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Abstract
The hot metal silicon content is a key indicator of the thermal state in the blast furnace and it needs to be kept within a
pre-defined range in order to ensure efficient operations. Effective monitoring of silicon content is challenging due to the
harsh environment in the furnace and irregularly sampled measurements. Data-driven approaches have been proposed in the
literature to predict silicon content using process data and overcome the sparsity of silicon content measurements. However,
these approaches rely on the selection of hand-crafted features and ad hoc interpolationmethods to dealwith irregular sampling
of the process variables, adding complexity to model training and optimisation, and requiring significant effort when tuning
the model over time to keep it to the required level of accuracy. This paper proposes an improved framework for the prediction
of silicon content using a novel deep learning approach based on Phased LSTM. The model has been trained using 3years
of data and validated over a 1-year period using a robust walk-forward validation method, therefore providing confidence in
the model performance over time. The Phased LSTM model outperforms competing approaches due to its in-built ability to
learn from event-based sequences and scalability for real-world deployments. This is the first time that Phased LSTM has
been applied to real-world datasets and results suggest that the ability to learn from event-based data can be beneficial for the
process industry where event-driven signals from multiple sensors are common.

Keywords Deep learning · Steel making · Blast furnace · Phased LSTM · Irregular sampling

1 Introduction

The blast furnace is crucial to the global production of steel
due to its ability to quickly and efficiently reduce large quan-
tities of iron ore into molten pig iron, referred to as hot metal,
which is subsequently processed into steel. The blast furnace
is a large chemical reactor that consumes iron ore, carbon-
based reductant (in the form of coal and coke), and fluxes.
Carbon-based reductants are used to heat the furnace’s bur-
den material to the extreme temperatures required by the
process and to reduce the oxides in the iron ore. The effi-
ciency of a blast furnace is measured by the amount of
reductant required to produce a tonne of hotmetal. As a result

CinziaGiannetti and EugenioBorghini contributed equally to thiswork.

The manuscript has not been published elsewhere and is not under
consideration by other journals.

B Cinzia Giannetti
c.giannetti@swansea.ac.uk

Extended author information available on the last page of the article

of economic and environmental considerations, modern iron
production using blast furnaces requires them to operate very
close to their limits in terms of efficiency. However, main-
taining stable process operations is challenging due to the
large number of variables that can affect the thermal level
of the furnace, including quality of burden material at tuyere
level, oxygen enrichment, blast volume, blast temperature.
Additionally, the large scale and hostile nature of the furnace
prevents direct measurement of its internal state and makes
optimisation difficult.

In a blast furnace, the silicon concentration of the hot
metal produced is used to monitor the process, as it is a key
indicator of the process’s thermal state [1]. An accurate pre-
diction of silicon content trend in hot metal can improve
operational optimisation and thermal control of the blast fur-
nace iron making process by supporting early identification
of abnormal conditions and subsequent corrective actions [2].
The prediction of silicon content has been widely studied in
the literature. Blast furnace processes exhibit large amount
of lag, strong coupling, and high nonlinearity, and there-
fore it is extremely challenging to develop computationally
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efficient models [3]. For this reason, data-driven approaches
have been proposed to overcome the limitation of on-line
measuring technologies and the difficulty in modelling the
behaviour of silicon content with physical models [2]. Data-
driven models are directly derived from the data, without
requiring extensive knowledge of the underlying process
[4]. As detailed in Section2, several data-driven methods
have been proposed for the prediction of silicon content,
namely those based on neural networks [5–8], support vec-
tor machines [4, 9], and ensemble trees [10]. However,
when processing large datasets, these methods are ineffi-
cient to train and require fine-tuning of parameters. While
the above-mentioned studies have successfully demonstrated
the potential of data-driven approaches to overcome limi-
tations of physical models in prediction of silicon content,
their applicability for real-time prediction and control is lim-
ited as they have been validated on relatively small datasets
over short time periods. To account for the high variabil-
ity of blast furnace processes it is necessary to evaluate
and compare methods across a much longer timescale using
robust validation techniques for time series prediction such
as walk-forward validation [11, 12]. Additionally, in current
approaches a lot of time is spent in applying ad hoc interpola-
tion methods and feature extraction, hence further hindering
their deployment in real-world applications.

