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A dense suspension of the cornstarch flowing on a very inclined wall finally forms some ridge-like patterns of
the free surface. The onset of pattern formation is the primary target to elucidate the mechanism. In this
work, based on the continuity of fluids and the force balance, we show that the flat free surface is unstable when
the second normal stress difference N2 is negatively proportional to shear stress and the gravity component
perpendicular to the wall is weak enough. Such instability is inevitable to grow into a ridge-like surface profile
oriented parallel to the flow direction. We use the instability criterion to predict the critical slope angle for
the formation of ridge patterns. The estimated critical angle was found to be in agreement with experimental
observations for a cornstarch suspension.

I. INTRODUCTION

The thin liquid film flowing down on an inclined plane
(windowpane, guttering, slope, etc.) driven by gravity
is common in our daily lives. The most fascinating phe-
nomenon here is that some regular wave patterns or mor-
phogenesis of the free surface appear. To understand the
mechanism behind is related to the flowing instability
indicated in the nonlinearity or the coupling of the gov-
erning equations, which is usually related to the fluid
properties. The inertia, capillary, and surface-tension
gradient are essential to such pattern formations for New-
tonian fluids. A review paper by Craster and Matar 1

has addressed these points comprehensively. For non-
Newtonian fluids, the morphogenesis is even more diverse
and complex.

In suspensions, a surface wave called roll wave has been
observed in experiments with an inclined angle 2,3. The
flow instability generating the dynamic pattern is demon-
strated to be different from the classical Kapitza insta-
bility by inertia 4. Such instability is of purely rheologi-
cal origin, i.e., caused by discontinuous shear thickening
(DST), where the negative slope in the stress vs. shear
rate curve is the key to the criterion of the instability 3.

Besides the DST, another property of dense suspen-
sions is the presence of normal stress difference 5. For
general non-Newtonian fluids, the normal stress differ-

ences are detected by normal force via the rheometer
with parallel-plate and cone-and-plate geometries. It is
well known that normal stress differences can distort the
free surface. The most famous example is the classical
Weissenberg effect, i.e., the first normal stress difference
(N1 := σ11 − σ22, where the 1, 2, and 3 denote the di-
rection of ‘flow,’ ‘gradient,’ and ‘vorticity,’ respectively)
forms a rod climbing shape of the free surface around a
rotating cylinder 6.
The second normal stress difference (N2 := σ22 − σ33)

is also reported to cause a curved steady profile of
the free surface by Tanner 7 and Sturges and Joseph 8

about fifty years ago. The relation for N2 is even de-
signed to estimate the normal stress functions by de-
tecting the steady height profile with cameras. Particle-
scale surface deformation observed with suspensions flow-
ing on an inclined plane also implies the presence of
normal stresses 9. Zarraga, Hill, and Leighton 10 found
N1/(βτ) = −0.15 ± 0.05 and N2/(βτ) = −0.54 ± 0.03,
where τ = σ12, and β = 2.17ϕ3e2.34ϕ with the solid vol-
ume fraction ϕ. Singh and Nott 11 used parallel-plate and
Couette geometries to measure N2/τ , which are slightly
larger than the above results at ϕ = 0.45. Dai et al. 12

then show that the best fits, in the range 0.1 ≤ ϕ ≤ 0.45,
are N1/τ = −0.8ϕ3 and N2/τ = −4.4ϕ3, respectively.
However, some factors can lead to systematic errors in
the measurement of normal stresses, such as the pres-
sure transducers, nonflush pressure holes of apparatuses,
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and the drowned edge used in the parallel-plate mea-
surements 6. Normal stress differences for dilute or non-
dense suspensions (ϕ ≲ 0.2) are difficult to measure since
they are much smaller than the shear stress. Because
there are some difficulties in the measurements of nor-
mal stress differences in experiments, using a different
combination of test methods is necessary to guarantee
the validity of experimental measurements. Cwalina and
Wagner 13 observed N1/τ and N2/τ to be functions of
ϕ in experiments. Such ratios were assumed by Morris
and Boulay 14 in their particle migration model. Later,
Timberlake and Morris 9 used the model to satisfactorily
explain experimental observations of the particle migra-
tion in fully-developed suspension flows on an inclined
plane. More details for the normal stress differences of
non-colloidal suspension can be found in Tanner’s review
paper 15. The importance of the second normal stress
difference is also highlighted by Maklad and Poole 16 .

