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Abstract
This thesis is dedicated to the study of the following nonlinear and non-local
Schrödinger equation:

−∆u+ u+ λ2
(

1

ω|x|N−2
? ρu2

)
ρ(x)u = |u|q−1u x ∈ RN ,

where ω = (N − 2)
∣∣SN−1

∣∣ , λ > 0, q ∈ (1, 2∗ − 1), ρ : RN → R is nonnegative,
locally bounded, and possibly non-radial, N = 3, 4, 5 and 2∗ = 2N/(N − 2) is the
critical Sobolev exponent. We look for the existence and multiplicity of nontrivial
solutions to the above under the following assumptions on ρ:

(ρ1) ρ
−1(0) has non-empty interior and there exists M > 0 such that∣∣x ∈ RN : ρ(x) ≤M

∣∣ <∞;

(ρ2) for every M > 0, ∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞.

The variational properties of our problem require analysis of suitable functional
spaces and their properties, such as separability and compactness, which play
key roles in the variational tools which we use to prove existence and multiplicity
of solutions. Under both assumptions our work is strongly inspired by that of
Bartsch and Wang [7]. In the latter case (ρ2) we find the existence of least energy
solutions for a wide range of q ∈ (2, 2∗ − 1) using techniques related to the work
of Jeanjean-Tanaka [29]. Furthermore, multiplicity results under this assumption
are also obtained using the Lusternik-Schnirelman theory combined with results
of Ambrosetti-Rabinowitz [4] and Ambrosetti-Ruiz [5].

In the former case (ρ1) it is unclear whether compactness exists for our vari-
ational formulation, therefore we define a priori bounds, due to the relations
between λ and M , to show that there do not exist Palais-Smale sequences weakly
convergent to 0 for λ large in order to prove the existence of a solution.

We also show nonexistence of nontrivial solutions in the critical case (q =
2∗ − 1) and the case when q ∈ (1, 2].
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1 Introduction
This thesis is dedicated to existence, nonexistence and multiplicity of solutions
and their variational and qualitative properties, together with the functional prop-
erties and questions related to compactness of the following non-local Schrödinger
equation:

−∆u+ u+ λ2
(

1

ω|x|N−2
? ρu2

)
ρ(x)u = |u|q−1u x ∈ RN , (SP)

where ω = (N − 2)
∣∣SN−1

∣∣ , λ > 0, q ∈ (1, 2∗ − 1), ρ : RN → R is nonnegative,
locally bounded, and possibly non-radial, N = 3, 4, 5 and 2∗ = 2N/(N − 2) is the
critical Sobolev exponent.

Under various assumptions on ρ, we are interested in addressing problems
related to selecting a suitable functional setting and its relevant properties, such
as those related to separability and compactness. In particular, the variational
formulation of (SP) requires a functional setting different from the standard
Sobolev space H1(RN). Namely, situations where the right hand of the classical
Hardy-Littlewood-Sobolev inequality

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy . ||ρu2||2

L
2N
N+2 (RN )

, (HLS)

is not necessarily finite for some u ∈ H1(RN). More precisely, taking inspiration
from the work of Bartsch and Wang [7] we consider both of the following two
assumptions on ρ:

(ρ1) ρ
−1(0) has non-empty interior and there exists M > 0 such that

∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞;

(ρ2) for every M > 0, ∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞.

We can see from the above assumptions that given a u ∈ H1(RN), the (HLS)
may not be bounded in cases when, for example, ρ(x)→ +∞ as |x| → +∞. This
leads us to the study of the following space. Throughout the thesis these two
assumptions will be described as (ρ1) the vanishing case and (ρ2) the coercive
case.

Due to the above considerations, it is clear we will not be working in H1(RN),
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therefore we define E(RN) ⊆ H1(RN) as

E(RN) :=
{
u ∈ W 1,1

loc (R
N) : ‖u‖E(RN ) < +∞

}
,

with norm

‖u‖E(RN ) :=

(ˆ
RN

(|∇u|2 + u2) dx

+ λ

(ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy

)1/2
)1/2

.

Variants of this space have been studied since the work of P.L. Lions [34], other
works include [47], and [9], [16], [40]. Formally, solutions to (SP) are the critical
points in E(RN) of the C1(E(RN);R) energy functional

Iλ(u) =
1

2

ˆ
RN

(|∇u|2+u2)+λ
2

4

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

ω|x− y|N−2
dx dy− 1

q + 1

ˆ
RN

|u|q+1.

(1.1)
One could regard (SP) as formally equivalent to a nonlinear Schrödinger-Poisson
system {

−∆u+ u+ λ2ρ(x)φu = |u|q−1u, x ∈ RN ,

−∆φ = ρ(x)u2, x ∈ RN .
(1.2)

In fact, it is well-known from classical potential theory (Proposition 1 details this
further) that if u2ρ ∈ L1

loc(RN) is such that
ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy < +∞, (1.3)

then,
φu(x) =

ˆ
RN

ρ(y)u2(y)

ω|x− y|N−2
dy (1.4)

is the unique weak solution in D1,2(RN) of the Poisson equation

−∆φ = ρ(x)u2 (1.5)

and it holds that
ˆ
RN

|∇φu|2 =
ˆ
RN

ρφuu
2 dx =

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

ω|x− y|N−2
dx dy. (1.6)

2



Here we set
D1,2(RN) = {u ∈ L2∗(RN) : ∇u ∈ L2(RN)}, (1.7)

equipped with norm
‖u‖D1,2(RN ) = ‖∇u‖L2(RN ).

By elliptic regularity, the local boundedness of ρ implies that any pair (u, φ) ∈
E(RN)×D1,2(RN) solution to (1.2) is such that u and φ are both of class C1,α

loc (RN).

In particular, if u ≥ 0 is nontrivial, it holds that u, φ > 0. Note that inf Iλ = −∞,
however it is an easy exercise to see that Iλ is bounded below on the set of its
nontrivial critical points by a positive constant. It therefore makes sense to define
a solution u ∈ E(RN) to (SP) as a groundstate if it is nontrivial, and if it holds
that Iλ(u) ≤ Iλ(v) for every nontrivial critical point v ∈ E(RN) of Iλ.

The methodology contained in this thesis is inspired by the work of Ambrosetti-
Rabinowitz [4] and their pioneering analysis of nonlinear elliptic partial dif-
ferential equations which show the existence of unique bound states to non-
autonomous Schrödinger problems in bounded domains under certain conditions
on the nonlinearities, which we will refer to as the Ambrosetti-Rabinowitz condi-
tion, and suitable compactness conditions. Since the classical work of Ambrosetti-
Rabinowitz, considerable advances have been made in the understanding of sev-
eral classes of nonlinear elliptic PDE’s in the absence of either the so-called Palais-
Smale or the Ambrosetti-Rabinowitz conditions, yet achieving in the spirit of [4]
existence and multiplicity results, some examples include [2, 3, 51, 55]. A core
theme when working on unbounded domains such as RN are problems related
to compactness, namely the lack of compactness phenomena which occur. These
sort of problems have been tackled by Strauss [49] by means of radial functions
and by Berestycki-Lions [13], which have been a breakthrough in the study of
autonomous scalar field equations on the whole of RN . A great deal of work,
certainly inspired by that of Floer and Weinstein [24], has been devoted to the
study of nonlinear Schrödinger equations with nonradial potentials and involving
various classes of nonlinearities:

−∆u+ V (x)u = f(x, u), x ∈ RN . (1.8)

The classical works of Rabinowitz [45] and Benci-Cerami [10] have provided a
penetrating analysis on equations like (1.8), and inspired the work on various
remarkable variants of it, under different hypotheses on V and f which may
allow loss of compactness phenomena to occur. Authors have contributed to
understand these phenomena in a min-max setting, in analogy to what had been
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discovered and highlighted in the context of minimisation problems by P.L. Lions
in [35] and related papers. An interesting case has been considered by Bartsch
and Wang [7] who take a novel approach by using restrictions on the potential
V (x) in purely local Schrödinger equations to recover compactness in a non-radial
setting. Their work has been a major inspiration to much of our content. In
particular they proved existence and multiplicity of solutions to (1.8) for V (x) =

1+λ2ρ(x), with ρ(x) satisfying the measure conditions (ρ1) or (ρ2), the condition
(ρ1) is particularly interesting as no compactness occurs. Years later Jeanjean
and Tanaka in [29] and related papers, have looked into cases where f(x, u) may
violate the Ambrosetti-Rabinowitz condition. Remarkably, they have been able
to overcome the possible unboundedness of the Palais-Smale sequences, with an
approach which is reminiscent of the ‘monotonicity trick’ introduced for a different
problem by Struwe [50].

To give insight into the physical properties of (SP), some variants of this
equation appear in the study of the quantum many-body problem, some examples
can be found in [6, 18, 37]. The convolution term represents a repulsive interaction
between particles, whereas the local nonlinearity |u|q−1u is a generalisation of
the u5/3 term introduced by Slater [48] as local approximation of the exchange
term in Hartree-Fock type models, further examples of this may be found in
[14, 38]. In the last few decades, nonlocal equations like (SP) have received
increasing attention on questions related to existence, nonexistence, variational
setting and singular limit in the presence of a parameter. We draw the reader’s
attention to [1, 11, 18] and references therein, for a broader mathematical picture
on questions related to Schrödinger-Poisson type systems. Relevant contributions
to the existence of positive solutions, mostly for q > 3 = N, such as [19, 20], are
based on the classification of positive solutions given by Kwong [31] to

−∆u+ u = uq, x ∈ R3,

regarded as a ‘limiting’ PDE when ρ(x) → 0, as |x| → ∞. Recently in [41, 52],
in the case ρ(x)→ 1, as |x| → ∞, the relation between (1.2) and−∆u+ u+ λ2φu = |u|q−1u, R3

−∆φ = u2 R3
(1.9)

as a limiting problem, has been studied, though a full understanding of the set
of positive solutions to (1.9) has not yet been achieved.

4



Considerably fewer results have been obtained in relation to the multiplicity
of solutions. It is worth mentioning [5] whose (radial) approach is suitable in
the presence of constant potentials. More precisely Ambrosetti-Ruiz [5] have
studied the problem (1.9) with λ > 0 and 1 < q < 5. When q ∈ (1, 2) ∩ (3, 5)

their approach relies on the symmetric version of the Mountain-Pass Theorem
[4], whereas for q ∈ (2, 3] and in the spirit of [29, 50], they develop a min-max
approach to the multiplicity which in fact improves upon [4] and is based on the
existence of bounded Palais-Smale sequences at specific levels associated with the
perturbed functional

Iµ,λ(u) =
1

2

ˆ
R3

(|∇u|2 + u2) +
λ2

4

ˆ
R3

ˆ
R3

u2(x)u2(y)

ω|x− y|
dx dy − µ

q + 1

ˆ
R3

|u|q+1 dx,

for a dense set of values µ ∈
[
1
2
, 1
)
.

1.1 Main Results
In this section we collect the main results of this thesis under both assumptions
(ρ1) and (ρ2) which appear in [23]. Our new results are about existence, nonex-
istence and multiplicity of solutions.

Working in the functional setting E(RN) causes several problems to arise
which are not shared with more common spaces such as H1(RN). We may not
have a Hilbert space structure, as anticipated earlier notice that the assumption
(ρ1) is compatible with a situation where ρ(x) → ρ∞ > 0 as |x| → ∞, in which
the space E(RN) ' H1(RN), as well as with the case ρ(x) → ∞ as |x| → ∞,
in which E(RN) ⊂ H1(RN). We tackle the case of vanishing ρ with a unified
approach for these particular sub-cases.

Showing the boundedness of Palais-Smale sequences when q < 3 is a well
known open problem for this system, discussions on this topic can be found
in [46]. Furthermore, a possible lack of compactness due to the invariance by
translations in unbounded domains such as RN is a common issue in our work.
Methods by Strauss [49] for radial functions can overcome these issues or P.L.
Lions [35] in nonradial settings. In our case it is not obvious if compactness can be
regained under the assumption (ρ1), however, under the assumption (ρ2) we can
use methods similar to those on weighted Sobolev spaces to regain compactness
(Lemma 4.4).

In contrast with the local Schrödinger problem (1.8), where the infimum over
the Nehari manifolds can be shown to coincide with the mountain-pass level for
a wide range of nonlinearities f , as is shown in the book Minimax Theorems by
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Willem [55, p. 73]. In our problem (SP) it is not standard to prove, or disprove,
that these levels coincide when q ≤ 3.

In the case of pure power nonlinearities and q ∈ (1, 2], and unlike for the action
functional associated with (1.8), the variational properties of Iλ are particularly
sensitive to λ, yielding existence, multiplicity (of a local minimiser and at the
same time of a mountain-pass solution) and nonexistence results, for example
[39, 46] and [47].

1.1.1 Existence Results

The Theorems labelled in this section are mirrored in Chapter 4 under the labels
Theorems 4.1, 4.2, 4.3, 4.4 respectively in order of presentation here.

We begin with the following existence result in the case (ρ1) and analysing
the behaviour of (SP) as λ varies.

Theorem 1.1 (Groundstates for q ≥ 3 under (ρ1)). Let N = 3, ρ ∈ L∞
loc(RN)

be nonnegative, satisfying (ρ1), and q ∈ [3, 2∗−1). There exists a positive constant
λ∗ = λ∗(q,M) such that for every λ ≥ λ∗, (SP) admits a positive groundstate
solution u ∈ E(R3). For q > 3, u is a mountain-pass solution.

To prove the above theorem we use a constraint minimisation approach over
the Nehari manifold. Special consideration is taken in the delicate case of q = 3

as it is not clear whether the mountain-pass level is critical for this exponent.
By construction λ∗ = max{λ0, λ1}, where λ0 and λ1 are defined as in Propo-

sitions 6 and 7, provide uniform lower thresholds for λ to ensure that certain
Palais-Smale sequences have non-zero weak limits and that these weak limits
have a precise variational characterisation.

In a situation, as mentioned earlier, where E(R3) ' H1(R3), with equiva-
lent norms by (HLS), a sufficient condition at infinity for certain Palais-Smale
sequences to be compact is given by Propositions 9 and 10.

The following theorems consider the assumption (ρ2). We separate the cases
depending on the conditions on q, namely, we look at q ≥ 3 and q < 3 individually
due to differences in the variational characteristics of the functional Iλ. It is worth
noting that unlike in the case above, under the assumption (ρ2) λ > 0 is a fixed
constant.

Theorem 1.2 (Groundstates for q ≥ 3 under (ρ2)). Let N = 3, ρ ∈ L∞
loc(R3)

be nonnegative, satisfying (ρ2), and q ∈ [3, 2∗−1). Then, for any fixed λ > 0, (SP)
has both a positive mountain-pass solution and a positive groundstate solution in
E(R3), whose energy levels coincide for q > 3.

6



The main advantage when working under assumption (ρ2) compared to (ρ1)

in the prior Theorem 1.1 comes from the result provided by Lemma 4.4 giving
a compact embedding yielding a variationally stronger result than in the (ρ1)

case. Under this condition we can show the mountain-pass level is indeed critical
since we have the Palais-Smale condition for a wide range of q. At this stage it is
unclear whether the groundstate solutions and the mountain-pass level coincide
when q = 3.

In the range q ∈ (2, 3) it is not standard to show the boundedness of Palais-
Smale sequences for the functional Iλ. We take inspiration from the approach of
Jeanjean and Tanaka [29] and tools developed in [23, 41]. This approach con-
cerns constructing a sequence of critical points (un)n∈N of the following perturbed
functional

Iµn,λ(u) =
1

2

ˆ
RN

(|∇u|2 + u2) +
λ2

4

ˆ
RN

ρ(x)φuu
2 − µn

q + 1

ˆ
RN

|u|q+1,

which we find converge to our desired solution as µn → 1−.

Theorem 1.3 (Groundstates for q < 3 under (ρ2)). Let N = 3, 4, 5, q ∈
(2, 3) if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Let λ > 0, and assume ρ ∈
L∞

loc(RN) ∩ W 1,1
loc (RN) is nonnegative and satisfies (ρ2). Moreover suppose that

kρ(x) ≤ (x,∇ρ) for some k > −2(q−2)
(q−1)

. Then, (SP) has a mountain-pass solution
u ∈ E(RN). Moreover, there exists a groundstate solution.

Remark 1.1. The same proof when working instead with the functional

Iλ,+(u) =
1

2

ˆ
RN

(
|∇u|2 + u2

)
+
λ2

4

ˆ
RN

ρ(x)φuu
2 − 1

q + 1

ˆ
RN

uq+1
+ ,

allows to show that mountain-pass and groundstate critical points exist for this
functional, and are positive by construction.

The question of whether the mountain-pass and groundstate critical points
coincide, as in Theorem 1.2 for q = 3, remain unclear. We obtain some more
insight into this problem when we consider a homogeneity condition on ρ, in
particular we further assume ρ is homogeneous of order k̄ > 0, the exact value of
this lower bound to be explained later.

Theorem 1.4 (Homogeneous case for q ≤ 3 : mountain-pass solutions
vs. groundstates). Let N = 3, 4, 5, q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if
N = 4, 5. Suppose λ > 0 and ρ ∈ L∞

loc(RN) ∩W 1,1
loc (RN) is nonnegative, satisfies

7



(ρ2), and is homogeneous of degree k̄, namely ρ(tx) = tk̄ρ(x) for all t > 0, for
some

k̄ >

(
max

{
N

4
,

1

q − 1

}
· (3− q)− 1

)
+

.

Then, the mountain-pass solutions that we find in Theorem 1.2 (q = 3) and
Theorem 1.3 (q < 3) are groundstates.

The proof of this Theorem comes from the analysis shown in Proposition 2.
This proposition gives us a characterisation of the mountain-pass level over a
specific manifold, closely related to, or could be thought of as a combination of,
the Nehari and Pohozaev identities. More detail on the lower bound assumption
on k̄ is given by Remark 3.1.

1.1.2 Multiplicity Results

The two Theorems in this section are also mirrored in Chapter 6 under the labels
Theorems 6.2, 6.3 respectively in order of presentation here.

In the spirit of Ambrosetti-Rabinowitz [4] and under (ρ2) we show that (1.2)
possesses infinitely many high energy solutions. In our context it seems appro-
priate to distinguish the cases q ∈ (3, 5) and q ∈ (2, 3] when working within
the Lusternik-Schnirelman theory. Since for q ∈ (3, 5) Lemma 4.4 implies that
the Palais-Smale condition is satisfied, we can use the Z2-equivariant Mountain-
Pass theorem, adapting to E(RN) arguments similar to those developed for a
different functional setting by Szulkin; see [53]. To this aim, in Lemma 3.1
we prove that for N ≥ 3, E(RN) is a separable Banach space, by construct-
ing a suitable linear isometry of E(RN) onto the Cartesian product of H1(RN)

with some of the mixed norm Lebesgue spaces studied by Benedek and Pan-
zone [12], namely L4(RN ;L2(RN)). As a consequence of this identification, we
can show that E(RN) admits a Markushevic basis, that is a set of elements
{(em, e∗m)}m∈N ⊂ E(RN)×E∗(RN) such that the duality product< en, e

∗
m >= δnm

for all n,m ∈ N, the em’s are linearly dense in E(RN), and the weak∗-closure of
span{e∗m}m∈N is E∗(RN). We use this, combined with Lemma 4.4 to obtain lower
bounds on the energy which allow us to show the divergence of a sequence of
min-max critical levels defined by means of the classical notion of Krasnoselskii
genus; see Lemma 6.1 below. This yields the following

Theorem 1.5 (Infinitely many high energy solutions for q > 3). Let N = 3,

q ∈ (3, 2∗ − 1) and λ > 0. Suppose ρ ∈ L∞
loc(R3) is nonnegative and satisfies (ρ2).

Then, there exists infinitely many distinct pairs of critical points ±um ∈ E(RN),
m ∈ N, for Iλ such that Iλ(um)→ +∞ as m→ +∞.

8



As in the existence case, when q < 3 we face the possible unboundedness of the
Palais-Smale sequences. The work of Ambrosetti-Ruiz [5] contains a deformation
Lemma in the spirit of Jeanjean and Tanaka which is suitable for Lusternik-
Schnirelman type results. As before we require the homogeneity condition on ρ

which allow us to define certain classes of admissable subsets of E(RN) as in [5].
Lemmas 3.6 and 6.4, together with the Pohozaev type inequality (Lemma 3.9),
form the basis of the following Theorem.

Theorem 1.6 (Infinitely many high energy solutions for q ≤ 3). Let N =

3, 4, 5. Assume q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Suppose λ > 0

and ρ ∈ L∞
loc(RN) ∩W 1,1

loc (RN) is nonnegative, satisfies (ρ2), and is homogeneous
of degree k̄, namely, ρ(tx) = tk̄ρ(x) for all t > 0, for some

k̄ >

(
max

{
N

4
,

1

q − 1

}
· (3− q)− 1

)
+

.

Then, there exist infinitely many distinct pairs of critical points, ±um ∈ E(RN),
m ∈ N, for Iλ such that Iλ(um)→ +∞ as m→ +∞.

1.2 Further Research
The following open questions are still unknown and are worthy of further research:

• Much of the work under assumption (ρ1) is done in the framework of q ≥ 3.
The question of whether a result when q < 3 is possible remains.

• We only show existence under (ρ1) but could multiplicity be shown when
q ∈ [3, 2∗ − 1), and possibly for lower values of q.

• We use some strict conditions on the homogenity of ρ in the coercive case
(ρ2) when working in the “low q” case in both the existence and multiplicity
results. It is possible that this assumption could be further relaxed.

• Nonexistence in the case q ∈ (1, 2] (Proposition 5) when ρ(x) is nonnegative
instead of ρ(x) ≥ 1 is still open.

1.3 Organisation of thesis
This thesis is split into multiple Chapters to give the reader a coherent flow
regarding the main topic and previous work in this field.

We begin with a background chapter 2 detailing some of the many techniques
used in critical point theory for time independent Schrödinger type problems and

9



also a discussion about the Poisson equation and how it relates to our system.
Many of the techniques used for this type of problems are applicable in our
setting with some modifications, we end this chapter with a brief discussion on
the differences between the local and nonlocal problems.

Chapter 3 introduces some preliminary results found in [23] regarding proper-
ties of the space E and characteristics of the functional (1.1) which will be used
throughout the latter chapters. Discussions regarding the homogeneity of ρ and
why we make this assumption are contained in this chapter. We also state some
standard results regarding regularity and positivity of weak solutions and end
with two nonexistence results, separating the critical case q = 2∗ − 1 and when
q ∈ (1, 2].

Chapter 4 deals with our various existence results and is organised into mul-
tiple sections. The results in this chapter are found in [23]. Sections 4.1 and
4.2 discuss the situation when ρ is under assumption (ρ1), i.e. vanishing on a
region. It is unclear under this assumption whether we may recover compactness,
we present a number of estimates and sufficient conditions to show existence of
mountain-pass solutions in a certain range of q. A brief discussion on recovering
the Palais-Smale condition is included, we use an approach similar to [41] for the
“problem at infinity” where we set ρ in such a way which satisfies (ρ1). Sections
4.3 and 4.4 discuss what happens when ρ is under the assumption (ρ2), namely
when ρ is coercive. Here the lack of compactness phenomena is overcome by
Lemma 4.4 and hence we are able to show our functional I satisfies the Palais-
Smale condition. Furthermore we show existence of solutions for a wide range of
q.

Chapter 5 gives some background for the techniques we use to obtain mul-
tiplicity results. This ranges from an introduction of Brouwer degree, to the
Lusternik-Schnirelmann theory and its relations to deformations. We end this
chapter with an example to a generic problem and finding the existence of in-
finitely many solutions.

We end with Chapter 6 which details our multiplicity results under the as-
sumption (ρ2). The results in this chapter are found in [23]. In this chapter
we perform a separate analysis between the “high q” and “low q” case as these
require different techniques due to complexities involving the boundedness of
Palais-Smale sequences.

10



2 Background
Before we delve into the details of our Schrödinger-Poisson an introduction to
the techniques which will be used will be given in this chapter. We aim to
cover Schrödinger type problems and the Poisson equation separately in order
to give a flavour of techniques used to find solutions of these problems in the
current literature and to reflect on how these methods are adapted to the nonlocal
Schrödinger-Poisson case.

All of the problems covered here will be in RN . This choice of domain aims
to show the lack of compactness phenomenon when working in unbounded do-
mains and will give the reader an insight of a few techniques developed by earlier
mathematicians [13, 28, 29, 35] to combat this issue.