Deep Learning (DL) refers to techniques for learning
high-level features from data in a hierarchical manner using
stacked layer-wise architectures. DL has been used for mod-
elling and prediction of manufacturing processes in several
contexts, including anomaly detection [8], monitoring of
machine health [13], fault diagnosis [14, 15], machine speed
prediction [16, 17] and event detection [18]. DL can sig-
nificantly reduce the complexity of the training process as
it does not require extensive feature engineering since the
features are directly learned as part of the training process.
A recent study has investigated the application of LSTM
(Long Short-Term Memory) to modelling and prediction of
hot metal silicon content [19]. LSTM are a type of recurrent
neural network that are commonly used for time sequential
data. Although the LSTM model proposed in [19] is shown
to achieve good performance, the model was trained and
validated on simulated data. Furthermore, one of the major
challenges in applying recurrent neural network to the pre-
diction of silicon content in blast furnace processes is the fact
that data are sampled at irregular intervals, hence requiring
the use of interpolation methods as a pre-processing step. In
a recent development, a novel method called Phased LSTM
has been proposed to overcome this limitation. The Phased
LSTM model can handle event-driven asynchronously sam-
pled input data, eliminating the need to apply interpolation
methods for irregularly sampled data before the training pro-
cess [20].

Motivated by these recent developments, this paper pro-
poses a novel approach, based on Phased LSTM, for predic-
tion of hot metal silicon content which allows to handle the
irregularity of both the input and response variables sampled
at asynchronous intervals. The proposed novel architecture
uses a Phased LSTM layer as a feature extraction step for
exogenous variables, which are then merged with the auto-
regressing variables (e.g. previous values of silicon content)
and passed to a series of drop-out layers for the final classifi-
cation. The performance of this approach is compared against
two established DL methods such as Convolutional Neural
Network, Long Short-Term Memory (CNN-LSTM), Auto
Encoders (AE), and a baseline shallow Feed Forward Neural
Network (FFNN) using a walk-forward validation approach.
The models are trained and validated using real-world data
of a blast furnace acquired over a 4-year period, hence sig-
nificantly improving earlier works which were validated on
relatively small datasets. The main contribution of the paper
are summarised as follows:

• A novel method for prediction of HM silicon content is
proposed based onPhasedLSTM,which allows to handle
the irregular sampling of silicon content and exogenous
variables without the need of ad hoc interpolation meth-
ods;

• The method is the first example of application of Phased
LSTM to modelling a real-world time series forecast-
ing problem with asynchronous sampling for a complex
manufacturing process;

• This is the first study that compares several DL models
for forecasting of silicon content concentration in theHM
using robust validation over a long time scale.

This paper is structured as follows. Section2 presents a
review of the existing approaches to silicon content fore-
casting in the literature. The technical description of deep
learning layers used to build subsequent models is intro-
duced in Section3. Section4 is devoted to the description
of the models, data and the pre-processing steps, together
with the precise problem formulation and the specification
of the validation strategy. Section5 presents and discusses
the results while Section6 closes the paper.

2 Literature review

The prediction of silicon content for the next casts in the
blast furnace is a well-researched topic. In [5] a soft sensor
approach to predict silicon content has been proposed based
on Feed Forward Neural Network (FFNN). A major limita-
tion of this work is the small data sample used for training
and test. Also, the model assumed stable operation and no
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changes in the charged material. Chen et al [6] used a com-
bination of FFNN and genetic programming to develop a
model to predict the silicon content for the next cast. While
the results show that themethod achieved good performance,
the test dataset consisted of only 70 samples. The paper
also lacks details on the methodology for variable selec-
tion to be further considered for deployment in industrial
applications.

