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Abstract

We consider spaces of multivariate splines defined on a particular type of simplicial partitions that
e call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with

xactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to
omputing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges.
e use both algebraic and Bernstein–Bézier tools.
2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

SC: 41A15; 13D99; 65D07

eywords: Multivariate spline functions; Dimension of spline spaces; Bernstein–Bézier methods; Cofactor criterion

1. Introduction and preliminaries

For an integer k ⩾ 0, let ∆ be a k-dimensional simplicial complex. That is, ∆ is a collection
of k-dimensional simplices such that if a simplex β ∈ ∆, then all the simplices which are faces
of β are also in ∆, and if β1, β2 ∈ ∆, then β1 ∩ β2 is either empty or a proper face of both β1
and β2. We refer to the simplices of ∆ as the faces of ∆. (For a comprehensive treatment of
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simplicial complexes, we direct interested readers to [12].) To simplify the notation, we use the
term ∆ for both the union of all its simplices and the simplicial complex itself. Furthermore, we
always consider ∆ to be embedded in a k-dimensional real space Rk . For integers 0 ⩽ r ⩽ d,
he space of splines Sr

d (∆) is defined as the set of Cr -smooth piecewise polynomial functions
f degree at most d over ∆. The space Sr

d (∆) is a real vector space. These spline spaces
re used throughout numerical analysis and approximation theory to solve diverse problems
uch as the interpolation and approximation of data, design of curves and surfaces, and, in the
nite element method, for the solution of differential equations, among others. A fundamental
uestion is to determine the dimension of such spaces. The problem has proven to be difficult
ue to the dependency of the dimension on the specific geometry of ∆.

In 1973, Strang [16], published a famous conjecture on the generic dimension of S1
d (∆)

for the bivariate case. A simplicial partition ∆ is said to be generic (with respect to r and d)
provided that for all sufficiently small perturbations of the coordinates of the vertices of ∆ in
Rk , the resulting partition ∆̃ satisfies dim Sr

d (∆̃) = dim Sr
d (∆), see [6] where this definition was

explicitly coined. Although the term generic dimension was not explicitly mentioned by Strang,
he was aware of the fact that the dimension might increase for some particular configurations.
In [3], Alfeld and Schumaker prove a dimension formula for Sr

d (∆), when the polynomial
degree d ⩾ 4r + 1, and ∆ is an arbitrary triangulation. This result was later extended to
d ⩾ 3r + 2 by Hong in [13], and to d ⩾ 3r + 1 for generic triangulations by Alfeld and
Schumaker in [4]. For r < d < 3r + 2, the only dimension known explicitly is the case when

= 1 and d = 4, see [2].
In 1988, Billera, see [7], pioneered the use of algebraic homological methods to study

multivariate splines, and proved the conjecture given by Strang.
For the trivariate case, Alfeld, Schumaker, and Whiteley, see [6], use the Bernstein–

Bézier analysis, algebraic homology, and rigidity theory to give an explicit expression for the
generic dimension of S1

d (∆), for d ⩾ 8.
For the spatial dimension k ⩾ 3, no explicit dimension formula is known for spline

spaces on arbitrary tetrahedral partitions. There are results on upper and lower bounds and
exact dimensions for some specific partitions. For example, in [9], DiPasquale and Villamizar
proved a lower bound for the dimension for splines on tetrahedral stars of a vertex. A natural
generalization of a star of a vertex is a star of a simplex. A star of a simplex τ ∈ ∆ is the set

f simplices in ∆ that contain τ . If a simplicial complex ∆ equals the star of τ , we just call
a star of τ . In this paper, we study stars of a simplex of arbitrary dimension. We call such

tars generalized oranges or oranges.
Recall that a k-dimensional simplicial complex is pure if all its maximal faces are of

imension k.

efinition 1.1 (Generalized Orange). For integers 0 ⩽ i ⩽ k, a (k, i)-orange is a pure
-dimensional simplicial complex O composed of n maximal faces and with exactly one face
of dimension k − i such that every maximal face of O contains τ . We say that τ is a medial

implex.

Note that the two extremal cases are i = 0 and i = k. For i = 0, ∆ = τ is a simplex. For
= k, the medial face τ is a vertex, and ∆ is a star of a vertex. Examples of (3, 2), (2, 1), and

3, 1)-oranges are shown in Figs. 1–3, respectively.
Historically, the term “orange” was introduced in [5] to describe a tetrahedral partition with

xactly one interior edge which is common to all tetrahedra in the partition, see Fig. 1. This

atches our definition of a (3, 2)-orange except that for our purposes the medial edge does

2
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Fig. 1. Example of a (3, 2)-orange O (on the left), and its projection C (on the right). The orange O is a
-dimensional simplicial complex with medial edge τ , which has vertices v0 and v1, and it is common to all
etrahedra in O. The map π projects O onto C, the image of τ is the vertex v0.

ot have to be interior. The dimension for the spline spaces on a (3, 2)-orange with interior
edial edge was found in [5] using the trivariate cofactor method, see [14] for the proof as
ell. In [15], it was noted that the dimension for the spline spaces on a (3, 2)-orange with

nterior medial edge can be computed by adding up the dimensions of bivariate splines on a
lanar vertex star obtained by projecting the orange along the common interior edge.