Complementally, obtaining the normal stress differ-
ences in simulations is more straightforward. Sierou and
Brady 17 used accelerated Stokesian Dynamics to study
the normal stress differences and the particle pressure of
a monodisperse non-Brownian suspension with hydrody-
namic interactions and a weak interparticle force under
simple shear flow. Recently, contact friction has been rec-
ognized to play a major role in dense suspensions 18. Mari
et al. 19 and Gallier et al. 20 showed that friction of par-
ticles notably increases the viscosity and N2 but affects
N1 relative to the shear stress less significantly, which
is closer to the experimental results 20. The nearly pro-
portional relation between normal stress differences and
shear stress is also observed in simulations 21,22. Data, in-
cluding experiments and simulations, were collected from
different references, which is shown in a recent review pa-
per by Guazzelli and Pouliquen 23 (see also Fig. 2).

The coupling between the normal stress difference and
shear stress would be important to understand the com-
plex flow. Therefore, inspired by Tanner’s work 7, N2 is
assumed to be a critical factor in understanding the ridge
patterns in dense suspensions. One natural question is to
determine the evolution of the flow from the initial flat
configuration to the steady configuration based on the
rheological properties of suspensions so that we can know
the details of flowing dynamics throughout. However, the
inclined flow field will be much more complicated as there
will be more distortions of the free surface. It is worth
mentioning that N2 is well defined in a standard simple
shear flow and not invariant under a change of coordi-
nates. For instance, in a flow with a highly distorted free
surface, we would need N2 in a local coordinate24 rather
than the global coordinate system in Fig. 1 (a). Also, the
particle migration may become significant for fully de-
veloped flows 9. This is why we focus on the very early
stage of the pattern formation, where the free surface is
nearly flat so that the local coordinate coincides with the
global coordinate we used, and the particle migration is
negligible. In this special case, we are able to use the
linear instability analysis, which is powerful in analyz-

ing the pattern formations of free surfaces 1 and even for
complex bioconvection patterns 25. Therefore, we do not
determine fully-developed surface profiles in this work.
If we are able to reproduce the evolution of the flow

near the initial flat configuration, we can answer two
questions in a concise way: 1. Why can the cornstarch
suspension distort from the initial flat configuration along
the perpendicular direction of flow (see Fig. 1)? 2. What
is the critical angle of inclination to destabilize the initial
flat configuration?
The pattern formation process starts from a distortion

fluctuation of a flat surface, and then the free surface
keeps distorting with some instabilities. Therefore, iden-
tifying the underlying instability is prior to explaining
the pattern formation. In this work, we predict the criti-
cal angle (θc) to form the ridge flow based on N2 by linear
instability analysis. In section II, we describe the experi-
mental setup. In section IIIA, the continuity equation of
fluids with the free surface is introduced. In section III B,
the force balance equation related to the free surface pro-
file is determined by the lubrication theory. Section III C
addresses the linear relation between N2 and shear stress,
the constitutive relation used in this work. In section IV,
by combining the ingredients demonstrated in the Sec.
III, the origin of the instability can be identified to ob-
tain the θc.

II. EXPERIMENT

Cornstarch suspension was prepared by mixing corn-
starch particles with 99.5% glycerol. The solid volume
fraction was calculated following the equation 26:

ϕ =
(1− β)mcs/ρcs

(1− β)mcs/ρcs +ml/ρl + βmcs/ρw
(1)

where β ≈ 0.13 accounts for the fraction of the measured
‘cornstarch’ mass occupied by water due to humidity, mcs

is the measured mass of cornstarch, ρcs ≈ 1620 kgm−3 is
the density of cornstarch, ml is the measured mass of the
solvent, ρl ≈ 1260 kgm−3 is the glycerol solvent density,
and ρw ≈ 998 kgm−3 is the density of water. A sample
with cornstarch mass fraction xm ≈ 0.50 and the solid
volume fraction of ϕ ≈ 0.37 was prepared, which appears
to be continuous shear thickening (CST), but not DST
as expected (details in Appendix A).
The sample was left to rest for 1 hour with intermit-

tent mixing. Then, the suspension was transferred to an
inclined plane setup consisting of a perspex tray mounted
on a rotating axis. The suspension was allowed to settle
in a uniform layer with an average film depth of approx-
imately 9mm. The dimensions of the flow plane were
30 cm width and 100 cm length. Inclined flow experi-
ments were carried out in increments of 2.5◦. The sur-
face of the flowing film was filmed with a camera (Nikon
1 J4) mounted above the plane. Fig. 1 (a) illustrates the
coordinate system and tilt angle. The experiment com-
menced by quickly tilting the plane to the desired angle.
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FIG. 1: (a) Sketch of ridge and coordinate system. (b)–(d) Time series of ridge formation with 10 s duration
between frames. The flow was from top to bottom. θ = 87.5◦, ϕ ≈ 0.37, and the scale bar is 5 cm. The characteristic

length between ridges is denoted L, and the characteristic thickness scale H is the initial thickness of the film.

The undulation of the surface is visible by the degree of
light reflection.

At low θ, the surface remained flat and unperturbed
during the ensuing gravity-driven flow down the in-
cline. At high θ, the surface was unstable, and ridges
formed running parallel to gravity and the flow direction.
Fig. 1 (b)–(d) exhibit a time series of one experiment at
θ = 87.5◦, showing the gradual emergence and growth of
the ridge pattern.

In our experiments with increasing θ, the ridge pattern
was first observed at θ = 77.5◦, so we conclude that the
critical angle is in the range 75.0◦ < θc < 77.5◦ for this
experiment.

III. PROBLEM FORMULATION

The ridge pattern in Fig. 1 was obtained for ϕ ≈ 0.37,
which corresponds to the CST regime for the dense sus-
pension. Note that no roll waves, which are a signature
of the DST rheology requiring a higher ϕ, were observed.
While cornstarch suspensions are known for their DST
behavior, it is clear that the ridge instability is not caused
by DST directly. We hypothesize that the instability is
a consequence of the second normal stress difference N2.

In this work, we focus on the instability along the y
direction, i.e., the free surface will only distort on the y-
z plane. Therefore, we consider translational symmetry
along the x direction (see the illustration in Fig. 1 (a)).
As a consequence, the pressure scalar, velocity vector,
and stress tensor of suspensions are functions of coordi-
nate y and z only, i.e., p = p(y, z, t), v = v(y, z, t), and
τ = τ (y, z, t). The free surface configuration is defined
by z = h(y, t).

A. Continuity equation of fluids with the free surface

First of all, the law of conservation of mass for incom-
pressible fluids is

∇ · v = 0. (2)

Integrating both sides of eq. (2) in z, one has

0 =

∫ h

0

∂vy
∂y

dz +

∫ h

0

∂vz
∂z

dz

=
∂

∂y

∫ h

0

vydz − vy|z=h
∂h

∂y
+ vz|z=h, (3)

where the non-slip boundary condition vz|z=0 = 0 is used
since the fluids contact the wall is stationary if there is
no slip of the fluids. On the other hand, the material
points move and deform on the free surface. On the free
surface, one has

0 =
D

Dt
(z − h(y, t)) = vz|z=h−

(
∂h

∂t
+ vy|z=h

∂h

∂y

)
, (4)

where D/Dt is the material derivative. Combined
eqs. (3) and (4), therefore, the continuity equation of
the free surface is

∂h

∂t
+

∂

∂y

∫ h

0

vydz = 0. (5)

B. Force balance equation for thin fluid films

The law of conservation of momentum, known as the
equation of motion, is

∇ · σ + ρg = ρ
Dv

Dt
= 0, (6)

where we ignore the inertia of fluids for the overdamped
condition. σ = −pI + τ is the total stress, where I
is identity tensor. ρ and g are the mass density and
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gravity acceleration, respectively. Due to the absence of
x dependence, the equation of motion (6) is simplified
into

x direction:
∂τyx
∂y

+
∂τzx
∂z

+ ρg sin(θ) = 0, (7a)

y direction: − ∂p

∂y
+

∂τyy
∂y

+
∂τzy
∂z

= 0, (7b)

z direction: − ∂p

∂z
+

∂τyz
∂y

+
∂τzz
∂z

− ρg cos(θ) = 0, (7c)

with the boundary condition by assuming that there is
no velocity gradient on the free surface