Recent studies havevalidated themodels on larger datasets
and focused on the challenges of data interpolation that arise
from irregular sampling and large time lags in key param-
eters. In a typical furnace the effect of input parameters
can take several hours to propagate. From a data modelling
perspective this implies a careful selection of hand-crafted
lagged features and use of interpolation methods to har-
monise inconsistencies in data detection periods [2, 7, 8].

In the work of Cui et al. [21], the authors applied a FFNN
trained via a genetic algorithm. The data were interpolated to
1h frequency using cubic splines and consisted of 1500 sam-
ples, 1000 used for training and 500 for testing. For each of
the selected control variables, a weighted average of the last
6 time steps was computed, where the weights were set to be
the absolute values of the correlation with the target variable.
The best predictions were obtained by correcting the errors
of the original neural network via a separate network (sim-
ilar to a two-step boosting approach). The authors of [22]
proposed to combine a priori clustering on the data (both
hard and fuzzy C-means) with support vector regression on
each cluster as the predictive model. The data amounted
to 400 training samples and 100 test samples, measured at
1h intervals. Additionally, 4 time delays were considered
for each variable. Similarly as in the previous work, the
authors adopted a two-step approach [2]. First, clustering
was performed using fuzzy C-means to apply afterwards an
exogenous nonlinear autoregressive model (NARX) to fore-
cast the silicon content on each cluster. A neural network was
employed as the nonlinear component of their NARX. The
data totalled 4550 training samples, 975 validation samples
and 975 test samples. They were collected at 30min intervals
and the PCHIP algorithm was employed to fill the missing
values. The method combining the clustering with the neural
networks achieved a very high accuracy. It should be noted
that the clusters were determined from the hot metal temper-
ature and the silicon content (the target variable). The authors
found 8 clusters under this methodology, which is concep-
tually interesting since it suggests the existence of several
different operating modes of the blast furnace. However, in
order to forecast the silicon content at the plant, it would
still be necessary to establish under which of these operating
modes the blast furnace is working. In a real-world situation
the clustering step to determine the operating modes cannot
be performed as it requires the temperature measures and

silicon content, which would be unknown at the time of pre-
diction.

In [7] a novel method to predict silicon concentration at
different future horizons (from 3 to 8 h) is proposed. The
method uses the Maximal Overlap Discrete Wavelet Packet
Transform (MODWPT) algorithm as a feature extraction
step, followed by a Nonlinear Autoregressive (NAR) net-
work. The method is validated on a period of 30 days. The
advantage of this method compared to other proposed meth-
ods is that silicon content can be predicted on a longer time
horizon, hence could be potentially more useful in determin-
ing preventive actions, considering that long latency of the
process (typically 6–8 h). However, in order to assess its suit-
ability for industrial applications, evaluation of this approach
on a longer time scale would be required. This is due to the
fact that over time there will be variations in silicon con-
tent caused by new operating conditions and changes in the
quality of the charged material, leading to model degrada-
tion. Furthermore, the method requires extensive analysis of
the dataset to determine the time lags of the input variables,
hence posing an additional burden on the analyst when the
model needs to be updated to take into account the dynamic
nature of blast furnace processes.

This drawback can be overcome by using deep learning
models based on LSTM networks. These methods embed
the feature extraction step within the training process and are
able to learn temporal features without the need to specify the
time lag. The authors of [19] developed an LSTM model for
predicting the silicon content of the next cast on simulated
data. The simulation comprised 648 training samples and 72
testing samples and was generated by adding Gaussian white
noise to mathematical equations formulated in [23, 24]. The
model achieved high accuracy, however, it was only validated
on simulated data.

The consensus that emerges from several sources is that
the accurate prediction of the silicon content for future casts
is a challenging task and there are still many limitations,
hindering adoptionof thesemodels in industry.Although sev-
eral methods have been proposed, they have been evaluated
on relatively small datasets. Furthermore, several methods
necessitate to apply extensive feature engineering and vari-
able selection steps. Therefore, this paper addresses these
limitations by exploring the application of deep learning to
prediction of silicon content.