In this article we generalize the idea of the projection to an i-dimensional star of a vertex,
nd relate the dimension of the spline spaces over a (k, i)-orange O to those over a lower
imensional simplicial complex C, which we call projected orange, see Section 2 for the exact
efinition, by proving the following result.

heorem 1.1. Let C ⊆ Ri be the projected orange of a (k, i)-orange O ⊆ Rk . Then

dim Sr
d (O) =

d∑
j=0

(
d + k − i − j − 1

k − i − 1

)
dim Sr

j (C). (1)

The paper is organized as follows. In Section 2, we construct a projection C of a (k, i)-
range O along the medial face. We prove that the projection C is also a simplicial complex.
n Section 3, we analyze the relation between the space of splines on O and that on C by
sing the so-called cofactor criterion. Finally, we prove our main result, Theorem 1.1, by two
ethods: the algebraic method in Section 4, and the Bernstein–Bézier method in Section 5. The

lgebraic method is based on Hilbert series of spline spaces viewed as filtered vector spaces,
hile the Bernstein–Bézier method uses minimal determining sets and smoothness conditions

n Bernstein–Bézier form.

. Geometry

Since the dimension of the spline space is affinely invariant, without loss of generality, we
mbed a (k, i)-orange O in Rk , and we assume that the medial face τ in O of dimension (k −i)
s in the (k − i)-dimensional coordinate subspace of Rk defined by x = · · · = x = 0. As a
1 i

3
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simplifying assumption, we identify O with its embedding in Rk . For this choice of coordinates,
e define the following projection:

π :Rk
→ Ri ,

(x1, . . . , xk) ↦→

{
(x1, . . . , xi ), if i ⩾ 1;

(0) ∈ R0, if i = 0.

(2)

dditionally, we write C for the collection of sets π (σ ) ⊆ Ri of images under the projection
of the faces σ ∈ O. Namely,

C := π (O) =
{
π (σ ) : σ ∈ O

}
. (3)

e shall refer to C as a projected orange. Note that the projection of the medial face π (τ ) is
he origin O of Ri . We use the following notation throughout this paper.

efinition 2.1. For any X, Y ⊆ Rk , denote by X ∗ Y the join of X and Y which is the union
f all line segments joining the points in X to the points in Y , that is,

X ∗ Y =
{
t x + (1 − t)y : x ∈ X, y ∈ Y, and t ∈ [0, 1]

}
.

or any n subsets X1, . . . , Xn ⊆ Rk , the join X1 ∗ · · · ∗ Xn−1 ∗ Xn is defined as (X1 ∗ · · · ∗

Xn−1) ∗ Xn . If X = {v} and Y = {w}, we simply write v ∗ w instead of X ∗ Y .

emark 1. If both X and Y are simplices, the join X ∗ Y is the convex hull of X ∪ Y , this
roperty does not hold in general. In fact, one may check that the following properties hold:

• X ∗ Y = Y ∗ X , for any X, Y ⊆ Rk ,
• for simplices α, β, ζ ⊆ Rk , we have (α ∗ β) ∗ ζ = α ∗ (β ∗ ζ ), and
• if π is the projection map defined in (2), then

π (X ∗ Y ) = π (X ) ∗ π (Y ), (4)

for any X, Y ⊆ Rk .

efinition 2.2. An affine subspace W ⊆ Rk is a translate of a vector subspace V ⊆ Rk by a
oint p ∈ Rk , i.e, W = {p} + V =

{
p + t(v − p) : v ∈ V, and t ∈ R

}
. The dimension of W

s defined as dim W = dim V . A set of points x0, . . . , xs ∈ Rk is called affinely independent if
x1 − x0, . . . , xs − x0 are linearly independent in Rk . If X ⊆ Rk , the affine span aff(X ) of X in

is the smallest affine subspace of Rk containing X .

Recall that the set of points {p1, . . . , p j } ⊆ Rk is said to be in general position if its affine
pan is an affine subspace of Rk of dimension j − 1. Note that every m-simplex σ ∈ O can
e written as the join of m + 1 points in general position.

emark 2. Notice that for a set of points {p1, . . . , p j } ⊆ Rk , the relation p1 ∗ p2 ∗ · · · ∗ p j ⊆

ff(p1, . . . , p j ) is strict unless j = 1. The join corresponds to the convex hull of the points
p1, . . . , p j .

roposition 2.1. If O is a (k, i)-orange, then the projected orange C defined in (3) is a
implicial complex. Moreover, C is a star of a vertex.
4
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Before we prove Proposition 2.1, we need some preliminary lemmas that will help us verify
hat every element in C is a simplex, every face of a simplex in C is also in C, and that the

intersection of any two elements in C is a face of each of them.

