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ABSTRACT
Artificial Intelligence (AI) and prescriptive analytics are increasingly being reported as having trans-
formative powers to enable resilient supply chains (SC). Despite such a benefit, and the increase
in popularity of AI and analytics in general, research is largely fragmented into streams based on
different types of AI technologies across several SC contexts and through varying disciplinary per-
spectives. In response, we curate and synthesise this fragmented body of knowledge by conducting
a systematic literature review of AI research in supply chains that have been published in 3∗ and
4∗ Chartered Association of Business Schools (CABS) ranked journals between 2000 and 2023. The
search strategy retrieved 5, 293 studies, of which 76 were identified as primary papers relevant to
this study. The study contributes to the accumulative building of knowledge by extending theoreti-
cal discourse about the specificities of AI for prescriptive analytics to enable SC resilience. This study
proposes a strategic AI resilience framework to support SC decision-makers enhance the use and
value of prescriptive analytics as an enabler to developing resilient SC. Wemake the call to action for
an orchestrated effort within and between academic disciplines and organisations that are guided
by a research agenda to guide future research initiatives.
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1. Introduction

AI and advanced analytics are increasingly being viewed
by decision makers in supply chain-centric organisa-
tions as a data-driven approach that can improve supply
chain (SC) resilience (Cannas et al. 2023; Merhi and Har-
fouche 2023; Papadopoulos et al. 2022). For example, the
Covid-19 pandemic impacted over 85% of global sup-
ply (Remko 2020) and in some cases, the entire shut
down of crucial SC activities (Ivanov and Dolgui 2020;
Mishra, Singh, and Song 2022; Modgil, Singh, and Han-
nibal 2021). Although SCs are historically vulnerable to
exogenous shocks (Badakhshan and Ball 2023b; Baryan-
nis et al. 2019; Zeng and Yen 2017), they are becoming
increasingly more complex in nature (Ben-Daya, Has-
sini, and Bahroun 2019; Ivanov and Dolgui 2019) due
to increased product variety (Bozarth et al. 2009; Zheng
et al. 2021), higher customer expectations (Simchi-Levi
and Wu 2018), increased customer demand (Bodaghi,
Jolai, and Rabbani 2018; Olan et al. 2022), greater empha-
sis on transparency and sustainability (Sodhi and Tang
2019; Barbosa-Póvoa, Da Silva, and Carvalho 2018), and
multi-channel disruptions (Bode andWagner 2015; Hos-
seini and Ivanov 2020).
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In response to adverse advents, SC practitioners and
researchers are shifting their focus from traditional risk
management and efficiency techniques (i.e. lean, just-
in-time) to developing resilient SC (e.g. Baryannis et al.
2019; Marucheck et al., 2011; Sá et al., 2019; Jüttner
and Maklan 2011; Pettit, Croxton, and Fiksel 2013). SC
resilience is defined as ‘the adaptive capability of a sup-
ply chain to prepare for and/or respond to disruptions,
to make a timely and cost-effective recovery, and there-
fore progress to a post-disruption state of operations –
ideally, a better state than prior to the disruption’ (Tuka-
muhabwa et al. 2015, 8).Developing resilient SC is critical
to withstanding future global events that can impact sup-
ply chains (Kahiluoto, Mäkinen, and Kaseva 2020; Lerch
et al, 2022;Sá de et al. 2019).

AI has been claimed to offer almost unlimited poten-
tial in the context of SC, ranging from configuration
and optimisation (Dubey et al. 2020; Johnson, Albizri,
and Simsek 2022; Preil and Krapp 2022), forecasting
(Chien, Lin, and Lin 2020), increasing operational effi-
ciency and supplier selection (Choy, Lee, and Lo 2003;
Priore et al. 2019), predicting customer demand (Car-
bonneau, Laframboise, and Vahidov 2008; Kantasa-ard
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et al. 2020), improving visibility (Wichmann et al. 2020),
identifying potential disruptions (Brintrup et al. 2020),
decision support (Castañé et al., 2023; Gupta et al. 2022),
and optimising internal structures and processes (Abbasi
et al. 2020; Piramuthu 2005a). Due to the increased
digitisation of supply chains, data creation and con-
sumption have increased in terms of volume, variety,
and velocity (Gupta, Modgil, and Gunasekaran 2020;
Papadopoulos et al. 2017, 2022). Moreover, advances in
data collection technology allow SC organisations to eas-
ily acquire effective market data (Yu and Cao 2020). This
significant increase in data will need to be analysed in
real-time using AI and advanced analytics (Merhi and
Harfouche 2023; Sharma et al. 2020) due to its speed
and accuracy (Toorajipour et al. 2021) and the abil-
ity to optimise and control autonomous-based systems
(Kohtamäki et al. 2019).

