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Abstract
To efficiently capture diverse fluctuation profiles in forecasting crude oil prices, we here pro-
pose to combine heterogenous predictors for forecasting the prices of crude oil. Specifically,
a forecasting model is developed using blended ensemble learning that combines various
machine learning methods, including k-nearest neighbor regression, regression trees, linear
regression, ridge regression, and support vector regression. Data for Brent andWTI crude oil
prices at various time series frequencies are used to validate the proposed blending ensemble
learning approach. To show the validity of the proposed model, its performance is further
benchmarked against existing individual and ensemble learning methods used for predicting
crude oil price, such as lasso regression, bagging lasso regression, boosting, random for-
est, and support vector regression. We demonstrate that our proposed blending-based model
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dominates the existing forecasting models in terms of forecasting errors for both short- and
medium-term horizons.

Keywords Forecasting · Crude oil price · Brent · WTI · Blending · Ensemble learning ·
Stacking regression

1 Introduction

Crude oil is essentially the primary source of today’s major oils and fuels. It is a petroleum
product that consists of organic components and natural hydrocarbon reserves. Crude oil is
found in subsurface reservoirs as a liquid. It is considered the primary fuel of the world, con-
tributing almost one-third of global consumption of energy. An increase in crude oil prices
may exert downward pressure on projected economic growth rates, potentially contributing
to inflationary pressures. While a downturn in oil prices may negatively affect the economic
development of oil-exporting countries, an increase can pose challenges for the economic
growth of oil-importing nations (Behmiri & Manso, 2013). These fluctuations can subse-
quently influence economic growth forecasts. Altered growth projections may then impact
expectations of corporate profitability, which could, in turn, exert influence on oil price
dynamics. Moreover, volatility in crude oil prices has a significant impact on other economic
activities, as crude oil is the main source of energy (Zhao et al., 2017). As a result, crude oil
greatly impacts the world economy and stability (Chen & Huang, 2021; Gao et al., 2017).
The price of crude oil has also proven to be a valuable indicator for assessing the relative
predictive performance of stock markets (Nonejad, 2021). Therefore, predicting crude oil
prices is an urgent task for researchers as well as companies, industries, and governments.

Different types of approaches have been developed for oil price forecasting over the past
decades. Statistical approaches, econometric approaches, machine learning, deep learning,
and ensemble learning approaches have been utilized to model the intrinsic complexity of the
oil prices. Most of the studies used neural networks (NN) (Boubaker et al., 2022; Cerqueti &
Fanelli, 2021; Moshiri & Foroutan, 2006) and support vector machines (SVM) (Zha et al.,
2021; Ibrahimet al., 2022) to predict the oil price. Evolutionary-based learning (Mostafa&El-
Masry, 2016; Sun et al., 2022) and the combination of supervised and unsupervised learning
(Shin et al., 2013) have also beenused to estimate oil prices. Particular attention is increasingly
being paid to ensemble learning, a paradigm in which the resulting forecasting combines
the outputs of multiple heterogeneous or homogeneous underlying predictors. Bootstrap
aggregation (bagging) of stacked denoising autoencoders is an example of homogeneous
ensemble models (Zhao et al., 2017). The heterogeneous ensemble of exponential smoothing
and multilayer perceptron neural network was also used for forecasting crude oil price (Sun
et al., 2018).

However, none of the above methods was dominant in terms of forecasting accuracy
for longer time periods, due to the high diversity in price fluctuations (Gao et al., 2017;
Li et al., 2021). High volatility in crude oil prices is mainly due to fluctuations in supply
and demand, political instability, actions by organizations such as OPEC, currency fluctu-
ations, speculative trading and market sentiment (Chang et al., 2022). Even in comparison
with other commodity prices, oil price fluctuations are more susceptible to economic uncer-
tainty (Bakas & Triantafyllou, 2020). Moreover, the volatility of crude oil prices exhibits
significant structural shifts over time. This volatility is influenced by both short-term and
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long-term informational factors (Wen et al., 2016). Therefore, to achieve high levels of fore-
casting accuracy, it is imperative to employ an integrativemodeling approach that synthesizes
predictions from a diverse set of sub-models. Although previous studies have attempted to
address this problem using ensemble learning approaches, homogeneous sets of predictors
have prevailed (Yu et al., 2016; Zhu et al., 2017), which are not effective for modelling
different profiles of crude oil price behavior. To overcome this problem, here we propose
using blending ensemble learning, a computationally efficient variant of stacking regression.
The blending approach applies a leave-out method for individual weak predictors to com-
bine the strengths of multiple diverse models, which results in better forecasting results than
individual machine learning models. Hence, blending ensemble learning has received much
attention over the last years in various application domains, including agriculture (Wu et al.,
2021a, 2021b), pattern recognition (Hao et al., 2020), and stock market prediction (Li &
Pan, 2022). Despite this interest in forecasting crude oil prices, no one, to the best of our
knowledge, has investigated the performance of blending ensemble learning in this domain.

To bridge the gap in the literature, here we propose a blending ensemble machine learning
model that combines five diverse predictors, namely, k-nearest neighbor regression, linear
regression, regression tree, support vector regression, and ridge regression. Hereafter, wewill
refer to the new blending ensemble model as LKDSR by the initial letters of the methods
used.

In this study, we analyze the two most commonly used crude oil data of Brent and West
Texas Intermediate (WTI) for forecasting. Daily data are converted into weekly and monthly
models for short- and medium-term forecasting. Statistical characteristics of the Brent and
WTI time series data are analyzed, and necessary data preprocessing and mode changes are
performed to enable predictions at different time series periods. The main contributions of
this paper are listed below:

1. A multiscale model based on blending ensemble learning is proposed that predicts the
short-term and medium-term crude oil prices, which allows us to break the limitations of
a single time series decomposition analysis.

2. The superiority of the proposed blending ensemble model is demonstrated compared to
the state-of-the-art crude oil price forecasting models used as a reference. The results
of the Diebold Mariano (DM) test confirm the dominance of the proposed forecasting
model.

The remaining parts of this manuscript are organized as follows. Section 2 presents the
literature review of related works. Section 3 provides a description of the data used and
their pre-processing. Section 4 outlines the methods used. Section 5 presents the results and
analysis of empirical experiments. In Sect. 6, we discuss the results obtained, and Sect. 7
presents the conclusions and suggests future research avenues.