Lemma 2.2. Let O be a (k, i)-orange with the medial simplex τ . The image π (σ ) of a simplex
∈ O is a simplex. Moreover, if σ and τ do not intersect, then π (σ ) and σ have the same

imension. Otherwise, dim(π (σ )) = dim(σ ) − dim(σ ∩ τ ).

roof. For a simplex σ ∈ O, the vertices of σ can always be divided into two sets, one of
hich contains all vertices that are in τ , the other contains those not in τ . This means σ can
e written in the form

σ = α ∗ β, (5)

here α, β are faces of σ such that none of the vertices in α is a vertex of τ , and that β = σ ∩τ .
hen by (4), we have

π (σ ) =

{
π (α), if β = ∅,

π (α) ∗ O, if β ̸= ∅.
(6)

et zi+1, . . . , zk+1 be the vertices of τ . Without loss of generality assume that zk+1 = O .
et p1, . . . , p j be the vertices of α, where j ⩽ i . Then p1, . . . , p j , zi+1, . . . , zk+1 are in
eneral position and p1, . . . , p j , zi+1, . . . , zk are affinely independent in Rk . We claim that
hen

{
π (p1), . . . , π (p j )

}
is also affinely independent. Note that in general the projection

f a affinely independent set of points is not necessarily affinely independent. Let V =

pan{p1, . . . , p j , zi+1, . . . , zk}, and let U = span{zi+1, . . . , zk}. Then dim V = k + j − i ,
nd dim U = k − i . Since U is the (k − i)-subspace containing τ , we have ker(π ) = U , and
im(π (V )) = j . Therefore, the affine span of the set

{
π (p1), . . . , π (p j )

}
is π (V ). This space

s affinely independent.
This shows that both π (α) and π (α)∗O are simplices. Moreover, if β = ∅, then dim π (σ ) =

im π (α). Otherwise, dim(π (σ )) = dim(σ ) − dim(β), and the proof is complete. □

orollary 2.3. The projected orange C is a collection of simplices. A face of an element in
is also in C.

roof. It immediately follows from Lemma 2.2 that every element of C is a simplex. Now
f a simplex ω ∈ C, then by Eq. (3), there is σ ∈ O such that π (σ ) = ω. We may assume
= v1 ∗· · ·∗v j , for vertices vs ∈ Rk and j ⩽ k. Then π (v1 ∗· · ·∗v j ) = π (v1)∗· · ·∗π (v j ) = ω.

hus any face of ω can be written as π (v j1 ) ∗ · · · ∗ π (v jℓ ) = π (v j1 ∗ · · · ∗ v jℓ ) and, hence, by
q. (3), this face is in C. □

emma 2.4. Let v1, v2 be two vertices in O. If neither v1 nor v2 belongs to τ , then
(v1) = π (v2) implies v1 = v2.

roof. Let α1 = v1 ∗ τ and α2 = v2 ∗ τ . Both α1 and α2 are (k − i + 1)-faces in O and
⊆ α1 ∩ α2. Since O is a simplicial complex and dim τ = k − i , then there are only two

ossibilities:

τ = α ∩ α or α = α . (7)
1 2 1 2
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Let zi+1, . . . , zk+1 be the vertices of τ , where we again assume that zk+1 is the origin. Since
π (v1) = π (v2), we note that v1 − v2 is in the (k − i)-dimensional coordinate space spanned
by τ . Thus

v1 − v2 = β1zi+1 + · · · + βk−i zk . (8)

ithout loss of generality, we assume that the first j coefficients
{
βℓ

} j
ℓ=1 are negative, while

he remaining k − i − j coefficients
{
βℓ

}k−i
ℓ= j+1 are non-negative. We next rewrite (8) as follows:

v1 − β1zi+1 − · · · − β j zi+ j = v2 + β j+1zi+ j+1 + · · · + βk−i zk = v. (9)

et m =

(
1 +

∑k−i
ℓ=1 |βℓ|

)−1
, and let u = mv.

Since u can be written as two different convex combinations, one in the vertices of α1 and
second in the vertices of α2, then u ∈ α1 ∩ α2. From (9), it follows that u /∈ τ , so by (7) we
ust have α1 = α2, and hence v1 = v2. □

orollary 2.5. Let ω ∈ C such that the origin O is not contained in ω. Then there exists a
nique α ∈ O such that π (α) = ω.

roof. The existence is immediate from the definition of C. Assume there are two simplices α

nd α′ in O such that π (α) = π (α′) = ω. Since O /∈ ω, we have α∩τ = ∅, and α′
∩τ = ∅. Then

y Lemma 2.2, dim(α) = dim(α′) = dim(ω) =: j . We may assume α = p1 ∗ · · · ∗ p j and α′
=

p′

1∗· · ·∗ p′

j for vertices ps’s and p′
t ’s in O. Hence π (p1)∗· · ·∗π (p j ) = π (p′

1)∗· · ·∗π (p′

j ) = ω.
herefore, possibly after a permutation, π (pℓ) = π (p′

ℓ) for all ℓ = 1, . . . , j . By Lemma 2.4,
his implies pℓ = p′

ℓ for all ℓ = 1, . . . , j , and α = α′. □

orollary 2.6. Let ω ∈ C, and let the origin O be contained in ω. Then there is a unique
ace σ ∈ O such that π (σ ) = ω and τ ⊆ σ .