Much of the content presented in this chapter is a review of work done by
myself presented in my Master’s Thesis at Swansea University, namely sections
2.1 and 2.2, to show a natural progression to the current research discussed in
the bulk of this thesis.

2.1 Solutions to a local Schrödinger problem
The aim of this section is to provide the reader with an introduction to finding
solutions of Schrödinger type problems when working on unbounded domains, in
particular we work in RN . We highlight the difficulties faced in this scenario and
the techniques we use to overcome them.

We begin with an introduction to the concentration compactness lemma by
Pierre Louis Lions [35, 36]. When working on unbounded domains such as RN ,
compactness is lost due to the invariance by translations of the functionals.
Namely, we can no longer construct subsequences that are not weakly conver-
gent to 0.

The space we will be working in is the standard weighted Hilbert space defined
as follows.

Definition 1 (The space H1
V ). Let V (x) ∈ C(RN) and V (x) ≥ c > 0, then we

define the weighted space with norm

‖f‖H1
V (RN ) :=

(ˆ
RN

|∇f |2 + V (x)f 2
) 1

2
<∞.

It is easy to see that ‖f‖H1
V (RN ) ≥ c‖f‖H1(RN ) and hence H1

V ↪→ H1.
The following theorem uses the Lagrange multiplier rule to apply a constrained

minimisation technique to obtain least energy solutions. The main difficulties
faced here are due to the fact we are working in RN with non-radial functions.
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Theorem 2.1. Let N ≥ 2, V (x) ∈ C(RN), V (x) ≥ c > 0, V (x) ≤ lim inf
|y|→∞

V (y) for

all x ∈ RN and V (x) < C, where C is a finite constant. Then, for 1 < p < 2∗−1,−∆u+ V (x)u = |u|p−1 u, x ∈ RN .

u > 0,
(2.1)

has a nontrivial weak solution u ∈ H1(RN). In the case of N = 2 the result holds
for all p > 1.

Weak solutions, as mentioned in the above theorem, are defined as follows

Definition 2. We call u ∈ H1
V (RN) a weak solution to (2.1) if

ˆ
RN

∇u∇φ+ V (x)uφ−
ˆ
RN

|u|p−2 uφ = 0

holds for all φ ∈ H1
V (RN).

Before we prove Theorem 2.1 we require the following lemma by Lions [36,
Lemma 1.1]. The usefulness of this lemma will become apparent in the proof of
Theorem 2.1 where it will be used to recover compactness.

Lemma 2.1. Let 2 ≤ q < 2∗, r > 0. Suppose (un)n ⊂ H1(RN) bounded and

sup
y∈RN

ˆ
B(y,r)

|un|q → 0, n→∞.

Then un → 0 in Lp(RN) for all p ∈ (2, 2∗).

Proof. We prove this lemma for a specific exponent

p̄ :=
2(N + q)

N
∈ (q, 2∗).

Consider the cube C(y, r) centered at y and with vertices of distance r from its
center. It holds, by the interpolation inequality, that

‖u‖Lp̄(C(y,r)) ≤ ‖u‖αLq(C(y,r))‖u‖1−α
L2∗ (C(y,r))

≤ c‖u‖αLq(C(y,r))‖u‖1−α
H1(C(y,r)).

Set Sy(u) = ‖u‖qLq(C(y,r)), then the previous inequality implies

‖u‖p̄Lp̄(C(y,r)) ≤ cSy(u)
αp̄
q ‖u‖(1−α)p̄

H1(C(y,r))
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≤ cSy(u)
αp̄
q ‖u‖2H1(C(y,r)),

as (1− α)p̄ = 2. Note that RN =
⋃
n

C(yn, r) disjoint. Hence

‖u‖p̄
Lp̄(RN )

≤ c sup
y∈RN

Sy(u)
αp̄
q ‖u‖2H1(RN ).

Now using the above inequality with un, our assumption on the supremum of
Sy(un) and ‖un‖H1(RN ) < C gives

‖un‖p̄Lp̄(RN )
≤ c · o(1) · C → 0.

If 2 < p < p̄, then
‖un‖pLp(RN )

≤ ‖un‖αL2(RN )‖un‖
1−α
Lp̄(RN )

.

If p̄ < p < 2∗, then

‖un‖pLp(RN )
≤ ‖un‖αL2∗ (RN )‖un‖

1−α
Lp̄(RN )

.

Now we can move on to the proof of Theorem 2.1. The proof uses various
results that are used as a preliminary to allow the use of Lemma 2.1 which is
then used to show the existence of solutions.

Proof of Theorem 2.1. We prove 2.1 by using the standard Langrange multiplier
rule showing

α := inf
u∈H1

V (RN )

∥u∥p+1
p+1=1

I(u) (2.2)

is achieved, where
I(u) :=

1

2

ˆ
RN

|∇u|2 + V (x)u2,

and by the Sobolev embedding theorem, α > 0. We start with some remarks on
the spaces used in this proof and a brief discussion on the regularity and positivity
of u.

Under the assumptions on V (x) it is possible to show that the weighted space
H1

V is isomorphic to H1, we have

c

ˆ
RN

u2 ≤
ˆ
RN

V (x)u2 ≤ C

ˆ
RN

u2,
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which, when adding the gradient terms back in becomes,

min(c, 1)

ˆ
RN

|∇u|2 + u2 ≤
ˆ
RN

|∇u|2 + V (x)u2 ≤ (C + 1)

ˆ
RN

|∇u|2 + u2.

From here it is clear we can construct the following bounds:

c‖u‖H1(RN ) ≤ ‖u‖H1
V (RN ) ≤ C‖u‖H1(RN ),

and
c̃‖u‖H1

V (RN ) ≤ ‖u‖H1(RN ) ≤ C̃‖u‖H1
V (RN ).

Hence, H1
V ' H1 with equivalent norms and we proceed to work in H1(RN) for

the remainder of the proof.
A quick note on the regularity and positivity of the solution, if u is a solution

to (2.2) then so is |u|, also since u is real valued then |∇ |u|| = |∇u| almost
everywhere on RN . As a consequence I(u) = I(|u|). Furthermore it can be
shown [33, 51] that u ∈ C1 and u is a nontrivial solution of (2.2). Hence by
Vázquez [54] it can be shown that u > 0.

Moving back to the original problem. By the definition of α in (2.2), we can
write

α = inf
0 ̸=u∈H1(RN )

I
( u

‖u‖Lp+1(RN )

)
= inf

0̸=u∈H1(RN )

I(u)( ´
RN |u|p+1

) 2
p+1

. (2.3)

We solve (2.3) by considering a minimising sequence:
un ∈ H1(RN),

‖un‖p+1
Lp+1(RN )

= 1,

I(un)→ α.

(2.4)

where α = inf
0̸=u∈H1(RN )

I(u)

∥u∥2
Lp+1(RN )

. Since un is minimising, ‖un‖H1(RN ) ≤ C

therefore by Banach-Alaoglu, un ⇀ u in H1(RN). For u ∈ H1(RN) we define
I(u) = 1

2
‖u‖2H1(RN ) and

I(un) =I(un − u+ u) =
1

2
‖un − u+ u‖2H1

V (RN )

=
1

2

[
‖un − u‖2H1

V (RN ) + ‖u‖
2
H1

V (RN ) − 2(un − u, u)
]
= I(un − u) + I(u) + o(1).
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Which, by our assumption, means that

I(un − u) + I(u)→ α. (2.5)

We break solving (2.3) into 3 steps.
Step 1: The following alternative holds:

• ‖u‖Lp+1(RN ) = 1.

• u ≡ 0.

By the definition of α we have

α
[ ˆ

RN

|u|p+1
] 2

p+1 ≤ I(u),

for all u ∈ H1(RN). From this we can use the result in (2.5) to get

α← I(un − u) + I(u) ≥ α
[ ˆ

RN

|un − u|p+1
] 2

p+1
+ α

[ ˆ
RN

|u|p+1
] 2

p+1
. (2.6)

Set β =
´
RN |u|p+1, by Fatou, β ∈ [0, 1]. Here we can assume, if passing to a

subsequence, we have almost everywhere convergence in RN . We have by Brezis-
Lieb lemma,

o(1) +

ˆ
RN

|u|p+1 +

ˆ
RN

|un − u|p+1 =

ˆ
RN

|un|p+1 = 1.

As n → ∞ in (2.6), this implies α ≥ α(1 − β)
2

p+1 + αβ
2

p+1 . Dividing by α we
obtain

1 ≥ (1− β)
2

p+1 + β
2

p+1 , β ∈ [0, 1].

On the RHS we have
f(β) = (1− β)

2
p+1 + β

2
p+1 .
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β
0

1

1

f(β)

Figure 1: Sketch of f(β).

Observing the behaviour of this function we can see in Figure 1 that if f(β) ≤
1, this is only possible if β = 0, 1.
Step 2: If β = 1 we have a solution to the minimum problem. If β = 0 there
exists a sequence yn ∈ RN such that the translated sequence vn := un(· − yn) does
not contain any subsequence weakly converging to zero.
If β = 1 it follows by the weakly lower semicontinuity of the norm I(u) = α. If
β = 0, recall that ‖un‖Lp+1(RN ) = 1. By Lions Lemma 2.1

sup
y∈RN

ˆ
B(y,r)

|un|2 9 0,

implies there exists ρ > 0 and a subsequence (yn)n ⊂ RN such that
ˆ
B(yn,1)

|un|2 ≥ ρ > 0.

Here we use in particular r = 1. If we set vn := un(· − yn) we get
ˆ
B(0,1)

v2n ≥ ρ > 0, ∀n ∈ N,

which implies that (vn)n ∈ RN does not contain any subsequence weakly con-
verging to zero.
Step 3: If β = 0, construct vn as above. vn is also a minimising sequence. Note
that, because of the first two steps:vn ⇀ 0, does not hold by step 2,

vn ⇀ v, ‖v‖Lp+1(RN ) = 1, we have a solution.
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Note that: ˆ
RN

|∇vn|2 =
ˆ
RN

|∇un|2 ,

and ˆ
RN

|vn|p+1 =

ˆ
RN

|un|p+1 = 1.

Also, ‖vn‖2L2(RN ) = ‖un‖2L2(RN ) < C and this implies that ‖vn‖2L2(RN ) → k by
Bolzano-Weierstrass. We are left to show that

lim sup
n→∞

ˆ
RN

V (x)v2n ≤ lim inf
n→∞

ˆ
RN

V (x)u2n,

as this would show that vn is also a minimising sequence. Set

γ := lim inf
|y|→∞

V (y) ≥ V (x),

then
lim sup
n→∞

ˆ
RN

V (x)v2n ≤ lim sup
n→∞

γ

ˆ
RN

v2n = γk.

If we can show that
γk ≤ lim inf

n→∞

ˆ
RN

V (x)u2n,

then we are done. We split the integral to the integral over a ball and its com-
plement, ˆ

RN

V (x)u2n =

ˆ
BR

V (x)u2n +

ˆ
Bc

R

V (x)u2n,

however ˆ
BR

V (x)u2n ≤ c

ˆ
BR

u2n → 0.

Thus,
lim inf
n→∞

ˆ
RN

V (x)u2n = lim inf
n→∞

ˆ
|x|>R

V (x)u2n,

for all R > 0. By definition of γ it follows that for all ε > 0, there exists Rε such
that V (x) > γ − ε on Bc

Rε
and

ˆ
|x|>Rε

V (x)u2n ≥ (γ − ε)
ˆ
|x|>Rε

|un|2 ,

implying, from the invariance by translations,

lim inf
n→∞

ˆ
|x|>Rε

V (x)u2n ≥ (γ − ε)k,
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which concludes that vn is also minimising.
Conclusion: Let (un)n be a minimising sequence for (2.2). Then considering

if necessary the modified sequence vn := un(· − yn), we have up to a subsequence

vn → v 6= 0 in Lp+1(RN),

vn ⇀ v in H1(RN),

vn is minimising.

This and the weakly lower semicontinuity of the norm imply

α = lim inf
n→∞

I(vn)( ´
RN |vn|p+1

) 2
p+1

≥ I(v)( ´
RN |v|p+1

) 2
p+1

≥ α.

Which implies limn→∞ I(vn) = I(v), and limn→∞‖vn‖H1(RN ) = ‖v‖H1(RN ) ⇒ ‖vn−
v‖H1(RN ) → 0.

Hence, all the minimising sequences for (2.2) are relatively compact in H1(RN)

up to translations. We then use the Lagrange multiplier rule to show the existence
of a solution.

We turn our attention to a similar problem to Theorem 2.1 which has a
coercive potential. When dealing with such a potential the following compactness
result emerges.

Lemma 2.2. If lim|x|→∞ V (x) = +∞ and V (x) ≥ c > 0 then H1
V (RN) is com-

pactly embedded into Lp+1(RN) for 1 ≤ p < 2∗ − 1 if N > 2 and for p ≥ 1 if
N = 2.

Proof. Assume (un)n ⊂ H1
V (RN) and ‖un‖H1

V (RN ) < C for some finite constant
C. This implies, passing if necessary to a subsequence, there exists unk

→ u in
Lp+1
loc (RN) by Rellich and also unk

→ u almost everywhere on RN . We want to
show that ‖unk

− u‖2L2(RN ) → 0. Writing the norm explicitly we have

ˆ
RN

|unk
− u|2 =

ˆ
BR

|unk
− u|2 +

ˆ
Bc

R

|unk
− u|2 . (2.7)

Notice that by Rellich we already have the first integral over BR goes to zero,
also by our assumption on V (x), namely that it is never zero, we can re-write
(2.7) as ˆ

RN

|unk
− u|2 =

ˆ
Bc

R

|unk
− u|2 V (x)

V (x)
dx. (2.8)
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By definition, lim|x|→∞ V (x) = +∞ holds if, and only if, for all M > 0 there
exists R > 0 such that for |x| > R, V (x) > M . Or, inversely, V (x)−1 < M−1.
Therefore, by Fatou and since the sequence is bounded in H1

V it follows that
ˆ
Bc

R

|unk
− u|2 V (x)

V (x)
dx ≤ ε

ˆ
Bc

R

V (x) |unk
− u|2 ≤ Cε.

We extend this to a general p term. We want ‖unk
− u‖Lp+1(RN ) → 0. By

interpolation we have

‖unk
− u‖Lp+1(RN ) ≤ ‖unk

− u‖αL2(RN )‖unk
− u‖1−α

L2∗(RN )
. (2.9)

By Sobolev’s inequality, ‖unk
− u‖1−α

L2∗(RN )
< C. Thus, as we have already shown

that ‖unk
− u‖αL2(RN ) ≤ Cε,

‖unk
− u‖Lp+1(RN ) ≤ C̄ε.

Hence, H1
V (RN) is compactly embedded into Lp+1(RN) for 1 ≤ p < 2∗− 1. In the

case of N = 2 we can see that (2.9) becomes

‖unk
− u‖Lp+1(RN ) ≤ ‖unk

− u‖αL2(RN )‖unk
− u‖1−α

Lq(RN )
, (2.10)

where q > p+ 1. Thus, from the Sobolev embedding, it follows that (2.10) holds
for all p ≥ 1.

As a consequence of this Lemma we can obtain the following result.

Theorem 2.2. Let N ≥ 2, V (x) ∈ C(RN), V (x) ≥ c > 0, V (x) ≤ lim
|y|→∞

V (y) =

+∞ for all x ∈ RN . Then, for 1 < p < 2∗ − 1,−∆u+ V (x)u = |u|p−1 u, x ∈ RN ,

u > 0,
(2.11)

has a nontrivial weak solution u ∈ H1
V (RN). In the case of N = 2 the result holds

for all p > 1.

Proof. We apply the Lagrange Multiplier rule meaning for I(u) = 1
2

´
RN |∇u|2 +

V (x)u2 we want to find some α such that

α := inf
u∈H1

V (RN )

∥u∥p+1
p+1=1

I(u), (2.12)
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We construct a minimising sequence such that
un ∈ H1

V (RN),

‖un‖p+1
Lp+1(RN )

= 1,

I(un)→ α.

Indeed, by the weakly lower semicontinuity of the norm and the compact embed-
ding of H1

V (RN) into Lp+1(RN) given by Lemma 2.2, it holds that

I(u)( ´
RN |u|p+1

) 2
p+1

≤ lim inf
n→∞

I(un)( ´
RN |un|p+1

) 2
p+1

= α,

which can only be true if the above is a strict equality, thus α = I(u). Hence,
there exists a minimiser for α and the rest of the proof, including the remarks
about the regularity and positivity of u, are identical to the proof of Theorem
2.1.

2.2 The Mountain Pass Theorem
Many of the techniques contained in this thesis rely heavily on the Mountain
Pass Theorem (MPT). The pioneering work by Ambrosetti-Rabinowitz in 1973
[4] involves analysing the family of curves around the well centered at the origin
to find minimax type solutions to corresponding PDEs under certain conditions.
Before we can state the Mountain Pass Theorem we have a few preliminaries.
Firstly the functional we are working with needs to have a certain geometry,
known as the Mountain Pass geometry.

Definition 3 (Mountain Pass Geometry). LetX be a Banach space. A functional
I ∈ C1(X,R) is said to have the Mountain Pass Geometry if

• I(0) = 0.

• There exists r, a > 0 such that I(u) ≥ a for all u ∈ Sr, Sr := {u ∈ X :

‖u‖X = r}.

• There exists v ∈ X where ‖v‖X > r such that I(v) ≤ 0.

As a consequence if we have a functional I that has these geometric properties
then we can define the family of paths joining u = 0 and u = v as

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = v}. (2.13)
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We set
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)). (2.14)

It is not automatic that the functional at c has a critical point and we use
the Palais-Smale condition (Definition 4) to overcome this problem, an example
of why this is so is given in [3, p. 121].

By the above definition we can conclude that for each ε > 0 there exists u ∈ X
such that c− 2ε ≤ I(u) ≤ c+2ε and ‖I ′(u)‖∗ < 2ε. We can construct a sequence
such that εn → 0 as n→∞, then there exists {un}n∈N ∈ X such that, I(un)→ c

and ‖I ′(un)‖∗ → 0, i.e. I ′(un) → 0, as n → ∞. Such a sequence {un}n∈N is
known as a Palais-Smale sequence at level c.

The following compactness condition is required to show that the levels c are
in fact critical.

Definition 4 (Palais-Smale condition). Let X be a Banach space, ψ ∈ C1(X,R)
and c ∈ R. The function ψ satisfies the (PS)c condition if any sequence {un}n ⊂
X such that

ψ(un)→ c, ψ′(un)→ 0

has a convergent subsequence.

With the notion of Mountain Pass geometry (Definition 3) and the above
compactness condition on Palais-Smale sequences (also known as the Palais-
Smale condition, (PS)c for short) we can state the Mountain Pass Theorem of
Ambrosetti-Rabinowitz [4].

Theorem 2.3 (Mountain Pass Theorem). Under the assumption of definition 3,
if I satisfies the (PS)c condition (Definition 4), then c is a critical value of I.

The proof of the above Theorem is omitted for the sake of brevity but may
be found in [55]. The discussions contained in Chapter 5, namely section 5.2.1
(Relation to deformations), offer an insight as to how critical levels are obtained
using the Mountain Pass Theorem.

2.3 Mountain Pass solutions to a local Schrödinger prob-
lem

We look at a problem similar to one which will be discussed in the latter part
of this Thesis where difficulties arising from a low power of our nonlinearity
create a situation where the boundedness of Palais-Smale sequences might not
be achievable. In this case we look at the scenario where p ≤ 3 and the so called
Ambrosetti-Rabinowitz condition is not satisfied.
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Consider the following PDE:

−∆u+ V (x)u = f(u). (2.15)

Studying the variational form of (2.15) yields

I(u) :=
1

2

ˆ
RN

|∇u|2 + V (x)u2 −
ˆ
RN

F (u), F (s) :=

ˆ s

0

f(t) dt.

Since I is a C1 functional, we can show that critical points of I are solutions to
(2.15). To begin we first show that I has the Mountain Pass Geometry (Definition
3). Namely we want to show

Γ := {γ ∈ C([0, 1], H) | γ(0) = 0 and I(γ(1)) < 0}

is nonempty, and
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) > 0.

Methods such as Ekelands variational principle can show that I indeed has the
Mountain Pass geometry. This implies the existence of a sequence {un} ⊂ H

such that
I(un)→ c, I ′(un)→ 0, as n→∞.

As described in the previous section, at this stage we would like to show I satisfies
the Palais-Smale condition. To begin this analysis we need to show un is bounded.
This fails due to the assumptions placed on f , i.e. due to the absence of the
Ambrosetti-Rabinowitz condition: There exists ε > 2 such that

0 < ε

ˆ s

0

f(τ) dτ ≤ sf(s), (2.16)

for all s ∈ R.
Louis Jeanjean and Kazunaga Tanaka developed a method to overcome these

difficulties [28, 29] taking advantage of the so called “monotonicity trick” by
Struwe [50]. Their approach is as follows, for µ ∈ [1

2
, 1], consider the family of

functionals Iµ : H → R defined as

Iµ(u) :=
1

2

ˆ
RN

|∇u|2 + V (x)u2 − µ
ˆ
RN

F (u).

Thanks to the perturbation by µ it can be shown that for any µ ∈ [1
2
, 1], there

exist bounded Palais-Smale sequences for Iµ. Namely the following Lemma was
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proved by Jeanjean [28] for generic interval I for µ,

Lemma 2.3. Let X be a normed Banach space and let I ⊂ R+ be an interval.
Consider the family of C1-functionals (Iµ)µ∈I on X of the form

Iµ(w) = A(w)− µB(w), ∀µ ∈ I,

where B(w) ≥ 0 for all w ∈ X and such that either, A(w)→ +∞ or B(w)→ +∞
as ‖w‖X → +∞. Assume there are two points (v0, v1) in X such that setting

Γ = {γ ∈ C([0, 1], X) | γ(0) = v0, γ(1) = v1}

the level
cµ := inf

γ∈Γ
max
t∈[0,1]

Iµ(γ(t)) > max{Iµ(v0), Iµ(v1)}

holds for all µ ∈ I. Then, for almost every µ ∈ I, there exists a sequence
{vn} ⊂ X such that

1. {vn} is bounded,

2. Iµ(vn)→ cµ,

3. I ′µ(vn)→ 0 in X−1 (The dual of X).

It is important that Γ is defined independent of µ and µ 7→ cµ be mono-
tone, hence c′µ exists almost everywhere to be able to prove the existence of the
Palais-Smale sequences. The results of Jeanjean [28] yielded continued research
by Jeanjean and Tanaka [29] resulting in the following Theorem. In this case
the above Lemma 2.3 shows the existence of bounded Palais-Smale sequences for
almost every µ ∈ I by means of Struwe’s [51] “monotonicity trick”. The sequel
shows the sequence of critical points obtained from the family of perturbed func-
tionals form a bounded Palais-Smale sequence for an unperturbed functional I
in the case µ ∈ [1

2
, 1].

Theorem 2.4. Suppose f ∈ C(R+,R) satisfying:

(f1) f(0) = 0 and f ′(0), defined as lim
s→0+

f(s)s−1, exists,

(f2) there is p < ∞ if N = 2 or p < (N + 2)/(N − 2) if N ≥ 3 such that
lim

s→+∞
f(s)s−p = 0,

(f3) lim
s→+∞

= f(s)s−1 +∞.
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Suppose further the following conditions on V (x):

(V1) f ′(0) < inf σ(−∆ + V (x)), where σ(−∆ + V (x)) denotes the spectrum of
the self-adjoint operator −∆+ V (x) : H2(RN)→ L2(RN), i.e.,

inf σ(−∆+ V (x)) = inf
u∈H1(RN )\{0}

´
RN |∇u|2 + V (x)u2 dx´

RN |u|2 dx
,

(V2) V (x)→ V (∞) ∈ R as |x| → +∞,

(V3) V (x) ≤ V (∞), a.e., x ∈ RN ,

(V4) there exists a function ϕ ∈ L2(RN) ∩W 1,∞(RN) such that

|x| |∇V (x)| ≤ ϕ(x)2, ∀ x ∈ RN .

Then there exists a nontrivial positive solution to

−∆u+ V (x)u = f(u), u ∈ H1(RN)

for N ≥ 2.

The full proof will not be given and can be found in [29], instead a brief sketch
will be provided.