Despite these technological advances and research
contributions to understanding different aspects of AI
and analytics to enable SC resilience, a comprehensive
portrait of its utility is lacking. Specifically, analytics is
frequently used as a synonym for different types of analyt-
ics. Yet, descriptive, and predictive analytics are founda-
tional to any data-driven decision-making process (Dav-
enport, Harris, and Morison 2010), while prescriptive
analytics is the most advanced stage of analytics (Gross-
man 2018). In contrast to descriptive analytics, which
helps decision makers to understand what has happened
in the past, and predictive analyticswhich forecasts future
possibilities (Dennehy 2020), prescriptive analytics shifts
the focus from understanding and forecasting to recom-
mending actions (Lepenioti et al. 2020). In the context
of supply chain resilience, where rapid and informed
decision-making is critical, prescriptive analytics offers
direct pathways to action, making it a crucial area for in-
depth investigation (Wang et al. 2016). Prescriptive ana-
lytics has a direct impact on decision-making, whereas,
descriptive and predictive analytics provide necessary
insights and forecasts (Hazen et al. 2016), they often
stop short of suggesting specific actions. In contrast, pre-
scriptive analytics leverages AI to not only predict future
scenarios but also recommend specific decisions and
actions to achieve optimal outcomes. This direct impact
on decision-making is particularly valuable in managing
complex, dynamic supply chain environments, especially
in responding to disruptions (MacKenzie, Barker, and
Santos 2014).

At this point, we see another major shortcoming in
extant literature regarding prescriptive analytics. Despite
its transformative transformations in SC operation, it
remains underexplored compared to its descriptive and
predictive counterparts. This study addresses this theo-
retical shortcoming, by contributing to a more balanced

understanding of how AI can enhance all aspects of sup-
ply chain analytics (Bertsimas and Kallus 2019). Out of
all the different stages of analytics that have potential
to enable varying degrees of SC resilience, prescriptive
analytics offers the most significant value in terms of pre-
dicting disruptions as it enables organisations to respond
effectively and efficiently to mitigate the impact of a dis-
ruption to the SC (Belhadi et al. 2021). Further, pre-
scriptive analytics, throughAI-driven recommendations,
aligns closely with the goal of enhancing supply chain
resilience by providing actionable insights that enable
proactive and reactive measures to be formulated and
implemented (Belhadi et al. 2021).

Despite the hype surrounding AI and analytics in SC,
this study identifies fundamental shortcomings in extant
literature. First, research onAI in the SC context is largely
fragmented into research streams based ondifferent types
of AI functions (i.e. machine learning (ML), expert sys-
tems). This resonates with the ‘fragmented adhocracy’
issue, which has previously overshadowed other disci-
plines. Second, little distinction ismade between descrip-
tive, predictive or prescriptive use of AI. Prescriptive
analytics distinguishes itself through its advanced analyt-
ical depth, moving beyond the foundational insights and
forecasts of descriptive and predictive analytics, to deliver
strategic, actionable guidance for decision-making (Lep-
enioti et al. 2020; Wang et al. 2016). Third, there is a gap
in AI and SC literature reviews, which fail to examine
the relationships between AI and descriptive, predictive,
and prescriptive analytics. Moreover, these studies have
largely focused on a specific application of AI i.e. decision
support system (Belhadi et al. 2022; Pereira et al. 2022),
singular function of AI i.e. ML (Sharma et al. 2020), or
a single aspect of SCs i.e. risk management (Baryannis
et al. 2019) rather than providing a holistic view of AI
in the SC. A comparison of AI and SC review papers is
provided in Table 1.

To address this knowledge gap, this study’s overarch-
ing aim is to advance understanding about AI research
in the context of supply chain resilience, with a focus on
delineating the pivotal function of prescriptive analytics
and its critical links across the varying analytical elements
within AI. This aim is achieved by:

1. Synthesising the AI functions and algorithms that
have been applied to specific elements of the SC.

2. Identifying in which SC industries AI research has
been conducted.

3. Comparing relationships between AI and descrip-
tive, predictive, and prescriptive analytics for the
SC.

4. Identifying specificities of AI for prescriptive analyt-
ics in the SC.
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Table 1. Comparison of AI & SC literature review studies.