roof. By Corollary 2.3, every face ω of C is a simplex, so we may assume ω = θ ∗ O , where
O ̸∈ θ and θ is also a face of C. By Corollary 2.5, there is a face α ∈ O such that π (α) = θ .

ence, π (α ∗ τ ) = ω. So we can take σ = α ∗ τ . To prove the uniqueness, assume there is a
ace σ ′ such that π (σ ′) = ω and τ ⊆ σ ′. Then we can write σ ′

= α′
∗ τ for some α′

∩ τ = ∅.
hen π (α′) = θ . Corollary 2.5 implies α = α′. Hence, σ = σ ′. □

The next corollary is an immediate consequence of Lemma 2.2 and Corollary 2.6. We are
oing to use it in Section 3.

orollary 2.7. There is a one-to-one correspondence between the maximal faces of an orange
and the maximal faces of its projection C.

roof. If σ ∈ O is a maximal face then the medial simplex τ ⊆ σ , and so Lemma 2.2 implies
hat π (σ ) is a simplex of dimension i . The existence and uniqueness of σ ∈ O for every

aximal face of C follow from Corollary 2.6. □

emma 2.8. For any two faces σ1, σ2 ∈ O containing τ , we have

π (σ1) ∩ π (σ2) = π (σ1 ∩ σ2). (10)

n particular, (10) implies that π (σ ) ∩ π (σ ) ∈ C in this case.
1 2

6
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Proof. We only need to prove π (σ1) ∩ π (σ2) ⊆ π (σ1 ∩ σ2). Let b ∈ π (σ1) ∩ π (σ2), and let
̸= O . Then there exist a1 ∈ σ1 and a2 ∈ σ2 such that b = π (a1) = π (a2). If either a1 ∈ σ1∩σ2

r a2 ∈ σ1 ∩ σ2 then b ∈ π (σ1 ∩ σ2), and we are done. Suppose that neither a1 nor a2 is in
1 ∩ σ2. Then (a1 ∗ τ ) ∩ σ2 = τ and (a2 ∗ τ ) ∩ σ1 = τ . Since (a1 ∗ τ ) ∩ (a2 ∗ τ ) ⊆ σ1 ∩ σ2, we
ave

(a1 ∗ τ ) ∩ (a2 ∗ τ ) = (a1 ∗ τ ) ∩ (a2 ∗ τ ) ∩ σ1 = τ.

ithout loss of generality, we may assume that x1(b) = 1 and x2(b) = · · · = xi (b) = 0. Note
hat a1 ∗τ and a2 ∗τ are in the same (k−i +1)-subspace V ⊆ Rk defined by x2 = · · · = xi = 0.
y a similar reasoning as in the proof of Lemma 2.4, we get τ ̸= (a1 ∗ τ ) ∩ (a2 ∗ τ ), which is
contradiction. Therefore, the hypothesis that neither a1 nor a2 is in σ1 ∩ σ2 is false. □

orollary 2.9. For any two faces α, σ ∈ O such that α ∩ τ = ∅, we have

π (α) ∩ π (σ ) = π (α ∩ σ ).

n particular, π (α) ∩ π (σ ) ∈ C in this case.

roof. We only need to show that π (α) ∩ π (σ ) ⊆ π (α ∩ σ ). Note that σ = α′
∗ β ′ such

hat α′
∩ τ = ∅ and β ′

⊆ τ . Since O is a simplicial complex, then α ∩ σ = α ∩ α′,
nd (α ∗ τ ) ∩ (α′

∗ τ ) = (α ∩ α) ∗ τ . By Lemma 2.8, we have that π (α ∩ α′) ∗ π (τ ) =

π (α)∗π (τ ))∩(π (α′)∗π (τ )). This means that for any b ∈ π (α)∩π (σ ), it holds b ∈ π (α∩α′)∗O .
o we can assume that b is on the line segment b′O , where b′

∈ π (α∩α′). This implies that both
and b′ are in π (α). Since O ̸∈ π (α), then b = b′. This shows π (α) ∩ π (σ ) = π (α ∩ σ ). □

emma 2.10. For any ω1, ω2 ∈ C, we have ω1 ∩ ω2 ∈ C.

roof. If O ̸∈ ω1, then by Corollary 2.5, there exists a unique α ∈ O such that π (α) = ω1.
et σ be a face in O such that π (σ ) = ω2. By Corollary 2.9 we have that ω1 ∩ω2 = π (α ∩σ ),
nd so ω1 ∩ ω2 ∈ C.