Sketch of proof for Theorem 2.4. The core concept involved is showing that the
sequence of critical points obtained from Lemma 2.3 {uj} ⊂ H1(RN) of Iµj

where
µ ∈ [1

2
, 1] and µj ↗ 1. The proof involves the use of a Pohozaev type identity

(Similar to the one we provide in Lemma 3.9) which is used to show that the
sequence {uj} ⊂ H1(RN) is bounded. By the boundedness of {uj} and the fact
the critical levels of Iµ, given by cµ in Lemma 2.3 are monotone, Jeanjean and
Tanaka prove that this sequence is infact a bounded Palais-Smale sequence for
I which satisfy supj→∞ I(uj) ≤ c and ‖uj‖H1(RN ) 9 0. This means there exists
a bounded Palais-Smale sequence for I at the level c which does not converge
to 0, hence by the Mountain Pass theorem there exists a nontrivial solution to
(2.15).

The above describes an interesting situation where even the boundedness of
the Palais-Smale sequences is not obvious. To look at how one might find Moun-
tain Pass solutions in a setting which the Ambrosetti-Rabinowitz condition is
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satisfied we can look at the problem described in Theorem 2.2. In this case we
look at the problem−∆u+ V (x)u = |u|p−1 u, x ∈ RN ,

u > 0.
(2.17)

where N ≥ 2, V (x) ∈ C(RN) such that V (x) ≥ c > 0 and V (x) ≤ lim
|y|→∞

V (y) =

+∞ for all x ∈ RN , p ∈ (1, 2∗ − 1).
The above has the corresponding energy functional

I(u) =
1

2
‖u‖2H1

V (RN ) −
1

p+ 1

ˆ
RN

|u|p+1 .

To apply the Mountain Pass Theorem 2.3 we have three requirements; To show
that I satisfies the Mountain Pass geometry (Definition 3), show that the Palais-
Smale sequences for I are bounded, show that I satisfies the Palais-Smale condi-
tion (Definition 4).

To show that I satisfies the MPG, consider ut := tu(x), then

I(ut) =
t2

2
‖u‖2H1

V (RN ) −
tp+1

p+ 1

ˆ
RN

|u|p+1

It is clear that 0 is a local minimum and I(ut) → −∞ as t → ∞. Moreover,
I(ut) > 0 when t ∈ (0, r), where r is such that, for all t > r, I(ut) ≤ 0. Hence, I
satisfies the MPG.

To show boundedness of the Palais-Smale sequences for I we can see by defi-
nition of a Palais-Smale sequence:

C + o(1)‖u‖H1
V (RN ) ≥ (p+ 1)I(un)− I ′(un)un =

p− 1

2
‖un‖2H1

V (RN ).

Assuming ‖un‖H1
V (RN ) → +∞ as un → ∞ we can see there is a contradiction as

the RHS will grow faster than the LHS. Thus, un is bounded in H1
V (RN).

Finally the compactness of the embedding H1
V (RN) ↪→ Lp+1(RN) is given by

Lemma 2.2. Therefore we can apply the Mountain Pass Theorem 2.3 to (2.17)
giving the existence of a weak solution u∗ ∈ H1

V (RN) such that I(u∗) = c and
I ′(u∗) = 0 where c is given by (2.14).

2.4 Poisson Equation
In this section, we discuss some preliminary results on the Poisson equation. The
space we use is the space of distributions D1,2(RN) as defined in (1.7). The results
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of this section are from a critical review from lectures presented to myself by Carlo
Mercuri during his time at Swansea University.

Proposition 1. Assume N ≥ 3, ρ : RN → R is a nonnegative measurable
function and ρu2 ∈ L1

loc(RN), such that
ˆ
RN

ˆ
RN

ρ(x)u2(x)ρ(y)u2(y)

|x− y|N−2
dx dy <∞.

Then,
φu :=

1

ω |x|N−2
? ρu2

is the unique weak solution to −∆φ = ρu2 in D1,2(RN) = {u ∈ L2∗(RN) | ∂iu ∈
L2(RN)}. Moreover, it holds that

‖φu‖2D1,2(RN ) =

ˆ
RN

φuρu
2 =

ˆ
RN

ˆ
RN

ρ(x)u2(x)ρ(y)u2(y)

ω |x− y|N−2
dx dy.

Proof. Firstly we will show the uniqueness.
Uniqueness {

−∆φ1 = ρu2

−∆φ2 = ρu2
in D1,2(RN),

with φ1 − φ2 an subtracting we obtain
ˆ
RN

|∇(φ1 − φ2)|2 = 0,

hence, by Sobolev’s inequality, φ1 ≡ φ2.
Observe also that the identity

‖φu‖2D1,2(RN ) =

ˆ
RN

φuρu
2 =

ˆ
RN

ˆ
RN

ρ(x)u2(x)ρ(y)u2(y)

ω |x− y|N−2
dx dy

easily follows testing −∆φu = ρu2 with φu.
Finally, we are left to show that φu ∈ D1,2(RN) and that

´
RN ∇φu∇Ψ =´

RN ρu
2Ψ for all Ψ ∈ D1,2(RN). Namely, that φu is the weak solution to −∆φ =

ρu2 in D1,2(RN). We break the proof into multiple steps.
Step 1: Set fn = min(ρ

1
2u, n)χ{|x|<n}. We note that:

(i) fn has compact support,

(ii) fn is nondecreasing,

(iii) fn ↗ ρ
1
2u almost everywhere,
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(iv) fn ∈ L∞(RN).

Claim: Then φn :=
´
RN

f2
n(y)

ω|x−y|N−2 dy is such that

−
ˆ
RN

φn∆Ψ =

ˆ
R3

f 2
nΨ, (2.18)

for all Ψ ∈ C∞
c (RN). Moreover φn ∈ C1(RN) and ‖φn‖D1,2(RN ) < C for all n.

In fact (2.18) follows by Theorem 6.21 in [33], from which

∂iφn =

ˆ
RN

∂Gy

∂xi
(x)f 2

n(y) dy

where
Gy(x) :=

1

(N − 2) |SN−1| |x− y|N−2
=

1

ω |x− y|N−2

is the Greens function for N ≥ 3,

∂Gy

∂xi
=

2−N
ω
|x− y|−N (xi − yi)

and ˆ
RN

Gy(x)∆Ψ(x) dx = −Ψ(y)

for all Ψ ∈ C∞
c (RN). By (iv) and Theorem 10.2 in [33] φn ∈ C1(RN). Moreover

ˆ
RN

|∇φn|2 =
N∑
i=1

ˆ
RN

(∂iφn(z))
2 dz

=
N∑
i=1

ˆ
RN

(ˆ
RN

1

ω

zi − yi
|z − y|N

f 2
n(y) dy

)(ˆ
RN

1

ω

zi − xi
|z − x|N

f 2
n(x) dx

)
dz

≤
N∑
i=1

ˆ
RN

f 2
n(y) dy

ˆ
RN

f 2
n(x) dx

ˆ
RN

1

|z − y|N−1

1

|z − x|N−1
dz.

Using the substitution w = z − y, the final integral becomes
ˆ
RN

1

|w|N−1
· 1

|w − (x− y)|N−1
dw.

By the semigroup property of Riesz potentials [32, p.45], it holds that
ˆ
RN

1

|w|N−1
· 1

|w − (x− y)|N−1
dw = C · 1

|x− y|N−2
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for some constant C > 0. Hence
ˆ
RN

|∇φn|2 .
ˆ
RN

ˆ
RN

ρ(x)u2(x)ρ(y)u2(y)

|x− y|N−2
dx dy

is the claimed uniform bound.
Step 2: Since {φn}n∈N ⊂ D1,2(RN) is uniformly bounded in D1,2(RN), φn ⇀

φ ∈ D1,2(RN) by Banach-Alaoglu.
Claim: It holds that φ = φu := 1

ω|x|N−2 ? ρu
2.

Indeed by Theorem 8.6 in [33], φn → φ in Lp
loc(RN), p ≤ 2∗ and a.e. hence, by

monotone convergence,

φn =

ˆ
RN

f 2
n(y)

ω |x− y|N−2
dy → φu

a.e. and we conclude by uniqueness of the limit. Roughly speaking {φn} approx-
imate φu weakly in D1,2(RN), a.e., φu ∈ D1,2(RN).

Step 3: We claim that
ˆ
RN

∇φu∇Ψ =

ˆ
RN

ρu2Ψ

for all Ψ ∈ D1,2(RN). Note that
´
RN ∇φn∇Ψ =

´
RN f

2
nΨ for all Ψ ∈ C∞

c (RN).
Indeed, if Ψ ∈ C∞

c (RN) by Fubini, integration by parts and by −∆Gy = δy we
have

ˆ
RN

∇φn∇Ψ =

ˆ
RN

N∑
i=1

(ˆ
RN

∂Gy

∂xi
(x)f 2

n(y) dy

)
∂iΨ(x) dx

=

ˆ
RN

(ˆ
RN

Gy(x)(−∆Ψ(x)) dx

)
f 2
n(y) dy.

From this,
´
RN ∇φn∇Ψ =

´
RN f

2
nΨ follows for all Ψ ∈ C∞

c (RN). Hence, since
φn ⇀ φu we have

´
RN ∇φu∇Ψ =

´
RN ρu

2Ψ for all Ψ ∈ C∞
c (RN). SinceD1,2(RN) =

C∞
c (RN)

∥∇·∥
L2(RN ) note that

´
RN ∇φn∇Ψ =

´
RN f

2
nΨ holds for all Ψ ∈ D1,2(RN).

Pick Ψk
D1,2(RN )−−−−−→ Ψ, since it holds that

ˆ
RN

∇φu∇Ψk =

ˆ
RN

ρu2Ψk.

and that
´
RN ∇φu∇Ψk →

´
RN ∇φu∇Ψ, we are left to show

´
RN ρu

2Ψk →
´
RN u

2Ψ.
Namely, we shall prove that Ψ 7→

´
RN ρu

2Ψ is a linear and continuous functional
in D1,2(RN). To show this test −∆φn = f 2

n with |Ψk| ∈ D1,2(RN), (this is an
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admissible test function by Stampacchia’s classical result):
ˆ
RN

f 2
n |∇Ψk| =

ˆ
RN

∇φn∇|Ψk| ≤ ‖∇φn‖L2(RN )‖∇Ψk‖L2(RN ).

Hence by Fatou, as n→∞
ˆ
RN

ρu2 |Ψk| ≤ c‖∇Ψk‖L2(RN ).

Hence by Fatou again and Ψk → Ψ as k →∞ we have∣∣∣∣ˆ
RN

ρu2Ψ

∣∣∣∣ ≤ ∣∣∣∣ˆ
RN

ρu2 |Ψ|
∣∣∣∣ ≤ c‖Ψ‖D1,2(RN )

and this completes the proof.

2.5 Relations between Local Schrödinger and Schrödinger-
Poisson

The most obvious difference between these two type of problems is the existence
of a nonlocal term in the Schrödinger-Poisson case. One might ask how this
effects our repertoire of tools highlighted above as the most common approach is
to tackle the Schrödinger-Poisson problem as a single Schrödinger type equation
by substituting the solution of the Poisson equation into the Schrödinger problem
as a nonlocal term.

The initial problem that arises here, as may have been noticed by the reader
after reading the previous section, is the space in which we work. Obtaining
solutions to the Poisson equation in section 2.4 requires us to work in the space
D1,2(RN) whereas all our examples on the Schrödinger problem involved working
in H1(RN). The key issue that arises is finding a suitable functional space. From
the analysis on the Poisson equation we see that the boundedness of the double
integral term is vital, when working in other spaces it is not obvious whether this
term is bounded when using the Hardly-Littlewood-Sobolev inequality as shown
in (HLS), instead we work in the space E(RN) ⊆ H1(RN) to ensure this bound
exists. The space E(RN) is good enough for us find solutions to the Schrödinger-
Poisson system, however, some key properties of Hilbert spaces are not retained,
for instance we do not have the inner product structure that is so convenient for
Hilbert spaces.

Many of the techniques used in the Schrödinger equation can be applied
to Schrödinger-Poisson albeit with some caveats. While the introduction of a
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nonlocal term does not necessarily mean we no longer satisfy the Ambrosetti-
Rabinowitz condition (2.16), in cases where q ∈ (2, 3) the condition is no longer
satisfied, instead the method described in section 2.3 by Jeanjean-Tanaka [29]
is required as we can no longer show Palais-Smale sequences bounded in this
scenario.

In our work we look to Ambrosetti-Ruiz [5]. Their generalisation of results
shown by Jeanjean-Tanaka to a more general Schrödinger-Poisson system is effec-
tive at overcoming the problems we face when q ∈ (2, 3) and in search of possible
multiplicity of solutions within this range.
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3 Preliminaries
Some preliminaries are in order before we may discuss the intricacies of the
Poisson-Schrödinger system described in (SP). In this chapter many of the prop-
erties can be found in [23] and will lay out the foundations of the functional setting
in which we will be working and the properties of our functional Iλ (1.1). We end
this chapter with some remarks on positivity and regularity of solutions to (SP)
and a discussion on what happens when the exponent of our nonlinearity q ≤ 2,
namely, we can show nonexistence of nontrivial solutions.

3.1 Functional Setting
We introduce some properties of our functional setting E(RN). The following
Lemma is vital for proving multiplicity results for (1.2).

Lemma 3.1 (Properties of E(RN)). Assume N ≥ 3, and ρ ≥ 0 is in L∞
loc(RN).

The space E(RN) is a separable Banach space that admits a Markushevic basis,
that is a fundamental and total biorthogonal system, {(em, e∗m)}m∈N ⊂ E(RN) ×
E∗(RN). Namely, < en, e

∗
m >= δnm for all n,m ∈ N, the em’s are linearly dense

in E(RN), and the weak∗-closure of span{e∗m}m∈N is E∗(RN).

Proof. Following [40], we note that we can equip E(RN) with the equivalent norm

‖u‖E1,2(RN ) =

(
‖u‖2H1(RN ) + λ

(ˆ
RN

∣∣I1 ? (√ρ|u|)2∣∣2)1/2
)1/2

. (3.1)

Here, we have set α = 1 in Iα : RN → R, the Riesz potential of order α ∈ (0, N),
defined for x ∈ RN \ {0} as

Iα(x) =
Aα

|x|N−α
, Aα =

Γ(N−α
2

)

Γ(α
2
)πN/22α

,

and the choice of normalisation constant Aα ensures that the kernel Iα enjoys the
semigroup property

Iα+β = Iα ? Iβ for each α, β ∈ (0, N) such that α + β < N.

We first notice that the operator T : E(RN)→ H1(RN)×L4(RN ;L2(RN)) defined
by

(Tu)(x0, x1, x2) = [u(x0), (λI1(x2 − x1)ρ(x1))
1
2u(x1)],

is a linear isometry from E(RN) into the product spaceH1(RN)×L4(RN ;L2(RN)),
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endowed with the norm

‖[u, v]‖× =
(
‖u‖2H1(RN ) + ‖v‖

2
L4(RN ;L2(RN ))

)1/2
.

Here L4(RN ;L2(RN)) is the mixed norm Lebesgue space of functions v : RN ×
RN → R such that

||v||L4(RN ;L2(RN )) =

(ˆ
RN

(ˆ
RN

|v(x1, x2)|2 dx1
)2

dx2

)1/4

< +∞,

see [12]. Since L4(RN ;L2(RN)) is a separable (see e.g. [44, p. 107]) Banach
space (see e.g. [12]), it follows that the linear subspace T (E(RN)) ⊆ H1(RN) ×
L4(RN ;L2(RN)), and hence E(RN), also satisfies each of these properties. Since
every separable Banach space admits a Markushevic basis (see e.g. [27]), the
proof is complete.

Reasoning as in [47] and [40] it is easy to see that C∞
c (RN) is dense in E(RN)

and that the unit ball in E(RN) is weakly compact, moreover, this space is
uniformly convex and hence is reflexive. The following variant to the classical
Brezis-Lieb lemma will be useful to study the convergence of bounded sequences
in E(RN), some examples can be found in [8] and [40].

Lemma 3.2 (Nonlocal Brezis-Lieb lemma). Assume N ≥ 3 and ρ(x) ∈
L∞

loc(RN) is nonnegative. Let (un)n∈N ⊂ E(RN) be a bounded sequence such that
un → u almost everywhere in RN . Then it holds that

lim
n→∞

[
‖∇φun‖2L2(RN ) − ‖∇φ(un−u)‖2L2(RN )

]
= ‖∇φu‖2L2(RN ).

Proof. The proof follows [40, Proposition 4.2] and [8] replacing u with u
√
ρ.

The next simple estimate is based on an observation of P.-L. Lions, given in
[37] for ρ ≡ 1; other forms of this estimate can be found in [47], and [9], [40].

Lemma 3.3 (Coulomb-Sobolev inequality). Assume N ≥ 3, ρ(x) ∈ L∞
loc(RN)

is nonnegative. Then the following inequality holds for all u ∈ E(RN),

ˆ
RN

ρ(x) |u|3 ≤
(ˆ

RN

|∇u|2
) 1

2
(ˆ

RN

|∇φu|2
) 1

2

. (3.2)

Proof. Testing the Poisson equation (1.5) with |u|, the statement follows imme-
diately by Cauchy-Schwarz inequality.
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3.2 Properties of I
The present section looks at the min-max properties of Iλ. Here we will discuss
the Mountain-Pass geometry for our functional and its relation with groundstate
solutions. We also include some relevant uniform lower bounds on Palais-Smale
sequences.

Lemma 3.4 (Mountain-Pass Geometry for Iλ). Assume N = 3, 4, 5, ρ(x) ∈
L∞

loc(RN) is nonnegative and q ∈ (2, 2∗ − 1]. Then, it holds that

(i) Iλ(0) = 0 and there exist constants r, a > 0 such that Iλ(u) ≥ a if
‖u‖E(RN ) = r;

(ii) there exist v ∈ E(RN) with ‖v‖E(RN ) > r such that Iλ(v) ≤ 0.

Proof. Statement (i) follows reasoning as in Lemma 3.8. To show (ii), pick u ∈
C1(RN), supported in the unit ball, B1. Setting vt(x) := t2u(tx) we find that

Iλ(vt) =
t6−N

2

ˆ
RN

|∇u|2 + t4−N

2

ˆ
RN

u2

+
t6−N

4
λ2
ˆ
RN

ˆ
RN

u2(y)ρ(y
t
)u2(x)ρ(x

t
)

ω|x− y|N−2
dy dx

− t(2q+2−N)

q + 1

ˆ
RN

|u|q+1.

(3.3)

Since for every t ≥ 1 and for almost every x ∈ B1 we have ρ(x/t) ≤ ||ρ||L∞(B1),

the fact that 2q + 2 > 6 in (3.3) yields Iλ(vt) → −∞ as t → +∞, and this is
enough to conclude the proof.

To prove our results for q < 3, we will need to work with a perturbed func-
tional, Iµ,λ : E(RN)→ RN , defined by

Iµ,λ(u) =
1

2

ˆ
RN

(|∇u|2 + u2) +
λ2

4

ˆ
RN

ρφuu
2 − µ

q + 1

ˆ
RN

|u|q+1, (3.4)

for µ ∈
[
1
2
, 1
]
. As in Lemma 3.4, Iµ,λ has the mountain-pass geometry in E(RN)

for all µ ∈
[
1
2
, 1
]
. This, as well as the monotonicity of Iµ,λ with respect to µ,

imply that we can define the min-max level associated with Iµ,λ as

cµ,λ = inf
γ∈Γλ

max
t∈[0,1]

Iµ,λ(γ(t)), µ ∈
[
1

2
, 1

]
(3.5)

where
Γλ = {γ ∈ C([0, 1], E(RN)) : γ(0) = 0, I 1

2
,λ(γ(1)) < 0}. (3.6)
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Since the mapping [1/2, 1] 3 µ 7→ cµ,λ is non-increasing and left-continuous in µ

(this has been discussed in 2.3 briefly and may also be found in [5, Lemma 2.2])
and the non-perturbed functional Iλ has the mountain-pass geometry by Lemma
3.4, we are now in position to define the min-max level associated with Iλ for all
q ∈ (2, 2∗ − 1).

Definition 5 (Definition of mountain-pass level for Iλ). We set

cλ =

 c1,λ, q ∈ (2, 3),

inf
γ∈Γ̄λ

max
t∈[0,1]

Iλ(γ(t)), q ∈ [3, 2∗ − 1),
(3.7)

where c1,λ is given by (3.5) and Γ̄λ is the family of paths defined as

Γ̄λ =
{
γ ∈ C([0, 1];E(RN)) : γ(0) = 0, Iλ(γ(1)) < 0

}
. (3.8)

In order to show the relation between mountain-pass solutions and ground-
state solutions we provide the following Lemma from [55]. First we define

Nλ :=
{
u ∈ E(RN) \ {0} : I ′λ(u)u = 0

}
, (3.9)

as the Nehari manifold.

Lemma 3.5. Let q ∈ (3, 2∗ − 1), N = 3. Suppose ρ(x) ∈ L∞
loc(RN) is nonegative

and assume there exists t0 =: t(u) > 0 such that t(u) · u ∈ Nλ and t(u) is the
maximum of g(t) := Iλ(t(u)). Furthermore, assume

cN := inf
Nλ

Iλ(u),

ct := inf
u∈E(RN )

u̸=0

max
t≥0

Iλ(t(u)).

is such that u 7→ t(u) is continuous and the map u → t(u) · u defines a homeo-
morphism of the unit sphere of E with Nλ. Then, we have that

cN = ct = cλ > 0,

where cλ is defined by (3.7).

Proof. The proof may be found in [55] and is omitted here.

The next few Lemmas are devoted to further characterisations of the min-max
level cλ for q ≤ 3. This case is extremely delicate and depends largely on some
homogeneity conditions on ρ(x). We first require the following technical lemma.
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Lemma 3.6. Suppose N ≥ 3, q > 2 and ν > max
{

N
2
, 2
q−1

}
.

Let k̄ ∈
(

ν(3−q)−2
2

, 4ν−N−2
2

)
. Define f : R+

0 → R as

f(t) = at2ν+2−N + bt2ν−N + ct4ν−N−2−2k̄ − dtν(q+1)−N , t ≥ 0,

where a, b, c, d ∈ R are such that a, b, d > 0, c ≥ 0. Then, f has a unique critical
point corresponding to its maximum.

Remark 3.1. We point out that our range of parameters ensures that f(t) →
−∞ as t→ +∞ and it holds that(

ν(3− q)− 2

2
,
4ν −N − 2

2

)⋂(
(ν + 1)(3− q)− 2

2
,
4(ν + 1)−N − 2

2

)
6= ∅.

In Theorem 4.4 and Theorem 6.3, we use Lemma 3.6, assuming

k̄ > max

{
N

4
,

1

q − 1

}
(3− q)− 1

for k̄ to belong to one of these intervals.

Proof of Lemma 3.6. Note that by our assumptions, we can write

f(t) =
k∑

i=1

ait
pi − tp,

where ai ≥ 0, 0 ≤ pi < p and both ai, pi 6= 0 for some i. Setting s = tp, we find

f(s) =
k∑

i=1

ais
pi
p − s.

It follows that f(s) is strictly concave and has a unique critical point, which is a
maximum. Since our assumptions ensure that f(t) → −∞ as t → +∞, we can
conclude.

Lemma 3.5 is only possible for very specific cases for our problem, namely
when N = 3 and q ∈ (3, 2∗ − 1), therefore we need another result to show this
relation in cases when q ∈ (2, 3] or higher dimensions. To state our next result,
for any ν ∈ R, we set

M̄λ,ν =
{
u ∈ E(RN) \ {0} : Jλ,ν(u) = 0

}
, (3.10)
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where Jλ,ν : E(RN)→ RN is defined as

Jλ,ν(u) =
2ν + 2−N

2

ˆ
RN

|∇u|2 + 2ν −N
2

ˆ
RN

u2

+
4ν −N − 2− 2k̄

4
· λ2
ˆ
RN

ρφuu
2 − ν(q + 1)−N

q + 1

ˆ
RN

|u|q+1.

(3.11)

Notice that, if ρ is homogeneous of order k̄, Jλ,ν(u) is the derivative of the poly-
nomial f(t) = Iλ(t

νu(t·)) at t = 1.