3 Deep learning layers

This paper uses different deep learning layers for the predic-
tion of silicon content. Themain deep learning layers used are
described below, while the network architecture is described
in Section4.2.
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3.1 CNN

Convolutional Neuron Networks (CNNs) are a kind of feed-
forward neural networks that are generally employed in the
field of image and video recognition [25]. Their architecture
allows to train kernels which are simply small matrices that
get multiplied and averaged with all the patches in the image
or video of matching size. The idea behind this design is
that it allows to capture local features of the images, such as
corners and basic shapes. In the context of the present paper
and more generally, the study of time series, they are used
to discover patterns in the temporal dimension, for instance,
local maxima, minima or abrupt changes.

3.2 Autoencoders (AE)

Autoencoders (AEs) are a type of feed-forward network
specifically designed to learn a lower-dimensional repre-
sentation of the input in an unsupervised way. They are
composed by an encoder, which reduces the dimension of the
input returning the code and finally a decoder that attempts to
reconstruct the output from the compressed representation.
In this paper, the considered autoencoders will be embedded
in a larger neural network that has as a final goal the predic-
tion of the silicon content. The rationale is that they act as a
kind of regulariser while reducing the dimensionality of the
input at the same time.

3.3 Long Short-TermMemory (LSTM) networks

LSTM models are recurrent neural networks that have been
successfully applied to time series forecasting in recent years.
The main feature of the LSTM architecture is a mechanism
that can forget nonrelevant details during the learning pro-
cess, while retaining information of long-term dependencies.
Essentially, an LSTMcell keeps both a long-term and a short-
term state that are updated every time new information is
available. The memory cell of a standard LSTM contains
three control gates: input, output and forget gates. These gates
determine how much of the previous state is retained or for-
gotten.

3.4 Phased LSTM

The Phased LSTM model (introduced by Neil et al. [20]) is
an extension of the LSTM model, consisting of the addition
of a trainable time gate to the LSTM cell, which controls
the time at which the cell’s inner states are updated through
a parametrised oscillation. Typically, the frequency is set in
such a way that the updates of the memory cell occur very
sparsely during the training cycle. The time gate allows to
save information for a longer period to deal with event-based
triggers. The proposed modification of the baseline LSTM

architecture is particularly useful when the considered time
windows are long (in the order of hundreds or more), to deal
with asynchronous sampling rates, and for event-based time
series [20], making it a particularly promising to handle the
asynchronous measurement of the blast furnace.

4 Problem formulation, training
and validation strategy

The goal of this paper is the accurate prediction of the silicon
content for the next cast using past and current information
on the blast furnace status. In a real-world situation, this
is desirable due to the delayed measures that are typically
obtained using laboratory analysis. However, due to the spar-
sity and the varying sampling rates of the input variables, the
formulation of the problem is not entirely straightforward.
Furthermore, although the blast furnace is tapped on average
every 2h, the periods between taps are variable and hence the
frequency at which the target variable is sampled is irregu-
lar. Given the volume of the data, forcing a regular sampling
rate through interpolation, as in recent publication [2], would
have entailed working with far more inferred values for the
target variable than actual measurements. Although, from an
industrial perspective, itwould bedesirable to be able tomake
predictions over a longer time horizon, due to the scale and
challenges presented in the dataset, the scope of this work is
limited to prediction of next cast.

4.1 Problem formulation

The forecasting of the silicon content was approached in an
event-based fashion. The events in this case are the hot metal
casts. Based on the common consensus that the blast furnace
process is a nonlinear dynamical systemwith delayed effects,
the silicon content yt at time t is predicted as:

yt = F((ys−1, ts−1), . . . , (ys−dy , ts−dy ),

(ut−1, . . . , ut−du )) (1)

where F is a nonlinear function to fit, t j indicates the time
at which the corresponding cast y j was measured, ui are
the explaining variables, and dy , du are the user-selected
delays for the cast and the exogenous variables, accordingly.
In the proposed work the selected explaining variables for
the past 6h are included, taken every 10min. On the other
hand, the previous three silicon content values together with
their timestamps are recorded. Thus, each data point consists
of a block of size 36×21 (36 time steps for 21 variables) and
another one of size 3× 2 (3 time steps for the silicon content
together with the corresponding timestamp).
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4.2 Deep learningmodels