Authors Timeline Objective
No. of primary

studies
Supply Chain

Industry Studied Main contribution to AI & SC research

Baryannis et al. (2019) 1978–2018 Provide a comprehensive review of SC literature that
addresses problems relevant to supply chain risk
management (SCRM) that fall within the AI spectrum

276 Mixed Examines the extent to which SCRM studies have effectively utilised AI-related
capabilities in addition to highlighting the correlation between AI-related
methodologies and SCRM tasks

Sharma et al. (2020) 2002–2019 Explores the application of ML in agricultural supply
chains (ASC)

93 Agriculture Highlights howASCs canutiliseML applications for improved agricultural sustain-
ability and productivity

Bodendorf, Merkl, and
Franke (2021)

1995–2020 Review intelligent cost estimation methods in the
manufacturing industry

47 Manufacturing Outlines building blocks for a cost estimation system for part procurement

Pournader et al. (2020) 1998–2020 Examine the applications of AI in SCM 150 Mixed Presents an AI taxonomy which collectively establishes the basis for present and
future research

Toorajipour et al. (2021) 2008–2018 Identify the contributions of AI in SCM 64 Mixed Identifies the most prevalent AI techniques as well as the SCM subfields these AI
techniques can be employed to

Rolf et al. (2023) 2000–2021 Understand algorithms, applications, and practical
adoption of reinforcement learning (RL) in SCM

103 Mixed Provides a hierarchic classification framework that categories RL applications in
SCM

Sharma et al. (2022) 1994–2021 Identify current trends, gaps, and research opportuni-
ties of AI applications in SCM

1076 Mixed Uses science mapping techniques to identify specific research directions and to
help better understand the relationships among past AI & SCM studies

Esteso et al. (2022) 1994–2021 Examine the use and applications of reinforcement
learning in the production planning and control field

181 Mixed Outlines RL applications, highlights, limits, and software characteristics in the PPC
area.

Zamani et al. (2023) 2016–2021 Examine the applications of AI and big data analytics
for improving supply chain resilience

23 Mixed Identifies the phases of SCR that AI and BDA have been applied to in addition to
synthesising the reported benefits of AI and BDA for SCR.

Pereira et al. (2022) 2011–2022 To explore literature on AI constructed customer
models for decision support in the fashion retail
industry

54 Retail Offers information and methods to guide the development of AI-enabled cus-
tomer recommendation systems for decision support

Vishwakarma et al., (2023) 2012–2022 To understand how AI contributes to building a
resilient and sustainable healthcare system

89 Healthcare Develops a framework that comprises AI applications’ antecedents, practices, and
outcomes for building a resilient and sustainable healthcare system

This review study 2000–2023 Examine the applications of AI and descriptive, pre-
dictive, and prescriptive analytics in the SC

76 Mixed Compares the relationships and applications between AI and the three stages
of analytics in the SC, in addition to categorising the reported benefits and
challenges of AI
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5. CategorisingAI’s reported benefits and challenges in
the supply chain.

A systematic literature review is pertinent to this study
as it provides (i) a means of accumulating knowledge
about a topic area or phenomenon of interest, (ii) a pro-
cess for evaluating and interpreting all available research,
(iii) valuable new insights to identify where an issue can
be rectified through additional primary studies, and (iv)
a methodology that aims to be as unbiased as possi-
ble by being auditable and repeatable (Brereton et al.,
200). The emphasis on prescriptive analytics within the
realm of AI for SC resilience targets a strategic and sig-
nificantly underexplored area, how AI can orchestrate
direct responses to supply chain disruptions. Prescriptive
analytics offer innovative opportunities due to its trans-
formative power related to decision-making processes
and its congruence with the objectives of enhancing sup-
ply chain resilience. By providing actionable insights, it
becomes an indispensable tool for managing contem-
porary supply chains that are inherently complex data-
driven, and inter-linked systems. This focus not only
bridges a discernible gap in the existing literature but also
contributes to a deeper comprehension of AI’s instru-
mental role in strengthening the resilience of supply
chains.

The paper is structured as follows. Background to AI
functions and algorithms that are pertinent to this study
and their related stages of analytics are presented. Next,
the process that guided this systematic literature review is
outlined. Then, the state-of-the-art of AI research is pre-
sented. This is followed by a discussion, which contains
the implications of this research and a research agenda.
The paper ends with a conclusion.

2. Related literature

2.1. AI functions and algorithms

The field of AI has experienced alternating periods
of immense growth and significant decline since its
introduction in the 1950s (Baryannis et al. 2019).

The definition of AI has been widely debated among
researchers for years, as a result of this no formal
definition has been established. At its most basic, AI is
a collection of technologies that combine large quanti-
ties of data, algorithms, and computing power to per-
form activities that require human intelligence (Borges
et al. 2021a; Fragapane et al. 2021). AI systems have
evolved from early applications in the form of decision
support systems and expert systems to solve complex
problems and perform specific tasks (Petrović et al. 2018;
Abbasi et al. 2020). AI can be divided into two general
forms: ‘Strong AI’, which can emulate human intelli-
gence, and ‘Weak AI’, which can simulate human intelli-
gence (Kaplan and Haenlein 2019). The 4 functions that
fall under the umbrella of AI and are used as part of the
analysis in this study are listed in Table 2.