τij |z=h = 0, p|z=h = patm, (8)

where i, j = x, y, z and patm is the atmospheric pressure.
One feature of the inclined flow in initial states is that

the thickness of fluids is much smaller than a charac-
teristic length scale (defined by a wavelength of typical
interfacial disturbances along y direction). Here, we in-
troduce a characteristic thickness scale H and a charac-
teristic length scale L along y. The discrepancy of scales
allows one to introduce a small parameter as the aspect
ratio ϵ = H/L ≪ 1. Therefore, the lubrication analysis 1

is valid. Using the two length scales, the dimensionless
quantities below can be defined by

z̃ =
z

H
, h̃ =

h

H
, ỹ =

y

L
= ϵ

y

H
. (9)

Meanwhile, a stress unit is introduced S = ρgH sin(θ).
The dimensionless stress can be defined by

τ̃ij =
τij
S

, p̃ = ϵ
p

S
. (10)

Substituting these dimensionless quantities into eq. (7),
the equation becomes a dimensionless form with coeffi-
cients composed by the small parameter ϵ. Therefore, the
solution of the equation must be a function of the small
parameter ϵ. Hence, the solution of stress and pressure
can then be expanded into a Taylor series. Here, we just
keep the terms up to the first order for a linear instability
analysis

τ̃ij = τ̃
(0)
ij + ϵτ̃

(1)
ij + o(ϵ), (11a)

p̃ = p̃(0) + ϵp̃(1) + o(ϵ). (11b)

By using eqs. (9)–(11), (7) becomes

x direction:

(
ϵ
∂τ̃

(0)
yx

∂ỹ
+ ϵ2

∂τ̃
(1)
yx

∂ỹ

)
+

(
∂τ̃

(0)
zx

∂z̃
+ ϵ

∂τ̃
(1)
zx

∂z̃

)
+ 1 = 0, (12a)

y direction:

(
−∂p̃(0)

∂ỹ
− ϵ

∂p̃(1)

∂ỹ

)
+

(
ϵ
∂τ̃

(0)
yy

∂ỹ
+ ϵ2

∂τ̃
(1)
yy

∂ỹ

)
+

(
∂τ̃

(0)
zy

∂z̃
+ ϵ

∂τ̃
(1)
zy

∂z̃

)
= 0, (12b)

z direction:

(
−∂p̃(0)

∂z̃
− ϵ

∂p̃(1)

∂z̃

)
+

(
ϵ2
∂τ̃

(0)
yz

∂ỹ
+ ϵ3

∂τ̃
(1)
yz

∂ỹ

)
+

(
ϵ
∂τ̃

(0)
zz

∂z̃
+ ϵ2

∂τ̃
(1)
zz

∂z̃

)
− ϵ

1

tan(θ)
= 0, (12c)

and the boundary condition (8) becomes

τ̃
(0)
ij |z̃=h̃ + ϵτ̃

(1)
ij |z̃=h̃ = 0, (13a)

p̃(0)|z̃=h̃ + ϵp̃(1)|z̃=h̃ = p̃atm. (13b)

The terms in series of ϵn (n = 0, 1, . . . ) are linearly in-
dependent, which means the coefficient of ϵn in each term
should be zero. Thus, eq. (12) and the boundary condi-
tion (13) are decomposed into a series of recursion equa-
tions (details in Appendix B). Therefore, using eq. (11),
we can obtain the first-order approximation solution from

the perturbation results eqs. (B3) and (B6),

τ̃zx = h̃− z̃ + ϵ

∫ h̃

z̃

∂τ̃
(0)
yx

∂ỹ
dz̃ + o(ϵ), (14a)

τ̃zy = −ϵ

(
h̃− z̃

tan(θ)

