from APA
are all projected through PGD [125] to enhance stealth. While it is not
mandatory to use trigger patterns with APA, the authors demonstrate
that explicit triggers makes APA more potent.

6.2. Defense against composite attack

In this section, we introduce defenses that are specifically designed
to counter D2M+M2M composite attacks. Since this type of attack also
manipulates model weights or updates, defenses against M2M attacks
such as Krum [56] or Bulyan [60] are also evaluated in many existing
studies on defense against composite attacks. Depending on the subjects
being processed by the defense strategy, we divide defenses again
composite attacks into update cleansing and model cleansing.

6.2.1. Update cleansing
Defenses based on update cleansing filter out uploads or mitigate

influence from malicious clients by examining model updates. Robust-
LR [136] is an update cleansing defense built on the heuristics that
directions of malicious updates are different from benign ones. The
authors of Robust-LR take a majority voting over model updates. The
voting computes the sum of signs of model updates on each dimension.
If the sum is below a pre-defined threshold, meaning that malicious
clients participate in the current round of update, the learning rate
on that dimension is multiplied by −1 to apply gradient ascent to
suspicious updates.

Training models with DP has been mathematically proven as an
effective way of defending against backdoor injections [125,137]. This
approach is first introduced to FL by authors of DP-FedAvg [138].
Compared to the vanilla FedAvg shown in Algorithm 1, DP-FedAvg
requires the central server to bound client updates first. Client updates
are clipped by comparing its 𝐿2-norm against a given parameter, which
could be an overall parameter for all model weights or a set of layer-
wise clipping parameter. When the global model is updated by taking in
bounded client updates, noise from a zero-mean Gaussian is also added.

6.2.2. Model cleansing
A pruning based method is proposed in [139]. This approach asks

clients to rank the average activation values of the last layer of their
models. The central server prunes neurons in the descending order
based on the aggregated rankings of neurons. Knowledge distillation is
also considered as a defense against composite backdoor attacks [130,
140]. By aligning the attention maps of the teacher model and the
student model, Neural Attention Distillation (NAD) [140] manages to
erase backdoors injected in the model. The distillation process of [140]
assumes that clean data is available to the defender. This requirement is
also inherited by FedRAD [141], a knowledge distillation based defense
16
for FL. FedRAD needs to prepare synthetic data [142] on the central
server for model evaluation. Client models are fed with the synthesized
data for evaluation, then the central server counts how many times a
client’s logit obtains the median value for its corresponding class. The
median frequencies of client models are normalized and used as global
model aggregation coefficients. The distillation process of FedRAD is
built on FedDF [143]. The central server distills knowledge from client
models by minimizing the KL divergence between the global model’s
predictions and the average prediction of client models.

Some research considers certified robustness [144] as the way to
defend against composite backdoor attacks. A ML model is said to
have certified robustness if its predictions are still stable even if the
input is perturbed. CRFL [145] is a defense designed to counter the
model replacement attack. By controlling how the global model param-
eters update during training, CRFL grants the global model certified
robustness under the condition that the backdoor trigger is bounded.
Specifically, when the conventional global model aggregation com-
pletes, parameters of the global model are first clipped, then Gaussian
noise is added to these parameters. At test time, a set of Gaussian
noise is sampled from the previous noise distribution and added to
the aggregated global model, resulting in a set of noisy global models.
A majority voting is conducted among these noisy models to decide
the classification results of test samples. Another defense with certified
robustness is proposed in [146]. This method achieves certified ro-
bustness through the majority voting among a number of concurrently
trained global models. Given 𝑛 clients, the defense in [146] trains

(𝑛
𝑘

)

global models, where 𝑘 is the number clients chosen without replace-
ment for each model. Although the authors of [146] applies Monte
Carlo approximation to speed up the defense, it still needs to train
hundreds of global models, making this method more computationally
expensive than other defenses.

The idea of majority voting is not exclusive to defenses with cer-
tified robustness. Authors of BaFFLe [147] rely on diversified client
data to validate and provide feedback to the global model. BaFFLe
adds an extra stage to conventional FL pipeline. When the global model
for current global training round is aggregated, it is sent to randomly
selected clients to validate if the global model is poisoned. A set of
recently accepted global models are also sent to selected clients as
reference. The validation process s of BaFFLe requires these clients to
test global models with their local data. In particular, each client com-
putes the misclassification rate for samples of a specific class, the client
also computes the rate of other classes’ samples being misclassified as
the examined class. For benign models, the gap between these two
rates are relatively stable during training. However, drastic changes
can happen for backdoored models. If the misclassification gap of the
newly aggregated global model deviates too much from the average gap
of past models, the client votes the global model as malicious. Finally,
based on the result of the majority voting, the central server decides
whether to discard the newly obtained global model.

6.2.3. Composite cleansing
Like composite attacks that manipulate multiple aspects of FL to

enhance their capability, recent defenses also examine both model
updates and weights to systematically mitigate composite attacks.

Authors of DeepSight [148] propose various metrics to evaluate if
the upload from a client is malicious. The central server first computes
the pairwise cosine similarities between received updates. Two other
metrics, clients’ Division Differences (DDif) and NormalizEd UPdate
Energy (NEUP), are also computed. DDif measures the prediction dif-
ferences between the global and client models. This is achieved by
feeding models with random input on the server. Backdoored models
are prone to produce larger activation for the trigger class even if the
input is merely random noise [149], which is a telltale sign for DDif to
identify compromised models. NEUP measures the update magnitude
for neurons in the output layer. Local data with similar distributions
results in models with similar NEUP patterns. Based on the above

Neurocomputing 573 (2024) 127225X. Xie et al.

c
p

M
d
s
m

Table 9
Summarization of defense techniques toward different types of attacks.