In this paper three DL models are trained and compared
against a baseline Feed Forward Neural Network (FFNN).
The first two models use respectively Convolutional Neu-
ral Network Long Short-Term Memory (CNN-LSTM) and
Convolution Auto Encoders (AE) layers. These models were
chosen because they have shown good performance in the
literature to solve time series forecasting problems across
different domains. The third model uses a recently proposed
variant of LSTM, called Phased LSTM, which can handle
forecasting of event-based time series [20]. This is the first
study where these models have been evaluated for the task
of prediction of HM silicon concentration in blast furnace
processes over a long time period.

Figure1 shows the common schema for all the three mod-
els. The network include a feature extraction module for the
exogenous multivariate time series part of the data points
(that is, the block of measurements corresponding to the last
6h for the explaining variables). Then the results are merged
with the autoregressive part (that is, the previous values of
the silicon content together with its timestamps) and topped
with dense layers that output the final prediction. The main
difference between them lies in the way they extract features.
The process of feature extraction is detailed below for each
model:

• CNN-LSTM: Two stacked 1-dimensional convolutional
filters are applied, each followed by a max pooling layer
that halves the dimensionality. The convolution is per-
formed along the temporal dimension. The resulting
filtered features are then passed through an LSTM layer.

• AE: A stacked convolutional autoencoder is applied to
the exogenous variables,where the dimensionality reduc-

tion is achieved by max pooling layers. The resulting
code is then merged with the autoregressive part of the
data points. The network is trained to both reconstruct
the input from the code and forecast the silicon content
for the next cast.

• Phased LSTM: A single Phased LSTM layer is employed
to filter the exogenous variables, which requires addition-
ally to pass the associated timestamps. The proportion of
time in which updates are allowed is kept at the default
value of 5%. As in the previously described models, the
result is merged with the autoregressive variables and
processed by dense layers to generate the final predic-
tion.

Lastly, a simpler baseline model defined as a Feed-
Forward Neural Network (FFNN) with 3 hidden layers is
used to compare results and determine the value of some
hyper-parameters.

4.3 Data description

The dataset was collected from aBlast Furnace at Tata Steel’s
Port Talbot Steelworks. In total, the dataset encompasses
more than 4 years of operational data ranging from Jan-
uary 2017 to April 2021, amounts to 2,102,442 rows and
219 columns after a preliminary cleaning and contains in
total 19,723 casts. The rows correspond to data sampled
every minute from the blast furnace iron making process.
Most of the variables reflect process parameters (such as
volume, temperature, pressure) and features computed from
these measurements. Thus, the dataset is appreciably large
and rich compared to the ones that are usually considered in
the literature.

Fig. 1 Common pattern of the
proposed models
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4.4 Data pre-processing and window size

The pre-processing of the dataset is conceptually divided
in two steps. The first step deals with cleaning and filling
missing values, while the second step is intertwined with the
development of the data-driven models. In first place, the
brief periods where the blast furnace was shut down were
filtered out from the dataset. Regarding the missing values,
they appear as a consequence of the data collection design,
since most of the variables are recorded only when a change
above a certain threshold with respect to the last registered
measurement is observed. In some cases, the ratio of miss-
ing values was high (above 90%), so it was decided to apply
forward fill for those columns; rolling averages were used
instead to fill missing values for the remaining variables, in
which the frequency of the blanks is lower.

It should be noted that due to both the data collection pro-
cess and the filling of missing data, the differences between
the explaining variables for two given samples are usually
rather small. Two of the main challenges faced during the
development of the models were the high dimensionality of
the data and the irregular sampling of the target variable.With
the guidance of domain experts, 21 variables out of the ini-
tial 219 were identified as the most influential in the silicon
content. They include the following: the blast oxygen, the
hot blast volume, pressure and temperature, the top gas tem-
perature and volume, the ηCO and the total heat loss, among
others.A further reduction in the volumeof datawas achieved
by down-sampling the cleaned dataset to 10min frequency
from the original 1 min periods. This step not only decreased
the computational burden required to train the models, but
also led to less noisy predictions.