If O is in both ω1 and ω2, then by Corollary 2.6, there exists σl ∈ O such that π (σl) = ωl

nd τ ⊆ σl , for l = 1, 2 respectively. By Lemma 2.8, it follows ω1 ∩ω2 = π (σ1 ∩σ2) ∈ C. □

Now we are ready to prove Proposition 2.1.

roof of Proposition 2.1. The fact that C is a simplicial complex follows from Corollary 2.3
nd Lemma 2.10. Note that O is the only interior vertex of C and every facet of C contains

O , so C must be the star of the vertex O . □

. Cofactors

In this section and thereafter, we use the notion of filtered vector spaces. Recall (for example,
rom [11]) that a filtered vector space is a vector space V with a nested sequence of subspaces
Vd ⊆ V : d = 0, 1, 2, . . .

}
such that

{0} ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · ·

nd that

V =

⋃
Vd .
d⩾0

7
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In this article, we always assume Vd is finite dimensional for each d. Let ∆ be a fixed finite
-dimensional triangulation of a domain Ω ⊆ Rk . If r ⩾ 0 is an integer, the total spline space
ver ∆ is defined as

Sr (∆) =

⋃
d⩾0

Sr
d (∆), (11)

here Vd = Sr
d (∆). In particular, Sr (∆) is a filtered vector space. Denote by ∆ j the set of

j-dimensional faces (or j-faces) of ∆, for 0 ⩽ j ⩽ k. We say that two k-faces σ, σ ′
∈ ∆k are

aximal adjacent faces, or simply adjacent, if their intersection is a (k − 1)-face of ∆ i.e., if
and σ ′ share (or have in common) a (k − 1)-face of ∆.
We recall from [7] that f = ( fσ : σ ∈ ∆k) ∈ Sr (∆) if and only if for every pair σ, σ ′

∈ ∆k

uch that σ ∩ σ ′
= ε ∈ ∆k−1 there exists a polynomial cε such that fσ − fσ ′ = cε · ℓr+1

ε ,
here ℓε is the linear polynomial defining the hyperplane containing ε. This result is called

he cofactor criterion for Cr -splines.
As before, we denote by O a (k, i)-orange. We embed O in Rk , and up to a change of

oordinates assume that the medial simplex τ of O satisfies x1 = · · · = xi = 0. In these
oordinates, we consider the projection π along τ given in (2). We denote by C the image of

by π , as defined in (3).
The orange O is by definition a k-dimensional simplicial complex (see Definition 1.1), and

roposition 2.1 implies that C is an i-dimensional simplicial complex. Following the notation
bove, we denote by Ok the set of k-dimensional (or maximal) faces of O.

The following proposition shows how the total Cr -spline spaces over O and C are related.
s usual, we denote by R[x1, . . . , xn] the set of polynomials in the variables x1, . . . , xn with

oefficients in R.

roposition 3.1. For any integer r ⩾ 0, the total spline space over O satisfies

Sr (O) ≃ Sr (C) ⊗R R[xi+1, . . . , xk], (12)

here “≃” means the two sides are isomorphic as filtered vector spaces, that is, for each
egree d

Sr
d (O) ≃ (Sr (C) ⊗R R[xi+1, . . . , xk])⩽d ,

here “≃” is an isomorphism between vector spaces, and the space (Sr (C)⊗RR[xi+1, . . . , xk])⩽
s spanned by{

(g, h) ∈ Sr (C) ⊗R R[xi+1, . . . , xk] : deg g + deg h ⩽ d
}
.

roof. By Corollary 2.7, the projection π establishes a bijective correspondence between the
aximal faces of O and those of C. Hence, every spline g ∈ Sr (C) can be written as the tuple

g =
(
gπ (σ ) : σ ∈ Ok

)
, where gπ (σ ) = g|π (σ ) ∈ R[x1, . . . , xi ]. Let R = R[x1, . . . , xk], and

onsider the map

ϕ : (Sr (C) ⊗R R[xi+1, . . . , xk])⩽d →

⨁
σ∈Ok

R,

(g, h) ↦→
(
hgπ (σ ) : σ ∈ Ok

)
.

otice that Sr
c (O) ⊆

⨁
σ∈Ok

R. We want to show that ϕ is an isomorphism of vector spaces
nd Im ϕ = Sr (O).
d

8
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It is clear that ϕ is R-linear and it is injective because Sr (C) ⊆ R[x1, . . . , xi ], so none of the
ariables xt for t > i is involved in the polynomials gπ (σ ). First we show that Im ϕ ⊆ Sr

d (O).
Let g ∈ Sr (C). Then, for any h ∈ R[xi+1, . . . , xk], and any pair of adjacent faces σ, σ ′

∈ Ok
uch that σ ∩ σ ′

= ε ∈ Ok , the cofactor criterion implies hgπ (σ ) − hgπ (σ ′) = hcπ (ε) · ℓr+1
π (ε), for

ome polynomial cπ (ε) ∈ R[x1, . . . , xi ], where ℓπ (ε) is the linear polynomial vanishing on π (ε).
otice that by construction, the (k−1)-face ε contains the medial simplex τ of O. Consequently,

he linear polynomial ℓε vanishing on ε is in R[x1, . . . , xi ], and hence ℓπ (ε) = ℓε. Therefore,
(g, h) ∈ Sr (O). By filtering on the degree we have that deg ϕ(g, h) ⩽ d. This shows that

m (ϕ) ⊆ Sr
d (O).