Defense method Defense strategy Type of attack Attack strategy

Fung et al. [42] (FoolsGold)
Tolpegin et al. [43]
Cao et al. [44] (Sniper)
Ma et al. [51]

Dynamic learning rate
Cluster for PCA
Clique from Euclidean distance
Rewards based aggregation

D2M Label attack
Sample attack

Chen et al. [72] (GeoMed)
Pillutla et al. [73] (RFA)
Xie et al. [57] (MarMed)
Xie et al. [57] (MeaMed)
Yin et al. [70] (TrimMean)
Blanchard et al. [56] (Krum)
El Mhamdi et al. [60] (Bulyan)
Wang et al. [74] (ELITE)
Tekgul et al. [79] (WAFFLE)
Li et al. [80] (FedIPR)
Lin et al. [76]
Zong et al. [82] (DAGMM)

Geometric median
Weiszfeld-smoothed geometric median
Dimension-wise median
Mean-around median
Dimension-wise trimmed mean
Euclidean distance
Euclidean distance
Gradient information gain
The server embeds watermarks
Generate secret watermarks on client
Auto-encoder
Gaussian mixture network

M2M Priori attack
Posteriori attack

Zhu et al. [103]
Chamikara et al. [117]
Wei et al. [121]
Scheliga et al. [122] (PRECODE)
Ren et al. [102] (FedKL)

Adding noise to gradients
Perturbing data
DP on data
Transform feature representation
Hide the input from gradient

M2D Attribute inference
Membership identification
Image recovery

Ozdayi et al. [136] (Robust-LR)
McMahan et al. [138] (DP-FedAvg)
Wu et al. [139]
Sturluson et al. [141] (FedRAD)
Xie et al. [145] (CRFL)
Cao et al. [146]
Andreina et al. [147] (BaFFLe)
Rieger et al. [148] (DeepSight)
Nguyen et al. [151] (FLAME)

Update cleansing
DP
Model pruning
Knowledge distillation
Certified robustness from updates
Certified robustness
Validation on diversified client data
Various metrics
Clustering, clipping and noising

Composite Updates attack
Distributed triggers
Insidious tampering
metrics, DeepSight clusters received client models on the central server
with HDBSCAN [150]. The server also needs to maintain a classifier
based on NEUP to label client models as either benign or malicious.
Depending on the number of models being labeled as malicious, the
server determines whether to accept or reject a client model cluster.
Models from accepted clusters are deemed as safe for aggregation.

FLAME [151] is another example of composite defense. Authors of
FLAME summarize the pipeline of their approach as clustering, clipping
and noising. In the clustering stage, the central server computes CDs
between model updates. HDBSCAN is subsequently used to filter out
malicious models based on the angular differences derived from CDs. In
the clipping stage, the median of remaining models’ updates is chosen
as the bound to clip model updates. In the final noising stage, Gaussian
noise is added to the global model weights to further erase injected
back doors.

7. Conclusion and future directions

7.1. Conclusion

In recent years, FL has become a transformative paradigm for train-
ing ML models, especially in decentralized environments where data
privacy and security are critical. Our comprehensive review categorized
known FL attacks according to attack origin and target. It provides a
clear structure for understanding the scope and depth of FL inherent
vulnerabilities:

D2M Attacks: These attacks (e.g., label-flipping) manipulate data to
orrupt the global model. Since FL often relies on data from numerous
otentially untrusted sources, it is highly vulnerable to such threats.

2M Attacks: This type of attack tampers with model updates, thereby
isrupting the learning process. For example, Byzantine attacks involve
ending malformed or misleading model updates, indicating that one or
17

ore malicious clients have the potential to degrade the performance
of the global model. Such attacks emphasize the importance of a robust
aggregation approach in a federated environment.

M2D Attacks: Focus on exploiting vulnerabilities that arise when mod-
els interact with data, such as gradient leakage, where an attacker can
infer private data from gradient updates. Gradient leakage is a prime
example where malicious entities exploit the shared model updates to
infer sensitive information about the training data, emphasizing on the
need for defense strategies that mask or generalize gradients.

Composite Attacks: These attacks are more sophisticated in nature
and often combine multiple attack methods or vectors to enhance their
impact. Backdoor injection is a classic example, where an attacker
subtly introduces a backdoor during training and then exploits it during
reasoning.

A summarization of defense techniques toward different types of
attacks is provided in Table 9

7.2. Future directions

As FL continues to evolve, the sophistication of potential attacks
will continue to increase. By reviewing the recent advancements in this
domain, we identify several promising research directions that include:

Robust Aggregation Mechanisms: The aggregation process in FL is a
key link where local model updates from different participants are com-
bined to update the global model. Given its central role, the aggregation
step becomes a vulnerable point, especially to malicious interference.
For example, a single participant with malicious intentions may submit
misleading updates with the intention of degrading the performance
of the global model. This adverse activity is of particular concern in
M2M attacks, of which the Byzantine attack is a prime example. In a
Byzantine attack, an adversary sends arbitrary or strategically designed
updates to a server with the intent of disrupting the aggregated model.
Addressing these vulnerabilities requires re-evaluating and redesigning
the traditional aggregation mechanisms used in FL. By delving into
the development of more resilient aggregation strategies, methods can

Neurocomputing 573 (2024) 127225X. Xie et al.

v
c
l
p
p
n
h
c
m
f
t
t
c
s

H

be designed to identify, isolate, or reduce the impact of these mali-
cious updates. These advanced aggregation techniques, based on robust
statistical measures, consensus algorithms and even outlier detection
methods, can ensure that the integrity of the global model remains
intact in the presence of hostile participants.

Gradient Sparse Attack: In terms of M2D attack methods, it is worth
noting that the gradients exchanged between the server and the client
often contain a large amount of redundant details [107], and this
redundancy may play a negative role in the effectiveness of the attack.
If an attacker can filter out valuable gradients, the efficiency of the
attack can be dramatically improved, especially in large-scale model
training. This gradient sparse process eliminates irrelevant and noisy
data, thus potentially improving the accuracy of the attack.

Automatic Attack Detection: As the complexity and scale of FL en-
ironments continues to grow, automated safety measures become
ritical. Meta-learning [152–155], often referred to as ‘‘learning to
earn’’, offers a promising avenue to address this challenge. By em-
loying meta-learning techniques, systems can be trained to leverage
rior knowledge about different types of attacks to quickly adapt to
ew, unforeseen threats. In addition, anomaly detection algorithms
elp identify outliers or unusual patterns in traditional datasets that
an be fine-tuned for federated environments. These algorithms can
onitor incoming model updates from different clients or nodes and

lag any updates that deviate from the expected pattern to indicate po-
ential malicious activity. Such an automated system not only identifies
hreats, but also combines with defense mechanisms to immediately
ounteract or eliminate suspicious activity, ensuring a smoother and
afer FL process.

olistic Defense Strategies: In the rapidly evolving FL environment,
the need for holistic defense strategies is becoming increasingly promi-
nent. These strategies advocate the development and implementation
of defense mechanisms that are inherently versatile and capable of re-
sponding to multiple attack vectors simultaneously. A holistic approach
would integrate various protection measures to create a more resilient
and adaptive security framework, rather than a solo approach that
develops defenses against specific threats. This multi-pronged defense
system not only ensures broader security coverage, but also minimizes
potential vulnerabilities and overlaps. As adversarial tactics become
increasingly complex, utilizing an integrated solution that anticipates
and responds to a wide range of threats will be key to protecting the
FL ecosystem.