Proposition 2 (Mountain-pass characterisation of groundstates). Let
N = 3, 4, 5, q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Suppose
ρ ∈ L∞

loc(RN)∩W 1,1
loc (RN) is nonnegative and is homogeneous of degree k̄, namely

ρ(tx) = tk̄ρ(x) for all t > 0, for some

k̄ > max

{
N

4
,

1

q − 1

}
(3− q)− 1.

Then, there exists ν > max{N
2
, 2
q−1
} such that

cλ = inf
u∈M̄λ,ν

Iλ(u) = inf
u∈E(RN )\{0}

max
t≥0

Iλ(t
νu(t·)),

where cλ and M̄λ,ν are defined in (3.7) and (3.10), respectively.

Proof. We first note that under the assumptions on the parameters, it holds that

4ν −N − 2

2
>

(ν + 1)(3− q)− 2

2
.

It follows from this and the lower bound assumption on k̄ that we can always find
at least one interval(

ν(3− q)− 2

2
,
4ν −N − 2

2

)
, with ν > max

{
N

2
,

2

q − 1

}
,

that contains k̄. We fix ν corresponding to such an interval. We break the re-
mainder of the proof into a series of claims.

Claim 1. infu∈E(RN )\{0}maxt≥0 Iλ(t
νu(t·)) ≤ infu∈M̄λ,ν

Iλ(u)

36



To see this, let u ∈ E(RN) \ {0} be fixed and consider the function

g(t) = Iλ(t
νu(t·))

= at2ν+2−N + bt2ν−N + ct4ν−N−2−2k̄ − dtν(q+1)−N , t ≥ 0,
(3.12)

where

a =
1

2

ˆ
RN

|∇u|2, b = 1

2

ˆ
RN

u2, c =
λ2

4

ˆ
RN

ρφuu
2, d =

1

q + 1

ˆ
RN

|u|q+1.

By Lemma 3.6, it holds that g has a unique critical point, t = τu, corresponding
to its maximum. Moreover, we can see that

g′(t) =
dIλ(t

νu(t·))
dt

=
2ν + 2−N

2
· t2ν+1−N

ˆ
RN

|∇u|2 + 2ν −N
2

· t2ν−N−1

ˆ
RN

u2

+
4ν −N − 2− 2k̄

4
· t4ν−N−3−2k̄ · λ2

ˆ
RN

ρφuu
2

− ν(q + 1)−N
q + 1

· tν(q+1)−N−1

ˆ
RN

|u|q+1,

and so
g′(t) = 0 ⇐⇒ tνu(t·) ∈ M̄λ,ν .

Taken together, we have shown that for any u ∈ E(RN) \ {0}, there exists a
unique t = τu such that τ νuu(τu·) ∈ M̄λ,ν and the maximum of Iλ(tνu(t·)) for
t ≥ 0 is achieved at τu. Thus, it holds that

inf
u∈E(RN )\{0}

max
t≥0

Iλ(t
νu(t·)) ≤ max

t≥0
Iλ(t

νu(t·)) = Iλ(τ
ν
uu(τu·)), ∀u ∈ E(RN) \ {0},

from which we can deduce that the claim holds.

Claim 2. cλ ≤ infu∈E(RN )\{0}maxt≥0 Iλ(t
νu(t·)).

By the assumptions on our parameters, we can deduce that ν(q + 1) − N >

2ν + 2−N and ν(q + 1)−N > 4ν −N − 2− 2k̄. It follows that Iλ(tνu(t·)) < 0

for every u ∈ E(RN) \ {0} and t large. Similarly, I 1
2
,λ(t

νu(t·)) < 0 for every
u ∈ E(RN) \ {0} and t large. Therefore, we obtain

cλ ≤ max
t≥0

Iλ(t
νu(t·)), ∀u ∈ E(RN) \ {0},
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and the claim follows.

Claim 3. infu∈M̄λ,ν
Iλ(u) ≤ cλ.

We define
Aλ,ν =

{
u ∈ E(RN) \ {0} : Jλ,ν(u) > 0

}
∪ {0},

and first note that Aλ,ν contains a small ball around the origin. Indeed, arguing
as in the proof of Lemma 3.8, we can show that for every u ∈ E(RN) \ {0} and
any β > 0, we have

Jλ,ν(u) ≥
2ν −N

2
||u||2H1(RN ) −

(
4ν −N − 2− 2k̄

ω

)(
β − 1

4

)
||u||4H1(RN )

+

(
4ν −N − 2− 2k̄

ω

)(
β − 1

4β

)
||u||4E(RN )

−
S
−(q+1)
q+1 (ν(q + 1)−N)

q + 1
||u||q+1

H1(RN )
.

We now pick δ =

(
(2ν−N)(q+1)Sq+1

q+1

4(ν(q+1)−N)

)1/(q−1)

and note that since ν > N
2

, it follows

that δ > 0. We assume ||u||E(RN ) < δ and choosing β > 1 sufficiently near 1 we
obtain

Jλ,ν(u) ≥
[
2ν −N

4
−
(
4ν −N − 2− 2k̄

ω

)(
β − 1

4

)
δ2
]
||u||2H1(RN )

+

(
4ν −N − 2− 2k̄

ω

)(
β − 1

4β

)
||u||4E(RN )

≥
(
4ν −N − 2− 2k̄

ω

)(
β − 1

4β

)
||u||4E(RN ),

which is strictly positive by our choice of ν. This is enough to prove that Aλ,ν

contains a small ball around the origin. Now, notice that if u ∈ Aλ,ν , then
g′(1) > 0, where g is defined in (3.12). Since g(0) = 0 and we showed in Claim 1

that τu is the unique critical point of g corresponding to its maximum, it follows
that 1 < τu. Using the facts that Iλ(0) = 0 and g′(t) = dIλ(t

νu(t·))
dt

≥ 0 for all
t ∈ [0, τu], we obtain that Iλ(tνu(t·)) ≥ 0 for all t ∈ [0, τu] and, in particular, at
t = 1. Thus, we have shown Iλ(u) ≥ 0, which also implies that I 1

2
,λ(u) ≥ 0, for

every u ∈ Aλ,ν . Therefore, every γ ∈ Γλ and every γ ∈ Γ̄λ, where Γλ and Γ̄λ

are given by (3.6) and (3.8) respectively, has to cross M̄λ,ν , and so the claim holds.

Conclusion. Putting the claims together, it is clear that the statement holds.
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We recall that a sequence (un)n∈N ⊂ E(RN) is said to be a Palais-Smale
sequence for Iλ at some level c ∈ R if

I(un)→ c, I ′(un)→ 0, as n→∞.

If any such a sequence is relatively compact in the E(RN) topology, then we say
that the functional Iλ satisfies the Palais-Smale condition at level c.

Lemma 3.7 (Boundedness of Palais-Smale sequences). Assume N = 3, 4,
ρ ∈ L∞

loc(RN) is nonnegative, q ∈ [3, 2∗ − 1], and (un)n∈N ⊂ E(RN) is a Palais-
Smale sequence for Iλ at any level c > 0. Then, for any fixed λ > 0, (un)n∈N is
bounded in E(RN).

We stress that our assumption on N yields 3 ≤ 2∗ − 1.

Proof. For convenience, set

an = ||un||H1(RN ),

bn = λ

(ˆ
RN

φunu
2
nρ(x)

) 1
2

,

cq = min

{(
q − 1

2

)
,

(
q − 3

4

)}
and note that, as n→ +∞,

C1 + o(1)||un||E(RN ) ≥ (q + 1)Iλ(un)− I ′λ(un)(un)

=

(
q − 1

2

)
a2n +

(
q − 3

4

)
b2n

(3.13)

for some C1 > 0. Assuming ||un||E(RN ) → +∞, we show a contradiction in each
of the cases:

(i) an, bn → +∞,

(ii) an bounded and bn → +∞,

(iii) an → +∞ and bn bounded.

First consider q > 3. If bn → +∞, for large n we have b2n ≥ bn and by (3.13) we
get

C1 + o(1)||un||E(RN ) ≥ cq||un||2E(RN ), n→ +∞,

39



a contradiction in case (i) and (ii). If an → +∞ and bn is bounded, then
||un||E(RN ) ∼ an, hence

C1 + o(1)an ≥ cqa
2
n, n→ +∞,

a contradiction in case (iii). This makes the proof complete for q > 3.
Consider now q = 3. By Sobolev inequality we have

C2 ≥ Iλ(un) ≥
1

2
a2n +

1

4
b2n − C3a

4
n,

for some C2, C3 > 0, which yields a contradiction in case (ii). On the other hand
if an → +∞, from the same estimate we have

bn . a2n, n→ +∞. (3.14)

Note that (3.13) yields

C1 + o(1)||un||E(RN ) ≥ a2n, n→ +∞. (3.15)

Dividing by ||un||E(RN ) = (a2n + bn)
1
2 , we get a4n

a2n+bn
= o(1), n→ +∞, hence

bn & a4n, n→ +∞,

a contradiction in case (iii). This and (3.14), give

a4n . a2n, n→ +∞,

a contradiction in case (i). This completes the proof.

Lemma 3.8 (Lower bound uniform in λ for PS sequences at level cλ).
Assume N = 3, 4, 5, λ > 0, q ∈ (2, 2∗ − 1], ρ ∈ L∞

loc(RN) is nonnegative. There
exists a universal constant α = α(q) > 0 independent of λ such that for any
Palais-Smale sequence (un)n∈N ⊂ E(RN) for Iλ at level cλ, it holds that

lim inf
n→∞

‖un‖q+1
Lq+1(RN )

≥ α.

Proof. For every u ∈ E(RN), denoting Sq+1 the best constant such that
Sq+1‖u‖Lq+1(RN ) ≤ ‖u‖H1(RN ), we have

Iλ(u) ≥
1

2
||u||2H1(RN ) +

λ2

4

ˆ
R3

ρφuu
2 −

S
−(q+1)
q+1

q + 1
||u||q+1

H1(RN )
.
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Since ωλ2
´
RN ρφuu

2 =
(
||u||2E(RN ) − ||u||

2
H1(RN )

)2
, estimating the term

||u||2E(RN )||u||
2
H1(RN ) with Young’s inequality, we have for any β > 0

Iλ(u) ≥
1

2
||u||2H1(RN ) −

1

ω

(
β − 1

4

)
||u||4H1(RN ) +

1

ω

(
β − 1

4β

)
||u||4E(RN ) (3.16)

−
S
−(q+1)
q+1

q + 1
||u||q+1

H1(RN )
.

We now pick δ =
(

(q+1)Sq+1
q+1

4

)1/(q−1)

and assume ||u||E(RN ) < δ, which also implies

that ||u||H1(RN ) < δ. Then, choosing β > 1 sufficiently near 1 we obtain

Iλ(u) ≥
[
1

4
− 1

ω

(
β − 1

4

)
δ2
]
||u||2H1(RN ) +

1

ω

(
β − 1

4β

)
||u||4E(RN )

≥ 1

ω

(
β − 1

4β

)
||u||4E(RN ).

We note here that both δ and β depend on q but not on λ. Thus, we have shown
that if ||u||E(RN ) = δ/2, then Iλ(u) ≥ c, for some c > 0 independent of λ. So, since
every path connecting the origin to where the functional Iλ is negative crosses
the sphere of radius δ/2, it follows that

cλ ≥ c for every λ ≥ 0.

For convenience, set

an = ||un||H1(RN ), bn = λ

(ˆ
RN

φunu
2
nρ(x)

) 1
2

,

where (un)n∈N is an arbitrary Palais-Smale sequence at the level cλ. It holds that

cλ + o(1)− ‖I ′λ(un)‖E′(RN )‖un‖E(RN ) ≤ Iλ(un)− I ′λ(un)un

=

(
1

2
− 1

)
a2n +

(
1

4
− 1

)
b2n

+

(
1− 1

q + 1

)
‖un‖q+1

q+1.

By concavity note that ‖un‖E(RN ) ≤ an + b
1
2
n , hence the above yields

c+ o(1)−‖I ′λ(un)‖E′(RN )(an + b
1
2
n ) +

1

2

(
a2n + b2n

)
︸ ︷︷ ︸

cn

≤ ‖un‖q+1
q+1,
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and it is easy to see that lim inf cn ≥ 0. The conclusion follows then with α := c.

3.3 Remarks on Regularity and Positivity
This section uses standard elliptic regularity theory and the maximum principle to
provide a result yielding the regularity and positivity of solutions to the following
Schrödinger-Poisson system.

Proposition 3. [Regularity and positivity] Let N ∈ [3, 6] and q ∈ [1, 2∗− 1],

ρ ∈ L∞
loc(RN) be nonnegative and ρ(x) 6≡ 0 and (u, φu) ∈ E(RN)×D1,2(RN) be a

nontrivial weak solution to{
−∆u+ bu+ cρ(x)φu = d|u|q−1u, x ∈ RN ,

−∆φ = ρ(x)u2, x ∈ RN ,
(3.17)

with b, c, d ∈ R+. Then, u, φu ∈ W 2,s
loc (RN), for every s ≥ 1, and so u, φu ∈

C1,α
loc (RN); moreover φu > 0. If, in addition, u ≥ 0, then u > 0 everywhere.

Proof. Under the hypotheses of the proposition, both u and φu have weak second
derivatives in Ls

loc(RN) for all s < +∞. To show this, note that from the first
equation in (3.17), we have that −∆u = g(x, u), where

|g(x, u)| = |(−bu− cρ(x)φuu+ d|u|q−1u|

≤ C(1 + |ρφu|+ |u|q−1)(1 + |u|)

:= h(x)(1 + |u|).

Using our assumptions on ρ, φu, u, and that q ≤ 2∗ − 1, we can show that h ∈
L
N/2
loc (RN), which implies that u ∈ Ls

loc(RN) for all s < +∞ (see e.g. [51, p.270]).
Note that here the restriction on the dimension implies that φu ∈ LN/2

loc (RN). Since
u2ρ ∈ Ls

loc(RN) for all s < +∞, then by the second equation in (3.17) and the
Calderón-Zygmund estimates, we have that φu ∈ W 2,s

loc (RN) (see e.g. [26]). This
then enables us to show that g ∈ Ls

loc(RN) for all s < +∞, which implies, by
Calderón-Zygmund estimates, that u ∈ W 2,s

loc (RN) (see e.g. [26]). The C1,α
loc (RN)

regularity of both u, φu is a consequence of Morrey’s embedding theorem. Fi-
nally, the strict positivity is a consequence of the strong maximum principle with
L∞

loc(RN) coefficients [43], and this concludes the proof.
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3.4 Nonexistence
In this section we look specifically at nonexistence results. Nonexistence of solu-
tions can be shown in the critical case and when the power of the nonlinearity is
small. We use a Pohozaev type condition to show this but it is not the only use
case of this condition.

Lemma 3.9. [Pohozaev-type condition] Assume N ∈ [3, 6], q ∈ [1, 2∗ − 1],
ρ ∈ L∞

loc(RN) ∩W 1,1
loc (RN) is nonnegative, and kρ(x) ≤ (x,∇ρ) for some k ∈ R.

Let (u, φu) ∈ E(RN)×D1,2(RN) be a weak solution to (3.17). Then, it holds that

N − 2

2

ˆ
RN

|∇u|2 dx+ Nb

2

ˆ
RN

u2 dx

+
(N + 2 + 2k)c

4

ˆ
RN

ρφuu
2 dx− Nd

q + 1

ˆ
RN

|u|q+1 dx ≤ 0.

(3.18)

In particular the above is an identity, provided kρ(x) = (x,∇ρ) (by Euler’s the-
orem, this is the case if ρ is homogeneous of order k, i.e. d

dt
ρ(tx) = d

dt
tkρ(x) =

kρ(x)).

Proof. With the regularity remarks of Proposition 3 in place, we now multiply
the first equation in (3.17) by (x,∇u) and integrate on BR(0) for some R > 0.
We will compute each integral separately. We first note that
ˆ
BR

−∆u(x,∇u) dx =
2−N

2

ˆ
BR

|∇u|2 dx

− 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ.
(3.19)

Fixing i = 1, . . . , N , integrating by parts and using the divergence theorem, we
then see that,

ˆ
BR

bu(xi∂iu) dx = b

[
−1

2

ˆ
BR

u2 dx+
1

2

ˆ
BR

∂i(u
2xi) dx

]
= b

[
−1

2

ˆ
BR

u2 dx+
1

2

ˆ
∂BR

u2
x2i
|x|

dσ

]
.

So, summing over i, we get
ˆ
BR

bu(x,∇u) dx = b

[
−N

2

ˆ
BR

u2 dx+
R

2

ˆ
∂BR

u2 dσ

]
. (3.20)

Again, fixing i = 1, . . . , N , integrating by parts and using the divergence theorem,
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we find that,
ˆ
BR

cρφuuxi(∂iu) dx = c

[
− 1

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2xi(∂iρ) dx

− 1

2

ˆ
BR

ρu2xi(∂iφu) dx+
1

2

ˆ
BR

∂i(ρφuu
2xi) dx

]
= c

[
− 1

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2xi(∂iρ) dx

− 1

2

ˆ
BR

ρu2xi(∂iφu) dx+
1

2

ˆ
∂BR

ρφuu
2 x

2
i

|x|
dσ

]
.

Thus, summing over i, we get
ˆ
BR

cρφuu(x,∇u) dx = c

[
− N

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2(x,∇ρ) dx

− 1

2

ˆ
BR

ρu2(x,∇φu) dx+
R

2

ˆ
∂BR

ρφuu
2 dσ

]
.

(3.21)

Finally, once more fixing i = 1, . . . , N , integrating by parts and using the diver-
gence theorem, we find that,
ˆ
BR

d|u|q−1u(xi∂iu) dx = d

[
−1
q + 1

ˆ
BR

|u|q+1 dx+
1

q + 1

ˆ
∂BR

|u|q+1 x
2
i

|x|
dσ

]
,

and so, summing over i, we see that
ˆ
BR

d|u|q−1u(x,∇u) dx = d

[
−N
q + 1

ˆ
BR

|u|q+1 dx

+
R

q + 1

ˆ
∂BR

|u|q+1 dσ

]
.

(3.22)
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Putting (3.19), (3.20), (3.21) and (3.22) together, we see that

2−N
2

ˆ
BR

|∇u|2 dx− 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ

+ b

[
− N

2

ˆ
BR

u2 dx+
R

2

ˆ
∂BR

u2 dσ

]
+ c

[
− N

2

ˆ
BR

ρφuu
2 dx− 1

2

ˆ
BR

φuu
2(x,∇ρ) dx

− 1

2

ˆ
BR

ρu2(x,∇φu) dx+
R

2

ˆ
∂BR

ρφuu
2 dσ

]
− d

[
−N
q + 1

ˆ
BR

|u|q+1 dx+
R

q + 1

ˆ
∂BR

|u|q+1 dσ

]
= 0.

(3.23)

We now multiply the second equation in (3.17) by (x,∇φu) and integrate on
BR(0) for some R > 0. By a simple calculation we see that

ˆ
BR

ρu2(x,∇φu) dx =

ˆ
BR

−∆φu(x,∇φu) dx

=
2−N

2

ˆ
BR

|∇φu|2 dx−
1

R

ˆ
∂BR

|(x,∇φu)|2 dσ

+
R

2

ˆ
∂BR

|∇φu|2 dσ.

Substituting this into (3.23) and rearranging, we get

N − 2

2

ˆ
BR

|∇u|2 dx+ Nb

2

ˆ
BR

u2 dx+
(N + k)c

2

ˆ
BR

ρφuu
2 dx

+
c(2−N)

4

ˆ
BR

|∇φu|2 dx−
Nd

q + 1

ˆ
BR

|u|q+1 dx

≤ N − 2

2

ˆ
BR

|∇u|2 dx+ Nb

2

ˆ
BR

u2 dx+
Nc

2

ˆ
BR

ρφuu
2 dx

+
c

2

ˆ
BR

φuu
2(x,∇ρ) dx+ c(2−N)

4

ˆ
BR

|∇φu|2 dx−
Nd

q + 1

ˆ
BR

|u|q+1 dx

= − 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ +
bR

2

ˆ
∂BR

u2 dσ

+
cR

2

ˆ
∂BR

ρφuu
2 dσ +

c

2R

ˆ
∂BR

|(x,∇φu)|2 dσ

− cR

4

ˆ
∂BR

|∇φu|2 dσ −
dR

q + 1

ˆ
∂BR

|u|q+1 dσ,

(3.24)
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where we have used the assumption kρ(x) ≤ (x,∇ρ) for some k ∈ R to obtain
the first inequality. We now call the right hand side of (3.24) IR, namely

IR := − 1

R

ˆ
∂BR

|(x,∇u)|2 dσ +
R

2

ˆ
∂BR

|∇u|2 dσ +
bR

2

ˆ
∂BR

u2 dσ

+
cR

2

ˆ
∂BR

ρφuu
2 dσ +

c

2R

ˆ
∂BR

|(x,∇φu)|2 dσ

− cR

4

ˆ
∂BR

|∇φu|2 dσ −
dR

q + 1

ˆ
∂BR

|u|q+1 dσ.

We note that |(x,∇u)| ≤ R|∇u| and |(x,∇φu)| ≤ R|∇φu| on ∂BR, so it holds
that

|IR| ≤
3R

2

ˆ
∂BR

|∇u|2 dσ +
bR

2

ˆ
∂BR

u2 dσ

+
cR

2

ˆ
∂BR

ρφuu
2 dσ +

3cR

4

ˆ
∂BR

|∇φu|2 dσ +
dR

q + 1

ˆ
∂BR

|u|q+1 dσ.

Now, since |∇u|2, u2 ∈ L1(RN) as u ∈ E(RN) ⊆ H1(RN), ρφuu
2, |∇φu|2 ∈

L1(RN) because
´
RN ρφuu

2 dx =
´
RN |∇φu|2 dx and φu ∈ D1,2(RN), and |u|q+1 ∈

L1(RN) because E(RN) ↪→ Ls(RN) for all s ∈ [2, 2∗], then it holds that IRn → 0

as n → +∞ for a suitable sequence Rn → +∞. Moreover, since (3.24) holds for
any R > 0, it follows that

N − 2

2

ˆ
RN

|∇u|2 dx+ Nb

2

ˆ
RN

u2 dx+
(N + k)c

2

ˆ
RN

ρφuu
2 dx

+
c(2−N)

4

ˆ
RN

|∇φu|2 dx−
Nd

q + 1

ˆ
RN

|u|q+1 dx ≤ 0,

and so, we obtain

N − 2

2

ˆ
RN

|∇u|2 dx+ Nb

2

ˆ
RN

u2 dx

+
(N + 2 + 2k)c

4

ˆ
RN

ρφuu
2 dx

− Nd

q + 1

ˆ
RN

|u|q+1 dx ≤ 0,

using the fact that
´
RN |∇φu|2 dx =

´
RN ρφuu

2 dx. This completes the proof.

Although we will use the above necessary condition mainly for existence pur-
poses, this also allows us to find a family of nonexistence results in a certain range
of the parameters N, q, λ, k. The following result looks at the so called “critical
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case”, i.e. when the power of the nonlinearity is equal to the critical Sobolev
exponent.

Proposition 4 (Nonexistence: the critical case q = 2∗ − 1). Assume N ∈
[3, 6], q = 2∗ − 1, ρ ∈ L∞

loc(RN) ∩ W 1,1
loc (RN) nonnegative, kρ(x) ≤ (x,∇ρ) for

some k ≥ N−6
2
, and λ > 0. Let (u, φu) ∈ E(RN) ×D1,2(RN) be a weak solution

to (1.2). Then, (u, φu) = (0, 0).

Proof. Combining the Nehari identity I ′λ(u)(u) = 0 with Lemma 3.9 yields(N − 2

2
− N

q + 1

)ˆ
RN

|∇u|2 dx+
(N
2
− N − 2

2

)ˆ
RN

u2 dx

+
(2k + 6−N

4

)
λ2
ˆ
RN

ρφuu
2 dx ≤ 0.

Hence, ˆ
RN

u2 dx ≤ 0,

and this concludes the proof.

The following proposition looks at the case when q is “small”, we note that
the following is stated to cover also the dimensions N > 2

(
q+1
q−1

)
, namely the

supercritical cases 3 ≥ q + 1 > 2∗ where E(RN) does not embed in Lq+1(RN).

Proposition 5 (Nonexistence: the case q ∈ (1, 2]). Assume N ≥ 3, q ∈ (1, 2],
ρ ∈ L∞

loc(RN) and ρ(x) ≥ 1 almost everywhere and λ ≥ 1
2
. Let u ∈ E(RN) ∩

Lq+1(RN) satisfy

−∆u+ u+ λ2
(

1

ω|x|N−2
? ρu2

)
ρ(x)u = |u|q−1u, in D′(RN). (3.25)

Then, u ≡ 0.