We now prove that imϕ ⊇ Sr
d (O). Let f = ( fσ : σ ∈ Ok) ∈ Sr

d (O), where f |σ = fσ ∈ R
nd deg fσ ⩽ d. Notice that we can rewrite each fσ as a polynomial in xi+1, . . . , xk with
oefficients in R[x1, . . . , xk]. More precisely, we have

fσ =

∑
j∈Zk−i

⩾0 , | j |⩽d

a j ,σ y j , for a j ,σ ∈ R[x1, . . . , xi ],

here y = (xi+1, . . . , xk), and for a tuple of non-negative integers j = ( ji+s)k−i
s=1 we write

j | =
∑k−i

s=1 js and y j
= x ji+1

i+1 · · · x jk
k . Then, if a j =

(
a j ,σ : σ ∈ Ok

)
, we can write

f =

∑
j∈Zk−i

⩾0 , | j |⩽d

a j y j , (13)

here deg a j = max{deg a j ,σ : σ ∈ Ok}. We prove that a j ∈ Sr (C) for every tuple j ∈ Z⩾0
n (13) as follows. Notice that for adjacent faces σ and σ ′ as above, we have that fσ − fσ ′ =

ε · ℓr+1
ε , and we can write

cε =

∑
j∈Zk−i

⩾0 , | j |⩽d

b j ,ε · y j , where b j ,ε ∈ R[x1, . . . , xi ].

hus,

fσ − fσ ′ =

∑
j∈Zk−i

⩾0 , | j |⩽d

(b j ,εℓ
r+1
ε ) · y j

=

∑
j∈Zk−i

⩾0 , | j |⩽d

(a j ,σ − a j ,σ ′ ) y j .

ence, for every j ∈ Z⩾0, we have a j ,σ − a j ,σ ′ = b j ,εℓ
r+1
ε , which implies that a j ∈ Sr (C).

ote that deg fσ ⩽ d, so deg a j + | j | ⩽ d. This shows that Im ϕ ⊇ Sr
d (O), and it completes

he proof. □

One immediate consequence of Proposition 3.1 is that the algebraic structure of Sr
d (O) only

epends on that of Sr (C) and the (k − i)-subspace in which the medial simplex τ lies. Note
hat the projection map π only depends on the (k − i)-subspace containing τ , we have the
ollowing corollary.

orollary 3.2. Let O and O′ be two (k, i)-oranges with medial simplices τ and τ ′,
espectively. If τ, τ ′ lie in the same (k − i)-subspace and the projected oranges C = C ′, then
or any degree d,

Sr
d (O) ≃ Sr

d (O′).

n particular,
r r ′
dim Sd (O) = dim Sd (O ).

9
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Proof. By Proposition 3.1 it is clear that both Sr
d (O) and Sr

d (O′) are isomorphic to (Sr (C) ⊗R
[xi+1, . . . , xk])⩽d . Therefore, they are isomorphic and have the same dimension. □

. Hilbert series

In this section we prove the main result in this paper, Theorem 1.1.
For any simplicial complex ∆ and any order of smoothness r ⩾ 0, we can see Sr (∆) as

filtered vector space for the sequence of spline spaces {0} ⊆ Sr
0(∆) ⊆ Sr

1(∆) ⊆ · · · . By
efinition, see for example [8] or [10], the Hilbert series Hilb

(
Sr (∆), t

)
of Sr (∆) is given by

Hilb
(
Sr (∆), t

)
=

∞∑
d=0

dim Sr
d (∆) td .

ollowing the notation in previous sections, if 0 ⩽ i ⩽ k we denote by O a (k, i)-orange and by
the image of O by the projection π :Rk

→ Ri in (2). The following result is a consequence
f Proposition 3.1 and relates the Hilbert series of the spline spaces Sr (O) and Sr (C).

orollary 4.1. If O is a (k, i)-orange and C = π (O) as defined in (3), then

Hilb
(
Sr (O), t

)
=

1
(1 − t)k−i

Hilb
(
Sr (C), t

)
. (14)

roof. By Proposition 3.1, we know that Sr (O) = Sr (C) ⊗R R[xi+1, . . . , xk] and Sr
d (O) ∼=

Sr (C)⊗RR[xi+1, . . . , xk])⩽d for every d ⩾ 0. We will prove (14) by induction on the variables
xi+ j for 1 ⩽ j ⩽ k − i . Define φ :

(
Sr (C) ⊗R R[xi+1]