Domain-specific Attacks and Defenses Although we have witnessed
nascent studies on exploiting the vulnerabilities in Federated Recom-
mendation System and Federated RL, few defenses are proposed to
defend against such threats. Furthermore, a majority of the current
research tends to focus on image classification as the principal learning
task for both attacks and defenses. This observation underscores a
pressing need and opportunity to delve deeper into domain-specific
threat models and tailored defense strategies for federated learning.
Investigating this avenue not only holds promise for enhancing secu-
rity but also ensures the more comprehensive protection of diverse
applications within FL.

Interdisciplinary Approaches: Harnessing the wealth of insights from
different fields is particularly instructive for enhancing FL systems. For
example, frameworks and theories from disciplines such as game theory
and behavioral science can help to understand the motivations and
behaviors of participants in a FL environment. By understanding these
motivations, tailored incentive structures or deterrence mechanisms
can be designed to encourage positive contributions and discourage
malicious or negligent behaviors in FL ecosystems. In addition, the
fields of cryptography and cyber-security are constantly evolving, of-
fering a plethora of innovative techniques and protocols. By integrating
18

these advances into FL, we can strengthen systems against identified
vulnerabilities and ensure not only the privacy and integrity of data,
but also the trustworthiness of the learning process. As the stakes for
FL grow, especially in critical areas of application, the convergence
of these areas is critical to creating a robust, secure and collaborative
learning environment.

CRediT authorship contribution statement

Xianghua Xie: Conceptualization, Formal analysis, Investigation,
Methodology, Supervision, Writing – original draft, Writing – review
& editing. Chen Hu: Conceptualization, Formal analysis, Investiga-
tion, Methodology, Writing – original draft, Writing – review & edit-
ing. Hanchi Ren: Conceptualization, Formal analysis, Investigation,
Methodology, Writing – original draft, Writing – review & editing.
Jingjing Deng: Conceptualization, Investigation, Methodology, Super-
vision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., Improving language
understanding by generative pre-training, 2018.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language
models are unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are
few-shot learners, in: NIPs, Vol. 33, 2020, pp. 1877–1901.

[4] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, in: NIPs,
Vol. 33, 2020, pp. 6840–6851.

[5] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, S. Ganguli, Deep unsupervised
learning using nonequilibrium thermodynamics, in: ICML, PMLR, 2015, pp.
2256–2265.

[6] Y. Song, S. Ermon, Generative modeling by estimating gradients of the data
distribution, in: NIPs, Vol. 32, 2019.

[7] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-
based generative modeling through stochastic differential equations, 2020,
arXiv.

[8] G.A. Kaissis, M.R. Makowski, D. Rückert, R.F. Braren, Secure, privacy-preserving
and federated machine learning in medical imaging, Nat. Mach. Intell. 2 (6)
(2020) 305–311.

[9] J. Konečnỳ, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon,
Federated learning: Strategies for improving communication efficiency, 2016,
arXiv.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: PMLR AISTATS,
2017, pp. 1273–1282.

[11] R.S. Antunes, C. André da Costa, A. Küderle, I.A. Yari, B. Eskofier, Federated
learning for healthcare: Systematic review and architecture proposal, ACM
Trans. Intell. Syst. Technol. 13 (4) (2022) 1–23.

[12] D.C. Nguyen, Q.-V. Pham, P.N. Pathirana, M. Ding, A. Seneviratne, Z. Lin, O.
Dobre, W.-J. Hwang, Federated learning for smart healthcare: A survey, ACM
Comput. Surv. 55 (3) (2022) 1–37.

[13] J. Xu, B.S. Glicksberg, C. Su, P. Walker, J. Bian, F. Wang, Federated learning
for healthcare informatics, J. Healthc. Inform. Res. 5 (2021) 1–19.

[14] G. Long, Y. Tan, J. Jiang, C. Zhang, Federated learning for open banking, in:
FLPI, Springer, 2020, pp. 240–254.

[15] D. Byrd, A. Polychroniadou, Differentially private secure multi-party compu-
tation for federated learning in financial applications, in: ICAIF, 2020, pp.
1–9.

[16] W. Yang, Y. Zhang, K. Ye, L. Li, C.-Z. Xu, Ffd: A federated learning based

method for credit card fraud detection, in: BigData, Springer, 2019, pp. 18–32.

http://refhub.elsevier.com/S0925-2312(23)01348-6/sb1
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb1
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb1
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb2
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb2
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb2
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb3
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb3
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb3
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb3
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb3
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb4
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb4
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb4
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb5
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb5
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb5
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb5
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb5
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb6
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb6
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb6
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb7
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb7
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb7
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb7
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb7
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb8
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb8
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb8
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb8
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb8
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb9
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb9
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb9
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb9
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb9
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb10
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb10
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb10
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb10
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb10
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb11
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb11
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb11
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb11
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb11
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb12
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb12
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb12
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb12
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb12
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb13
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb13
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb13
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb14
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb14
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb14
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb15
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb15
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb15
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb15
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb15
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb16
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb16
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb16

Neurocomputing 573 (2024) 127225X. Xie et al.
[17] Z. Zheng, Y. Zhou, Y. Sun, Z. Wang, B. Liu, K. Li, Applications of federated
learning in smart cities: recent advances, taxonomy, and open challenges,
Connect. Sci. 34 (1) (2022) 1–28.

[18] J.C. Jiang, B. Kantarci, S. Oktug, T. Soyata, Federated learning in smart city
sensing: Challenges and opportunities, Sensors 20 (21) (2020) 6230.

[19] D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, H.V. Poor,
Federated learning for internet of things: A comprehensive survey, Catal. Sci.
Technol. 23 (3) (2021) 1622–1658.

[20] H. Zhang, J. Bosch, H.H. Olsson, End-to-end federated learning for autonomous
driving vehicles, in: IJCNN, IEEE, 2021, pp. 1–8.

[21] A. Nguyen, T. Do, M. Tran, B.X. Nguyen, C. Duong, T. Phan, E. Tjiputra, Q.D.
Tran, Deep federated learning for autonomous driving, in: IV, IEEE, 2022, pp.
1824–1830.