2 Related literature

In recent years, there has been remarkable work on crude oil price forecasting. Many
researchers have shown promising results based on different types of oil price time series
analysis using statistical models (Herrera et al., 2018; Rubaszek, 2021), econometrics mod-
els (Asai et al., 2020), and machine learning models (Zhang et al., 2022). In this section,
we focus on recent advances in crude oil price forecasting using machine learning methods,
including deep learning and hybrid and ensemble models. A comparison of the performance
of these methods in predicting the price of crude oil is presented in Table 1.
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Table 1 Performance comparison of existing machine learning-based crude oil forecasting models

Study Data Model Results

Ghaffari and Zare
(2009)

WTI ANFIS Acc � 68.18%

Haruna et al. (2015) WTI GA-NN MSE � 0.0000001, RMSE
� 0.0012

Lu et al. (2021) WTI Variable selection-LSTM MAPE � 0.74, RMSE �
1.12

Chen et al. (2017) WTI RW-DBN MSE � 0.0005

Zhao et al. (2017) WTI SDAE-Bagging MAPE � 0.053, RMSE �
4.9

Huang and Wang
(2018)

Brent, WTI RWNN RMSE � 2.05, 2.44, MAPE
� 2.56, 1.81, sMAPE �
2.49, 2.99

Cen and Wang (2019) Brent, WTI LSTM RMSE � 0.45, 0.38, MAE
� 0.18, 0.17, MAPE �
3.46, 3.71, sMAPE �
3.86, 3.86

Norouzi and Fani
(2020)

OPEC price Gray model MAE � 0.21, MSE � 0.089

Vo et al. (2020) Brent Bi-LSTM MSE � 2.4, RMSE � 1.55,
MAE � 1.2, MAPE �
2.50

Bristone et al. (2020) Brent, WTI Complex network deep
learning

RMSE � 2.18, 2.08

Wang et al. (2020) Brent LSTM (Bi-LSTM) + GWO PICP � 98.90%

Wu et al., (2021a,
2021b)

WTI CNN MAPE � 0.057

Zhao et al. (2021) WTI, Brent, INE PVMD-SVM-ARMA MAE � 0.002, 0.001, 0.001,
MSE � 0.011, 0.010,
0.004

Yang et al. (2021) WTI k-means + KPCA + KELM RMSE � 3.79, MAPE �
0.0021

Busari and Lim (2021) Export spot price AdaBoost-LSTM,
AdaBoost-GRU

MAE � 1.42, RMSE �
2.46, MAPE � 0.35

Acc accuracy, ANFIS adaptive network-based fuzzy inference system, CEEMDAN complementary ensemble
empirical mode decomposition with adaptive noise, GWO grey wolf optimizer, INE international energy
exchange, PICP forecasting interval coverage probability, RWNN random wavelet neural network

2.1 Shallow neural networkmodels

By combining the learning capacity of NNs and the interpretability of fuzzy rule-based
systems, Ghaffari and Zare (2009) proposed a unique soft computing-based approach to
predict fluctuations in theWTI crude oil price. However, such amodel has limited forecasting
accuracy, as it suffers from the limitations of shallow neural networks. To avoid the problems
associated with the use of the backpropagation algorithm to train shallow neural networks,
Chen (2022) showed that much better computational efficiency can be achieved by using
evolutionary algorithms to train NN forecasting models. Furthermore, Huang and Wang
(2018) combined randomwavelet NNs with a random time effective function that effectively
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exploits historical crude oil time series data. Their empirical results confirmed the advantages
of the proposed model over traditional shallow NNs and SVMs. To overcome the problems
of slow convergence and parameter sensitivity of conventional feed-forward NNs, Bisoi et al.
(2019) proposed a random vector functional link network (RVFLN) non-iterative approach
for crude oil price forecasting. However, RVFLN models are susceptible to overfitting, and
the training process of RVFLN is still subject to reaching local minima.

2.2 Deep learningmodels

To capture complex and rich features from crude oil data, deep learning-based forecasting
models were proposed, such as those using bidirectional long short-termmemory (Bi-LSTM)
(Cen &Wang, 2019; Vo et al., 2020), which, unlike LSTM (Karasu & Altan, 2022; Lu et al.,
2021), exploit the time series information in both directions, forward and backward. A hybrid
model of LSTM and complex network analysis was introduced to map and reconstruct crude
oil price data, resulting in an increase in accuracy of up to 58.3% (Bristone et al., 2020).

However, it is worth noting that LSTM and Bi-LSTM are computationally intensive and
slowmodels whose forecasting performance was surpassed by ensembles of neural networks
(Abedin et al., 2021; Busari & Lim, 2021). Specifically, Busari and Lim (2021) compared
two homogeneous ensemble models, AdaBoost-LSTM and AdaBoost-GRU, and the empir-
ical results suggest that AdaBoost-GRU outperforms AdaBoost-LSTM in predicting crude
oil prices. Wang et al. (2020) proposed the improved grey wolf optimizer to integrate the
forecasting intervals obtained using LSTM and Bi-LSTM into a reliable interval that captures
the uncertainty present in the price of crude oil.

2.3 Hybridmachine learningmodels

Zhao et al. (2021) developed a new hybrid approach that can enable online real-time fore-
casting of crude oil prices. They concluded that the oil market is so unpredictable that it
resembles an imbalance of time series data. They proposed a PVMD-SVM-ARIMA model
by combining particle swarm optimization, VMD parameter optimizer, SVM and ARIMA
statistical model. It is suitable for short-term oil price prediction, but it is weak in handling the
large data. Among some fusion models, it shows lowerMSE and high accuracy in prediction.
Yang et al. (2021) found that the use of divide-and-conquer technique improves the accuracy
of the prediction. To this end, they developed a hybrid technique combining extreme learn-
ing machine, principal component analysis, and k-means. In this hybrid stream of research,
Chen et al. (2017) used a hybrid model that combined the traditional ARMA (autoregressive
moving average) model with LSTM and deep belief networks to capture both the linear and
non-linear patterns in the crude oil time series data. To further improve prediction accuracy,
additional sources of data were suggested. To illustrate, Li et al. (2019) andWu et al., (2021a,
2021b) proposed revolutionary big-data-driven and text-based techniques that used a convo-
lutional neural network (CNN) to automatically scrap crude oil news updates. To construct a
text-based crude oil forecasting system, more than eight thousand news headlines were col-
lected byWu et al., (2021a, 2021b). Furthermore, to incorporate the Internet investor concern
over the crude oil market, Google trend search data were utilized by Wang et al. (2018).

Ensemble models have recently shown striking results in forecasting crude oil prices
(Escribano&Wang, 2021). Yu et al. (2016) proposed an ensemble of empirical mode decom-
positions that uses extended extreme learningmachine (ELM) to divide continuous time series
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data from crude oil into discrete regular data. The combination of extended ELM and ensem-
ble empirical mode decomposition was shown to save time and to be robust to highly volatile
time series data. Zhao et al. (2017) combined the stacked denoising autoencoder (SDAE) and
bootstrap aggregation (bagging) ensemble method to predict the WTI crude oil price. They
showed that their approach outperforms some competing methods, including the bagging
of NNs and SVRs. Li et al. (2021) decomposed the crude oil price into multiple baseline
models using variational mode decomposition and analyzed the complexity of each time
series component, which was considered critical to selecting the most suitable base model to
produce accurate forecasts.

As highlighted by Li et al. (2021), the fluctuations in the time series of crude oil prices
can be influenced by underlying factors, including economic, political, and other irregular
events. In fact, crude oil supply chains have been heavily affected by abnormal events, such as
severe weather. The induced short-term market imbalances in turn affect the characteristics
of crude oil prices, making them complex, nonlinear, and nonstationary. As a result, it is
difficult to predict periodic fluctuations driven by unexpected events and changes in the price
trend. Gao et al. (2017) studied the fluctuation patterns of the crude oil price, finding that each
short-termfluctuation pattern has diverse dynamic properties. This findingwas reflected in the
diversity of the ensemble of statistical autoregressive models, which had completely different
statistical characteristics for different short-term time series periodicities. Therefore, it was
recommended to model the instable and non-linear crude oil prices by using different base
models that consider diverse fluctuation patterns in various short-term oil price segments
(Gao et al., 2017). To overcome this problem, we propose a blending ensemble learning
model so that the crude oil price forecasts are made up of multiple diverse regression models,
each of them trained on a small amount of crude oil price time series data. In fact, the use
of homogeneous ensemble models that lack diversity in the forecasting methods can lead
to underperformance if the base model type is not well suited to capture the complexity
of crude oil price dynamics. Heterogeneous ensembles incorporate various types of base
models, offering a more comprehensive approach to capturing the volatility and intricacies
of crude oil prices. The heterogeneous ensemble is also typically more robust to noise and
fluctuations. Therefore, heterogeneous ensembles generally outperform individual models
and homogeneous ensembles, especially when dealing with complex and volatile systems
like crude oil markets (Yuan et al., 2023).