Proof. By density we can test (3.25) by u and so we obtain
ˆ
RN

|∇u|2 + u2 + λ2ρ(x)φuu
2 − |u|q+1 = 0. (3.26)

Following [46, Theorem 4.1], by Lemma 3.3 and Young’s inequality we have
ˆ
RN

ρ(x) |u|3 ≤
ˆ
RN

|∇u|2 + 1

4

ˆ
RN

ρ(x)φuu
2. (3.27)
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Combining (3.26) and (3.27), we have for all λ ≥ 1
2

0 ≥
ˆ
RN

u2 + ρ(x) |u|3 − |u|q+1 ≥
ˆ
RN

f(u),

where f(u) = u2 + |u|3 − |u|q+1 is positive except at zero. Hence u ≡ 0, and this
concludes the proof.

Remark 3.2. Similar nonexistence results have been obtained in the case of
constant potentials and for N = 3, in [22]. We point out that the in the above
proposition λ > 0 is arbitrary and the condition on ρ is compatible with (ρ1), as
well as with (ρ2). It is interesting to note that for N = 6 we have q = 2∗− 1 = 2,

namely nonexistence occurs in a ‘low-q’ regime, under both conditions (ρ1) and
(ρ2). The proof shows also that for supercritical exponents q+1 > 2∗ and higher
dimensions, under further regularity assumptions required for Lemma 3.9 to hold,
nonexistence also occurs.
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4 Existence Results
This chapter is split in two to focus on our main assumptions on ρ.

(ρ1) ρ
−1(0) has non-empty interior and there exists M > 0 such that

∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞,

(ρ2) For every M > 0, ∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞.

In both cases we suffer from lack of compactness phenomenon, in the latter a
more standard approach to recover compactness can be made when q ∈ (1, 2∗−1)

culminating in showing that the Palais-Smale condition is satisfied for q ∈ [3, 2∗−
1). In the former a different approach is needed. Here we show that when λ ≥ λ∗

we see that certain Palais-Smale sequences possess weak limits, furthermore this
allows us to show a precise variational characterisation of our problem where the
Nehari manifold and these weak limits coincide in cases where q > 3. The results
of this chapter are from [23].

4.1 Preliminaries for ρ vanishing on a region
Throughout this section we will make the assumption that

(ρ1) ρ
−1(0) has non-empty interior and there exists M > 0 such that

∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞.

In what follows it is convenient to set

A(R) = {x ∈ RN : |x| > R, ρ(x) ≥M},

B(R) = {x ∈ RN : |x| > R, ρ(x) < M},

for any R > 0.
We begin with the following Lemma that shows a key vanishing property

under assumption (ρ1). This Lemma is vital when splitting integrals over RN

into integrals over balls and outside.

Lemma 4.1 (Key vanishing property). Suppose ρ is a measurable function
and that for some M ∈ R it holds that

B :=
∣∣x ∈ RN : ρ(x) < M

∣∣ <∞.
49



Then
lim
R→∞

|B(R)| = 0.

Proof. The conclusion follows by the dominated convergence theorem as B(R) ⊆
B yields

|B(R)| =
ˆ
B

χB(R)(x) dx ≤ |B|.

It is worth having a brief discussion on the dimensions of the domain RN .
The reader may notice that we begin working in N = 3, 4, with some parts valid
for an even larger range of N , later we reduce this to simply N = 3. The issues
we face is to do with our range of q, ultimately it is not possible to work in a
larger dimension than N = 3 due to the critical Sobolev exponent.

Lemma 4.2 (Uniform bounds in λ for PS sequences at level cλ). Assume
N = 3, 4, ρ ∈ L∞

loc(RN) is nonnegative, satisfying (ρ1), q ∈ [3, 2∗ − 1], λ > 0.

There exists a universal constant C = C(q,N) > 0 independent of λ, such that
for any Palais-Smale sequence (un)n∈N ⊂ E(RN) for Iλ at level cλ it holds that
‖un‖E(RN ) < C.

Proof. Let v ∈ C∞
c (RN) \ {0} have support in ρ−1(0). Pick tv > 0 such that

I0(tvv) < 0 and set vt = ttvv. Then, by definition of cλ,

cλ ≤ max
t∈[0,1]

Iλ(vt) = max
t≥0

I0(tv) =: c. (4.1)

Note that since (un) is bounded by Lemma 3.7, it holds that

cλ = lim
n→∞

(Iλ(un)−
1

q + 1
I ′λ(un) · un)

= lim
n→∞

((1
2
− 1

q + 1

)
‖un‖2H1(RN ) + λ2

(1
4
− 1

q + 1

)ˆ
RN

φunρ(x)u
2
n

)
.

The conclusion follows immediately in the case q > 3. For q = 3 the above
yields a uniform bound independent on λ for the H1(RN) norm and hence for the
Lq+1(RN) norm as well by Sobolev’s inequality. Since

λ2 lim sup
n→∞

ˆ
RN

φunu
2
nρ(x) ≤ 4

(
cλ + lim sup

n→∞

(
‖un‖2H1(RN ) + ‖un‖

q+1
Lq+1(RN )

))
,

this concludes the proof.

It is worth highlighting that (4.1) has weaker restrictions than the assumptions
given on Lemma 4.2 and holds in dimensions N = 3, 4, 5 and for every q ∈

50



(2, 2∗−1). Furthermore, as recovering some form of compactness in this setting is
required, the following lemma is essential to control the tails of bounded sequences
on RN .

Lemma 4.3 (Control on the tails of uniformly bounded sequences).
Assume N = 3, 4, 5, ρ ∈ L∞

loc(RN) is nonnegative, satisfying (ρ1), and (un)n∈N ⊂
E(RN) is bounded uniformly with respect to λ. Then, for every β > 0 there exists
λβ > 0 and Rβ > 0 such that for λ > λβ and R > Rβ,

||un||3L3(RN\BR) < β.

Proof. By Lemma 3.3 we have

λ

ˆ
RN

ρ(x) |un|3 ≤ C‖un‖3E(RN ) ≤ C ′, (4.2)

for some positive constant C ′ independent of λ. Hence
ˆ
A(R)

|un|3 ≤
C ′

λM
.

Also observe that by Hölder’s inequality and Lemma 4.1 we have

ˆ
B(R)

|un|3 ≤
(ˆ

RN

|un|2
∗
) 3

2∗
(ˆ

B(R)

1
) 2∗−3

2∗

≤ C ′′‖un‖3E(RN ) · |B(R)|
2∗−3
2∗

≤ C ′′′ |B(R)|
2∗−3
2∗ → 0.

as R →∞, again for some uniform constant C ′′′ > 0. Note that our assumption
on N yields 3 < 2∗. This is enough to conclude the proof.

The following proposition may be thought of a sort of concentration compact-
ness principle (Lemma 2.1) in our setting, namely, we can show that, given a λ
large enough, there exist nonzero weak limits of Palais-Smale sequences at the
level cλ.

Proposition 6 (Nonzero weak limits of PS sequences at level cλ for λ

large). Let N = 3, ρ ∈ L∞
loc(RN) be nonnegative, satisfying (ρ1), and q ∈ [3, 5).

There exist universal positive constants λ0 = λ0(q,M) and α0 = α0(q), such that
if for some λ ≥ λ0, u ∈ E(R3) is the weak limit of a Palais-Smale sequence for
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Iλ at level cλ, then it holds that
ˆ
R3

|u|3 dx > α0.

Proof. Let (un)n∈N ⊂ E(R3) be an arbitrary Palais-Smale sequence at level cλ.
Note that we can pick α(q) > 0 independent of λ and of the sequence such that

lim inf
n→∞

‖un‖3L3(R3) ≥ α(q).

Indeed by interpolation
ˆ
R3

|un|q+1 ≤
(ˆ

R3

|un|3
) 5−q

3
(ˆ

R3

|un|6
) q−2

3

and the claim follows by Sobolev inequality and the uniform bound given by
Lemma 4.2 and by Lemma 3.8. In particular, recall that by Lemma 4.2, there
exists a universal constant C = C(q,N) > 0 independent of λ and of the sequence,
such that ‖un‖E(RN ) < C. By Lemma 4.3, it follows than that we can pick λ0(q,M)

and Rα > 0 such that such that for every λ ≥ λ0 and every R > Rα we have

lim sup
n→∞

‖un‖3L3(R3\BR) <
α

2
.

By the classical Rellich theorem, passing if necessary to a subsequence, we can
assume that un → u in L3

loc(R3). Therefore, for every R > Rα, we have

‖u‖3L3(BR) = lim
n→∞
‖un‖3L3(BR) ≥ lim inf

n→∞
‖un‖3L3(R3) − lim sup

n→∞
‖un‖3L3(R3\BR) >

α

2
.

The conclusion follows with α0 = α/2.

The following proposition finishes our preliminaries on (ρ1). Given λ large
enough we find the mountain-pass levels cλ are indeed critical in the range q ∈
(3, 5) given the sufficient conditions on Palais-Smale sequences in Proposition 6.
The case when q = 3 is more delicate, instead we find lower estimates of the
energy but whether this level is critical remains uncertain.

Proposition 7 (Energy estimates for λ large). Let N = 3, ρ ∈ L∞
loc(R3) be

nonnegative, satisfying (ρ1), and q ∈ [3, 5). Let λ0 be defined as in Proposition
6. There exists a universal constant λ1 = λ1(q,M) > 0 such that, if λ ≥
max (λ0, λ1) and u is the nontrivial weak limit in E(R3) of some Palais-Smale
sequence (un)n∈N ⊂ E(R3) for Iλ at level cλ, then it holds that
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• Iλ(u) = cλ, for q ∈ (3, 5),

• infv∈Nλ
Iλ(v) ≤ Iλ(u) ≤ cλ, for q = 3.

In particular, for all λ ≥ max (λ0, λ1) , the mountain-pass level cλ is critical for
q ∈ (3, 5), as well as the level Iλ(u) for q = 3.

Proof. By Proposition 6, for every q ∈ [3, 2∗−1) and λ ≥ λ0, passing if necessary
to a subsequence, we can assume that un ⇀ u ∈ E(R3) \ {0} weakly in E(R3)

and almost everywhere, for some Palais-Smale sequence (un)n∈N ⊂ E(R3) for Iλ
at level cλ. By a standard argument u is a critical point of Iλ. For sake of clarity
we break the proof into two steps.
Step 1: We first show that there exists a universal constant C = C(q) > 0 such
that for every λ ≥ λ0, R > 0 and n ∈ N, it holds that

Iλ(un − u) ≥

(
1

4
− SλS

−1

(ˆ
A(R)

|un − u|6
) 2

3

)ˆ
R3

|∇(un − u)|2

− C |B(R)|
5−q
6 − 1

q + 1

ˆ
|x|<R

|un − u|q+1 ,

(4.3)

where

Sλ := (q − 2)[3(q + 1)]
−3
q−2

(
2(5− q)
λM

) 5−q
q−2

,

S = 3(π/2)4/3 is the Sobolev constant, and M is defined as in (ρ1). Reasoning as
in Lemma 3.3 and by Lemma 4.3 we obtain,

Iλ(un − u) ≥
1

4

ˆ
R3

|∇(un − u)|2 +
1

4

ˆ
R3

|∇(un − u)|2

+
λ2

4

ˆ
R3

φ(un−u)(un − u)2ρ(x)−
1

q + 1

ˆ
R3

|un − u|q+1

≥ 1

4

ˆ
R3

|∇(un − u)|2 +
λ

2

ˆ
R3

ρ(x) |un − u|3 −
1

q + 1

ˆ
R3

|un − u|q+1

≥ 1

4

ˆ
R3

|∇(un − u)|2 +
λM

2

ˆ
A(R)

|un − u|3 −
1

q + 1

ˆ
R3

|un − u|q+1 .

(4.4)

Note that ˆ
R3

|un − u|q+1 =

ˆ
|x|<R

...+

ˆ
A(R)

...+

ˆ
B(R)

...

Using that (un)n∈N is uniformly bounded in E(R3) and arguing as in Lemma 4.3
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and by Sobolev inequality, we have
ˆ
B(R)

|un − u|q+1 ≤ C1‖un − u‖q+1
L6(R3) |B(R)|

5−q
6 ≤ C2 |B(R)|

5−q
6 . (4.5)

By the interpolation and Young’s inequalities we obtain for all δ > 0 that

1

q + 1

ˆ
A(R)

|un − u|q+1 ≤ 1

q + 1

(ˆ
A(R)

|un − u|3
) 5−q

3
(ˆ

A(R)

|un − u|6
) q−2

3

≤
(
5− q
3

)(
δ

q + 1

) 3
5−q
ˆ
A(R)

|un − u|3

+

(
q − 2

3

)
δ

−3
q−2

ˆ
A(R)

|un − u|6 .

In particular, we can set

δ =

(
λM

2
· 3

5− q

) 5−q
3

(q + 1).

Hence

1

q + 1

ˆ
A(R)

|un − u|q+1 ≤ λM

2

ˆ
A(R)

|un − u|3 + Sλ

ˆ
A(R)

|un − u|6

≤ λM

2

ˆ
A(R)

|un − u|3

+ SλS
−1

(ˆ
A(R)

|un − u|6
) 2

3
ˆ
R3

|∇(un − u)|2 , (4.6)

where we have used Sobolev’s inequality written as

S

(ˆ
A(R)

|un − u|6
) 1

3

≤
ˆ
R3

|∇(un − u)|2 .

Putting together (4.4), (4.5) and (4.6), the claim (4.3) follows.
Step 2: Conclusion. By the classical Brezis-Lieb lemma and Lemma 3.2 we
have

cλ = lim
n→∞

Iλ(un) = Iλ(u) + lim
n→∞

Iλ(un − u). (4.7)

Note that there exists a positive constant λ1 = λ1(q,M) such that for every
λ ≥ λ1 it holds that

1

4
− SλS

−3C
4 ≥ 0, (4.8)
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where C is defined via Lemma 4.2 by the property ‖un‖E(R3) < C. Note that,
again by the Brezis-Lieb lemma, we have

ˆ
A(R)

|un − u|6 =
ˆ
A(R)

|un|6 −
ˆ
A(R)

|u|6 + on(R),

with limn→∞ on(R) = 0 for any fixed R > 0; since by Sobolev’s inequality it holds
that ˆ

A(R)

|un|6 ≤ S−3

(ˆ
R3

|∇un|2
)3

≤ S−3C
6
,

we obtain the estimate

lim sup
R→∞

lim sup
n→∞

ˆ
A(R)

|un − u|6 ≤ S−3C
6
. (4.9)

We conclude, by (4.3), (4.8), (4.9) and the classical Rellich theorem that

lim
n→∞

Iλ(un − u) ≥ lim inf
R→∞

lim inf
n→∞

(
1

4
− SλS

−1

(ˆ
A(R)

|un − u|6
) 2

3

)ˆ
R3

|∇(un − u)|2

≥
[
1

4
− SλS

−3C
4
]
lim inf
n→∞

ˆ
R3

|∇(un − u)|2 ≥ 0,

and hence by (4.7) that Iλ(u) ≤ cλ. On the other hand, since u ∈ Nλ, it holds
that

inf
v∈Nλ

Iλ(v) ≤ Iλ(u) ≤ cλ,

and this completes the proof for q = 3. For q ∈ (3, 2∗− 1) we can use Lemma 3.5
hence,

cλ = inf
v∈Nλ

Iλ(v)

and it follows that Iλ(u) = cλ, and this concludes the proof.

4.1.1 Some reflections on the Palais-Smale condition

When q > 3, the fact that lim Iλ(un − u) = 0 for λ large suggests that the
Palais-Smale condition at the mountain-pass level cλ can be recovered in some
cases. To illustrate this, note that the assumption (ρ1) is compatible with having,
say ρ(x) → 2M, as |x| → ∞, namely a situation where lack of compactness
phenomena may occur for the system (1.2) as a consequence of the invariance
by translations of (1.9), which plays the role of a ‘problem at infinity’, such
an example may be found in the work by Mercuri and Tyler [41]. We stress
here that ρ may approach its limit from below as well as from above. To see
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that in this case the Palais-Smale condition is satisfied for λ large, denote by
Iρ≡2M
λ the functional associated to (SP) with ρ ≡ 2M, and observe that in this

situation E(R3) ' H1(R3), with equivalent norms by (HLS). We reason as in
[41, Proposition 1.6] which we will recall here,

Proposition 8 ([41] Proposition 1.6). Suppose ρ ∈ C(R3) is nonnegative and
ρ(x) → ρ∞ ≥ 0 as |x| → +∞. Let q ∈ (2, 5) and µ ∈ [1/2, 1], and assume
(un)n∈N ⊂ H1(R3) is a bounded Palais-Smale sequence for Iµ. Then, there exists
l ∈ N, a finite sequence (v0, . . . , vl) ⊂ H1(R3), and l sequences of points (yjn)n∈N ⊂
R3, 1 ≤ j ≤ l, satisfying, up to a subsequence of (un)n∈N,

(i) v0 is a solution of (4.10),

(ii) vj are nonnegative, possibly nontrivial, solutions of (4.11) for 1 ≤ j ≤ l,

(iii) |yjn| → +∞,
∣∣yjn − yj′n ∣∣→ +∞ as n→ +∞ if j 6= j′,

(iv) ‖un − v0 −
∑l

j=1 vj(· − yjn)‖H1(R3) → 0 as n→ +∞,

(v) ‖un‖2H1(R3) →
∑l

j=0‖vj‖2H1(R3) as n→ +∞,

(vi) Iµ(un) = Iµ(v0) +
∑l

j=1 I
∞
µ (vj) + o(1).

Iµ and I∞µ are the energy functionals correspending to

−∆u+ u+ ρ(x)φuu =µ |u|q−1 u, (4.10)
−∆u+ u+ ρ∞φuu =µ |u|q−1 u (4.11)

respectively.

The above is primarily used in the case p ∈ (2, 3). In our case, we take µ = 1

and there exist l ∈ N ∪ {0}, functions (v1, . . . , vl) ⊂ H1(R3), and sequences of
points (yjn)n∈N ⊂ R3, 1 ≤ j ≤ l, such that, passing if necessary to a subsequence,

• vj are possibly nontrivial critical points of Iρ≡2M
λ for 1 ≤ j ≤ l,

• |yjn| → +∞, |yjn − yj
′

n | → +∞ as n→ +∞ if j 6= j′,

• ||un − u−
∑l

j=1 vj(· − yjn)||H1(R3) → 0 as n→ +∞,

• cλ = Iλ(u) +
∑l

j=1 I
ρ≡2M
λ (vj).
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It is standard to see that Iρ≡2M
λ is uniformly bounded below on the set of its

nontrivial critical points by a positive constant, independent of λ. It then follows
that for all λ ≥ max (λ0, λ1) , Proposition 7 and the above yield cλ = Iλ(u) and
at the same time l = 0; as a consequence the Palais-Smale condition is satisfied
at the level cλ. These considerations yield the following

Proposition 9 (Palais-Smale condition under (ρ1)). Let N = 3 < q and
ρ ≥ 0 be locally bounded such that (ρ1) is satisfied and such that ρ(x)→ ρ∞ > M

as |x| → ∞. Let λ0 and λ1 be as in Proposition 7. Then, for all λ ≥ max (λ0, λ1) ,

Iλ satisfies the Palais-Smale condition at the mountain-pass level cλ.

It is not obvious how to prove the above proposition in the case q = 3;

nevertheless the same considerations on strong convergence apply instead to ap-
proximated critical points of Iλ constrained on the Nehari manifold, see the proof
Theorem 4.1 and Proposition 10 below.

4.2 The case of ρ vanishing on a region
Now that we have the necessary preliminaries we present the proof of Theorem
4.1.

Theorem 4.1 (Groundstates for q ≥ 3 under (ρ1)). Let N = 3, ρ ∈ L∞
loc(RN)

be nonnegative, satisfying (ρ1), and q ∈ [3, 2∗−1). There exists a positive constant
λ∗ = λ∗(q,M) such that for every λ ≥ λ∗, (SP) admits a positive groundstate
solution u ∈ E(R3). For q > 3, u is a mountain-pass solution.

Proof. We recall the Nehari manifold (3.9),

Nλ :=
{
u ∈ E(R3) \ {0} : Gλ(u) = 0

}
,

where

Gλ(u) = I ′λ(u)(u) = ||u||2H1(R3) + λ2
ˆ
R3

ρφuu
2 − ||u||q+1

Lq+1(R3).

Since q ∈ [3, 2∗−1), it is standard to see that Nλ is nonempty and will be omitted.
Moreover, we show that the conditions

(i) ∃r > 0 : Br ∩Nλ = ∅,

(ii) G′
λ(u)(u) 6= 0, ∀u ∈ Nλ,

are satisfied, which means, by standard arguments, the Nehari manifold Nλ is a
natural constraint for our problem (a detailed proof as to why these conditions
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imply a natural constraint can be found in [3] but will be omitted here for the
sake of brevity). Starting with (i), we notice that if u ∈ Nλ, then writing Gλ(u)

explicitely and

0 = ||u||2H1(R3) + λ2
ˆ
R3

ρφuu
2 − ||u||q+1

Lq+1(R3) ≥ ||u||
2
H1(R3) − S

−(q+1)
q+1 ||u||q+1

H1(R3),

where Sq+1 is the best constant such that Sq+1‖u‖Lq+1(RN ) ≤ ‖u‖H1(RN ). The
above gives the following inequality

||u||E(R3) ≥ ||u||H1(R3) ≥ S
(q+1)/(q−1)
q+1 , ∀u ∈ Nλ. (4.12)

If we set r = S
(q+1)/(q−1)
q+1 − δ for some small δ > 0 then we arrive at (i). For

(ii), we notice that if u ∈ Nλ, then by the definition of the Nehari manifold, the
assumption q ≥ 3 and (4.12), it holds that

G′
λ(u)(u) = 2||u||2H1(R3) + 4λ2

ˆ
R3

ρφuu
2 − (q + 1)||u||q+1

Lq+1(R3)

= (1− q)||u||2H1(R3) + (3− q)λ2
ˆ
R3

ρφuu
2

≤ (1− q)S2(q+1)/(q−1)
q+1

< 0.

(4.13)

Thus, the claim holds and so the Nehari manifold is a natural constraint. Now,
we focus on the case q ∈ (3, 2∗ − 1), setting λ∗ = max{λ0, λ1}, the conclusion
follows immediately from Proposition 7 and the following characterisation of the
mountain-pass level,

cλ = inf
v∈Nλ

Iλ(v).

On the other hand, assume q = 3 and λ ≥ max{λ0, λ1}. We note that

c∗λ := inf
v∈Nλ

Iλ(v)

is well-defined since Nλ is nonempty, and so, we take (w̃n)n∈N ⊂ Nλ to be a
minimising sequence for Iλ on Nλ, namely, Iλ(w̃n) → c∗λ. As described in [21],
by the Ekeland variational principle there exists another minimising sequence
(wn)n∈N ⊂ Nλ and ξn ∈ R such that

Iλ(wn)→ c∗λ, (4.14)
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I ′λ(wn)(wn) = 0, (4.15)

and
I ′λ(wn)− ξnG′

λ(wn)→ 0, in (E(R3))′. (4.16)

Now, by Proposition 7, (4.1), (4.14) and (4.15), it holds that

lim
n→+∞

(
Iλ(wn)−

1

q + 1
I ′λ(wn)(wn)

)
= c∗λ ≤ cλ ≤ c̄,

for some c̄ independent of λ. We can therefore argue as in Lemma 4.2 to show
that

||wn||E(R3) < C̄, (4.17)

where C̄ > 0 is the same constant independent of λ given by Lemma 4.2. More-
over, since (wn)n∈N ⊂ Nλ, it follows using (4.12) that

||wn||4L4(R3) = ||wn||2H1(R3) + λ2
ˆ
R3

ρφwnw
2
n ≥ ||wn||2H1(R3) ≥ S4

4 > 0.

Thus, by interpolation it holds

S4
4 ≤
ˆ
R3

|wn|4 ≤
(ˆ

R3

|wn|3
) 2

3
(ˆ

R3

|wn|6
) 1

3

,

and so, by the Sobolev inequality and (4.17), it follows that we can pick α > 0

independent of λ such that

lim inf
n→∞

‖wn‖3L3(R3) ≥ α.