∂h̃

∂ỹ
+

∫ h̃

z̃

∂Ñ
(0)
2

∂ỹ
dz̃

)
+ o(ϵ), (14b)

p̃ = p̃atm + ϵ

(
h̃− z̃

tan(θ)
+ τ̃ (0)zz

)
+ o(ϵ). (14c)

C. The constitutive relation and its evidences

As discussed in section I, the second normal stress dif-
ference of suspensions is coupled to shear stress with a
linear relationship in a simple shear flow, i.e.,

N2 = α(ϕ)τzx, (15)
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Near jamming

FIG. 2: The second normal-stress-difference ratio α := N2/τzx versus volume fraction ϕ. Experimental data from
Zarraga et al. (2000)10 with glass spheres of diameter d = 44µm, Singh & Nott (2003)11 with PMMA spheres of

diameter d = 196µm, Couturier et al. (2011)27 with PS spheres of diameters d = 70 and 140µm, Dbouk et
al. (2013)28 with PS spheres of diameters d = 40 and 140µm, and Dai et al. (2013)12 with PS spheres of diameter

d = 40µm. The fitting in Dai et al. 12 (2013) for the range 0.1 ≤ ϕ ≤ 0.45 is also shown by the solid line. Numerical
simulations from Sierou & Brady (2002)17, Gallier et al. (2014)20 without and with friction (µp = 0 and 0.5), and
Gallier et al. (2016)29 under a confinement (bounded) with friction (µp = 0.5). We also perform the LF-DEM

simulation21,22 to evaluate α without and with the particle friction (µp = 0 and 0.5) (dashed lines).

where N2 := τzz − τyy is the second normal stress differ-
ence and τzx is the shear stress, since the ‘flow,’ ‘gradi-
ent,’ and ‘vorticity’ directions are x, z, and y directions
in this work when the free surface is near the initial flat
configuration.

Suppose that some rate-dependent property of suspen-
sions, such as shear-thickening or shear-thinning, is given
as τzx = η(τzx)γ̇. One critical underlying assumption of
eq. (15) is that the N2 has also the similar rate-dependent
property N2 ∝ η(τzx)γ̇. If such a condition is satisfied,
one can introduce a rate-independent material parameter
α. Otherwise, α becomes rate-dependent. Thus, in this
work, we focus on the rate-independent α, i.e., a class
of suspension where shear stress and anisotropic normal
stresses are linked to each other to hold Eq. (15). Such a
class of suspension has been widely investigated in both
experiments and simulations.

For Newtonian fluids in the dilute limit ϕ → 0, one has
α = 0 because of the vanished N2. Thus, the ϕ depen-
dence of α is expected because there must be a transi-
tion from the Newtonian fluids to the dense suspension
as ϕ increases. More detailed investigations show that
α is a negative value and solely dependent on ϕ 12,13,23.
Fig. 2 shows experimental and simulation data collected
from various references 23. In the dilute situation, pair-
wise interactions dominate 30, and the ϕ dependence of
α follows a quadratic relation. There are some empir-
ical fitting results to illustrate the ϕ dependence of α,
such as α = −4.4ϕ3 in the range 0.1 ≤ ϕ ≤ 0.45 by
Dai et al. 12(shown by the solid line in Fig. 2). We also

confirm the basic tendency by using the LF-DEM simu-
lation 21,22 without and with particle friction (µp = 0 and
0.5), as shown by the dashed lines in Fig. 2. The aver-
ages and standard deviations (error bars) are taken over
10 independent simulations for each condition (further
simulation details are given in the footnote 31).