3 Data

The two most commonly used data sets used in this study are Brent and WTI. It is worth
noting that WTI was chosen as the data source because it is a globally recognized and traded
benchmark for oil prices, making it directly relevant for market analyses and comparisons.
The duration of the Brent crude oil price data was from May 20, 1987 to February 28,
2022. The period of the WTI data was from April 1, 1987 to February 28, 2022. The Brent
data were taken from the U.S. Energy Information Administration,1 and the WTI data were
collected from the MarketWatch database (available at marketwatch.com). Data frequency
was daily, but not seasonally adjusted. The total number of price observations was 9,104. The
experimental data were then also converted from daily to weekly andmonthly for the purpose
of medium-term predictions. The numbers of observations and other descriptive statistics of

1 https://www.eia.gov/todayinenergy/detail.php?id=51538.
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Table 2 Descriptive statistics of Brent and WTI crude oil price data

Brent_day Brent_week Brent_month WTI_day WTI_week WTI_month

No. of obser-
vations

9104 1791 413 9095 1828 421

Maximum 143.95 141.07 132.72 145.31 142.52 133.88

Minimum 9.10 9.44 9.82 9.50 9.65 11.35

Mean 46.75 46.82 46.85 44.30 44.32 44.36

Std. dev 32.02 32.09 32.08 28.80 28.73 28.69

Variance 0.056 0.059 0.068 0.025 0.043 0.055

Skewness* 0.86 0.85 0.85 0.86 0.87 0.86

Kurtosis* − 0.39 − 0.41 − 0.43 − 0.29 − 0.30 − 0.33

*The values were calculated before and after data normalization. In both cases the Skewness and Kurtosis
remain unchanged

daily, weekly and monthly data are presented in Table 2. Figure 1 shows the daily, weekly,
and monthly data for crude oil prices as a function of time.

Both data sets represent time series of crude oil prices. The descriptive statistics for both
crude oil prices are presented in Table 2. The kurtosis of both datasets was negative, indicating
that the distribution has lighter tails than the normal distribution. This means that the outlier
problem is not serious. The value of the skewness of the Brent and WTI oil data ranged
from 0.5 to 1, suggesting that the data were moderately positively skewed. In this study,

Fig. 1 Development of crude oil prices from 1986 to 2022
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we used some machine learning algorithms that employ the Euclidean distance for model
construction. To obtain a better forecasting performance of those base machine learning
algorithms, the data were normalized in agreement with existing literature (Garbin et al.,
2020). Using the normalization method, the data were dispersed less. Finally, the mean of
the neighbors’ values was used to handle the missing data.

4 Methods

The blending ensemble learning model referred to as LKDSR was used to predict daily,
weekly, and monthly crude oil prices. The main advantages of this model are the compu-
tational efficiency of the blending approach and the heterogeneity of the base predictors,
allowing us to model diverse oil price patterns.

4.1 Overview of the proposedmethodology

The overview of the proposed methodology is depicted in Fig. 2. Brent and WTI crude oil
daily data were collected and pre-processed to enhance the computational efficiency and
model performance. Daily data were then converted to weekly and monthly data using the
mode conversion module. Consistent with prior research (Herrera et al., 2018; Liang et al.,
2023), the data sets pertaining to oil prices were partitioned using sequential validation
methodology. Specifically, a 4:1 ratio was employed to split the data into training and testing

Fig. 2 Overview of the proposed methodology
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subsets. The performance of the proposed and compared models was then evaluated using
various error measures. To validate the statistical significance of our proposed model, we
performed the DM test.

4.2 Data processing

After processing the missing values and normalizing the data using the MinMaxScaler func-
tion (to conduct feature normalization, scaling each individual feature to a pre-defined range
between zero and one, thereby optimizing computational efficacy), both datasets underwent
a mode conversion technique that converted the daily data to weekly and monthly data for
short- to medium-term forecasts. Using the Python DateTime module, which allowed us to
efficiently extract additional variables from the date variable, the daily data were converted
to weekly and monthly data. Specifically, the mean of the daily data was taken to obtain
the weekly (using the datetime.week function) and monthly (datetime.month function) data.
Using PythonDateTimemodule, we converted the daily data toweekly andmonthly data, and
then grouped them using the groupby function, as detailed in the pseudocode in Algorithm 1.
We used the daily, weekly, and monthly data separately for training and testing. Each dataset
was independent and had no effect on the training of the other datasets.

Algorithm 1: Convert daily to weekly and monthly

4.3 Description of machine learningmethods used

In the present study, individual and ensemble machine learning algorithms were used to
forecast the price of crude oil. A brief description of the used algorithms is provided below.

4.3.1 Lasso regression

Lasso (Least Absolute Shrinkage and Selection Operator) is a modified linear regression
performing both regularization and feature selection to enhance forecasting accuracy and
intelligibility (Wang et al., 2011). The loss function for the lasso regression can be defined
as follows:

M∑

i�1

(
yi − ŷi

)2 �
M∑

i�1

⎛

⎝yi −
p∑

j�0

w j × xi j

⎞

⎠
2

+ λ

p∑

j�0

|w j | (1)
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for some t > 0,
∑p

j�0

∣∣w j
∣∣ < t ,where wj are model coefficients, t denotes a prespecified

regularization parameter, and the shrinkage parameter λ controls the L1 penalty. Lasso regres-
sion overcomes the disadvantages of ridge regression by restricting high coefficient values.
Lasso sets the coefficient values to zero if they are irrelevant. Lasso regression introduces
the magnitude instead of using the square of the coefficients. Lasso regression helps reduce
overfitting and also performs feature selection, which makes the interpretation of this model
easier.

While the application of Lasso regression techniques to the prediction of oil prices has
historically been limited, emerging research demonstrates their robust performance relative
to more complex statistical models. Hasan et al., (2023a, b) found that Lasso-based meth-
ods, known for their shrinkage properties, yielded markedly more accurate forecasts of oil
price volatility compared to the Heterogeneous AutoRegressive model for Realized Vari-
ance (HAR-RV). Importantly, the empirical support for the superiority of the Lasso model
remained consistent across an array of robustness checks, such as varying the sample sizes
for estimating the shrinkage parameters, employing alternative estimation windows, and
assessing performance over diverse out-of-sample periods. Boubaker et al. (2022) further
substantiate the efficacy of Lasso regression in forecasting oil prices, attributing its per-
formance to its capacity of handling the bias-variance tradeoff. This is facilitated through
the shrinkage of coefficients, which effectively mitigates overfitting. Additionally, the Lasso
model simplifies interpretability by setting certain coefficients to zero, thereby elucidating
the most salient variables influencing oil price fluctuations.