Moreover, by Lemma 4.3, we can set λ∗ = max{λ0, λ1} and Rα > 0 such that
such that for every λ ≥ λ∗ and every R > Rα we have

lim sup
n→∞

‖wn‖3L3(R3\BR) <
α

2
.

Now, since (wn)n∈N is bounded, passing if necessary to a subsequence, we can
assume that wn ⇀ w in E(R3) and wn → w in L3

loc(R3). It follows that for every
λ ≥ λ∗ and R > Rα,

‖w‖3L3(BR) ≥ lim inf
n→∞

‖wn‖3L3(R3) − lim sup
n→∞

‖wn‖3L3(R3\BR) >
α

2
,

and so w 6≡ 0. We now notice that by (4.15), (4.16), and (4.17), it holds, up to a
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constant independent of λ, that

o(1) = ||I ′λ(wn)− ξnG′
λ(wn)||(E(R3))′

& |I ′λ(wn)(wn)− ξnG′
λ(wn)(wn)|

= |ξnG′
λ(wn)(wn)|,

for some ξn ∈ R. Since (wn) ⊂ Nλ, by (4.13), we have that G′
λ(wn)(wn) <

−2S4
4 < 0, and so the above yields ξn → 0. Moreover, using (4.17) and the

positivity properties of the Coulomb integral (Theorem 9.8, [33]), we have the
inequality

|D(f, g)|2 ≤ D(f, f)D(g, g),

where we define
D(f, g) :=

ˆ
R3

ˆ
R3

f(x)g(y)

|x− y|
dx dy,

for f, g measurable and nonnegative functions, it follows that G′
λ(wn) is bounded.

Taken together, we have that ξnG′
λ(wn)→ 0, and using this and (4.16), we obtain

I ′λ(wn)→ 0. Hence, (wn)n∈N is a Palais-Smale sequence for Iλ at level c∗λ, and so,
since we have also shown that wn ⇀ w 6≡ 0 in E(R3), a standard argument yields
that w is a nontrivial critical point of Iλ. Namely, w ∈ Nλ, and thus

c∗λ ≤ Iλ(w). (4.18)

On the other hand, arguing as in Proposition 7, replacing un, u, and cλ with wn,
w, and c∗λ, respectively, for every λ ≥ λ∗, we obtain

Iλ(w) ≤ c∗λ. (4.19)

For convenience we recall that λ1 is chosen in Proposition 7 so that for every
λ ≥ λ1, it holds that 1

4
−SλS

−3C̄4 ≥ 0, where C̄ is defined via Lemma 4.2 by the
property ||un||E(R3) < C̄. Going through the same argument with (wn)n∈N, since
(wn)n∈N is bounded by precisely the same uniform constant, namely ||wn||E(R3) <

C̄, we conclude that (4.19) holds for every λ ≥ λ∗, as λ∗ ≥ λ1 by construction.
Putting (4.18) and (4.19) together yields

Iλ(w) = inf
v∈Nλ

Iλ(v).

Since Iλ(w) = Iλ(|w|) and w ∈ Nλ if and only if |w| ∈ Nλ, we can assume w ≥ 0,
and it follows that w > 0 by Proposition 3. This completes the proof.
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As a byproduct of the above proof, we have the following

Proposition 10 (Constrained Palais-Smale condition under (ρ1)). Let
N = 3 = q and ρ ≥ 0 be locally bounded such that (ρ1) is satisfied and such that
ρ(x) → ρ∞ > M as |x| → ∞. Let λ0 and λ1 be as in Proposition 7. Then, for
all λ ≥ max (λ0, λ1) , the restriction Iλ|Nλ

satisfies the Palais-Smale condition at
the level

c∗λ = inf
v∈Nλ

Iλ(v).

That is, every sequence (un)n∈N ⊂ E(R3) ' H1(R3) such that

I(un)→ c∗λ, ∇Iλ(un)|Nλ
→ 0 in H−1(R3)

is relatively compact.

Proof. The proof follows the reasoning discussed in section 4.1.1. We leave out
the details.

4.3 Preliminaries for Coercive ρ

In the present section λ > 0 is an arbitrary fixed value, and on ρ we make the
assumption that

(ρ2) For every M > 0, ∣∣x ∈ RN : ρ(x) ≤M
∣∣ <∞.

The above assumption on ρ allows for the following compactness property.

Lemma 4.4 (Compactness property). Let N = 3, 4, 5, ρ ∈ L∞
loc(RN) be non-

negative, satisfying (ρ2), and q ∈ (1, 2∗−1). Then, E(RN) is compactly embedded
into Lq+1(RN).

Proof. By Lemma 3.3, multiplying by λ we obtain

λ

ˆ
RN

ρ(x) |u|3 ≤
( 1
ω

) 1
2‖u‖3E(RN ). (4.20)

Set
A(R) = {x ∈ RN : |x| > R, ρ(x) ≥M},

B(R) = {x ∈ RN : |x| > R, ρ(x) < M}.
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Without loss of generality, assume that (un)n∈N ⊂ E(RN) is such that un ⇀ 0.
For convenience, write

ˆ
RN\BR

|un|3 =
ˆ
A(R)

|un|3 +
ˆ
B(R)

|un|3

where BR is a ball of radius R centred at the origin. Fix δ > 0 and pick M , r,
C, such that M > 2

λδ

(
1
ω

) 1
2 supn‖un‖3E(RN ), r =

2∗

3
> 1 and

C ≥ sup
u∈E(RN )\{0}

‖u‖3
L2∗ (RN )

‖u‖3
E(RN )

.

Let 1
r
+ 1

r′
= 1. By Lemma 4.1, for every M > 0, and every R > 0 large enough,

it holds that
|B(R)| ≤

[ δ

2C supn‖un‖3E(RN )

]r′
. (4.21)

Since N = 3, 4, 5, we can pick r = 2∗

3
> 1 such that by Hölder inequality it holds

that
ˆ
B(R)

|un|3 ≤
(ˆ

B(R)

|un|2
∗
) 1

r
(ˆ

B(R)

1
) 1

r′

≤ ‖un‖3L2∗ (RN ) · |B(R)|
1
r′

≤ C‖un‖3E(RN ) · |B(R)|
1
r′ ≤ δ

2
,

Moreover, by our choice of M and (4.20), we see that

ˆ
A(R)

|un|3 ≤
1

λM

(
1

ω

) 1
2

||un||3E(RN ) ≤
δ

2
.

By the classical Rellich theorem, and since δ was arbitrary, this is enough to prove
our lemma for q = 2. By interpolation the case q 6= 2 follows immediately, and
this concludes the proof.

Using the above lemma, and for q ≥ 3, we can show that the Palais-Smale
condition holds for Iλ at any level.

Lemma 4.5 (Palais-Smale condition). Let N = 3, ρ ∈ L∞
loc(RN) be nonneg-

ative, satisfying (ρ2), and q ∈ [3, 2∗ − 1). Then, Iλ satisfies the Palais-Smale
condition at every level c ∈ R.

Proof. Suppose (un)n∈N ⊂ E(RN) is a Palais-Smale sequence for Iλ. It follows
from Lemma 3.7 that un is bounded in E(RN), and thus, up to a subsequence
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un ⇀ u. By the weak convergence, consider

o(1) = I ′λ(un) · (un − u)

= ‖un‖2H1(RN ) − ‖u‖
2
H1(RN ) + o(1)

+

ˆ
RN

φunun(un − u)ρ(x)−
ˆ
RN

|un|q−1 un(un − u).

(4.22)

We look at each part of the RHS seperately. To begin we know by Lemma 4.4
that E(RN) is compactly embedded into Lq+1(RN) for all q ∈ [3, 2∗ + 1), hence

ˆ
RN

|un|q−1 un(un − u)→ 0, (4.23)

as n → ∞, i.e ‖un‖q+1
Lq+1(RN )

→ ‖u‖q+1
Lq+1(RN )

. By Lemma 3.2 we have that
‖∇φun‖L2(RN ) → ‖∇φu‖L2(RN ) as n → ∞. Therefore we are left only to show
‖un‖H1(RN ) → ‖u‖H1(RN ). From (4.23) we see that (4.22) becomes

o(1) = ‖un‖2H1(RN ) − ‖u‖
2
H1(RN ) +

ˆ
RN

φunun(un − u)ρ(x) + o(1).

Splitting the nonlocal integral into the integral over a ball B of radius R > 0 and
outside,∣∣∣∣ˆ

RN

φunun(un − u)ρ(x)
∣∣∣∣ ≤ ∣∣∣∣ˆ

B

φunun(un − u)ρ(x)
∣∣∣∣+ ∣∣∣∣ˆ

RN\B
φunun(un − u)ρ(x)

∣∣∣∣ .
Looking at the integral over B, by Hölder and Sobolev inequalities, setting r =
4N
N+2

we get∣∣∣∣ˆ
B

φunun(un − u)ρ(x)
∣∣∣∣ ≤ ‖ρ(x)‖L∞(B)‖φun‖L2∗ (B)‖un − u‖Lr(B)‖un‖Lr(B)

≤ C‖φun‖D1,2(RN )‖un − u‖Lr(B).

As φun ∈ D1,2(RN) is a solution to the Poisson equation, ‖φun‖D1,2(RN ) < C by
some constant C > 0. By local compactness, ‖un − u‖Lr(B) → 0 for all r < 2∗.
Thus

´
RN φunun(un − u)ρ(x)→ 0. The integral outside the ball can be bounded

similarly to Lemma 3.2 using the bounds found in [16, p. 1077], for every δ > 0

there exists a ball of radius R such that∣∣∣∣ˆ
RN\B

φunun(un − u)ρ(x)
∣∣∣∣ ≤ ∣∣∣∣ˆ

RN\B
φunu

2
nρ(x)

∣∣∣∣+ ∣∣∣∣ˆ
RN\B

φununuρ(x)

∣∣∣∣ < 2δ.

Therefore, making R large enough this integral tends to 0 and we obtain the
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result
‖un‖2H1(RN ) − ‖u‖

2
H1(RN ) = o(1) (4.24)

implying, ‖un‖2H1(RN ) → ‖u‖
2
H1(RN ). Combining all these into (4.22) concludes

the proof.

4.4 The case of coercive ρ

Now that we have all the necessary preliminaries in place we present the following
Theorems 4.2, 4.3, 4.4.

Theorem 4.2 (Groundstates for q ≥ 3 under (ρ2)). Let N = 3, ρ ∈ L∞
loc(R3)

be nonnegative, satisfying (ρ2), and q ∈ [3, 2∗−1). Then, for any fixed λ > 0, (SP)
has both a positive mountain-pass solution and a positive groundstate solution in
E(R3), whose energy levels coincide for q > 3.

Proof of Theorem 4.2. Using Lemma 3.4 and Lemma 4.5, the Mountain-Pass
Theorem yields the existence a mountain-pass type solution for all q ∈ [3, 2∗−1).
Namely, there exists u ∈ E(RN) such that Iλ(u) = cλ and I ′λ(u) = 0, where cλ
is given in (3.7). For q > 3, by Lemma 3.5 the mountain-pass level cλ has the
characterisation

cλ = inf
u∈Nλ

Iλ(u), Nλ := {u ∈ E(RN) \ {0} | I ′λ(u)(u) = 0},

and it follows that u is a groundstate solution of Iλ. Since Iλ(u) = Iλ(|u|), we
can assume u ≥ 0, and so u > 0 by the strong maximum principle, Proposition
3. For q = 3, we can show the existence of a positive mountain-pass solution
applying the general min-max principle [55, p.41], and observing that, in our
context, we can restrict to admissible curves γ’s which map into the positive cone
P := {u ∈ E(R3) : u ≥ 0}. In fact, arguing as in [42, p.481], since Iλ satisfies
the mountain-pass geometry by Lemma 3.4, it is possible to select a Palais-Smale
sequence (un)n∈N at the level cλ such that

dist(un, P )→ 0,

from which it follows that (un)− → 0 in L6(R3), see also [15, Lemma 2.2]. Then,
by construction and up to a subsequence, there exists a weak limit u ≥ 0, and
hence, by Lemma 4.5 a nontrivial nonnegative solution, the positivity of which
holds by Proposition 3.
The existence of a positive groundstate can be shown with a mild modification to
the proof of Theorem 4.1, using here that all the relevant convergence statements

64



hold for any fixed λ > 0 as a consequence of assumption (ρ2) and Lemma 4.4.
This is enough to conclude.

Theorem 4.3 (Groundstates for q < 3 under (ρ2)). Let N = 3, 4, 5, q ∈
(2, 3) if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Let λ > 0, and assume ρ ∈
L∞

loc(RN) ∩ W 1,1
loc (RN) is nonnegative and satisfies (ρ2). Moreover suppose that

kρ(x) ≤ (x,∇ρ) for some k > −2(q−2)
(q−1)

. Then, (SP) has a mountain-pass solution
u ∈ E(RN). Moreover, there exists a groundstate solution.

Proof of Theorem 4.3. We can argue as in [41, Theorem 1.3], based on [29] and on
the compactness of the embedding of E(RN) into Lq+1(RN). The latter is provided
in our context by Lemma 4.4. By these, there exists an increasing sequence
µn → 1 and (un)n∈N ∈ E(RN) such that Iµn,λ(un) = cµn,λ and I ′µn,λ

(un) = 0,

where Iµn,λ and cµn,λ are defined as in (3.4) and (3.5). By Lemma 3.9, we see
that

N − 2

2

ˆ
RN

(|∇un|2 + u2n) +

(
N + 2 + 2k

4

)
λ2
ˆ
RN

ρ(x)φunu
2
n

− Nµn

q + 1

ˆ
RN

|un|q+1 ≤ 0.

(4.25)

Setting αn =
´
RN (|∇un|2 + u2n), γn = λ2

´
RN ρ(x)φunu

2
n, δn = µn

´
RN |un|q+1 , we

can put together the equalities Iµn,λ(un) = cµn,λ and I ′µn,λ
(un)(un) = 0 with (4.25)

obtaining the system
αn + γn − δn = 0,

1
2
αn + 1

4
γn − 1

q+1
δn = cµn,λ,

N−2
2
αn +

(
N+2+2k

4

)
γn − N

q+1
δn ≤ 0,

(4.26)

which yields

δn ≤
cµn,λ(6−N + 2k)(q + 1)

2(q − 2) + k(q − 1)
,

γn ≤
2cµn,λ

(
2(q + 1)−N(q − 1)

)
2(q − 2) + k(q − 1)

,

αn = δn − γn.

We note that k > −2(q−2)
(q−1)

> N−6
2

since q < 2∗ − 1, and so since αn, γn, δn are
all nonnegative, it follows that αn, γn, δn are all bounded. Hence the sequence
(un)n∈N is bounded and there exists u ∈ E(RN) such that, up to a subsequence,
un ⇀ u in E(RN). Using Lemma 4.4 and arguing as in [16, Theorem 1] we obtain

65



that ‖un‖2E(RN ) → ‖u‖
2
E(RN ) and

cµn,λ = Iµn,λ(un)→ Iλ(u). (4.27)

It follows that un → u in E(RN), which combined with the left-continuity prop-
erty of the levels [5, Lemma 2.2], namely cµn,λ → c1,λ = cλ as µn ↗ 1, yields
Iλ(u) = cλ. Since u is a critical point by the weak convergence, it follows that
u is mountain-pass solution. Finally, the existence of a groundstate solution is
based on minimising over the set of nontrivial critical points of Iλ, and carrying
out an identical argument to the above to show the strong convergence of such a
minimising sequence, again using Lemma 4.4. This concludes the proof.

Under an additional hypotheses on ρ, we now prove that the energy level of
the groundstate solutions coincide with the mountain-pass level.

Theorem 4.4 (Homogeneous case for q ≤ 3 : mountain-pass solutions
vs. groundstates). Let N = 3, 4, 5, q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if
N = 4, 5. Suppose λ > 0 and ρ ∈ L∞

loc(RN) ∩W 1,1
loc (RN) is nonnegative, satisfies

(ρ2), and is homogeneous of degree k̄, namely ρ(tx) = tk̄ρ(x) for all t > 0, for
some

k̄ >

(
max

{
N

4
,

1

q − 1

}
· (3− q)− 1

)
+

.

Then, the mountain-pass solutions that we find in Theorem 4.2 (q = 3) and
Theorem 4.3 (q < 3) are groundstates.

Proof. By Proposition 2, it holds that

cλ = inf
u∈M̄λ,ν

Iλ(u),

where M̄λ,ν is defined in (3.10). Since Jλ,ν(u) = 0 is equivalent to the Pohozaev
equation given by Lemma 3.9 minus the equation νI ′λ(u)(u) = 0, it is clear that
M̄λ,ν contains all of the critical points of Iλ, and thus the mountain-pass solutions
that we find in Theorem 4.2 (q = 3) and Theorem 4.3 (q < 3) are groundstates.
This completes the proof.
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5 Category Theory
In this chapter we look at certain topological properties of the set of critical points
obtained from an invariant functional which satisfies the Palais-Smale condition.
In the spirit of Ambrosetti-Rabinowitz [4] and Ambrosetti-Ruiz [5] we analyse
the properties of “genus” and look at the role of deformations in a minimax
setting. Our goal is to define minimax levels of our functional over a certain closed
symmetric set, to do this we take advantage of Lusternik-Schnirelmann theorems,
which will be described in the latter half of this chapter. Before these LS-theorems
can be discussed an understanding of Brouwer degree and its properties is needed,
this will provide context to what we do when working with the concept of “genus”.
The contents of this chapter were taken from a series of lectures presented by Carlo
Mercuri and are based from the content of “Variational Methods in Differential
Equations” by Costa [21].

5.1 Brouwer Degree
Before we can discuss the Lusternik-Schnirelmann theory and the concept of
“genus” we need to understand the notion of Brouwer degree. This degree theory
will form a basis for what will come in the sequel, many of these properties can be
applied when working with the notion of category and these properties and their
applications (e.g. Borsuk Theorem) will be vital to show existence of multiple
critical points.

Definition 6. Consider N ≥ 1, Ω ⊂ RN open and bounded. f ∈ C1(Ω,RN) ∩
C(Ω,RN), b ∈ RN and b 6∈ f(∂Ω), i.e. 0 < ε < dist(b, f(∂x)) for ε > 0.

Consider ϕ ∈ C((0,+∞),RN), supp ϕ ∈ (0, ε) such that
ˆ
RN

ϕ(|x|) dx = 1.

We define the degree as:

deg(f, b.Ω) :=

ˆ
RN

ϕ(|f(x)− b|)Jf (x) dx.

The above is said to be the Brouwer degree.

5.1.1 Properties of Brouwer Degree

Under certain assumptions on a generic function f acting on a domain Ω ⊂ RN

we list the following properties of Brouwer degrees.
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(BD 1) Stability: Consider f1, f2 ∈ C1(Ω,RN) ∩ C(Ω,RN), b ∈ RN and b 6∈
f1(∂Ω) ∪ f2(∂Ω). Then,

0 < ε <
1

4
dist(b, f1(∂Ω) ∪ f2(∂Ω)).

If ‖f1 − f2‖L∞(RN ) < ε, this implies

deg(f1, b,Ω) = deg(f2, b,Ω).

We can drop the f ∈ C1(Ω,RN) assumption thanks to the following theorem.

Theorem 5.1. Let Ω be open and bounded. f ∈ C(Ω), b 6∈ f(∂Ω) and let
(fk)k∈N ⊂ C1(Ω,RN) ∩ C(Ω,RN) be such that

‖fk − f‖L∞(RN ) → 0, as k →∞.

One can define
deg(f, b,Ω) := lim

k→∞
deg(fk, b,Ω).

This allows us to write (BD 1) as follows:

(BD 1.5) General stability property: Consider f1, f2 ∈ C(Ω,RN), b ∈ RN , b 6∈
f1(∂Ω) ∪ f2(∂Ω). Take 0 < ε < 1

4
dist(b, f1(∂Ω) ∪ f2(∂Ω)).

If ‖f1 − f2‖L∞(RN ) < ε then, this implies

deg(f1, b,Ω) = deg(f2, b,Ω).

(BD 2) Stability with respect to b: Let Ω be open and bounded. f ∈ C(Ω,RN)

and b, b′ belong to the same connected component of f(∂Ω)c. f(∂Ω)c is an
open set, every open set can be written as the disjoint union of its connected
components. Then:

deg(f, b,Ω) = deg(f, b′,Ω).

(BD 3) Additivity: Let Ω1,Ω2 be open, bounded and disjoint sets. f ∈ C(Ω1 ∪
Ω2,RN). If b 6∈ f(∂Ω1) ∪ f(∂Ω2), this implies

deg(f, b,Ω1 ∪ Ω2) = deg(f, b,Ω1) + deg(f, b,Ω2).
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(BD 4) Excision: Let Ω be open and bounded. f ∈ C(Ω,RN), K ⊂ Ω be compact
and b 6∈ f(∂Ω) ∪ f(K). Then, this implies

deg(f, b,Ω) = deg(f, b,Ω \K).

(BD 5) Solution property: Let Ω be open and bounded. f ∈ C(Ω,RN) and
b 6∈ f(∂Ω). If deg(f, b,Ω) 6= 0, this implies f(x) = b has a solution in Ω.

(BD 6) Stability with respect to Homotopy: If H : Ω× [0, 1]→ RN is contin-
uous, b 6∈ H(∂Ω× [0, 1]). Then, for all t ∈ [0, 1], it holds that

deg(H(·, t), b,Ω) = deg(H(·, 0), b,Ω).

(BD 7) Boundary property: Let Ω be open and bounded. f, g ∈ C(Ω,RN) and
f = g on ∂Ω. If b 6∈ f(∂Ω) (or g(∂Ω)), this implies

deg(f, b,Ω) = deg(g, b,Ω).

Proposition 11. Let Ω be open and bounded, b ∈ RN . Consider 1 as the identity
map 1 : RN → RN . Then,

deg(1, b,Ω) =

{
1, b ∈ Ω,

0, b 6∈ Ω,

and

deg(−1, b,Ω) =

{
(−1)N , b ∈ Ω,

0, b 6∈ Ω.

Definition 7. Let f, g : X → Y be continuous. We say that f, g are homotopi-
cally equivalent (or that f is homotopic to g) if there exists H : X × [0, 1] → Y

continuous on X × [0, 1] such that

H(x, 0) = f(x), H(x, 1) = g(x).

In the following, and for the remainder of this chapter, we define Jf (x) as the
determinant of the Jacobian matrix of f at the point x.

Theorem 5.2 (Sard’s Theorem). Let Ω be open and bounded, f ∈ C1(Ω,RN)

and define the singular set

S := {x ∈ Ω | Jf (x) = 0}. (5.1)
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Then, f(S) is a zero measure set:

LN(f(S)) = 0.

From definition 6 it is difficult to quantify if deg(f, b,Ω) ∈ R or a subset. Here
we claim the degree is indeed an integer.

Claim 1 (deg ∈ Z). Let Ω be open and bounded, f ∈ C1(Ω,RN)∩C(Ω,RN). Set
S as above and assume b 6∈ f(∂Ω) ∪ f(S). Then,

deg(f, b,Ω) =
∑

x∈f−1(b)

sgn(Jf (x)),

where sgn is the sign function defined as

sgn(r) =

{
1, r > 0,

−1, r < 0.

By assumption on b above, definition of S and as a consequence of the inverse
function theorem we have that b is a regular value of f and hence the set f−1(b)

is finite and the above sum is also finite.
We wish to generalise the claim to functions that are only continuous on Ω.

We can take advantage of Sard’s theorem 5.2 and Theorem 5.1 to drop the C1

regularity and f(S).

Proposition 12. Let Ω be open and bounded. f ∈ C(Ω,RN), b 6∈ f(∂Ω). Then,

deg(f, b,Ω) ∈ Z.

Sketch of proof. Details for the proof of Proposition 12 can be found in [3, p. 27-
28,36], we will provide a sketch. It is possible to construct a sequence of approxi-
mating functions fk ∈ C1(Ω,RN)∩C(Ω,RN) that converge uniformly on Ω to f ∈
C(Ω,RN). Using Theorem 5.1 we can see that deg(f, b,Ω) = lim

k→∞
deg(fk, b,Ω).

Similarly, using Sard’s Theorem 5.2, we can construct a sequence bj 6∈ f(∂Ω) ∪
f(S) that converge uniformly to b 6∈ f(∂Ω) yielding lim

j→∞
deg(f, bj,Ω) = deg(f, b,Ω).