[22] H. Zhang, J. Bosch, H.H. Olsson, Real-time end-to-end federated learning: An
automotive case study, in: COMPSAC, IEEE, 2021, pp. 459–468.

[23] P. Kairouz, H.B. McMahan, et al., Advances and open problems in federated
learning, Found. Trends® Mach. Learn. (2021).

[24] L. Lyu, H. Yu, Q. Yang, Threats to federated learning: A survey, 2020, arXiv
preprint arXiv:2003.02133.

[25] R. Zhang, S. Guo, J. Wang, X. Xie, D. Tao, A survey on gradient inversion:
Attacks, defenses and future directions, 2022, arXiv preprint arXiv:2206.07284.

[26] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang, Q. Yang,
Vertical federated learning, 2022, arXiv preprint arXiv:2211.12814.

[27] H. Zhu, J. Xu, S. Liu, Y. Jin, Federated learning on non-IID data: A survey,
Neurocomputing (2021).

[28] M. Rasouli, T. Sun, R. Rajagopal, FedGAN: Federated generative adversarial
networks for distributed data, 2020, arXiv preprint arXiv:2006.07228.

[29] M. Liu, S. Ho, M. Wang, L. Gao, Y. Jin, H. Zhang, Federated learning meets
natural language processing: A survey, 2021, arXiv preprint arXiv:2107.12603.

[30] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H.
Yu, Q. Yang, FedVision: An online visual object detection platform powered
by federated learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

[31] X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the convergence of fedavg
on non-iid data, 2019, arXiv preprint arXiv:1907.02189.

[32] S.P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, A.T. Suresh, Scaffold:
Stochastic controlled averaging for federated learning, in: ICML, PMLR, 2020,
pp. 5132–5143.

[33] T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated
optimization in heterogeneous networks, Proc. Mach. Learn. Syst. 2 (2020)
429–450.

[34] S. Ji, S. Pan, G. Long, X. Li, J. Jiang, Z. Huang, Learning private neural language
modeling with attentive aggregation, in: 2019 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2019, pp. 1–8.

[35] X. Wu, Z. Liang, J. Wang, FedMed: A federated learning framework for language
modeling, Sensors (2020).

[36] H. Ren, J. Deng, X. Xie, X. Ma, Y. Wang, FedBoosting: Federated learning with
gradient protected boosting for text recognition, 2020, arXiv.

[37] T.D. Nguyen, T. Nguyen, P.L. Nguyen, H.H. Pham, K.D. Doan, K.-S. Wong,
Backdoor attacks and defenses in federated learning: Survey, challenges and
future research directions, Eng. Appl. Artif. Intell. 127 (2024) 107166.

[38] Y. Zhang, D. Zeng, J. Luo, Z. Xu, I. King, A survey of trustworthy federated
learning with perspectives on security, robustness and privacy, 2023.

[39] X. Gong, Y. Chen, Q. Wang, W. Kong, Backdoor attacks and defenses in
federated learning: State-of-the-art, taxonomy, and future directions, 2023.

[40] X. Yin, Y. Zhu, J. Hu, A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions, 2021.

[41] J. Zhang, M. Li, S. Zeng, B. Xie, D. Zhao, A survey on security and privacy
threats to federated learning, 2021.

[42] C. Fung, C.J. Yoon, I. Beschastnikh, Mitigating sybils in federated learning
poisoning, 2018, arXiv preprint arXiv:1808.04866.

[43] V. Tolpegin, S. Truex, M.E. Gursoy, L. Liu, Data poisoning attacks against
federated learning systems, in: ESORICS 2020, Springer, 2020, pp. 480–501.

[44] D. Cao, S. Chang, Z. Lin, G. Liu, D. Sun, Understanding distributed poisoning
attack in federated learning, in: ICPADS, 2019.

[45] Y. Sun, H. Ochiai, J. Sakuma, Semi-targeted model poisoning attack on
federated learning via backward error analysis, in: IJCNN, IEEE, 2022, pp. 1–8.

[46] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-y. Sohn,
K. Lee, D. Papailiopoulos, Attack of the tails: Yes, you really can backdoor
federated learning, in: NIPs, Vol. 33, 2020, pp. 16070–16084.

[47] G. Sun, Y. Cong, J. Dong, Q. Wang, L. Lyu, J. Liu, Data poisoning attacks on
federated machine learning, Indian Trade J. (2022).

[48] J. Zhang, B. Chen, X. Cheng, H.T.T. Binh, S. Yu, PoisonGAN: Generative
poisoning attacks against federated learning in edge computing systems, Indian
Trade J. 8 (5) (2021) 3310–3322.
19
[49] G. Costa, F. Pinelli, S. Soderi, G. Tolomei, Turning federated learning systems
into covert channels, IEEE Access (2022).

[50] J. Shi, W. Wan, S. Hu, J. Lu, L.Y. Zhang, Challenges and approaches for
mitigating byzantine attacks in federated learning, in: TrustCom, IEEE, 2022,
pp. 139–146.

[51] E. Ma, R. Etesami, et al., Local environment poisoning attacks on federated
reinforcement learning, 2023, arXiv preprint arXiv:2303.02725.

[52] M. Arazzi, M. Conti, A. Nocera, S. Picek, Turning privacy-preserving
mechanisms against federated learning, 2023, arXiv preprint arXiv:2305.05355.

[53] B. Biggio, B. Nelson, P. Laskov, Poisoning attacks against support vector
machines, in: ICICML, ICML ’12, 2012, pp. 1467–1474.

[54] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017, arXiv preprint arXiv:1708.
07747.

[55] Y. Fraboni, R. Vidal, M. Lorenzi, Free-rider attacks on model aggregation in
federated learning, in: ICAIS, PMLR, 2021, pp. 1846–1854.

[56] P. Blanchard, E.M. El Mhamdi, R. Guerraoui, J. Stainer, Machine learning with
adversaries: Byzantine tolerant gradient descent, in: NIPs, Vol. 30, 2017.

[57] C. Xie, O. Koyejo, I. Gupta, Generalized byzantine-tolerant sgd, 2018, arXiv
preprint arXiv:1802.10116.

[58] L. Li, W. Xu, T. Chen, G.B. Giannakis, Q. Ling, RSA: Byzantine-robust stochastic
aggregation methods for distributed learning from heterogeneous datasets, in:
AAAI, Vol. 33, 2019, pp. 1544–1551.