4.3.2 Random forest regression

Randomforest is one of the ensembles learning algorithms that is used in solving classification
and regression problems (Hasan et al., 2023a, b). It combines tree predictors, with each
decision tree including a random data vector while randomly determining a subsample of
attributes.Hence, each node is partitioned by deploying random feature selection (Rabbi et al.,
2022). Each predictor also randomly selects a training sample (Fig. 3). When comparing the
error rate with the AdaBoost algorithm, the random forest is more robust in the presence
of perturbations. The random forest algorithm is inherently flexible, simple, and robust. It
provides excellent results even without adjusting the hyperparameters.

Mathematically, the prediction of the random forest regression model for a new input is
expressed as:

Ŷ � 1

N

N∑

i�1

Yi (2)

where Ŷ is the predicted output, N is the number of trees in the forest, and Yi represents
the prediction from each individual tree. This ensemble approach results in a highly flexible
and powerful regression model that can capture complex relationships between features and
target variables while reducing the risk of overfitting often associated with single decision
trees.

4.3.3 Light gradient boosting machine regression

Light gradient boosting machine (LGBM) is a tree-based gradient boosting method that
works in a distributed manner and provides some important features; one of them is to
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Fig. 3 The tree-based representation of random forest

increase the efficiency of the system and reduce memory usage. Efficient implementations
of this ensemble decision tree are XGBoost and Pgbrt. The efficiency and scalability are
unsatisfactory because the LGBM algorithm needs to search all the data in the instance,
which is very time consuming. The two methods were introduced to solve this problem;
one is exclusive feature bundling and the other is one side-sampling based on the gradient
algorithm, which reduce the feature count and estimate the information gain using small data
sample, respectively. Here is an overview of how LightGBM regression works:

Gradient boosting framework: LightGBM employs the gradient boosting framework, an
ensemble learning method. This involves iteratively combining the predictions of several
weak learners (typically decision trees) to form a robust predictive model.
Objective function: for regression tasks, LightGBM uses an objective function that calculates
the difference between the actual values of the target variables and the error in the predicted
values. Commonly used objective functions include Mean Squared Error (MSE) and Mean
Absolute Error (MAE).
Tree building: unlike the traditional depth-first tree growth, LightGBM grows decision trees
leaf-wise. This method prioritizes the development of leaves that lead to the largest decrease
in the objective function, making the process faster and more memory-efficient.
Leaf-wise splitting: during tree growth, LightGBM selects the best feature and split point
for each leaf node based on the gradient of the objective function. This allows the model
to concentrate on areas of the data that are more challenging to predict, thus improving its
accuracy.
Regularization: to avoid overfitting, LightGBM incorporates regularization techniques such
as L1 (Lasso) and L2 (Ridge) regularization. The intensity of regularization can be adjusted
using hyperparameters.
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Gradient boosting and learning rate: LightGBM incrementally refines the model’s predic-
tions through gradient boosting. It starts with an initial prediction (often the mean of the
target variables) and updates this with every new tree added. A learning rate hyperparameter
controls the step size in each iteration.
Hyperparameter tuning: achieving optimal performance with LightGBM necessitates tuning
hyperparameters like the number of trees (boosting rounds), tree depth, learning rate, and
more. Methods like grid search or random search can help determine the best hyperparame-
ters.
Prediction: once trained, the model can predict on new data by aggregating predictions from
each individual tree using the ensemble method.

LightGBM is known for its speed and efficiency, making it an excellent choice for regres-
sion tasks, especially when dealing with large datasets or high-dimensional feature spaces
(Sajid et al., 2023).

4.3.4 AdaBoost

AdaBoost (Adaptive Boosting) combines multiple weaker predictors into one strong regres-
sion model (Janssens et al., 2022; Shajalal et al., 2023). This algorithm operates according
to the following steps. First, a dataset is provided at the beginning, and each data point is
assigned an identical weight. Next, the data are given as input to the model and the erro-
neously predicted data instances are identified. The weight increments of these data instances
are accumulated to ensure some changes in the model. Mathematically, the final prediction
(Y ) for a binary classification problem can be expressed as:

Y (x) � sign

(
T∑

t�1

αt ht (x)

)
(3)

where Y (x) is the final prediction for input x, αt represents the weight assigned to weak
classifier ht (x), and T is the total number of weak classifiers. AdaBoost adjusts the weights
and selects weak classifiers based on their ability to correct the mistakes of the previous
classifiers, resulting in a strong ensemble model that excels at capturing complex decision
boundaries.

4.3.5 Support vector regression

SVR allows us to flexibly define how much error we can accept in the model and helps
us create a suitable function fit to the data (Abedin et al., 2018). The main function of
SVR is to minimize the coefficients, more precisely, the coefficient vector and the L2-norm,
rather than solely the squared error. The flexible nature of SVR is attributed to the kernel
function, which implicitly transforms the data into a higher-dimensional feature space. The
optimization problem in SVR can be expressed as:

min
w, b, ε, ε∗

1

2
w2 + C

n∑

i�1

(εi + εi∗) (4)

Subject to:

yi − (w.xi + b) ≤ ε + εi (5)
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Fig. 4 Data modeling with CatBoost regressor

(w · xi + b) − yi ≤ ε + εi (6)

εiεi∗ ≥ 0 (7)

where w represents the weight vector, b is the bias term, xi and yi are the input and target
values, ε is the tolerance margin, and C is the regularization parameter that balances margin
size and error penalties. SVR is effective in capturing complex relationships in data, especially
in cases where traditional regression techniques may not perform well.

4.3.6 CatBoost

CatBoost is one of the newest boosting ensemble machine learning models. This new open-
source algorithm was developed in 2017 by a company named Yandex. As opposed to other
boosting algorithms, CatBoost employs ordered boosting, an efficient enhancement of gra-
dient boosting to address the issue of target leakage (Prokhorenkova et al., 2018). This is
also effective when handling small datasets and categorical features, which can be replaced
with one or more continuous values. As depicted in Fig. 4, the entmax activation function
is employed as a soft variant of the splitting function, which is shared over the nodes at the
same depth. The output is calculated as the weighted sum of the leaf node outputs.

4.3.7 Blending ensemble learning

In this study, we developed a blending ensemble learning model comprising five machine
learning algorithms: linear regression, k-nearest neighbor (KNN) regression, decision tree
regression, SVR, and ridge regression. This model, termed the LKDSR regression model,
employs a second-order ensemble method known as blending.

While blending shares similarities with the stacking ensemble process, it possesses dis-
tinctive advantages. For instance, while stacking leverages out-of-fold predictions to train
subsequent layers in themetamodel, blending uses a small validation set (comprising 10–15%
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Fig. 5 Block diagram of the proposed LKDSR blending ensemble learning model

of the training data) for the same purpose. LKDSR integrates the mapping functions acquired
from its member algorithms, as detailed in the workflow presented in Fig. 5.

The motivation to employ an ensemble over a singular model is rooted in the belief that
ensemble models generally predict with greater accuracy and offer superior performance
compared to individual ML models. Additionally, ensembles help decrease the spread of
predictions, enhancing model reliability. The mapping functions from member algorithms
merge to provide enhanced predictive capabilities. Our proposed ensemble model incorpo-
rates various methods:

• A general regression model: linear regression.
• Two distance-based ML models: KNN and SVR.
• A tree-based ML model: decision tree regression.
• A regularization technique: ridge regression.

The primary objective is to minimize data variance to optimize prediction accuracy. With
time-series data, variance often escalates over time. Our model is designed to counteract this
variance growth, thereby preventing overfitting during the final stages of training.