The combination of these concludes

deg(f, b,Ω) = lim
k→∞

deg(fk, b,Ω) = lim
k→∞
j→∞

deg(fk, bj,Ω) ∈ Z,

by claim 1.
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5.1.2 Some applications

We wish to describe some applications of the properties of Brouwer degree, namely
the Brouwer fixed point theorem and Borsuk theorem. We begin with the follow-
ing proposition showing that the unit sphere is not a retract of the unit ball.

Proposition 13. Consider the unit ball B(0, 1) ⊂ RN , SN−1 = ∂B(0, 1). There
is no continuous function ϕ : B(0, 1)→ SN−1 such that

ϕ|SN−1 = 1.

(i.e. The unit sphere is not a ’retract’ of the unit ball).

Proof. Assume the contrary:

deg(ϕ, 0, B) = deg(1, 0, B) = 1 6= 0.

Thus, by the solution property (BD 5), ϕ(x) = 0 has a solution x ∈ B. This is a
contradiction to the fact that ϕ : B(0, 1)→ SN−1.

Theorem 5.3 (Brouwer Fixed Point Theorem). Let B(0, 1) ⊂ RN be the unit ball
in RN centered at the origin. Assume that f : B(0, 1) → B(0, 1) is continuous.
Then there exists x ∈ B(0, 1) such that

f(x) = x.

Namely, x is a fixed point of f .

Proof. Assume there exists x ∈ SN−1 such that f(x) = x, then we are done.
Otherwise, assume x− f(x) 6= 0 on SN−1. Define

H(x, t) = x− tf(x), t ∈ [0, 1], x ∈ B(0, 1).

We claim that for all t ∈ [0, 1] and for all x ∈ SN−1 we have

x− tf(x) = b 6= 0.

If t = 1 this is done. For t = [0, 1) assume by contradiction that there exists
x ∈ SN−1 such that x− tf(x) = 0. This would imply

t |f(x)| = |x| = 1⇒ t |f(x)| = 1,
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however, |f(x)| < 1 and t < 1, hence a contradiction. Therefore, setting

H(x, t) = x− tf(x) 6= 0, ∀x ∈ SN−1,

and by the homotopy invariance (BD 6) we get

deg(H(·, 1), 0, B) = deg(H(·, 0), 0, B) = deg(1, 0, B) = 1 6= 0.

By the solution property (BD 5), the above yields that there exists x ∈ B(1, 0)

such that f(x) = x.

Definition 8. Let A ⊂ X be a vector space and

−A := {x ∈ X | − x ∈ A}.

We say A is symmetric with respect to the origin O ∈ X if

A = −A.

Theorem 5.4 (Borsuk Theorem). Assume Ω is an open and bounded subset of
RN that is symmetric with respect to 0 ∈ RN . f ∈ C(Ω,RN), f is odd, 0 ∈ f(∂Ω).
Then,

• if 0 ∈ Ω⇒ deg(f, 0,Ω) is odd.

• if 0 ∈ Ω⇒ deg(f, 0,Ω) is even.

Corollary 5.1. Assume the same as above however, assume in addition f ∈
C1(Ω,RN) and 0 6∈ f(S), where S is defined by (5.1). Then the same conclusion
follows.

Proof of Theorem 5.4 and Corollary 5.1. Assume 0 ∈ Ω and f−1(0) 6= ∅. It fol-
lows that deg(f, 0,Ω) = 0 by the solution property (BD 5). If f−1(0) is non-empty,
then,

f−1(0) = {xi,−xi}, xi ∈ Ω, i = 1, . . . ,m.

And

deg(f, 0,Ω) =
m∑
i=1

[sgn (Jf (xi)) + sgn (Jf (−xi))]

= 2
m∑
i=1

sgn (Jf (xi)) is even.
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If 0 ∈ Ω, then either f−1(0) = 0 or

f−1(0) = {0} ∪ {xi,−xi}, i = 1, . . . ,m.

In the former case, deg(f, 0,Ω) = ±1. In the latter case,

deg(f, 0,Ω) = ±1 +
m∑
i=1

[sgn (Jf (xi)) + sgn (Jf (−xi))]

= ±1 + 2
m∑
i=1

sgn (Jf (xi)) is odd.

5.2 Lusternik-Schnirelmann Theory
The LS-theory was developed by L. Lusternik and L. Schnirelmann in the first half
of the 20th century. The idea was a topological concept of category cat(A,X) of a
closed manifold A on a metric space X. This theory can be applied to variational
problems, particularly those involving even functionals ϕ acting on some closed
invariant subset A.

In this section we use the LS-theory to define a minimax characterisation ck

of an even functional ϕ over a suitable set A briefly described above, namely we
want to define

ck := inf
A∈Ak

sup
x∈A

ϕ(x)

where ϕ ∈ C1(X,R), X is a Banach space and {Ak}k∈N are closed subsets of X.
Here we take advantage of the fact that deformations are odd mappings and have
certain properties around critical levels ck to show that we can obtain at least k
pairs of distinct critical points corresponding to these critical levels under some
suitable compactness assumption.

First we must state a few definitions for convenience in the latter part of this
section.

Definition 9 (Isometric representation). LetX be a Banach space andG be a
compact topological group. The set {T (g) : g ∈ G} is an isometric representation
of G on X if T (g) : X → X is an isometry for each g ∈ G and the following hold:

(i) T (g1 + g2) = T (g1) ◦ T (g2) for all g1, g2 ∈ G

(ii) T (0) = 1, where 1 : X → X is the identity map on X

(iii) (g, u) 7→ T (g)(u) is continuous.
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Definition 10 (Invariant subset). A subset A ⊂ X is invariant if, and only if,
T (g)A = A for all g ∈ G.

Definition 11 (Invariant functional). A functional ϕ : X → R is invariant, if
and only if, ϕ ◦ T (g) = ϕ for all g ∈ G.

Definition 12 (Equivariant mapping). A mapping R between two invariant
subsets A1 and A2, namely R : A1 → A2, is said to be equivariant if R ◦ T (g) =
T (g) ◦R for all g ∈ G.

Definition 13 (The class A). We denote the class of all closed and invariant
subsets of X by A. Namely,

A := {A ⊂ X : A closed, T (g)A = A ∀g ∈ G}.

Definition 14 (G-index with respect to A). A G-index on X with respect
to A is a mapping ind : A → N ∪ {+∞} such that the following hold:

(i) ind(A) = 0 if and only if A = ∅.

(ii) If R : A1 → A2 is continuous and equivariant, then ind(A1) ≤ ind(A2).

(iii) ind(A1 ∪ A2) ≤ ind(A1) + ind(A2).

(iv) If A ∈ A is compact, then there exists a neighbourhood N of A such that
N ∈ A and ind(N) = ind(A).

An interesting case of the above definition is the scenario when G = Z2 =

{0, 1}. This case yields the following definition of genus and is attributed to
Krasnoselksii [30].

Definition 15 (Krasnoselskii Genus). Define T (0) = 1x as the identity on X,
T (1) = −1x. Given any closed, symmetric w.r.t. origin set A ⊂ A, define
ϕ(A) = k ∈ N is the least possible dimension of Rk such that there exists an odd
continuous mapping

Φ : A→ Rk \ {0}.

Then the mapping ϕ : A → N ∪ {∞} is a Z2-index. We set ϕ(∅) = 0 and
ϕ(A) =∞ if there is no such mapping.

Notice that, since A ⊂ A implies T (g)A = A for all g ∈ G. Applying this to the
above definition for the Krasnoselski genus, T (1)A = −A Def 10

= A.
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We define the notion of equivariance for our class of subsets A. We recall
R : A1 → A2, for A1, A2 ⊂ A is equivariant if, and only if,

R ◦ T (g) = T (g) ◦R, ∀g ∈ G = {0, 1}.

Namely, {
R ◦ T (0) = T (0) ◦R ⇒ R ◦ 1 = 1 ◦R,

R ◦ T (1) = T (1) ◦R ⇒ R ◦ (−1) = (−1) ◦R.

This final line implies

(R ◦ (−1))(x) = R(−x)

((−1) ◦R)(x) = −R(x)

}
⇐⇒ R(−x) = −R(x).

which implies an odd mapping. From here on we denote γ(·) as the genus.
We verify that Krasnoselski Genus satisfies property (ii) in definition 14, as

this will be relevant for future discussions regarding how we use the genus.
Indeed, if γ(A2) < ∞, namely, there exists a map Φ : A2 → Rk \ {0},

continuous and odd. Here γ(A2) = k implies

Φ ◦R : A1 → Rk

is odd and continuous. Therefore,

γ(A1) ≤ k = γ(A2).

If γ(A2) =∞ then (ii) is obvious.

The following proposition gives us the genus for some special subsets of a
Banach space X.

Proposition 14. 1) If c ⊂ X is closed and c ∩ (−c) = ∅, then

γ(c ∪ (−c)) = 1.

2) If A ∈ A and if there exists an odd homomorphism h : A → Sk−1, then
γ(A) = k.

3) If A ∈ A, such that 0 /∈ A. Then γ(A) ≥ 2 implies that A has infinitely
many points.

Proof. 1) Consider Φ : c ∪ (−c)→ R \ {0}. Then Φ(c) = 1 and Φ(−c) = −1.
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2) Since h : A→ Sk−1 ⊂ Rk \{c} is odd and continuous implies γ(A) ≤ k. We
show that if we assume γ(A) < k yields a contradiction. If γ(A) = j < k,
then there exists

Φ : A→ Rj \ {0}

odd and continuous. Then set ψ := Φ ◦ h−1 : Sk−1 → Rj \ {0} odd and
continuous, pick u0 = (0, . . . , x), x ∈ Rk−j, such that |u0| > 1 (i.e. 0 =

u0 ∈ Rj, 0 6= u0 ∈ Rk \ Rj). Consider the homotopy ψt = (1 − t)ψ + tu0

for t ∈ [0, 1], then, by the solution property (BD 5), ψ1 = u0 implies
deg(u0, 0, Bk) = 0. Therefore by the homotopy invariance (BD 6)

deg(ψ, 0, Bk) = deg(u0, 0, Bk) = 0

Since we are working in a symmetric domain and ψ is an odd mapping this
is a contradiction of the Borsuk theorem 5.4, the degree should be odd.

3) Since 0 /∈ A and A is symmetric w.r.t. the origin, then A = c ∪ (−c), if A
is a finite set, and such that c ∩ (−c) = ∅ and, by 1), γ(A) = 1 which is a
contradiction.

Remark 5.1. A consequence of 2): Set A = Sk−1 and h = 1 which is an odd
mapping. Then, γ(Sk−1) = k.

5.2.1 Relation to Deformations

In this section we give a flavour of how one might obtain multiplicity results from
the above concepts. We consider the role of deformations in critical point theory.
Indeed results like the Mountain Pass Theorem by Ambrosetti-Rabinowitz [4]
rely heavily on deformations. Here we look at an example problem using the
equivariant form of the deformation theorem. To begin, consider the following
example in a Hilbert space H.

η(u, t) ∈ X = H

and J : H → R, J ∈ C1(H,R), ∇J(u) : H → H.{
d
dt
η(u, t) = −∇J(η(u, t)),

η(u, 0) = u.

For each u in H the above has a unique solution η(u, ·) ∈ R and is continuous
on H × R. This choice of space makes sense as we wish to use the notion of
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gradient, unfortunately we do not have the gradient for general Banach spaces
X. Therefore, we want to show the existence of a pseudo-gradient.

Definition 16 (Equivariant Pseudo-Gradient). Consider an invariant functional
ϕ ∈ C1(X,R), i.e. we have a G-compact topological group and a T (g)-isometric
representation, ϕ possesses an equivariant pseudo-gradient, that is, a locally Lip-
schitz mapping v : Y → X, where

Y = {u ∈ X | ϕ′(u) 6= 0},

satisfying:

(i) ‖v(u)‖X ≤ 2‖ϕ′(u)‖∗,

(ii) ϕ′(u) · v(u) ≥ ‖ϕ′(u)‖2∗,

(iii) v is equivariant.

The following theorem details the properties of equivariant deformations of
a functional which satisfies the Palais-Smale condition. These deformations are
used heavily as they show the existence of a critical point implies a change in
topology and is key in proving that critical points of a functional exist at certain
levels.

Theorem 5.5 (Equivariant Deformation). Let ϕ ∈ C1(X,R) be invariant and
satisfying the Palais-Smale condition. If U is an invariant open neighbourhood of
Kc, where

Kc = {u ∈ X | ϕ(u) = c, ϕ′(u) = 0},

for c ∈ R. Then for small ε > 0, there exists η ∈ C([0, 1]×X,X) such that, for
any u ∈ X, t ∈ [0, 1], it holds:

(i) η(0, u) = 0,

(ii) η(t, u) = u if u ∈ ϕ−1[c− 2ε, c+ 2ε],

(iii) η(1, ϕc+ε \ U) ⊂ ϕc−ε,

(iv) η(t, ·) : X → X is an equivariant homeomorphism.

Assume we have T (g) of G, X a Banach space and assume we have a G-index.
Set

Aj = {A ⊂ X | A compact, invariant, ind(A) ≥ j}.
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Set
cj = inf

A∈Aj

max
u∈A

ϕ(u).

Remark 5.2. From our definition of A, we have the following collection of sets,
A1 ⊃ A2 ⊃ . . . , and the corresponding for cj, −∞ ≤ c1 ≤ c2 ≤ . . . .

Theorem 5.6. Let ϕ ∈ C1(X,R) be invariant and satisfy the Palais-Smale con-
dition for all levels cj defined above. If cj > −∞ for some j ≥ 1, then cj is a
critical value of ϕ. Moreover, if ck = cj = c, for k ≥ j, then ind(Kc) ≥ k− j+1.

Proof. We split the proof into two steps.
Step 1: Since ϕ is invariant, Kc is invariant and compact by the assumption ϕ

satisfies the Palais-Smale condition. We want to show −∞ < cj is critical. By
definition, pick A ∈ A, compact, with ind(A) ≥ j such that maxA ϕ ≤ cj + ε for
some small ε > 0.

If cj is not critical then we can deform the level into some sublevel. Pick η(·, ·)
as in the equivariant deformation theorem 5.5. Set

CA = η(1, A) ⊂ ϕcj−ε,

this implies
max
CA

ϕ ≤ cj − ε,

and CA is compact and invariant. Therefore

j ≤ ind(A) ≤ ind(CA) ≤ j − 1,

a contradiction.
Step 2: We want to show cj = ck. Consider N ⊃ Kc, closed and invariant
neighbourhood such that

ind(N) = ind(Kc).

Set U = int(N), i.e. the set of interior points of N , open and invariant neigh-
bourhood of Kc. Now setting c = ck means pick A ∈ A such that

max
A

ϕ ≤ c+ ε,

and set B = A \ U , compact. Then by properties of G-index:

k ≤ ind(A) ≤ ind(B) + ind(N) = ind(B) + ind(Kc).
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Set c = cj. Since B ⊂ ϕc+ε \ U , then

CB = η(1, B) ⊂ ϕc−ε,

CB is compact, from B, and invariant, from η equivariance. Since c = cj, then
maxCB

ϕ ≤ c− ε = cj − ε, thus,

ind(CB) ≤ j − 1.

Using property (ii), ind(B) ≤ ind(CB) ≤ j − 1, which implies

k ≤ j − 1 + ind(Kc).

Finally, we obtain the following multiplicity result yielding at least k pairs of
distinct critical points.

Theorem 5.7. Let ϕ ∈ C1(X,R) be even and satisfy the Palais-Smale condition.
Suppose:

(i) ϕ is bounded from below.

(ii) There exists a compact set K ∈ A, symmetric, such that

γ(K) = k, and sup
K
ϕ < ϕ(0).

Then, ϕ has at least k pairs of distinct critical points corresponding to levels
below ϕ(0).

Proof. Set G = Z2, Aj = {A ⊂ X | A compact, A = −A, γ(A) ≥ j}. Define cj
as before, i.e. c1 ≤ c2 ≤ . . . ,

−∞ < inf
X
ϕ ≤ c1 ≤ c2 ≤ . . . ,

implying cj > −∞. If we consider ck ≤ ϕ(0) as a consequence of ii). If all cj,
j = 1, . . . , k, are distinct we obtain at least k pairs of critical points corresponding
to critical levels

−∞ < c1 < c2 < · · · < ck.

If ci = cj for some i < j ≤ k then setting c = ci = cj, γ(Kc) ≥ j− i+1 ≥ 2, and,
as 0 /∈ Kc, then Kc is made up of infinitely many points.
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6 Multiplicity Results
In this final chapter we focus on multiplicity results for (1.2), namely we show the
existence of high energy solutions to our PDE in the case where ρ satisfies (ρ2).
Under this assumption the role of λ is diminished and can be chosen arbitrarily
therefore, we fix λ ≡ 1 and drop the subscript on our functional to define

I(u) :=
1

2

ˆ
RN

(|∇u|2 + u2) +
1

4

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy

− 1

q + 1

ˆ
RN

|u|q+1.

We follow the work of Ambrosetti-Rabinowitz [4] and Ambrosetti-Ruiz [5] who
have developed techniques to study the existence of high energy solutions on
special subsets of Banach spaces. The results in this chapter are from [23].

6.1 Divergence of min-max levels
We begin with a preliminary result vital to showing multiplicity in our problem.
We follow [4] and define the following set

Â0 = {u ∈ E(RN) : I(u) ≥ 0}, (6.1)

with the following definition of paths which cross this set:

Γ∗ = {h ∈ C(E(RN), E(RN)) : h(0) = 0, h is an odd homeomorphism of E(RN)

(6.2)

onto E(RN), h(B1) ⊂ Â0}.

In what follows, we invoke Lemma 3.1 which shows us that our space E(RN) is
separable and emits an orthogonal basis, what we mean by that is, for any m ∈ N
we can write E(RN) as

E(RN) = span{e1, . . . , em} ⊕ span{em+1, . . . }.

We define these two components as

Em = span{e1, . . . , em},
E⊥

m = span{em+1, . . . },
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and note that, for any m ∈ N, Em and E⊥
m define algebraically and topologically

complementary subspaces of E(RN).
The following Lemma shows the min-max levels over the paths described

above diverge. This is important for the latter results in sections 6.2 and 6.3 to
show that the pairs of critical points found are indeed distinct.

Lemma 6.1 (Divergence of min-max levels dm). Let N ≥ 3 and q > 1.
Suppose ρ ∈ L∞

loc(RN) is nonnegative, satisfying (ρ2). Define

dm
1 := sup

h∈Γ∗
inf

u∈∂B1∩E⊥
m−1

I(h(u)), (6.3)

where Γ∗ is given by (6.2). Then, dm → +∞ as m→ +∞.

Proof. To begin we set

T =
{
u ∈ E(RN) \ {0} : ||u||2H1(RN ) = ||u||

q+1
Lq+1(RN )

}
where

d̃m = inf
u∈T∩E⊥

m

||u||E(RN ),

and we claim that d̃m → +∞ as m → +∞. To see this we reason as in Szulkin
[53], assume to the contrary that there exists um ∈ T ∩E⊥

m and some d > 0 such
that ||um||E(RN ) ≤ d for all m ∈ N. Since < e∗n, um >= 0 for all m ≥ n and the
e∗n’s are total by Lemma 3.1, then it follows that um ⇀ 0 in E(RN). Since E(RN)

is compactly embedded into Lq+1(RN) by Lemma 4.4, it follows that um → 0 in
Lq+1(RN). However, since um ∈ T , it follows from the Sobolev inequality that

||um||q+1
H1(RN )

≥ Sq+1
q+1 ||um||

q+1
Lq+1(RN )

= Sq+1
q+1 ||um||2H1(RN ),

from which we deduce

||um||q+1
Lq+1(RN )

≥ S
2(q+1)/(q−1)
q+1 > 0.

This shows that um is bounded away from 0 in Lq+1(RN), a contradiction, and
so we have proved that

d̃m → +∞ as m→ +∞. (6.4)

Now notice that since Em and E⊥
m are complementary subspaces, it holds that

1dm’s are bounded as shown in the proof of Theorem 6.2, further reference in [5, Thm. 2.8,
2.13]
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there exists a C̄ ≥ 1 such that each u ∈ B1 can be uniquely written as

u = v + w, with v ∈ Em, w ∈ E⊥
m, (6.5)

||v||E(RN ) ≤ C̄||u||E(RN ) ≤ C̄, (6.6)

||w||E(RN ) ≤ C̄||u||E(RN ) ≤ C̄, (6.7)

as a consequence of the open mapping theorem, an example of which can be found
in [17, p.37]. Define hm : E⊥

m → E⊥
m by

hm(u) = (C̄K)−1d̃mu,

where

K > max

{
1,

(
4

q + 1

) 1
q−1

}
,

and note that hm is an odd homeomorphism of E⊥
m onto E⊥

m. Now, for any
u ∈ E(RN) \ {0}, there exists a unique β(u) > 0 such that β(u)u ∈ T , namely

β(u) =

(
||u||2H1(RN )

||u||q+1
Lq+1(RN )

) 1
q−1

. (6.8)

If we define
I0(u) :=

1

2
||u||2H1(RN ) −

1

q + 1
||u||q+1

Lq+1(RN )
,

then for each u ∈ E(RN) \ {0}, it holds that

I0(tu) =
t2

2
||u||2H1(RN ) −

tq+1

q + 1
||u||q+1

Lq+1(RN )

is a monotone increasing function for t ∈ [0, β(u)] with a maximum at t = β(u).
Note that for each u ∈ (E⊥

m ∩ BC̄) \ {0}, by the definition of d̄m and β(u), we
have

C̄−1d̃m ≤ C̄−1||β(u)u||E(RN ) ≤ β(u), (6.9)

and so since K ≥ 1, it holds that

(C̄K)−1d̃m ≤ C̄−1d̃m ≤ β(u), for all u ∈ (E⊥
m ∩BC̄) \ {0}.

82



Putting everything together, it follows that

I0(hm(u)) = I0((C̄K)−1d̃mu) > 0 for all u ∈ (E⊥
m ∩BC̄) \ {0}.

Moreover,
hm(0) = 0.

Therefore,
hm(E

⊥
m ∩BC̄) ⊂

{
u ∈ E(RN) : I0(u) ≥ 0

}
. (6.10)

Now, for each m ∈ N and some δ > 0, define h̃m : Em × E⊥
m → Em × E⊥

m by

h̃m([v, w]) = [δv, (C̄K)−1d̃mw].

Notice that h̃m is an odd homeomorphism of Em×E⊥
m onto Em×E⊥

m. Moreover,
by (6.5), the function gm : Em × E⊥

m → E(RN) defined by

gm([v, w]) = v + w,

is an odd homeomorphism. Hence, defining Hm : E(RN)→ E(RN) as

Hm = gm ◦ h̃m ◦ g−1
m ,

we see that Hm is an odd homeomorphism of E(RN) onto E(RN). By (6.5)-(6.7),
it holds that

B1 ⊆ gm({Em ∩BC̄} × {E⊥
m ∩BC̄}),

and so

Hm(B1) ⊆ Hm(gm({Em ∩BC̄} × {E⊥
m ∩BC̄})) (6.11)

= gm(h̃m({Em ∩BC̄} × {E⊥
m ∩BC̄}))

= gm({δ(Em ∩BC̄)} × {C̄−1K−1d̃m(E
⊥
m ∩BC̄)})

=
{
u ∈ E(RN) : u = v + w, v ∈ δ(Em ∩BC̄), w ∈ C̄−1K−1d̃m(E

⊥
m ∩BC̄)

}
=: Zm,δ.