Therefore, the constitutive relation eq. (15) with the
informative connection to ϕ is valid for further analysis
near the initial flat configuration of the free surface. By
using eq. (11a) and the solution (B3a), we have

Ñ
(0)
2 = α(ϕ)τ̃ (0)zx = α(ϕ)

(
h̃− z̃

)
. (16)

Inserting eq. (16) into (14b), the shear stress is written
as

τ̃zy = −ϵ

(
1

tan(θ)
+ α(ϕ)

)(
h̃− z̃

)∂h̃
∂ỹ

+ o(ϵ). (17)

Therefore, the first-order approximation of the shear rate
along the y direction is

∂ṽy
∂z̃

=
τ̃zy

η̃(τ̃zy)
− ϵ2

∂ṽz
∂ỹ

≈ τ̃zy
η̃(0)

≈ − ϵ

η̃(0)

(
1

tan(θ)
+ α(ϕ)

)(
h̃− z̃

)∂h̃
∂ỹ

, (18)

where we have ignored the stress dependence of viscosity
since τ̃zy is essentially small in initial state.
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IV. THE ORIGIN OF THE INSTABILITY

Integrating both sides of eq. (18) from z̃ = 0 to z̃ (≤ h̃)
and using the non-slip condition ṽy|z̃=0 = 0, one has

ṽy = − ϵ

η̃(0)

(
1

tan(θ)
+ α(ϕ)

)(
h̃z̃ − z̃2

2

)
∂h̃

∂ỹ
. (19)

Combined with the continuity equation (5) in a dimen-
sionless form, one has

0 =
∂h̃

∂t̃
+

∂

∂ỹ

∫ h̃

0

ṽydz̃

=
∂h̃

∂t̃
− ϵ

3η̃(0)

(
1

tan(θ)
+ α(ϕ)

)
∂

∂ỹ

(
h̃3 ∂h̃

∂ỹ

)
. (20)

At the very beginning, the flat free surface starts to
be distorted due to the fluctuation, and the instability
makes the distortion keep growing. Since the fluctuation
is small (h̃′ ≪ 1), one has

h̃ = 1 + h̃′. (21)

Eq. (20) then becomes

∂h̃′

∂t̃
=

ϵ

3η̃(0)

(
1

tan(θ)
+ α(ϕ)

)
∂2h̃′

∂ỹ2
. (22)

Eq. (22) is a diffusion-like equation for a fluctuation h̃′.
If the ‘diffusion coefficient’ is greater than zero, the fluc-
tuation will decay with time, indicating that the system
is stable for some perturbations. However, it becomes un-
stable with a negative ‘diffusion coefficient,’ which leads
to an instability condition

1

tan(θ)
+ α(ϕ) < 0. (23)

Therefore, the flow becomes unstable along y direction if
the inclined angle is larger than the critical angle θc:

θ > θc = arctan

(
− 1

α(ϕ)

)
. (24)

This is a different criterion of instability from that of
the roll wave 3 based on the key assumption (15). The
present results from both the experiment and the linear
stability analysis indicate that the N2 mechanism can be
safely disentangled from the DST properties of suspen-
sions. The rate dependence (shear thickening or shear
thinning) is not a necessary condition in the linear insta-
bility analysis if the material parameter α is rate inde-
pendent.

Thus, the theory predicts an instability caused by a
negative value of α in (15), which can be considered as
the concept called dilatancy 32; impenetrable solid par-
ticles under shear tend to climb on contacting particles
and dilate along the gradient direction of the flow. The
dilating stress lifts some thick parts of the fluid film to

form a ridge, but the rest of the parts need to subside
due to the incompressibility of the fluid. Such a height
profile can develop with a positive feedback manner if
the gravity component perpendicular to the wall is weak
enough.

For Newtonian fluids (ϕ → 0), α = 0 is expected, and
the fluids will never appear in the ridge formation be-
cause the angle θ > 90◦ is required according to eq. (24).
In our experiment, the sample with ϕ ≈ 0.37 is pre-
pared to show the ridge-like formation. Based on the
fitting correlation in Fig. 2, one can obtain α ≈ −0.22
and θc ≈ 77.4◦, which agree with the experimental esti-
mation in section II.

The macroscopic relation of the ϕ dependence of α
could be complicated since the fitting cubic relation is
not for both dilute and dense limits. The valid α(ϕ) will
be helpful to explain the phase diagram of the rheologi-
cal morphogenesis in parameter space of θ-ϕ. Combining
the two instability criteria for the two simplest horizon-
tal and vertical wave patterns, the more complex pattern
formation may be understood by triggering the two in-
stabilities under different θ and ϕ conditions.