Firstly, the linear regression starts by predicting y from the independent variable x:

y � mx + c (8)
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Then the optimal k value for KNN is chosen from the data to find the best fitting line to
predict the crude oil price. Here, we use Euclidean distance to measure the distance between
the new data point yi and the existing data point xi:

distance �
√√√√

k∑

i�1

(xi − yi )2 (9)

Here, distance refers to the distances between the p-dimensional feature vectors. The
nearest neighbor of a vector �x is the −→xi closest to it. The k vectors of the k nearest neighbors
are the �x that are closest to �x . Keeping track of the indices of the neighbors, so we can write
NN (�x , j) for the index of the jth nearest neighbor of �x . The KNN estimate of the regression
function is then the average value of the answer over the k nearest neighbors:

μ̂(�x) � 1

k

k∑

j�1

yNN (�x , j) (10)

Then, we add the tree-based algorithm Decision Tree to explore all possible solutions.
When KNN reduces the variance, the performance of DT is increased. Using a top-down,
greedy search through the space of feasible branches without backtracking, the ID3 technique
creates decision trees. The ID3 algorithm can produce a regression decision tree by replacing
Information Gain with Standard Deviation Reduction. Mathematically, we can write residual
as follows:

εi � yi − ŷi (11)

The residual sum of square is calculated by the following equation:

RSS �
n∑

i�1

(
yi − ŷi

)2 (12)

Finally, the total RSS of each node is calculated by:

RSS � ε21 + ε22 + · · · + ε2n (13)

We subsequently incorporated SVR into the ensemble to derive predictions from the low-
variance data produced by the DT. Time series data frequently display non-linearity that
eludes linear models. In these instances, SVR, owing to SVM’s capacity to address data
non-linearity in regression tasks, proves effective for time series forecasting. SVR’s primary
goal is to approximate the regression function as outlined in form (8). Our goal is to find the
best fitting line (which in the case of SVM is a hyperplane) that has the maximum number
of data points. DT distributes the data points in such a way that we can easily get the best fit
line for SVR and the error rate will be minimum then other algorithms.

Finally, we integrated the Ridge Regression regularization method into the ensemble
pipeline. In this ensemble, we use L2 regularization that adds a penalty equal to the square
of the magnitude of the coefficients. Ridge also adds bias to the estimators to reduce the
standard error. Ridge reduces the variance by selecting the appropriate lambda.

The equation of Ridge is as follows:

n∑

i�1

⎛

⎝yi − β0 −
p∑

j�1

β j xi j

⎞

⎠
2

+ λ

p∑

j�1

β2
j � RSS + λ

p∑

j�1

β2
j (14)
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Here, the value of RSS is calculated by DT above. The lambda is a tuning parameter,
increasing the lambda will reduce the variance with a small bias. It also decreases the MSE
and gives the best prediction.

Through this blending pipeline, Blending LKDSR reduces the variance and increases the
accuracy of the prediction. Figure 5 shows an overview of the proposed model.

For a pseudo code representation of the ensemble algorithm, the following is an explana-
tion of the algorithm.

4.4 Performancemeasures

In this study, MAE, MSE, RMSE, MPD, and sMAPE are used to evaluate forecasting per-
formance as well as R2 score.

The mean absolute error (MAE) is a statistic that evaluates the average error magnitude
for a set of forecasted values. It is the average of the absolute differences between the forecast
ŷi and the actual observation yi in the test sample, with all individual errors assigned with
the same weigh:

MAE � 1

n

n∑

i�1

∣∣yi − ŷi
∣∣. (15)

The mean square error (MSE) calculates the distances between the data instances and the
regression function by squaring them to give more weight to larger differences:

MSE � 1

n

n∑

i�1

(
yi − ŷi

)2
. (16)
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The root mean square error (RMSE) is calculated as the standard deviation of the MSE
residuals:

RMSE �
√√√√1

n

n∑

i�1

(
yi − ŷi

)2
. (17)

The goodness of fit of a model is measured by its deviation. Comparing the result of our
model to a baseline model is one approach to understand the amount of deviation. The loss
due to the mean Poisson deviation (MPD) is such a regression performance measure, where
the power parameter of p� 1 is equivalent to the Poisson deviation. If ŷi is the predicted value
for the i-th sample and yi denotes the corresponding target value, then MPD is calculated as
follows:

MPD
(
y, ŷ

) � 1

nsamples

nsamples∑

i�0

{ (
yi − ŷi

)
, for p � 0(Normal)

2
(
yi log

(
ŷi
yi

)
+ ŷi − yi

)
, for p � 1(Poisson)

. (18)

Symmetric mean absolute percentage error (sMAPE) represents a percentage-based accu-
racy criterium. The absolute error is divided by the magnitude of the actual value to get the
relative error. sMAPE has both a lower and an upper bound, unlike MAPE. It is scale-
independent; therefore, it can be used to compare forecasting performance across datasets.
It can be defined as follows:

sMAPE � 1

n

n∑

i�1

(
yi − ŷi

)
(
yi + ŷi

)
/2

. (19)

For linear regression problems, R2 is used as metric of goodness of fit. This statistic
represents the variance percentage for the dependent attribute that the independent attributes
account for, measuring the strength of the association between the model outcome and the
target values:

R2 � 1 −
∑

i

(
yi − ŷi

)2
∑

i

(
yi − yi

)2 . (20)

Finally, the elapsed time was measured as the total time taken by a model from the
beginning to the end of the model calculation, that is, the elapsed time � end time – start
time.

4.5 Significance test

A statistical test is a formal procedure to determine the best predictivemodel from a variety of
models. In this study, we used one of the most commonly used methods, called the Diebold-
Mariano (DM) test (Lago et al., 2021) to determine the significance level of our proposed
model. The DM test is one the most commonly used techniques for establishing the statistical
significance of forecasting accuracy disparities. It is an asymptotic Z-test (Diebold, 2015) of
the hypothesis that the differential series loss mean is:

�
A, B
k � L

(
εAk

)
− L

(
εBk

)
, (21)

where L(·) is the loss function and εzk � pk − p̂k represents the forecasting error at time step
k for model Z . For forecasting, we use L

(
εZk

) � ∣∣εZk
∣∣p with p � 1 or 2, that is, the absolute
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or squared errors, respectively. In this study, we consider the null hypothesis to be H0: the
loss difference of model A is less than or equal to that of model B. Here, if the hypothesis is
rejected then model B significantly outperforms model A. In each hypothesis, test model B
is our proposed LKDSR blending model.

5 Experimental results

5.1 Experimental setting

The hyperparameters of the forecasting models used, as obtained using the grid search pro-
cedure for the discrete values of each parameter, are presented in Table 3. The proposed
blending LKDSR model is compared with methods used in earlier studies on crude oil price
prediction, namely Lasso (Costa et al., 2021), SVR (Xie et al., 2006), AdaBoost (Guliyev
& Mustafayev, 2022), regression tree (Chen & He, 2019), LGB (Gu et al., 2021), CatBoost
(Jabeur et al., 2022), and random forest (Costa et al., 2021). We utilized the Scikit-learn
library within the Python programming environment. All experimental evaluations detailed
in this paper were conducted on a dedicated workstation with a 1.30 GHz CPU, 16 GB of
RAM, and an Intel iRISxe graphics card. Additionally, all the experiments can be executed
on Google Colab using any PC or mobile device with a stable internet connection.