[59] G. Baruch, M. Baruch, Y. Goldberg, A little is enough: Circumventing defenses
for distributed learning, in: NIPs, Vol. 32, 2019.

[60] E.M. El Mhamdi, R. Guerraoui, S.L.A. Rouault, The hidden vulnerability of
distributed learning in byzantium, in: ICML, 2018, p. 13.

[61] M. Fang, X. Cao, J. Jia, N. Gong, Local model poisoning attacks to {byzantine-
robust} federated learning, in: 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 1605–1622.

[62] S. Zhang, H. Yin, T. Chen, Z. Huang, Q.V.H. Nguyen, L. Cui, Pipattack:
Poisoning federated recommender systems for manipulating item promotion,
in: ACM ICWSDM, 2022, pp. 1415–1423.

[63] D. Rong, S. Ye, R. Zhao, H.N. Yuen, J. Chen, Q. He, FedRecAttack: model
poisoning attack to federated recommendation, in: ICDE, IEEE, 2022, pp.
2643–2655.

[64] D. Rong, Q. He, J. Chen, Poisoning deep learning based recommender model
in federated learning scenarios, 2022, arXiv preprint arXiv:2204.13594.

[65] Z. Liu, L. Yang, Z. Fan, H. Peng, P.S. Yu, Federated social recommendation
with graph neural network, ACM Trans. Intell. Syst. Technol. 13 (4) (2022).

[66] A.V. Clemente, H.N. Castejón, A. Chandra, Efficient parallel methods for deep
reinforcement learning, 2017, arXiv preprint arXiv:1705.04862.

[67] Y. LeCun, The MNIST database of handwritten digits, 1998, http://yann.lecun.
com/exdb/mnist/.

[68] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny
images, 2009.

[69] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, Theory
Pract. Lang. Stud. (1982).

[70] D. Yin, Y. Chen, R. Kannan, P. Bartlett, Byzantine-robust distributed learn-
ing: Towards optimal statistical rates, in: J. Dy, A. Krause (Eds.), ICML,
in: Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp.
5650–5659.

[71] M. Ammad-Ud-Din, E. Ivannikova, S.A. Khan, W. Oyomno, Q. Fu, K.E. Tan, A.
Flanagan, Federated collaborative filtering for privacy-preserving personalized
recommendation system, 2019, arXiv preprint arXiv:1901.09888.

[72] Y. Chen, L. Su, J. Xu, Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent, Mech. Adv. Compos. Struct. 1 (2) (2017)
1–25.

[73] K. Pillutla, S.M. Kakade, Z. Harchaoui, Robust aggregation for federated
learning, IEEE Trans. Signal Process. (2022).

[74] Y. Wang, Y. Xia, Y. Zhan, ELITE: Defending federated learning against Byzantine
attacks based on information entropy, in: CAC, 2021, pp. 6049–6054.

[75] E. Weiszfeld, F. Plastria, On the point for which the sum of the distances to n
given points is minimum, Ann. Oper. Res. (2009).

[76] J. Lin, M. Du, J. Liu, Free-riders in federated learning: Attacks and defenses,
2019, arXiv preprint arXiv:1911.12560.

[77] Y. Adi, C. Baum, M. Cisse, B. Pinkas, J. Keshet, Turning your weakness into a
strength: Watermarking deep neural networks by backdooring, in: 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 1615–1631.

[78] Y. Uchida, Y. Nagai, S. Sakazawa, S. Satoh, Embedding watermarks into deep
neural networks, in: ACM ICMR, 2017, pp. 269–277.

[79] B.A. Tekgul, Y. Xia, S. Marchal, N. Asokan, WAFFLE: Watermarking in federated
learning, 2021.

[80] B. Li, L. Fan, H. Gu, J. Li, Q. Yang, FedIPR: Ownership verification for federated
deep neural network models, IEEE Trans. Pattern Anal. Mach. Intell. 45 (4)
(2022) 4521–4536.

http://refhub.elsevier.com/S0925-2312(23)01348-6/sb17
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb17
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb17
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb17
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb17
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb18
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb18
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb18
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb19
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb19
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb19
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb19
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb19
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb20
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb20
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb20
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb21
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb21
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb21
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb21
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb21
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb22
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb22
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb22
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb23
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb23
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb23
http://arxiv.org/abs/2003.02133
http://arxiv.org/abs/2206.07284
http://arxiv.org/abs/2211.12814
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb27
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb27
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb27
http://arxiv.org/abs/2006.07228
http://arxiv.org/abs/2107.12603
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb30
http://arxiv.org/abs/1907.02189
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb32
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb32
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb32
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb32
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb32
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb33
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb33
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb33
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb33
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb33
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb34
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb34
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb34
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb34
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb34
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb35
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb35
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb35
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb36
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb36
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb36
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb37
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb37
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb37
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb37
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb37
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb38
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb38
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb38
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb39
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb39
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb39
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb40
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb40
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb40
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb41
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb41
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb41
http://arxiv.org/abs/1808.04866
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb43
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb43
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb43
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb44
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb44
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb44
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb45
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb45
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb45
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb46
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb46
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb46
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb46
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb46
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb47
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb47
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb47
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb48
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb48
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb48
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb48
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb48
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb49
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb49
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb49
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb50
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb50
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb50
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb50
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb50
http://arxiv.org/abs/2303.02725
http://arxiv.org/abs/2305.05355
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb53
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb53
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb53
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb55
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb55
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb55
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb56
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb56
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb56
http://arxiv.org/abs/1802.10116
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb58
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb58
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb58
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb58
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb58
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb59
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb59
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb59
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb60
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb60
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb60
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb61
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb61
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb61
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb61
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb61
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb62
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb62
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb62
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb62
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb62
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb63
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb63
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb63
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb63
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb63
http://arxiv.org/abs/2204.13594
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb65
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb65
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb65
http://arxiv.org/abs/1705.04862
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb68
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb68
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb68
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb69
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb69
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb69
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb70
http://arxiv.org/abs/1901.09888
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb72
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb72
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb72
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb72
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb72
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb73
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb73
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb73
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb74
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb74
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb74
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb75
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb75
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb75
http://arxiv.org/abs/1911.12560
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb77
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb77
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb77
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb77
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb77
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb78
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb78
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb78
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb79
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb79
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb79
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb80
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb80
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb80
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb80
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb80

Neurocomputing 573 (2024) 127225X. Xie et al.
[81] M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear
dimensionality reduction, in: MLSDAW, 2014, pp. 4–11.