With respect to the irregular sampling issue for the target,
it was decided to use only the casts values from the dataset,
together with their timestamps and all the process variables
during the previous 6h. Due to the size of the data, this fil-
tering still left a significant amount of data and avoided the
need of interpolating the target, an approach that was taken in
otherwork [2]. The optimalwindows size of 6h and sampling
rate of 10min was determined using a grid search approach
as described in Section4.5. Including information of the 6h
before the casting is also aligned with the process underlying
physics as the blast furnace is known to react in a delayed
way to variations in the control variables, with a cycle com-
pleting in between 6 and 8h. It must be noted that due to the
irregular sampling of the silicon content a consistent sliding
window approach cannot be employed.

4.5 Hyper-parameter optimisation

Thefirst hyper-parameters that needed to be setwere the sam-
pling rate and the amount of previous information to consider.
To this end, the simple baseline model was trained in the grid

[10min, 20min, 30min] × [6h,7h,8h]. As a result, it was
decided to reduce the sampling rate to 10min and include the
measurements for the past 6 h at each data point.

The number of neurons of the models was set to roughly
match the problem’s degrees of freedom, i.e. number of fea-
tures × number of samples. The learning rates and number
of epochs for the CNN-LSTM and the AE were chosen
simultaneously through grid search and inspection of the
train-validation error curves. In the case of the Phased LSTM
model, it was observed that the one-cycle policy developed
by Smith [26] worked better than the usual training sched-
ule; the initial learning rate was fixed through the learning
rate finder described in the cited work. A summary of the
hyper-parameters selected after optimisation is included in
Table 1.

4.6 Validation strategy

The models were evaluated through the walk-forward vali-
dation technique. Approximately the last year of data (more
precisely, the period comprised betweenMay 2020 andApril
2021, containing 4000 casts) was used to validate themodels,
the remaining part was used as the training set. The validation
set (consisting of 4000 casts) was split in 40 consecutive test
sets, each comprising 100 casts. Thus, the models first expe-
rience an initial training phase on the first 15,723 data points
(approximately 3 years) with the hyper-parameters values
determined as explained above. In the next step the model
is trained on the second validation test and all the previous
data is used for training. The process is repeated 40 times
and during each one of them the models predict the silicon
content for the forthcoming test set (see Fig. 2). After that,
the model is fine-tuned in the complete dataset for a small
number of epochs with a low learning rate (10−5).

5 Results

In order to assess the models performance, the three follow-
ing metrics are used: the coefficient of determination R2,
the mean absolute error MAE and the root mean squared
percentage error RMSPE. Table 2 displays the final results,
where the errors refer to the predictions for the last 4000 casts
obtained as explained in Section4.6. To obtain more mean-

Table 1 Hyper-parameters of the DL models used following optimisa-
tion

Model Epochs Batch size Learning rate

CNN-LSTM 30 64 3e−4

AE 24 32 1e−5

Phased LSTM 30 64 Obtained using [26]
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Fig. 2 Diagram illustrating the walk-forward validation strategy. There
are 40 test sets in total, each containing 100 samples

ingful results, in the case of the RMSPE only the test cases
with silicon content greater or equal than 0.2 were consid-
ered.

As shown by Table 2, the three proposed deep learn-
ing models outperform the baseline model, with the Phased
LSTMmodel being the strongest one and obtaining an appre-
ciable improvement over the simple FFNN. This is the first
time such an exhaustive evaluation of DL models is con-
ducted on blast furnace real data.