The "Grid Search" method is employed for hyperparameter tuning to systematically iden-
tify the optimal set of hyperparameters for a machine learning model. It operates by creating
a grid of hyperparameters, specifying their possible values or ranges, and then performing
cross-validation on the model for each combination before training and evaluation. The most

Table 3 Values of hyperparameters for the forecasting models used

Model Values of hyperparameters Range of value search

Lasso alpha � 0.01 alpha (0–1)

RF n_estimators � 500, random_state � 42 n_estimators (100–1000) and
random_state (10–100)

LGB learning rate � 0.1, num_leaves � 24 learning_rate (0–1), num_leaves
(1–100)

DT random_state � 42 random_state (10–100)

B-Lasso alpha � 0.01 alpha (0–1)

AdaBoost n_estimators � 500, random_state � 42 n_estimators (100–1000) and
random_state (10–100)

SVRLinear kernel � linear, gamma � auto,C � 100 gamma � Default, C (1–10)

SVRRbf kernel � rbf, gamma � auto, C � 100 gamma � Default, C (1–10)

SVRPolynomial kernel � polynomial, gamma � auto, C �
100, degree � 3, coef � 1

gamma � Default, C (1–10), degree
(2–10)

CatBoost estimator � model_CBR, n_jobs � − 1, cv
� 2, param_grid � parameters, learning
rate � 0.05

learning rate (0.1–1)

LKDSR kernel � linear, random_state � 42,
n_estimators � 500, gamma � auto, C �
100

n_estimators (100–1000) and
random_state (10–100), gamma �
Default, C (1–10)
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effective configuration is ascertained by the set of hyperparameters that yield the highest
performance based on a specific evaluation metric. While Grid Search is a straightforward
and comprehensive approach to finding the best hyperparameters, it can be computationally
intensive, particularly when dealing with extensive parameter spaces.

5.2 Results of the Brent Crude oil price forecasting

The first result shows the performance of daily Brent crude oil forecasting using different
machine learning methods. Table 4 shows that the forecasting performance of the LKDSR
model is superior compared to the othermodels used in this analysis. The absolute and relative
errors are relatively lower than those of the other models and a R2 of 99% was achieved,
suggesting that the proposed blending LKDSR model more accurately models short-term
fluctuations in the data and provides more accurate daily forecasts of the Brent crude oil
price than the other models. Although the elapsed time is not less than that of the other
models, the elapsed time is still acceptable and competitive compared to the other models.

The actual vs. predicted curve of the models is shown in Fig. 6, with the blending LKDSR
model curve being closer to the actual curve compared to the others. In contrast, SVR-
based forecasting models were not effective, either significantly overestimating (SVRRbf) or
underestimating (SVRPolynomial) the predicted price.

Similarly, to daily forecasting, Tables 5 and 6 show the results for weekly and monthly
prices of Brent crude oil, respectively. For the weekly Brent crude oil dataset, the proposed
blending LKDSR model excelled in terms of all forecasting error measures, with errors
approximately twice as large as for the daily prediction. Again, the SVR-based models
performed poorly and only the boosting-based ensemble models (LBG and CatBoost) were
competitive forecasting models.

Completely different behaviors of the models can be observed for the monthly prediction
of Brent crude oil. Even though the proposed blending LKDSR performed best in terms of
MAE, a significant decrease in forecasting accuracy is evident. Surprisingly, the SVR model
with a polynomial kernel function had a performance similar to that for weekly predictions,

Table 4 Results for daily Brent crude oil dataset

Model MAE MSE RMSE MPD sMAPE R2 Elapsed time

Lasso 0.0173 0.00051 0.0214 0.0014 5.2484 0.95 0.0039

Random forest 0.0108 0.00020 0.0142 0.0008 3.7294 0.98 0.0011

LGB 0.0073 0.00009 0.0099 0.0005 2.6474 0.99 0.0242

Regression tree 0.0107 0.00019 0.0139 0.0008 3.6696 0.98 0.0041

Bagging-Lasso 0.0174 0.00046 0.0215 0.0014 5.2709 0.95 0.0051

AdaBoost 0.0094 0.00016 0.0125 0.0006 3.3489 0.98 0.0057

SVRLinear 0.0174 0.00042 0.0206 0.0017 6.2410 0.95 0.0103

SVRRbf 0.0166 0.00039 0.0198 0.0017 6.0295 0.96 0.0031

SVRPolynomial 0.0265 0.00098 0.0313 0.0032 8.2504 0.90 0.0103

CatBoost 0.0074 0.00010 0.0101 0.0005 2.6944 0.99 0.0039

LKDSR 0.0070 0.00009 0.0097 0.0005 2.5878 0.99 0.0048

The best performance is marked in bold
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Fig. 6 Actual vs. predicted curve of daily prediction of Brent crude oil price

Table 5 Results for the weekly Brent crude oil data set

Model MAE MSE RMSE MPD sMAPE R2 Elapsed time

Lasso 0.0205 0.00067 0.0259 0.0022 6.3856 0.93 0.0081

Random forest 0.0259 0.00164 0.0405 0.0042 8.0664 0.83 0.0007

LGB 0.0161 0.00046 0.0216 0.0017 5.4916 0.93 0.0204

Regression tree 0.0214 0.00075 0.0274 0.0026 7.0691 0.92 0.0022

Bagging-Lasso 0.0209 0.00069 0.0263 0.0022 6.4644 0.93 0.0041

AdaBoost 0.0258 0.00112 0.0335 0.0032 7.7629 0.89 0.0022

SVRLinear 0.0286 0.00124 0.0352 0.0046 9.7553 0.87 0.0046

SVRRbf 0.0245 0.00098 0.0314 0.0039 8.6371 0.90 0.0061

SVRPolynomial 0.0373 0.00185 0.0430 0.0060 11.8254 0.81 0.0018

CatBoost 0.0157 0.00045 0.0211 0.0016 5.4031 0.95 0.0053

LKDSR 0.0143 0.00038 0.0194 0.0014 5.0393 0.96 0.0177

The best performance is marked in bold

indicating strong polynomial relationships in the univariate monthly time series of the Brent
crude oil price. Hence, the proposed blending LKDSR model is much less effective.

Likewise, Figs. 7 and 8 depict the weekly and monthly forecasts using the predictions
obtained from the compared models. For the weekly forecasts (Fig. 7), we can observe a
similar behavior to the daily prices, and most models overestimate the actual price of Brent
crude oil. The results in Fig. 8 show that it was more difficult to predict the medium-term
monthly prices, and most models did not react promptly to the change in the trend of the
crude oil price.