)
d → Sr

d (C) by taking φ
(
xi+1

)
= 0. Then,

erd (φ) =
(
Sr (C) ⊗R R[xi+1]

)
d−1 · xi+1 ∼=

(
Sr (C) ⊗R R[xi+1]

)
d−1. This holds for every degree

⩾ 0, and therefore it implies

Hilb(ker(φ), t) = Hilb
(
Sr (C, t) ⊗R R[xi+1], t

)
· t, (15)

here ker(φ) is the filtered vector of kerd (φ). But φ is surjective and linear, hence dim kerd (φ)+
im Sr (C)d = dim

(
Sr (C) ⊗R R[xi+1]

)
d , and this together with (15) yields

Hilb
(
Sr (C) ⊗R R[xi+1], t

)
(1 − t) = Hilb(Sr (C)).

ince R[xi+1, . . . , xk] ∼= R[xi+1] ⊗R · · · ⊗R R[xk], and Sr (O) = Sr (C) ⊗R R[xi+1, . . . , xk], we
asily see by induction that Hilb

(
Sr (O), t

)
(1 − t)k−i

= Hilb
(
Sr (C), t

)
, which proves (14). □

Theorem 1.1 can be proved from Corollary 4.1 as follows.

roof (Proof Theorem 1.1). Notice that we can rewrite

1
(1 − t)k−i

=

∞∑
j=0

(
k − i − 1 + j

j

)
t j .

Thus, by Corollary 4.1, we have

∞∑
d=0

dim Sr
d (O)td

=

⎛⎝ ∞∑
j=0

(
k − i − 1 + j

j

)
t j

⎞⎠ ·

⎛⎝ ∞∑
j=0

dim Sr
j (C)t j

⎞⎠ ,
10
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which implies

dim Sr
d (O) =

∑
j+l=d
j, l⩾0

(
k − (i + 1) + l

l

)
dim Sr

j (C)

=

d∑
j=0

(
d + k − i − j − 1

k − i − 1

)
dim Sr

j (C),

or every degree d ⩾ 0. □

Note that for the extremal cases, i = 0 and i = k, Theorem 1.1 trivially holds. Indeed, in
he case i = 0, the orange O = τ is a simplex, C is a point, and

dim Sr
d (O) =

d∑
j=0

(
d + k − j − 1

k − 1

)
=

(
d + k

k

)
.

or i = k, we know that O = C. In this case, formula (1) is just the trivial identity
im Sr

d (O) = dim Sr
d (C).

. Bernstein–Bézier techniques

The idea is to use Corollary 3.2 to transform O into a special O′ constructed from the
rojection C, so that its geometric structure allows to “lift” the Bernstein–Bézier basis on
he projected orange C to a Bernstein–Bézier basis in O′. The main advantage of Bernstein–
ézier techniques is the tool called domain points that essentially replaces basis functions
ith points located in specified positions in each simplex. We assume familiarity of the reader
ith basic Bernstein–Bézier concepts, and refer to [14] for a comprehensive treatment of the
ivariate and trivariate cases as well as to a survey paper [1].

Recall that by assumption the medial face τ of O is in the plane x1 = · · · = xi = 0.
ithout loss of generality assume that the first vertex v0 of τ is at the origin O , and the

emaining vertices are v1, . . . vk−i . We also assume that C is embedded in the subspace
xi+1 = · · · = xk = 0, and its only interior vertex is located at O . We construct O′ as follows:

O′
:= C ∗ τ =

{
ω ∗ v1 ∗ · · · ∗ vk−i : ω ∈ C

}
.

It is easy to verify that O′ is also a (k, i)-orange. It has the same medial simplex τ as O, and
its projected orange C ′ equals C.

The set of all domain points in τ for a polynomial of degree at most d in (k − i) variables
is given by:

Dτ
:=

{
ξ τ

j0, j1..., jk−i
= ( j1v1 + · · · + jk−iv jk−i )/d : j0 + j1 + · · · + jk−i = d

}
.

Next we define a family of scaled versions of C as follows

C j := ( j/d) C, for j = 0, . . . , d,

where if j = 0, the projected orange C scales to the origin. Let ω be a maximal simplex in C
with the first vertex u0 at the origin O , and the remaining vertices u1, . . . ui . We also define a
family of scaled versions of ω as follows
ω j := ( j/d) ω, for j = 0, . . . , d,

11
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where if j = 0, the simplex ω scales to the origin. The set of all domain points in ω j for a
olynomial of degree at most j in i variables is given by:

Dω
j :=

{
ξ

ω, j
ℓ0,ℓ1...,ℓi

=
j
d

(ℓ1u1 + · · · + ℓi ui )/j = (ℓ1u1 + · · · + ℓi ui )/d :

ℓ0 + ℓ1 + · · · + ℓi = j
}

.

he purpose of the following lemma is to show that the domain points in O′ can be split into
arallel layers orthogonal to τ , and, thus, the smoothness conditions for a spline in Sr

d (O′) can
e also split into independent blocks.