[82] B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep
autoencoding gaussian mixture model for unsupervised anomaly detection, in:
ICLR, 2018.

[83] G. Ateniese, L.V. Mancini, A. Spognardi, A. Villani, D. Vitali, G. Felici, Hacking
smart machines with smarter ones: How to extract meaningful data from
machine learning classifiers, Int. J. Secur. Netw. 10 (3) (2015) 137–150.

[84] L.E. Baum, T. Petrie, Statistical inference for probabilistic functions of finite
state Markov chains, Ann. Math. Stat. 37 (6) (1966) 1554–1563.

[85] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin
classifiers, in: CLTW, 1992, pp. 144–152.

[86] R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership inference attacks
against machine learning models, in: SP, IEEE, 2017, pp. 3–18.

[87] R. McPherson, R. Shokri, V. Shmatikov, Defeating image obfuscation with deep
learning, 2016, arXiv.

[88] D. Carrell, B. Malin, J. Aberdeen, S. Bayer, C. Clark, B. Wellner, L. Hirschman,
Hiding in plain sight: use of realistic surrogates to reduce exposure of protected
health information in clinical text, J. Am. Med. Inform. Assoc. 20 (2) (2013)
342–348.

[89] F. Li, Z. Sun, A. Li, B. Niu, H. Li, G. Cao, Hideme: Privacy-preserving photo
sharing on social networks, in: INFOCOM, IEEE, 2019, pp. 154–162.

[90] Laboratories Cambridge AT&T, The database of faces, 1994.
[91] H.-W. Ng, S. Winkler, A data-driven approach to cleaning large face datasets,

in: ICIP, 2014, pp. 343–347.
[92] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, D. Song, The secret revealer: Generative

model-inversion attacks against deep neural networks, in: CVPR, 2020, pp.
253–261.

[93] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases, in: CVPR, 2017, pp.
2097–2106.

[94] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in:
ICCV, 2015, pp. 3730–3738.

[95] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv.

[96] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: CVPR, 2016, pp. 770–778.

[97] Y. Cheng, J. Zhao, Z. Wang, Y. Xu, K. Jayashree, S. Shen, J. Feng, Know you at
one glance: A compact vector representation for low-shot learning, in: ICCVW,
2017, pp. 1924–1932.

[98] B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep models under the GAN: Information
leakage from collaborative deep learning, in: CCCS, 2017, pp. 603–618.

[99] L. Melis, C. Song, E. De Cristofaro, V. Shmatikov, Exploiting unintended feature
leakage in collaborative learning, in: SP, 2019, pp. 691–706.

[100] Z. Li, J. Zhang, L. Liu, J. Liu, Auditing privacy defenses in federated learning
via generative gradient leakage, in: CVPR, 2022, pp. 10132–10142.

[101] B. Zhao, K.R. Mopuri, H. Bilen, Idlg: Improved deep leakage from gradients,
2020, arXiv.

[102] H. Ren, J. Deng, X. Xie, X. Ma, J. Ma, Gradient leakage defense with key-lock
module for federated learning, 2023, arXiv.

[103] L. Zhu, Z. Liu, S. Han, Deep leakage from gradients, in: NIPs, Vol. 32, 2019.
[104] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale

optimization, Math. Program. 45 (1–3) (1989) 503–528.
[105] J. Geiping, H. Bauermeister, H. Dröge, M. Moeller, Inverting gradients-how

easy is it to break privacy in federated learning? in: NIPs, Vol. 33, 2020, pp.
16937–16947.

[106] J. Jeon, K. Lee, S. Oh, J. Ok, Gradient inversion with generative image prior,
in: NIPs, Vol. 34, 2021, pp. 29898–29908.

[107] H. Yin, A. Mallya, A. Vahdat, J.M. Alvarez, J. Kautz, P. Molchanov, See
through gradients: Image batch recovery via gradinversion, in: CVPR, 2021,
pp. 16337–16346.

[108] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, H. Qi, Beyond inferring class
representatives: user-level privacy leakage from federated learning, in: ICCC,
2019, pp. 2512–2520.

[109] H. Ren, J. Deng, X. Xie, GRNN: Generative regression neural network–A data
leakage attack for federated learning, ACM Trans. Intell. Syst. Technol. 13 (4)
(2022) 1–24.

[110] X. Yang, Y. Feng, W. Fang, J. Shao, X. Tang, S.-T. Xia, R. Lu, An accuracy-
lossless perturbation method for defending privacy attacks in federated learning,
in: WC, 2022, pp. 732–742.

[111] L. Sun, J. Qian, X. Chen, LDP-FL: Practical private aggregation in federated
learning with local differential privacy, 2020, arXiv.

[112] J. Sun, A. Li, B. Wang, H. Yang, H. Li, Y. Chen, Soteria: Provable defense
against privacy leakage in federated learning from representation perspective,
in: CVPR, 2021, pp. 9307–9315.
20
[113] A.T. Hasan, Q. Jiang, J. Luo, C. Li, L. Chen, An effective value swapping method
for privacy preserving data publishing, Secur. Commun. Netw. 9 (16) (2016)
3219–3228.

[114] M.A.P. Chamikara, P. Bertók, D. Liu, S. Camtepe, I. Khalil, Efficient data
perturbation for privacy preserving and accurate data stream mining, Pervasive
Mob. Comput. 48 (2018) 1–19.

[115] M. Chamikara, P. Bertok, D. Liu, S. Camtepe, I. Khalil, Efficient privacy
preservation of big data for accurate data mining, Inf. Syst. J. 527 (2020)
420–443.

[116] H. Lee, J. Kim, S. Ahn, R. Hussain, S. Cho, J. Son, Digestive neural networks: A
novel defense strategy against inference attacks in federated learning, Comput.
Secur. 109 (2021) 102378.

[117] M.A.P. Chamikara, P. Bertok, I. Khalil, D. Liu, S. Camtepe, Privacy preserving
distributed machine learning with federated learning, Comput. Commun. 171
(2021) 112–125.

[118] Z. Bu, J. Dong, Q. Long, W.J. Su, Deep learning with gaussian differential
privacy, Harv. Data Sci. Rev. 2020 (23) (2020).