To verify the statistical significance of the proposed model, the DM test was conducted,
and the significance level was calculated for RMSE over the individual errors obtained for
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Table 6 Results for the monthly Brent crude oil data set

Model MAE MSE RMSE MPD sMAPE R2 Elapsed time

Lasso 0.0382 0.00237 0.0487 0.0078 11.8553 0.78 0.0111

Random forest 0.0500 0.00467 0.0683 0.0141 15.3919 0.57 0.0008

LGB 0.0385 0.00283 0.0532 0.0096 12.4335 0.74 0.0348

Regression tree 0.0478 0.00402 0.0634 0.0128 15.0064 0.63 0.0048

Bagging-Lasso 0.0383 0.00238 0.0487 0.0078 11.8612 0.78 0.0082

AdaBoost 0.0413 0.00339 0.0583 0.0111 13.1728 0.69 0.0086

SVRLinear 0.0379 0.00236 0.0486 0.0083 12.2966 0.78 0.0039

SVRRbf 0.0391 0.00247 0.0497 0.0093 13.0353 0.77 0.0022

SVRPolynomial 0.0363 0.00225 0.0475 0.0073 11.1847 0.79 0.0001

CatBoost 0.0389 0.00295 0.0543 0.0097 12.5038 0.73 0.0007

LKDSR 0.0360 0.00233 0.0483 0.0082 11.7096 0.79 0.0053

The best performance is marked in bold

Fig. 7 Actual vs. predicted curve of the weekly prediction of the Brent crude oil price

the test data instances. To find significant contributions of our proposed methodology, we
applied the DM test to the daily, weekly, and monthly prices of Brent crude oil. The DM
values for the models compared with our blending LKDSR model are shown in Table 7. For
the daily and weekly forecasts of the Brent crude oil price, our proposed model significantly
outperformed the other models used in this analysis. In contrast, the SVR with polynomial
kernel function was superior for monthly data, with the blending LKDSR model ranked
second and significantly outperforming the remaining forecasting models.
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Fig. 8 Actual vs. predicted curve of the monthly prediction of the Brent crude oil price

Table 7 Results of the DM statistical test for Brent crude oil price—LKDSR blending model vs. compared
models

Model Brent daily (DM value) Brent weekly (DM value) Brent monthly (DM value)

Lasso 19.01217* 5.303314* 0.194063***

Random forest 13.40259* 3.608193* 2.908655*

LGB 4.273887* 2.979493* 2.066468**

Regression tree 13.67913* 7.043103* 2.477125**

Bagging-Lasso 19.06145* 5.443024* 0.208523***

AdaBoost 10.19771* 7.477397* 2.763016***

SVRLinear 21.85069* 7.738753* 0.223951***

SVRRbf 19.79711* 5.858687* 0.975974***

SVRPolynomial 23.50757* 11.35995* – 0.65528***

CatBoost 5.696250* 2.710647* 2.017943**

The DM test statistics examine the accuracy of our blending LKDSR model against the benchmarks for the
prediction of the price of Brent crude oil
***,**, *represent statistical significance at P < 10%, P < 5%, and P < 1%, respectively

5.3 Results ofWTI Crude oil price forecasting

Similar to the Brent oil price, Table 8 shows a considerable difference between the forecasting
performance for daily, weekly, and monthlyWTI forecasting horizons. This can be attributed
to the fact that daily data often captures more granular market movements, allowing models
to fine-tune their predictive ability based on richer data sets. In addition, monthly forecasts
inherently incorporatemore complexity and uncertainty due to the longer forecasting horizon,
which can be influenced by a variety of unpredictable factors such as geopolitical events
and economic uncertainty. Compared to the Brent oil price, the blending LKDSR model
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Table 8 Results for the WTI crude oil data set

Model MAE MSE RMSE MPD sMAPE R2 Elapsed time

Daily prediction

Lasso 0.0381 0.00275 0.0524 0.0049 6.9644 0.75 0.0024

Random forest 0.0083 0.00016 0.0128 0.0006 1.7442 0.98 0.0021

LGB 0.0056 0.00011 0.0103 0.0004 1.2206 0.99 0.0088

Regression tree 0.0084 0.00017 0.0132 0.0006 1.7464 0.98 0.0112

Bagging-Lasso 0.0383 0.00281 0.0527 0.0049 7.0129 0.75 0.0074

AdaBoost 0.0115 0.00026 0.0160 0.0007 2.3833 0.98 0.0192

SVRLinear 0.0277 0.00097 0.0311 0.0024 5.7825 0.91 0.0021

SVRRbf 0.0275 0.00096 0.0309 0.0023 5.7519 0.91 0.0169

SVRPolynomial 0.0158 0.00049 0.0221 0.0014 3.5150 0.96 0.0034

CatBoost 0.0057 0.00011 0.0103 0.0004 1.2345 0.99 0.0003

LKDSR 0.0054 0.00010 0.0101 0.0002 1.2057 0.99 0.0075

Weekly prediction

Lasso 0.0256 0.00121 0.0348 0.0035 7.1489 0.91 0.0109

Random forest 0.0199 0.00072 0.0268 0.0027 6.4048 0.95 0.0013

LGB 0.0148 0.00041 0.0202 0.0018 5.0459 0.97 0.0202

Regression tree 0.0202 0.00071 0.0267 0.0027 6.5214 0.95 0.0039

Bagging-Lasso 0.0262 0.00126 0.0355 0.0036 7.2751 0.91 0.0031

AdaBoost 0.0216 0.00081 0.0284 0.0027 6.6569 0.94 0.0162

SVRLinear 0.0295 0.00122 0.0349 0.0045 9.3198 0.91 0.0109

SVRRbf 0.0308 0.00129 0.0359 0.0047 9.6443 0.91 0.0013

SVRPolynomial 0.0364 0.00169 0.0411 0.0059 11.264 0.88 0.0082

CatBoost 0.0146 0.00041 0.0202 0.0019 4.9814 0.97 0.0107

LKDSR 0.0128 0.00033 0.0182 0.0031 4.8758 0.98 0.0123

Monthly prediction

Lasso 0.0383 0.00226 0.0476 0.0080 12.8976 0.87 0.0172

Random forest 0.0462 0.00370 0.0608 0.0131 15.4885 0.78 0.0137

LGB 0.0373 0.00257 0.0506 0.0097 13.0653 0.85 0.0314

Regression tree 0.0478 0.00405 0.0637 0.0152 16.5186 0.76 0.0053

Bagging-Lasso 0.0383 0.00226 0.0476 0.0080 12.8907 0.87 0.0176

AdaBoost 0.0363 0.00235 0.0484 0.0089 12.7037 0.86 0.0123

SVRLinear 0.0378 0.00223 0.0472 0.0098 13.9456 0.87 0.0047

SVRRbf 0.0398 0.00246 0.0496 0.0125 15.1690 0.86 0.0038

SVRPolynomial 0.0408 0.00249 0.0499 0.0094 14.4076 0.85 0.0005

CatBoost 0.0367 0.00267 0.0517 0.0105 13.0674 0.84 0.0004

LKDSR 0.0351 0.00219 0.0468 0.0088 12.6189 0.87 0.0085

The best performance is marked in bold
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performed better for daily and weekly WTI data. In addition, unlike the Brent crude oil
price, our model excelled for the monthly WTI data. From Table 8, it can also be noted that
the boosting-based forecasting models also provide solid performance, while Lasso-based
models give sound forecasting performance only for monthly time series data.

Figures 9, 10 and 11 also show similar patterns observed above for the Brent crude oil
price. Again, all the models tested had difficulties responding to strong price fluctuations in
a timely manner.

Fig. 9 Actual vs. predicted curve of daily prediction of the WTI price

Fig. 10 Actual vs. predicted curve of the weekly prediction of the WTI price
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Fig. 11 Actual vs. predicted curve of the monthly prediction of the WTI price

The results of the DM statistical tests are presented in Table 9. As presented in Table 9,
a significant difference was found between the forecasting performance of the blending
LKDSR model and those of the models compared. The tests revealed significant differences
for all the forecasting horizons examined. Strong evidence of the superiority of the proposed
blending approach was found even for the monthly forecasts. Overall, these results suggest
that the forecasting performance of the blending LKDSR model is robust to the granularity
of WTI time series.