The convolutional filters in both the CNN-LSTM model
and the AE model likely extract valuable information on the
impact of changes in the explaining variables along the 6h
cycle, which allow them to outperform the baseline model.
In the case of the AE model, the design of the architec-
ture probably optimises the learned representation towards
the prediction of the silicon content, which explains why it
is slightly better than the CNN-LSTM model. The Phased
LSTM model stands out as a promising technique to deal
with event-based sequences. In this particular problem, it
shows better results than more traditional models based on
LSTM (evenwhen pairedwith convolutional filters) and con-
volutional autoencoders.

Figure3 shows the prediction for the last 150 casts. The
model predictions are good overall; however, in some occur-
rences, the model seems to have some delayed effects in
following the upward or downward trend.

Table 2 Comparison of results

Metrics FFNN CNN-LSTM AE Phased
LSTM

Avg

R2 0.6676 0.6842 0.6919 0.7100 0.7179

MAE 0.1310 0.1277 0.1260 0.1228 0.1214

RMSPE 0.2675 0.26123 0.2552 0.2495 0.2474

Avg stands for the results of taking the mean of the predictions of the
three models
The bold font shows the best performing model for each performance
metrics

The Phased LSTM model is considerable consistent at
predicting the sign of the variation of the silicon content, that
is, whether it will increase or decrease. Figure4 shows a con-
fusion matrix which determines the ability of the model to
predict increase or decreases of the silicon content. It can be
noted that the model is skillful at predicting the increase of
silicon content. Such information can be used by the opera-
tors to take early corrective actions to keep the silicon content
values within the upper bound limits. A second possible use
for the models is as soft sensors. This implies the ability
to virtually test scenarios where certain modifications to the
control variables are performed and assess the impact on the
target through the models’ predictions.

The main difficulties that hinder the performance of all
DL models are the presence of similar scenarios (i.e. the set
of measurements of the exogenous variables for the previ-
ous 6h) with heterogeneous outcomes and the sampling rate
of the target variable, which is at the same time irregular
and sparse. Due to the nature of the process, it is impossi-
ble to regularly sample the hot metal, while increasing the
frequency of the measurements is beyond the current tech-
nological capabilities. This is one of the main reasons why
the Phased LSTM is particularly useful in this scenario as it
tackles the event-based nature of the sampling.

5.1 Discussion and comparison with existing
literature

Table 3 shows a summary of the best performing data-driven
models for one-step ahead forecasting found in the literature
against our proposed model. Reference [7] is not included as
it studies different time horizons. Although it is not possible
to make a direct fair comparison between the models studied
in the literature due to different validation methodologies,
datasets and metrics used, it can be seen that the proposed
approach shows a good level of performance over a long time
period, achieving R2 = 0.71 and MAE = 0.1228. It must
be noted that all the methods in Table 3, apart from Phased
LSTM, have been tested on a shorter timescale and using
hold-out validation strategies, hence potentially providing a
less robust estimation of the model errors, especially if the
test set is selected during stable process operations.

When comparing to [21], it can be seen that the Phased
LSTM model outperforms the FFNN model (MAE =
0.13549) but not the corrected FFNN model (MAE =
0.05009), which relies on a correlation analysis to set vari-
able weights. In such situations, the model would typically
need to be periodically regenerated, hence making it imprac-
tical for real-world deployments. Similarly, when compared
to [2], the Phased LSTM model performance is higher than
the NARX FFNN (R2 = 0.517) but lower than the Clus-
ter NARX FFNN (R2 = 0.996). Since the Cluster NARX
FFNN uses information about temperature measurements
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Fig. 3 Actual and predicted
silicon content for the last 150
casts of the dataset for the
Phased LSTM model. The
scaled of the y-axis was
intentionally hidden due to
confidentiality constraints

and silicon content at the time of the prediction, it would not
be a feasible approach for practical implementation and the
high R2 is achieved due to information being provided about
the silicon content. While method [19] shows high accuracy,
it is trained and tested on a simulated dataset.

The Phased LSTM is the only approach that can deal
with event-based sequences with irregular sampling. Com-
pared to methods [2, 21] and [22] the Phased LSTM does
not rely on complex data pre-processing methods and exten-
sive interpolation, making it more appropriate for real-world
deployments. In order tomaintain the predictive performance
of the model, it would suffice to fine-tune it once a week (as
it is demonstrated by the walk-forward validation approach).
This poses an advantage with respect to models proposed in
the literature.