emma 5.1. Let D′ be the set of all domain points for a spline in S0
d (O′). Then D′ can be

ifted from the domain points in C as follows:

D′
=

d⋃
j=0

{
∪ω∈CDω

j + ξ j, j1, j2,..., jk−i : ξ j, j1, j2,..., jk−i ∈ Dτ
}
.

roof. Let σ be a maximal simplex in O′. Therefore, σ = ω ∗ τ for some maximal simplex
∈ C. Let ηm0,...,mk , m0 + · · · mk = d be an arbitrary domain point in D′

∩ σ . Without loss of
enerality, assume that the first vertex u0 of ω is at the origin, the next i vertices u1, . . . , ui

re in C, and the last (k − i) vertices v1, . . . , vk−i are in τ . Then

ηm0,...,mk =(m1u1 + · · · + mi ui + mi+1v1 + · · · + mkvk−i )/d

= (m1u1 + · · · mi ui )/d + (mi+1v1 + · · · + mkvk−i )/d

=: ξω, j
m0,m1,...,mi

+ ξ τ
j,mi+1,...,mk

,

where for j = d − mi+1 − · · · − mk , we have ξ
ω, j
m0,m1,...,mi ∈ Dω

j , and ξ τ
j,mi+1,...,mk

∈ Dτ , since
j + mi+1 + · · · mk = d.

Conversely, for 0 ⩽ j ⩽ d , ℓ0 + ℓ1 + · · · + ℓi = j , and j + j1 + · · · + jk−i = d , consider

ξ
ω, j
ℓ0,ℓ1,...,ℓi

+ ξ τ
j, j1,..., jk−i

= (ℓ1u1 + · · · + ℓi ui )/d + ( j1v1 + · · · + jk−1vk−i )/d

= (ℓ1u1 + · · · + ℓi ui + j1v1 + · · · + jk−1vk−i )/d = ηℓ0,ℓ1,...,ℓi , j1,..., jk−i ,

since ℓ0 + ℓ1 + · · · + ℓi + j1 + · · · + jk−i = j + d − j = d , and the simplex in O′ in Rk has
(k + 1) vertices O, u1, . . . , ui , v1, . . . , vk−i . □

Before proving our next result, we demonstrate the approach on two examples. The first
one is a (2, 1)-orange O′ depicted in Fig. 2. The smoothness conditions for a spline in Sr

3(O′)
are easily seen to be the same as for a univariate spline of smoothness r on C: a partition
of an interval with one node. Moreover, dim Sr

3(O′) =
∑3

j=0 dim Sr
j (C). Our next example is

a (3, 1)-orange O′ depicted in Fig. 3. Here again, the smoothness conditions for a spline in
Sr

3(O′) are the same as for a univariate spline of smoothness r on C: a partition of an interval
with one node. Moreover,

dim Sr
3(O′) =

3∑
j=0

(4 − j) dim Sr
j (C).
12
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Fig. 2. Four parallel layers of domain points forming D′ for S1
3 on a (2, 1)-orange with the associated spaces of

nivariate splines Sr
j (C j ), for j = 0, 1, 2, 3, and C = [−1, 0] ∪ [0, 1].

Fig. 3. Domain points for S0
3 (O′): large dots are the domain points in τ ; small dots are the domain points on

shifts of C j , j = 0, . . . , 3.

Theorem 5.2. For each 0 ⩽ j ⩽ d, let M j be a minimal determining set for a spline in
Sr

j (C j ). Then the minimal determining set M′ for a spline in Sr
d (O′) is given by

M′
=

d⋃
j=0

{
M j + ξ j, j1,..., jk−i : ξ j, j1, j2,..., jk−i ∈ Dτ

}
.

oreover, the dimension of Sr
j (C j ) can be computed by adding the corresponding cardinalities

s follows:
d∑

j=0

(
d + k − j − i − 1

k − i − 1

)
|M j |. (16)

roof. Lemma 5.1 implies that the domain points in D′ lie on parallel layers that are shifts
of C j by a vector ξ j, j1, j2,..., jk−i that is orthogonal to C j . Thus, all smoothness conditions for

spline in Sr
d (O′) are essentially i-dimensional, not k-dimensional, see Fig. 2 and 3. In fact,

hey are exactly the same as the ones for Sr
j (C) for all j = 0, . . . , d. We now assume that we

now Bernstein–Bézier bases for Sr
j (C) for all j = 0, . . . , d . If we scale C, these Bernstein–

ézier bases do not change since they are affine invariant. Thus, we know the corresponding
r
inimal determining sets M j for a spline in S j (C j ), for j = 0, . . . , d. We assume that if

13
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h

D

R

j = 0, we have one point in the corresponding MDS. Thus, we only need to count the number
of C j layers to complete the proof. Since j + j1 + · · · + jk−i = d, for each 0 ⩽ j ⩽ d, we

ave
(d+k− j−i−1

k−i−1

)
layers of C j , and (16) follows. Note that (16) is equal to (1). □
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