To demonstrate the superiority of our proposed blending ensemble algorithm over other
ensemble strategies, we constructed three distinct ensemble models using stacking, majority

Table 9 Results of the DM statistical test for the WTI price—LKDSR blending model vs. compared models

Model WTI daily (DM Value) WTI weekly (DM Value) WTI monthly (DM Value)

Lasso 14.13154* 4.917655* 0.169650***

Random forest 0.86794*** 6.488912* 4.729863*

LGB - 0.83161*** 2.407989** 2.109551**

Regression tree 1.10766*** 5.908309* 4.142767*

Bagging-Lasso 14.16250* 4.979688* 0.174012***

AdaBoost 3.50721* 5.482341* 0.633890***

SVRLinear 38.13681* 9.492517* 0.199953***

SVRRbf 37.11603* 10.133650* 1.035432***

SVRPolynomial 12.31610* 12.227580* 1.082033***

CatBoost - 0.79950*** 2.336348** 2.515218**

*At P < 1%
**At P < 5%
***Significant at P < 10%
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Table 10 Comparison of proposed blending algorithm with stacking, majority voting and averaging ensemble
techniques

Model MAE MSE RMSE MPD sMAPE R2

Brent daily prediction

Averaging 0.0129 0.00046 0.0146 0.0003 2.4621 0.90

Voting 0.0066 0.00039 0.0153 0.0004 2.7160 0.92

Stacking 0.0057 0.00013 0.0105 0.0003 1.2066 0.98

LKDSR 0.0070 0.00009 0.0097 0.0005 2.5878 0.99

WTI daily prediction

Averaging 0.0145 0.00880 0.0254 0.0030 5.3259 0.86

Voting 0.0064 0.00057 0.0225 0.0033 5.1624 0.88

Stacking 0.0132 0.00037 0.0200 0.0029 4.8878 0.97

LKDSR 0.0054 0.00010 0.0101 0.0002 1.2057 0.99

The best performance is marked in bold

voting, and averaging techniques. These models were applied to both the Brent and WTI
crude oil datasets. While many of the ensemble algorithms showcased robust performance,
our proposed blending ensemble consistently surpassed them. This superior performance is
underscored by the R2 values, suggesting that the algorithms are highly compatible with the
dataset.

Although the stacking ensemble displayedperformanceonparwith theblending ensemble,
our blending algorithm, LKDSR, prevailed in most scenarios. The advantage of the stacking
approach lies in its two-level system, where base models feed predictions to a meta-model.
This setup fosters diverse model combinations but necessitates significant computational
resources and intricate tuning. In contrast, blending employs a more straightforward strategy,
eschewing ameta-model and directly amalgamating basemodel predictions throughmethods
like averaging. While blending is more streamlined in implementation and requires fewer
resources, it is usually tailored for a more homogenous set of base models. The decision
between stacking and blending hinges on the specific problem, dataset, and computational
resources at hand. Stacking offers versatility and complexity, whereas blending presents
a more straightforward and resource-conservative alternative. The results can be found in
Table 10.

6 Discussion

The main inspiration for our blending LKDSR forecasting model was to fully exploit state-
of-the-art machine learning-based models by combining them as a computationally efficient
machine learning ensemble that captures the short-term oil price imbalances. To determine
the efficacy of the blending LKDSR model, we can compare our results with those obtained
in the existing literature (Table 2). The comparison with various studies clearly indicates the
superiority of our proposed blending ensemble model over existing solutions. The perfor-
mance of the proposed blending LKDSR model in terms of error measures was outstanding,
as compared with the relative error measures in Table 1.
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This study appears to be the first to demonstrate the effects of using a blending ensemble
learning approach in forecasting crude oil prices. Notably, the blending ensemble learn-
ing approach consistently outperformed individual models, aligning with previous findings
on ensemble learning (Busari & Lim, 2021; Zhao et al., 2017). Importantly, our proposed
LKDSR exhibited lower error rates inWTI daily forecasting, withMAE� 0.0054 andRMSE
� 0.0101. This performance surpasses those of deep learning-based ensemble approaches,
specifically the Bagging approach (Zhao et al., 2017) which had an RMSE of 4.9, and
AdaBoost (Busari & Lim, 2021) which recorded an MAE of 1.42 and RMSE of 2.46.

The lower error rate and high accuracy of the proposed model is promising and potentially
valuable for policy makers and shareholders in making future decisions. The oil market is
highly volatile in the short term, but the proposed model allowed us to capture the nature of
these short-term fluctuations. The diversity of the base forecasting models used in our ensem-
ble approach considered various fluctuation patterns in short-term crude oil price segments.
These findings are in line with those provided by Gao et al. (2017) and Li et al. (2021). The
observed increase in prediction performance for the daily oil price could be interpreted as
confirmation of the feasibility of modelling these fluctuations using the blending approach.

Interestingly, there are also differences in the forecasting performance for the two crude
oil prices, Brent andWTI. The results in terms of the error criteria showed that more accurate
forecasts were obtained for the WTI crude oil prices. Similar trends have been reported by
Nademi and Nademi (2018) in their work on predicting the prices of crude oil by using
semiparametric Markov models. Similarly, Karasu and Altan (2022) achieved better LSTM
performance for the WTI crude oil prices by.

Theprice of crude oil is very important in energypolicy.Onadaily basis, various renewable
energy sources are being developed that have a strong complex relationship with crude oil.
When the price and supply of other energy sources change, this has an impact on the oil price
market, making this market uncertain and affecting investor behavior. The present findings
might help solve the problem of handling this uncertainty in short-term decision making. In
further research, it would therefore be interesting to evaluate the effectivity of the produced
crude oil forecasts by assessing the performance of the crude oil portfolio.

7 Conclusions

In this study, we have outlined the blending ensemble learningmodel combining fivemachine
learning regression methods. The results showed that our blending LKDSR model has better
forecasting performance with respect to various error criteria compared to the benchmark
methods used in earlier research. The performance of our proposed model is also robust to
the granularity of oil time series, which is important for industry production decisions. The
results of this study can also guide stakeholders in finding the best investment plan that would
yield profits during the oil crisis.

This research also highlights a number of issues that need further investigation. For oil
markets, our proposed machine learning strategy is shown to be highly effective in modelling
diverse fluctuation patterns. It would be interesting to see how effective it is in different com-
modity and financial markets, such as predicting stock prices, predicting foreign exchange
rates, and predicting the prices of precious metals. For instance, there has long been a boost
to forecasting oil in that one can also infer for gas, but these forecasting models broke down
with the decoupling of oil and gas prices (e.g., Batten et al. (2017)). Some limitations should
be considered. The present study has only investigated univariate crude oil time series prices.
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We have not included other elements such as environmental variables, macroeconomic fac-
tors, and foreign market behavior because our primary focus was on univariate time series
oil price forecasting patterns. Future research will develop forecasting models that will be
informative for decision makers in estimating the impact of political and economic events
that will evolve with the price of Brent and WTI oil on economic policies. In fact, more
determinants could be included in the proposed forecast model in further studies, including
the market sentiment indicators extracted from textual data such as news articles. This would
allow for a more comprehensive representation of the multifaceted drivers influencing crude
oil prices. In a similar way, the EIA’s projections for the price of Brent crude oil can be
used as a trend indicator for future prices. Thus, the forecasting power of the model could be
improved, which opens the possibility of further research in the future. Similarly, a wider set
of diverse machine learning methods could be considered in future research and ensemble
selection (Lessmann et al., 2021) could be applied to select the best subset for the blending
ensemble.
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