Fig. 4 Accuracy in predicting the sign of the variation for the next cast
silicon content

6 Conclusions

In this paper, three DL models were applied to the predic-
tion of silicon content in the next cast for a blast furnace. In
order to handle the unprecedented scale and complexity of
the available dataset, the forecasting problemwas formulated
in a novel event-based way, avoiding the need of interpo-
lating the target and the explaining variables to a common
regular frequency. From the comparison it emerges that the
Phased LSTM model is the best performing model and it
can be applied with high confidence to forecast the sign of
the variation for the silicon content of the next cast and to
test hypothetical scenarios. Themethods have been validated
using a robust walk-forward validation method in a period of
about 1 year, which derives a robust estimation of the errors
to provide confidence for industrial deployments. Compar-
ing to existing literature, this is also the first study when such
extensive validation has been carried out.

Additionally, the use of DL models removes the need of
running frequent and often costly feature pre-processing rou-
tines and/or correlation analyses, whichwould be required by
other alternatives in the literature to keep the predictive power
up-to-date. Finally, the performance of the Phased LSTM
model at dealing with irregularly sampled multivariate time
series is verified in a challenging dataset. The results suggest
that a more widespread adoption of predictive models able
to learn from irregularly sampled data could benefit process
industry, where event-driven signals from multiple sensors
are common. Therefore this work paves the way towards the
industrial deployment of DL forecasting methods that can
deal with irregularly sampled data.

Due to the size and the nature of the dataset and, similarly
to other works in the literature, this study focused on the next
step ahead prediction to prove the ability of Phased LSTM to
deal with event-based data. While prediction of next cast is
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Table 3 Summary of results of similar approaches for prediction of silicon content of next cast

Paper Data Pre-processing Main techniques Results

Cui et al. [21] 1000 train samples
500 test samples
60 min frequency

Cubic spline interpola-
tion
Outlier detection (3σ
method)
Weighted average of last
6 h

FFNN optimised with
GA plus
a correction boosting
step.

FFNN:
RMSE = 0.18010
MAE = 0.13549
Corrected FFNN:
RMSE = 0.06749
MAE = 0.05009

Hua et al. [22] 400 train samples
100 test samples
(60 min frequency)

Lagged variables for past
4h
(including present time)

Apriori clustering (fuzzy
C-means)
plusSVRoneach cluster.

MAPE = 0.1449
RMSE = 0.2988

Fontes et al. [2] 4550 train samples
975 validation samples
975 test samples
(30 min frequency)

Fill missing values with
rolling mean
Replace outliers with
PCHIP
Lagged variables past 4
steps
(2 h, includes present
time)

Apriori clustering (fuzzy
C-means)
plus a NARX FFNN on
each cluster

NARX FFNN:
RMSE = 0.073
R2 = 0.517
Cluster+NARX FFNN:
RMSE = 0.007
R2 = 0.996

Ding et al. [19] 648 train samples
72 test samples
The data is simulated.

Gaussian noise and Nor-
malisation

LSTM network RMSE = 0.0338
R2 = 0.9246

Phased LSTM 15723 train samples
(i.e. casts over 3-year).
4000 test samples
(walk-forward
validation)
irregular sampling of
target variable

Forward filling,
rolling averages for
missing value
6 h lag

Phased LSTM MAE=0.1228
RMSPE=0.2495,
R2 = 0.7100

useful to overcome the problem of latency in cast measure-
ments, from an industrial perspective, prediction of silicon
content for longer time horizon would be desirable, given
the lagged nature of the blast furnace operation. Future stud-
ies will investigate the proposed approach for longer time
horizons.

As a future line, further improvement could be achieved by
developing a hybrid model for the silicon content in the blast
furnace process as the most promising step. For instance, a
physical-chemical model could be used to fill in the missing
target values and be later calibrated through a data-driven
model.
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