It is also worth mentioning that we rely on uncon-
trolled natural fluctuations for the initial distortion and
visual check for the amplitude growth, which tends to
overestimate the critical angle. For more accurate deter-
mination, it is desirable to develop experimental setups
to control perturbation and to monitor the profile, like
the ones by Darbois Texier et al. 3 . In this work, we fo-
cused on showing essential elements that can cause ridge
instability. We need to have more systematic experimen-
tal investigations to explore the parameter space in the
future.

V. CONCLUSION

In this work, we observed a novel instability where
a particle suspension flowing down an inclined plane
formed ridges parallel to the flow direction. We pro-
pose that the ridges form due to a dilation effect caused
by the second normal stress difference N2. We obtained
two force balance equations for shear stresses τzx and τzy
from the equation of motion based on lubrication analysis
without inertia. The linear relation between the second
normal stress difference N2 and shear stress τzx is used
as a key assumption. Based on these relations, we can
obtain a different instability criterion from that of the
roll wave 3 by linear instability analysis. Therefore, the
ratio between N2 and τzx is a key parameter to control
the instability that distorts the initial flat configuration
along the perpendicular direction of flow and determines
the critical angle θc. Further experiments with higher
precision are needed to confirm whether the instability
we have shown is the reason for the observed ridge for-
mation.
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Appendix A: Viscosity of the used cornstarch suspensions

The viscosity of the sample has been measured twice
with a one-hour time interval (to confirm no signifi-
cant aging effect during slope flow experiments) for sure,
as shown in Fig. 3, which appears to be CST. The in-
clined flow is a stress-controlled flow driven by gravity.
Thus, stress-controlled experiments have been conducted
to measure the viscosity on ARES-G2 equipped with par-
allel plates (60mm diameter and 1mm gap) at 25 ◦C.

FIG. 3: Viscosity of the used cornstarch suspension of
the fresh sample (squares) and the reused sample (disks)
after a 1-h interval at the volume fraction ϕ ≈ 0.37.

Appendix B: Perturbation Equations

The vanished coefficient of ϵn in eqs. (12) and (13)
gives the relations by each order as follows:
(1) For term with ϵ0

x direction:
∂τ̃

(0)
zx

∂z̃
+ 1 = 0, (B1a)

y direction: − ∂p̃(0)

∂ỹ
+

∂τ̃
(0)
zy

∂z̃
= 0, (B1b)

z direction: − ∂p̃(0)

∂z̃
= 0, (B1c)

with boundary condition

τ̃
(0)
ij |z̃=h̃ = 0, p̃(0)|z̃=h̃ = p̃atm. (B2)

The solution of the equations is

τ̃ (0)zx = h̃− z̃, (B3a)

τ̃ (0)zy = 0, (B3b)

p̃(0) = p̃atm. (B3c)

(2) For term with ϵ1

x direction:
∂τ̃

(0)
yx

∂ỹ
+

∂τ̃
(1)
zx

∂z̃
= 0, (B4a)

y direction: − ∂p̃(1)

∂ỹ
+

∂τ̃
(0)
yy

∂ỹ
+

∂τ̃
(1)
zy

∂z̃
= 0, (B4b)

z direction: − ∂p̃(1)

∂z̃
+

∂τ̃
(0)
zz

∂z̃
− 1

tan(θ)
= 0, (B4c)

with boundary conditions,

τ̃
(1)
ij |z̃=h̃ = 0, p̃(1)|z̃=h̃ = 0. (B5)

The solution of the equations is

τ̃ (1)zx =

∫ h̃

z̃

∂τ̃
(0)
yx

∂ỹ
dz̃, (B6a)

τ̃ (1)zy = − h̃− z̃

tan(θ)

∂h̃

∂ỹ
−
∫ h̃

z̃

∂Ñ
(0)
2

∂ỹ
dz̃, (B6b)

p̃(1) =
h̃− z̃

tan(θ)
+ τ̃ (0)zz , (B6c)

where the zero-th order of second normal stress difference
is Ñ

(0)
2 := τ̃

(0)
zz − τ̃

(0)
yy since the conventional definition

is the stress difference between ‘gradient’ and ‘vorticity’
directions.
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