[119] Y. Li, Y. Zhou, A. Jolfaei, D. Yu, G. Xu, X. Zheng, Privacy-preserving federated
learning framework based on chained secure multiparty computing, Indian
Trade J. 8 (8) (2020) 6178–6186.

[120] K. Yadav, B.B. Gupta, K.T. Chui, K. Psannis, Differential privacy approach to
solve gradient leakage attack in a federated machine learning environment, in:
ICCDSN, Springer, 2020, pp. 378–385.

[121] W. Wei, L. Liu, Y. Wut, G. Su, A. Iyengar, Gradient-leakage resilient federated
learning, in: ICDCS, IEEE, 2021, pp. 797–807.

[122] D. Scheliga, P. Mäder, M. Seeland, PRECODE-a generic model extension to
prevent deep gradient leakage, in: WCACV, 2022, pp. 1849–1858.

[123] A.N. Bhagoji, S. Chakraborty, P. Mittal, S. Calo, Analyzing federated learning
through an adversarial lens, in: ICML, PMLR, 2019, pp. 634–643.

[124] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, V. Shmatikov, How to backdoor
federated learning, in: ICAIS, PMLR, 2020, pp. 2938–2948.

[125] Z. Sun, P. Kairouz, A.T. Suresh, H.B. McMahan, Can you really backdoor
federated learning? 2019, arXiv preprint arXiv:1911.07963.

[126] C. Xie, K. Huang, P.-Y. Chen, B. Li, Dba: Distributed backdoor attacks against
federated learning, in: ICLR, 2019.

[127] X. Gong, Y. Chen, H. Huang, Y. Liao, S. Wang, Q. Wang, Coordinated backdoor
attacks against federated learning with model-dependent triggers, IEEE Netw.
36 (1) (2022) 84–90.

[128] Z. Zhang, A. Panda, L. Song, Y. Yang, M. Mahoney, P. Mittal, R. Kannan, J.
Gonzalez, Neurotoxin: Durable backdoors in federated learning, in: ICML, 2022,
pp. 26429–26446.

[129] H. Li, C. Wu, S. Zhu, Z. Zheng, Learning to backdoor federated learning, 2023,
arXiv preprint arXiv:2303.03320.

[130] P. Fang, J. Chen, On the vulnerability of backdoor defenses for federated
learning, 2023, arXiv preprint arXiv:2301.08170.

[131] K. Yoo, N. Kwak, Backdoor attacks in federated learning by rare embeddings
and gradient ensembling, 2022, arXiv preprint arXiv:2204.14017.

[132] Y. Wen, J. Geiping, L. Fowl, H. Souri, R. Chellappa, M. Goldblum, T. Goldstein,
Thinking two moves ahead: Anticipating other users improves backdoor attacks
in federated learning, 2022, arXiv preprint arXiv:2210.09305.

[133] T. Pang, X. Yang, Y. Dong, H. Su, J. Zhu, Accumulative poisoning attacks on
real-time data, in: NIPs, Vol. 34, 2021, pp. 2899–2912.

[134] T. Gu, B. Dolan-Gavitt, S. Garg, Badnets: Identifying vulnerabilities in the
machine learning model supply chain, 2017, arXiv preprint arXiv:1708.06733.

[135] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, X. Zhang, Trojaning attack
on neural networks, in: NDSS, Internet Soc, 2018.

[136] M.S. Ozdayi, M. Kantarcioglu, Y.R. Gel, Defending against backdoors in
federated learning with robust learning rate, in: AAAI, Vol. 35, 2021, pp.
9268–9276.

[137] Y. Ma, X. Zhu, J. Hsu, Data poisoning against differentially-private learners:
Attacks and defenses, 2019, arXiv preprint arXiv:1903.09860.

[138] H.B. McMahan, D. Ramage, K. Talwar, L. Zhang, Learning differentially private
recurrent language models, 2017, arXiv preprint arXiv:1710.06963.

[139] C. Wu, X. Yang, S. Zhu, P. Mitra, Mitigating backdoor attacks in federated
learning, 2020, arXiv preprint arXiv:2011.01767.

[140] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, X. Ma, Neural attention distillation:
Erasing backdoor triggers from deep neural networks, 2021, arXiv preprint
arXiv:2101.05930.

[141] S.P. Sturluson, S. Trew, L. Muñoz-González, M. Grama, J. Passerat-Palmbach,
D. Rueckert, A. Alansary, Fedrad: Federated robust adaptive distillation, 2021,
arXiv preprint arXiv:2112.01405.

[142] G.K. Nayak, K.R. Mopuri, V. Shaj, V.B. Radhakrishnan, A. Chakraborty, Zero-
shot knowledge distillation in deep networks, in: ICML, PMLR, 2019, pp.
4743–4751.

[143] T. Lin, L. Kong, S.U. Stich, M. Jaggi, Ensemble distillation for robust model
fusion in federated learning, in: NIPs, Vol. 33, 2020, pp. 2351–2363.

http://refhub.elsevier.com/S0925-2312(23)01348-6/sb81
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb81
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb81
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb82
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb82
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb82
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb82
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb82
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb83
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb83
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb83
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb83
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb83
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb84
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb84
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb84
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb85
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb85
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb85
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb86
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb86
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb86
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb87
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb87
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb87
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb88
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb89
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb89
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb89
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb90
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb91
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb91
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb91
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb92
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb92
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb92
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb92
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb92
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb93
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb94
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb94
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb94
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb95
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb95
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb95
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb96
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb96
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb96
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb97
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb97
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb97
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb97
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb97
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb98
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb98
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb98
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb99
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb99
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb99
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb100
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb100
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb100
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb101
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb101
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb101
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb102
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb102
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb102
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb103
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb104
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb104
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb104
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb105
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb105
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb105
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb105
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb105
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb106
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb106
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb106
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb107
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb107
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb107
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb107
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb107
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb108
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb108
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb108
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb108
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb108
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb109
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb109
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb109
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb109
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb109
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb110
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb110
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb110
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb110
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb110
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb111
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb111
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb111
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb112
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb112
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb112
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb112
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb112
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb113
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb113
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb113
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb113
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb113
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb114
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb114
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb114
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb114
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb114
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb115
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb115
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb115
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb115
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb115
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb116
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb116
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb116
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb116
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb116
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb117
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb117
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb117
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb117
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb117
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb118
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb118
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb118
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb119
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb119
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb119
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb119
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb119
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb120
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb120
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb120
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb120
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb120
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb121
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb121
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb121
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb122
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb122
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb122
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb123
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb123
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb123
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb124
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb124
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb124
http://arxiv.org/abs/1911.07963
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb126
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb126
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb126
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb127
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb127
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb127
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb127
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb127
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb128
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb128
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb128
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb128
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb128
http://arxiv.org/abs/2303.03320
http://arxiv.org/abs/2301.08170
http://arxiv.org/abs/2204.14017
http://arxiv.org/abs/2210.09305
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb133
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb133
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb133
http://arxiv.org/abs/1708.06733
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb135
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb135
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb135
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb136
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb136
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb136
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb136
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb136
http://arxiv.org/abs/1903.09860
http://arxiv.org/abs/1710.06963
http://arxiv.org/abs/2011.01767
http://arxiv.org/abs/2101.05930
http://arxiv.org/abs/2112.01405
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb142
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb142
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb142
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb142
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb142
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb143
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb143
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb143