Now, fix m ∈ N. We claim that

Zm,δ ⊂
{
u ∈ E(RN) : I0(u) > 0

}
∪ {0}

for some δ = δ(m) > 0. To see this, assume, by contradiction, that there exists
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δj → 0 and uj /∈
{
u ∈ E(RN) : I0(u) > 0

}
∪ {0} such that uj ∈ Zm,δj . Then, by

definition of Zm,δj , it holds that

||uj||E(RN ) ≤ ||vj||E(RN ) + ||wj||E(RN ) ≤ δjC̄ +K−1d̃m,

which implies uj is bounded. Thus, up to a subsequence uj ⇀ ū in E(RN) and
so it follows that uj ⇀ ū in H1(RN). Moreover, since E(RN) is compactly em-
bedded into Lq+1(RN) by Lemma 4.4, it follows that uj → ū in Lq+1(RN) and
‖uj‖Lq+1(RN ) > 0 by previous arguments. Thus, by the weakly lower semiconti-
nuity of the H1(RN) norm and the strong convergence in Lq+1(RN), we deduce
that

1

2
||ū||2H1(RN ) ≤

1

q + 1
||ū||q+1

Lq+1(RN )
,

which implies ū /∈
{
u ∈ E(RN) : I0(u) > 0

}
∪ {0}. On the other hand, since

δj → 0, then vj → 0. It follows from this and (6.10) that ū ∈ C̄−1K−1d̃m(E
⊥
m ∩

BC̄) ⊂
{
u ∈ E(RN) : I0(u) > 0

}
∪ {0}. Hence, we have reached a contradiction

and so the claim holds. Thus, using this and (6.11), for each m ∈ N, we pick
δ = δ(m) > 0 so that

Hm(B1) ⊂
{
u ∈ E(RN) : I0(u) > 0

}
∪ {0} ⊂

{
u ∈ E(RN) : I(u) ≥ 0

}
= Â0,

namely Hm ∈ Γ∗, where Â0 and Γ∗ are given by (6.1) and (6.2), respectively. We
can therefore see that

dm+1 = sup
h∈Γ∗

inf
u∈∂B1∩E⊥

m

I(h(u)) ≥ inf
u∈∂B1∩E⊥

m

I(Hm(u)). (6.12)

Now take u ∈ ∂B1 ∩ E⊥
m. Then, using (6.8), (6.9) and the fact that

´
RN ρφuu

2 =

ω−1(1− ||u||2H1(RN ))
2, it holds that

I(Hm(u)) =
1

2
(C̄−1K−1d̃m)

2||u||2H1(RN ) +
1

4
(C̄−1K−1d̃m)

4

ˆ
RN

ρφuu
2

− 1

q + 1
(C̄K)−q−1d̃q+1

m ||u||
q+1
Lq+1(RN )

=
1

2
(C̄−1K−1d̃m)

2||u||2H1(RN ) +
1

4
(C̄−1K−1d̃m)

4

ˆ
RN

ρφuu
2

− (C̄K)−q−1d̃2m
q + 1

(
d̃m
β(u)

)q−1

||u||2H1(RN )

≥ 1

2
(C̄−1K−1d̃m)

2

(
1− 2K1−q

q + 1

)
||u||2H1(RN )
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+
1

4ω
(C̄−1K−1d̃m)

4
(
1− ||u||2H1(RN )

)2
≥ min

{
K1d̃

2
m, K2d̃

4
m

}(
||u||4H1(RN ) − ||u||

2
H1(RN ) + 1

)
≥ 3

4
min

{
K1d̃

2
m, K2d̃

4
m

}
,

where K1 ≥ 1
4C̄2K2 by our choice of K and K2 = 1

4ωC̄4K4 . Finally, using this,
(6.12), and (6.4), we obtain

dm+1 ≥ inf
u∈∂B1∩E⊥

m

I(Hm(u))

≥ 3

4
min

{
K1d̃

2
m, K2d̃

4
m

}
→ +∞, as m→ +∞.

This completes the proof.

6.2 Multiplicity result in the case of high q
In order to prove Theorem 6.2 the concepts outlined in Chapter 5 will be used,
namely the notion of Krasnoselskii-genus (Definition 15) and its properties on
special subsets of Banach spaces. For the proof of Theorem 6.2, we recall a
classical result of Ambrosetti and Rabinowitz, [4].

Theorem 6.1 ([4]; Min-max setting high q). Let I ∈ C1(E(RN),RN) satisfy
the following:

(i) I(0) = 0 is a local minimum and there exists constants R, a > 0 such that
I(u) ≥ a if ||u||E(RN ) = R

(ii) If (un)n∈N ⊂ E(RN) is such that 0 < I(un), I(un) bounded above, and
I ′(un)→ 0, then (un)n∈N possesses a convergent subsequence

(iii) I(u) = I(−u) for all u ∈ E(RN)

(iv) For a nested sequence E1 ⊂ E2 ⊂ · · · of finite dimensional subspaces of
E(RN) of increasing dimension, it holds that Ei ∩ Â0 is bounded for each
i = 1, 2, . . ., where Â0 is given by (6.1)

Define
bm = inf

K∈Γm

max
u∈K

I(u),

with

Γm ={K ⊂ E(RN) : K is compact and symmetric with respect to the origin
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and for all h ∈ Γ∗, it holds that γ(K ∩ h(∂B1)) ≥ m},

where Γ∗ is given by (6.2). Then, for each m ∈ N, it holds that 0 < a ≤ bm ≤ bm+1

and bm is a critical value of I. Moreover, if bm+1 = · · · = bm+r = b, then
γ(Kb) ≥ r, where

Kb := {u ∈ E(RN) : I(u) = b, I ′(u) = 0},

is the set of critical points at any level b > 0.

Proof. The full proof can be found in [4, Theorem 2.8], instead here we will
provide a sketch. By construction bm ≥ α > 0 and since Γm+1 ⊂ Γm, bm+1 ≥ bm.
If γ(Kb) < r then by definition 14 (iv) there exists a neighbourhood N(Kb) such
that γ(N(Kb)) < r. By the properties of deformations (Similar to the equivariant
deformations we describe in Theorem 5.5) it can be shown that there exists an
odd homeomorphism η : E → E such that η(Ab+ε \ N(Kb)) ⊂ Ab−ε for some
ε ∈ (0, α). Letting K ∈ Γm+r such that maxu∈K I(u) ≤ b+ ε. Setting Q ∈ Γm+1

to be the closure of the above we are left with b ≤ maxu∈η(Q) I(u) ≤ b− ε which
is a contradiction.

The above yields the min-max characterisation for I necessary to prove our
multiplicity results contained in the following theorem.

Theorem 6.2 (Infinitely many high energy solutions for q > 3). Let N = 3,

q ∈ (3, 2∗ − 1) and λ > 0. Suppose ρ ∈ L∞
loc(R3) is nonnegative and satisfies (ρ2).

Then, there exists infinitely many distinct pairs of critical points ±um ∈ E(RN),
m ∈ N, for Iλ such that Iλ(um)→ +∞ as m→ +∞.

Proof of Theorem 6.2. We aim to apply Theorem 6.1 and therefore must verify
that I satisfies assumptions (i)-(iv) of this theorem. By Lemma 3.4, I satisfies the
Mountain-Pass Geometry and thus (i) holds. By Lemma 4.5, (ii) holds. Clearly,
(iii) holds due to the structure of the functional I. We now must show that (iv)

holds. We first notice by straightforward calculations that for any u ∈ ∂B1 and
any for t > 0, it holds that

I(tu) =
t2

2
||u||2H1(RN ) +

t4

4

ˆ
RN

ρφuu
2 − tq+1

q + 1

ˆ
RN

|u|q+1

=
t2

2

(
||u||2H1(RN ) +

t2

2

ˆ
RN

ρφuu
2 − 2tq−1

q + 1

ˆ
RN

|u|q+1

)
.
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We now set

α := ||u||2H1(RN ) > 0, β :=
1

2

ˆ
RN

ρφuu
2 ≥ 0, γ :=

2

q + 1

ˆ
RN

|u|q+1 > 0,

and look for positive solutions of

t2

2
(α + βt2 − γtq−1) = 0.

Since q > 3, it holds that α + βt2 − γtq−1 = 0 has a unique solution t = tu > 0.
That is, we have shown that for each u ∈ ∂B1, there exists a unique t = tu > 0

such that I satisfies

I(tuu) = 0

I(tu) > 0, ∀t < tu

I(tu) < 0, ∀t > tu.

Now, for any m ∈ N, we choose Em a m-dimensional subspace of E(RN) in such
a way that Em ⊂ Em′ for m < m′. Moreover, for any m ∈ N, we set

Wm := {w ∈ E(RN) : w = tu, t ≥ 0, u ∈ ∂B1 ∩ Em}.

Then, the function h : Em → Wm given by

h(z) = t
z

||z||
, with t = ||z||

defines a homeomorphism from Em onto Wm, and so W1 ⊂ W2 ⊂ · · · is a nested
sequence of finite dimensional subspaces of E(RN) of increasing dimension. We
also notice that

Tm := sup
u∈∂B1∩Em

tu < +∞

since ∂B1 ∩ Em is compact. So, for all t > Tm and u ∈ ∂B1 ∩ Em, it holds that
I(tu) < 0, and thus Wm ∩ Â0 is bounded, where Â0 is given by (6.1). Since this
holds for arbitrary m ∈ N, we have shown that (iv) holds. Hence, we have shown
that Theorem 6.1 applies to the functional I. If bm are distinct for m = 1, . . . , j

with j ∈ N, we obtain j distinct pairs of critical points corresponding to critical
levels 0 < b1 < b2 < · · · < bj. If bm+1 = · · · = bm+r = b, then γ(Kb) ≥ r ≥ 2.
Moreover, 0 /∈ Kb since b > 0 = I(0). Further, Kb is invariant since I is an
invariant functional and Kb is closed since I satisfies the Palais-Smale condition,
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and so Kb ∈ A. Therefore, by Proposition 14 (3), Kb possesses infinitely many
points. Finally, we note that by [4, Theorem 2.13], for each m ∈ N, it holds that

dm ≤ bm,

where dm is defined in (6.3). It therefore follows from Lemma 6.1 that

bm → +∞, as m→ +∞.

This concludes the proof.

6.3 Multiplicity result in the case of low q
The scenario where q ≤ 3 becomes more delicate, the setting described above is
no longer suitable due to the structure of the functional in this q ∈ (2, 3] range.
Therefore we take an approach in the same vein of Ambrosetti-Ruiz [5], before
proving Theorem 6.3 we must establish some preliminary results that we will need
to use. Similar issues from before arise in this environment, the boundedness of
Palais-Smale sequences is not obvious and hence a mild perturbation is applied to
the nonlinearity of the functional. The following min-max setting when working
with perturbed functionals by Ambrosetti-Ruiz [5] is required.

Lemma 6.2 ([5]; Abstract min-max setting for low q). Consider a Banach
space E, and a functional Φµ : E → R of the form Φµ(u) = α(u) − µβ(u), with
µ > 0. Suppose that α, β ∈ C1 are even functions, lim||u||→+∞ α(u) = +∞,
β(u) ≥ 0, and β, β′ map bounded sets onto bounded sets. Suppose further that
there exists K ⊂ E and a class F of compact sets in E such that:

(F .1) K ⊂ A for all A ∈ F and supu∈K Φµ(u) < cµ, where cµ is defined as:

cµ := inf
A∈F

max
u∈A

Φµ(u). (6.13)

(F .2) If η ∈ C([0, 1]× E,E) is an odd homotopy such that

• η(0, ·) = I, where I : E → E is the identity map on E

• η(t, ·) is a homeomorphism

• η(t, x) = x for all x ∈ K,

then η(1, A) ∈ F for all A ∈ F .
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Then, it holds that the mapping µ 7→ cµ is non-increasing and left-continuous,
and therefore is almost everywhere differentiable.

Proof. See [5, Lemma 2.2]. Here the fact F is independent of µ and β ≥ 0,
it follows that µ 7→ cµ is nonincreasing. Let µun ↗ µ, then cµn ≥ cµ. Fix
ε > 0, let A ∈ F be such that maxA Φµ(u) < cµ + ε. If µn is close enough
to µ then, since A is compact we have maxu∈A |Φµn(u)− Φµ(u)| < ε. Then,
cµ ≤ cµn ≤ maxA Φµn(u) ≤ cµ+2ε. Since ε is arbitrary the proof is complete.

Under the hypotheses of the previous lemma, we can now define the set of
values of µ ∈

[
1
2
, 1
]

such that cµ, given by (6.13), is differentiable. Namely, we
define

J :=

{
µ ∈

[
1

2
, 1

]
: the mapping µ 7→ cµ is differentiable

}
.

Corollary 6.1 (On density of perturbation values µ). The set J is dense
in
[
1
2
, 1
]
.

Proof. Fix x ∈
[
1
2
, 1
]

and δ > 0, and denote by |·| the Lebesgue measure. Since[
1
2
, 1
]
\ J has zero Lebesgue measure by Lemma 6.2, we have

|J ∩ (x− δ, x+ δ)| =
∣∣∣∣[12 , 1

]
∩ (x− δ, x+ δ)

∣∣∣∣ > 0.

It follows that J ∩ (x− δ, x+ δ) is nonempty and so we can choose y ∈ J ∩ (x−
δ, x+ δ). Since x and δ are arbitrary, this completes the proof.

With the definition of J in place, we can also recall another vital result from
[5], which will be used to obtain the boundedness of our Palais-Smale sequences.

Lemma 6.3 ([5]; Boundedness of Palais-Smale sequences at level cµ).
For any µ ∈ J , there exists a bounded Palais-Smale sequence for Φµ at the level
cµ defined by (6.13). That is, there exists a bounded sequence (un)n∈N ⊂ E(RN)

such that Φµ(un)→ cµ and Φ′
µ(un)→ 0.

Proof. The proof may be found in [5, Proposition 2.3].

Moving toward a less abstract setting, for any µ ∈
[
1
2
, 1
]
, we define the per-

turbed functional Iµ : E(RN)→ RN as

Iµ(u) :=
1

2

ˆ
RN

(|∇u|2+u2)+1

4

ˆ
RN

ˆ
RN

u2(x)ρ(x)u2(y)ρ(y)

|x− y|N−2
dx dy− µ

q + 1

ˆ
RN

|u|q+1.

(6.14)
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The next result that we will need in order to prove Theorem 6.3, follows as a
result of Lemma 3.6.

Lemma 6.4 (On the sign of the energy level of Iµ along certain curves).
Assume N = 3, 4, 5 and q ∈ (2, 2∗− 1]. Suppose further that ρ is homogeneous of
degree k̄, namely, ρ(tx) = tk̄ρ(x) for all t > 0, for some

k̄ > max

{
N

4
,

1

q − 1

}
· (3− q)− 1.

Then, there exists ν > max
{

N
2
, 2
q−1

}
such that for each fixed µ ∈

[
1
2
, 1
]

and each
u ∈ E(RN) \ {0}, there exists a unique t = tu > 0 with the property that

Iµ(t
ν
uu(tu·)) = 0,

Iµ(t
νu(t·)) > 0, ∀t < tu,

Iµ(t
νu(t·)) < 0, ∀t > tu,

where Iµ is defined in (6.14).

Proof. We first note that under the assumptions on the parameters, we can show
that

4ν −N − 2

2
>

(ν + 1)(3− q)− 2

2
.

It follows from this and the lower bound assumption on k̄ that we can always find
at least one interval(

ν(3− q)− 2

2
,
4ν −N − 2

2

)
, with ν > max

{
N

2
,

2

q − 1

}
,

that contains k̄. We pick ν corresponding to such an interval and fix µ ∈
[
1
2
, 1
]
.

Then, for any u ∈ E(RN) \ {0} and for any t > 0, using the assumption that ρ is
homogeneous of degree k̄, we find that

Iµ(t
νu(t·)) = t2ν+2−N

2

ˆ
RN

|∇u|2 + t2ν−N

2

ˆ
RN

u2

+
t4ν−N−2

4

ˆ
RN

ˆ
RN

u2(y)ρ(y
t
)u2(x)ρ(x

t
)

ω|x− y|N−2
− µtν(q+1)−N

q + 1

ˆ
RN

|u|q+1

=
t2ν+2−N

2

ˆ
RN

|∇u|2 + t2ν−N

2

ˆ
RN

u2 +
t4ν−N−2−2k̄

4

ˆ
RN

ρφuu
2

− µtν(q+1)−N

q + 1

ˆ
RN

|u|q+1.
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We therefore set

a =
1

2

ˆ
RN

|∇u|2, b = 1

2

ˆ
RN

u2, c =
1

4

ˆ
RN

ρφuu
2, d =

µ

q + 1

ˆ
RN

|u|q+1,

and consider the polynomial

f(t) = at2ν+2−N + bt2ν−N + ct4ν−N−2−2k̄ − dtν(q+1)−N , t ≥ 0.

Since u ∈ E(RN)\{0}, we can deduce that a, b, d > 0 and c ≥ 0, and so, by Lemma
3.6, it holds that f has a unique critical point corresponding to its maximum.
Thus, since Iµ(tνu(t·)) = f(t) and, by assumptions, ν(q + 1) − N > 2ν + 2 − N
and ν(q+1)−N > 4ν−N−2−2k̄, it follows that there exists a unique t = tu > 0

such that the conclusion holds.

With the previous results established, we are finally in position to prove The-
orem 6.3.

Theorem 6.3 (Infinitely many high energy solutions for q ≤ 3). Let N =

3, 4, 5. Assume q ∈ (2, 3] if N = 3 and q ∈ (2, 2∗ − 1) if N = 4, 5. Suppose λ > 0

and ρ ∈ L∞
loc(RN) ∩W 1,1

loc (RN) is nonnegative, satisfies (ρ2), and is homogeneous
of degree k̄, namely, ρ(tx) = tk̄ρ(x) for all t > 0, for some

k̄ >

(
max

{
N

4
,

1

q − 1

}
· (3− q)− 1

)
+

.

Then, there exist infinitely many distinct pairs of critical points, ±um ∈ E(RN),
m ∈ N, for Iλ such that Iλ(um)→ +∞ as m→ +∞.

Proof of Theorem 6.3. We first note that by Lemma 6.4, we can choose ν >

max
{

N
2
, 2
q−1

}
, so that for each u ∈ ∂B1, there exists a unique t = tu > 0 such

that Iµ with µ = 1
2
, defined by (6.14), satisfies

I 1
2
(tνuu(tu·)) = 0,

I 1
2
(tνu(t·)) > 0, ∀t < tu,

I 1
2
(tνu(t·)) < 0, ∀t > tu. (6.15)

Now, for any m ∈ N, we choose Em a m-dimensional subspace of E(RN) in such
a way that Em ⊂ Em′ for m < m′. Moreover, for any m ∈ N, we set

Wm := {w ∈ E(RN) : w = tνu(t·), t ≥ 0, u ∈ ∂B1 ∩ Em}.
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Then, the function h : Em → Wm given by

h(e) = tνu(t·), with t = ||e||E(RN ), u =
e

||e||E(RN )

,

defines an odd homeomorphism from Em onto Wm. We notice that it holds that

Tm := sup
u∈∂B1∩Em

tu < +∞, (6.16)

since ∂B1 ∩ Em is compact. So, the set

Am = {w ∈ E(RN) : w = tνu(t·), t ∈ [0, Tm], u ∈ ∂B1 ∩ Em}

is compact. We now define

H := {g : E(RN)→ E(RN) : g is an odd homeomorphism
and g(w) = w for all w ∈ ∂Am},

and
Gm := {g(Am) : g ∈ H}.

We aim to verify (F .1) and (F .2) of Lemma 6.2. We take Gm as the class F and
K = ∂Am and define the min-max levels

cm,µ := inf
A∈Gm

max
u∈A

Iµ(u).

Then, since Tm ≥ tu for all u ∈ ∂B1 ∩ Em by definition, it follows from (6.15)
that

Iµ(w) ≤ I 1
2
(w) ≤ 0, ∀w ∈ ∂Am, ∀µ ∈

[
1

2
, 1

]
.

Moreover, since Gm ⊂ Gm+1 for all m ∈ N, it holds that cm,µ ≥ cm−1,µ ≥ · · · ≥
c1,µ > 0. Taken together, we have shown that

sup
w∈∂Am

Iµ(w) ≤ 0 < cm,µ, (6.17)

and thus (F .1) is verified. Moreover, for any η given by (F .2) and any g ∈ H,
it holds that g̃ = η(1, g) belongs to H, and so (F .2) is satisfied. Since (F .1) and
(F .2) are satisfied, Lemma 6.2 applies. Thus, for any m ∈ N, we denote by Jm

the set of values µ ∈
[
1
2
, 1
]

such that the function µ 7→ cm,µ is differentiable. We
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then let
M :=

⋂
m∈N

Jm.

We note that since [
1

2
, 1

]
\M =

⋃
m∈N

([
1

2
, 1

]
\ Jm

)

and [1
2
, 1] \ Jm has zero Lebesgue measure for each m by Lemma 6.2, then it

follows that
[
1
2
, 1
]
\ M has zero Lebesgue measure. Arguing as in the proof of

Corollary 6.1, we obtain thatM is dense in
[
1
2
, 1
]
. We can now apply Proposition

6.3 with Φµ = Iµ. Namely, for each fixed m ∈ N and µ ∈ M we obtain that
there exists a bounded sequence (un)n∈N ⊂ E(RN) such that Iµ(un) → cm,µ and
I ′µ(un)→ 0. The embedding of E(RN) into Lq+1(RN) is compact by Lemma 4.4
so, arguing as in the proof of Theorem 4.3, we can show that the values cm,µ are
critical levels of Iµ for each m ∈ N and µ ∈ M. We then take m fixed, (µn)n∈N

an increasing sequence in M such that µn → 1, and (un)n∈N ⊂ E(RN) such that
I ′µn

(un) = 0 and Iµn(un) = cm,µn . We note that since ρ is homogeneous of degree
k̄ by assumption, it follows from [25, p. 296] that k̄ρ(x) = (x,∇ρ). So, setting
αn =

´
RN (|∇un|2 + u2n), γn =

´
RN ρ(x)φunu

2
n, δn = µn

´
RN |un|q+1 and using the

Pohozaev-type condition deduced in Lemma 3.9, we obtain the system
αn + γn − δn = 0,

1
2
αn + 1

4
γn − 1

q+1
δn = cm,µn ,

N−2
2
αn +

(
N+2+2k

4

)
γn − N

q+1
δn ≤ 0.

(6.18)

Since the assumptions on k̄ guarantee that k̄ > −2(q−2)
(q−1)

> N−6
2

for q ∈ (2, 3]

if N = 3 and for q ∈ (2, 2∗ − 1) if N = 4, 5, it follows that we can solve this
system and show that αn, γn, δn are all bounded as in the proof of Theorem 4.3.
Moreover, continuing to argue as in the proof of this theorem and using the
compact embedding of E(RN) into Lq+1(RN), we can then prove that for each
fixed m there exists u ∈ E(RN) such that, up to a subsequence, un → u in
E(RN), I(u) = I1(u) = cm,1, and I ′(u) = I ′1(u) = 0. It therefore remains to show
that I(u) = cm,1 → +∞ as m→ +∞. In order to do so, we define

Γ̃m := {g ∈ C(Em ∩B1, E(RN)) : g is odd, one-to-one,
I(g(y)) ≤ 0 ∀ y ∈ ∂(Em ∩B1)},
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G̃m :=
{
A ⊂ E(RN) : A = g(Em ∩B1), g ∈ Γ̃m

}
,

b̃m := inf
A∈G̃m

max
u∈A

I(u).

We then note that by [4, Corollary 2.16], it holds that

dm ≤ b̃m,

where dm is given by (6.3). It therefore follows from Lemma 6.1 that

b̃m → +∞, as m→ +∞. (6.19)

We will now show Gm ⊆ G̃m. We take A ∈ Gm. Then, by definition, there exists
g ∈ H such that A = g(Am). We define an odd homeomorphism ϕ : Em ∩ B1 →
Am by

ϕ(e) = tνu(t·), with t = Tm||e||E(RN ), u =
e

||e||E(RN)
,

where Tm is defined in (6.16), and set g̃ = g◦ϕ. Since we can writeA = g̃(Em∩B1),
then by the definition of G̃m we need only to show that g̃ ∈ Γ̃m. Clearly, g̃ ∈
C(Em ∩B1, E(RN)) is odd and one-to-one. Moreover, for every y ∈ ∂(Em ∩B1),
setting w = ϕ(y) ∈ ∂Am, we have I(g̃(y)) = I(g(w)). Since g ∈ H and w ∈ ∂Am,
then by definition it holds that g(w) = w. Putting everything together, we have

I(g̃(y)) = I(g(w)) = I(w) ≤ sup
w∈∂Am

I(w) ≤ 0,

where the final inequality follows from (6.17). Hence, we have shown g̃ ∈ Γ̃m and
so Gm ⊆ G̃m. Therefore, for each m ∈ N, it follows that

b̃m = inf
A∈G̃m

max
u∈A

I(u) ≤ inf
A∈Gm

max
u∈A

I(u) = cm,1,

and so, by (6.19), we conclude that

cm,1 → +∞, as m→ +∞,

as required.
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