Neurocomputing 573 (2024) 127225X. Xie et al.
[144] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, S. Jana, Certified robustness to
adversarial examples with differential privacy, in: SP, IEEE, 2019, pp. 656–672.

[145] C. Xie, M. Chen, P.-Y. Chen, B. Li, Crfl: Certifiably robust federated learning
against backdoor attacks, in: ICML, PMLR, 2021, pp. 11372–11382.

[146] X. Cao, Z. Zhang, J. Jia, N.Z. Gong, Flcert: Provably secure federated learning
against poisoning attacks, IEEE Trans. Inf. Forensics Secur. (2022).

[147] S. Andreina, G.A. Marson, H. Möllering, G. Karame, Baffle: Backdoor detection
via feedback-based federated learning, in: ICDCS, IEEE, 2021, pp. 852–863.

[148] P. Rieger, T.D. Nguyen, M. Miettinen, A.-R. Sadeghi, Deepsight: Mitigating
backdoor attacks in federated learning through deep model inspection, 2022,
arXiv preprint arXiv:2201.00763.

[149] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, X. Zhang, Trojaning attack
on neural networks, in: 25th Annual Network and Distributed System Security
Symposium (NDSS 2018), Internet Soc, 2018.

[150] R.J. Campello, D. Moulavi, J. Sander, Density-based clustering based on hier-
archical density estimates, in: Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Springer, 2013, pp. 160–172.

[151] T.D. Nguyen, P. Rieger, D. Viti, et al., {Flame}: Taming backdoors in federated
learning, in: 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1415–1432.

[152] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation
of deep networks, in: ICML, PMLR, 2017, pp. 1126–1135.

[153] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, in:
NIPs, Vol. 30, 2017.

[154] K. Lee, S. Maji, A. Ravichandran, S. Soatto, Meta-learning with differentiable
convex optimization, in: CVPR, 2019, pp. 10657–10665.

[155] K. Cao, J. You, J. Leskovec, Relational multi-task learning: Modeling relations
between data and tasks, 2023, arXiv preprint arXiv:2303.07666.

Xianghua Xie received the M.Sc. and Ph.D. degrees in com-
puter science from the University of Bristol, Bristol, U.K., in
2002 and 2006, respectively. He is currently a Full Professor
with the Department of Computer Science, Swansea Uni-
versity, Swansea, U.K., and is leading the Computer Vision
and Machine Leaning Laboratory, Swansea University. He
has published around 200 refereed conference and journal
publications and (co-)edited several conference proceedings.
His research interests include various aspects of pattern
21
recognition and machine intelligence and their applications
to real-world problems. He is a member of BMVA. He is an
Associate Editor of a number of journals, including Pattern
Recognition and IET Computer Vision.

Chen Hu received the M.Sc. by Research degree in Visual
Computing from Swansea University. He is currently a
computer science Ph.D. student at Swansea University. His
research area includes federated learning and generative
models.

Hanchi Ren received the M.Sc. and Ph.D. degree in com-
puter science from Swansea University, U.K., in 2016 and
2023. He is currently an academic tutor in the Com-
puter Vision and Machine Learning Laboratory, Department
of Computer Science, Swansea University. His research
subject is on privacy-preserving federated learning and
machine learning and artificial intelligence in general and
applications in computer vision and medical image analysis.

Jingjing Deng received his Ph.D. in Visual Computing from
Swansea University, UK, in 2017. Presently, he holds the po-
sition of Assistant Professor in the Department of Computer
Science at Durham University, UK. He founded the Rand2AI
Lab in 2022 which actively engages in cutting-edge research
in computer vision and artificial intelligence. In recent
years, the team has focused on developing computational
models that can cultivate and generalize intelligence from
and for the complex world.

http://refhub.elsevier.com/S0925-2312(23)01348-6/sb144
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb144
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb144
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb145
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb145
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb145
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb146
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb146
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb146
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb147
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb147
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb147
http://arxiv.org/abs/2201.00763
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb149
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb149
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb149
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb149
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb149
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb150
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb150
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb150
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb150
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb150
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb151
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb151
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb151
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb151
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb151
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb152
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb152
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb152
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb153
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb153
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb153
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb154
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb154
http://refhub.elsevier.com/S0925-2312(23)01348-6/sb154
http://arxiv.org/abs/2303.07666

	A survey on vulnerability of federated learning: A learning algorithm perspective
	Introduction
	Preliminaries of Federated Learning
	Data to Model Attacks
	D2M Attacks on Class Labels
	D2M Attacks on Samples
	Defense Against D2M Attacks
	Evaluation Metrics for Attacks and Defenses on Classification Tasks

	Model to Model Attacks
	General M2M Threat Models
	Priori M2M Attacks
	Posteriori M2M Attacks

	M2M Threat Models on Federated Recommendation Systems
	Defense Against M2M Attack
	Defense Against Free-Rider Attacks

	Model to Data Attacks
	Non-Gradient-Based Data Leakage
	Attribute Inference
	Membership Identification
	Image Recovery

	Gradient-Based Data Leakage
	Partial Recovery
	Full Recovery (Discriminative)
	Full Recovery (Generative)

	Defense Against M2D Attacks

	Composite Attacks
	Composite Threat Models
	Update Boosting
	Bounded Updates
	Distributed Triggers
	Insidious Tampering
	Update Approximation

	Defense Against Composite Attack
	Update Cleansing
	Model Cleansing
	Composite Cleansing

	Conclusion and Future Directions
	Conclusion
	Future Directions

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