Machine learning is one of the most popular AI func-
tions used by SC researchers and practitioners, and its
associated techniques and algorithms are listed inTable 3.

2.2. The three stages of analytics

There are three stages of analytics (Lepenioti et al.
2020):

Stage 1: Descriptive analytics that aims to help deci-
sion makers to understand what has happened in the
past, and why it happened.

Stage 2: Predictive analytics that aims to predict what
will happen in the future and why it will happen.

Stage 3: Prescriptive analytics that aims to prescribe
what actions should be taken and why it should done.

Drawing on the work of Lepenioti et al. (2020) that
classified the different algorithms between predictive and
prescriptive methods, Table 4 classifies the most popu-
lar AI techniques and algorithms used by SC researchers
between predictive and prescriptive methods.

2.3. Supply chain resilience

Supply chain resilience (SCR) has been widely defined as
the ability of supply chains to plan for, respond to, and
recover from disruptions efficiently and cost-effectively;

Table 2. AI functions.

AI Function Description Citations

Machine Learning Is the study of algorithms and computational models that enable
computers to learn from experience.

(Tirkel 2013; Portugal, Alencar, and Cowan
2018; Sharma et al. 2020)

Expert System A rule-based computer programme that reasonswith knowledgeof
some subject with a view of providing advice or solving problems.

(Liao, 2005; Yigin et al., 2007; Golini and
Kalchschmidt 2015)

Artificial Intelligence Autonomous
Robotics

Is the science of extending human motor capabilities with
machines that utilise AI for navigation.

(Hidalgo-Paniagua, Vega-Rodríguez,
and Ferruz 2016; Cebollada et al., 2021;
Fragapane et al. 2021)

Machine Vision Uses digital input and pattern recognition to inspect, analyse and
extract information from objects automatically.

(Wen and Tao 1999; Abbasgholipour
et al.2011; Ravikumar, Ramachandran,
and Sugumaran 2011)
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Table 3. Machine learning techniques and algorithms.

ML Techniques &
Algorithms Description Citations

Decision Tree Learns in the formof a tree structure, which consists of decision nodes and leaf nodes.
Each decision node contains a branching rule which decides if the example should
take a left or right path. The leaf node contains the value to predict when the example
reaches it.

(Tirkel 2013;Ma,Wang, andWang2018;
Morin et al. 2020)

Random Forest Is an ensemble method consisting of many individual trees. It draws upon bootstrap
sampling to create the training set and thengrows regression trees oneachbootstrap.
These resulting trees are then averaged in order to yield a prediction.

(Abbasi et al. 2020; Brintrup et al. 2020;
Sharma et al. 2020)

Artificial Neural Network
(ANN)

A set of interconnected input and output nodes act as processing units. Each con-
nection is associated with a weight which learn to reduce error between the actual
andpredicted values. ANNs classify perceptronnetworks, backpropagationnetworks,
recurrent neural networks and Hopfield networks.

(Carbonneau, Laframboise, and Vahi-
dov 2008; Cheng, Chen, and Lin 2010;
Tirkel 2013)

Support Vector Machine Classifies data by nonlinearly mapping the original data to high dimensional feature
spaces first, then finds the decision boundary to separate the data set of one class
from another.

(Ma, Wang, and Wang 2018; Brintrup
et al.2020)

Classification Supervised ML technique where the model attempts to predict the correct label of
new observations based on given input data.

(Abbasi et al. 2020; Brintrup et al. 2020;
Morin et al. 2020)

Clustering The unsupervised classification of patterns into groups using algorithms to recur-
sively find nested clusters either in a top-down or bottom-up fashion.

(Srinivasan and Narendran 1991; Celebi
et al.2013; Sharma et al. 2020)

Regression Analysis A classical predictive model that expresses the relationship between inputs and an
outputparameter as anequation (i.e. linear regression, logistic regression, polynomial
regression).

(Tanaka, Hayashi, and Watada 1989;
Ma, Wang, and Wang 2018; Sharma
et al. 2020)

Reinforcement Learning
Algorithms

Reinforcement learning (RL) is one of threemain branches of ML. RL algorithms learn
through trial and error. Where agents interact with an environment by performing
actions and perceiving environmental states and must learn a ‘correct behaviour’
through a feedback reward system. RL algorithms primarily fall under two classifi-
cations: value-based algorithms such as, classic-Q learning and SARSA, and policy
optimisation algorithms such as, SMART and policy gradient.

(Esteso et al.2023; Rolf et al.2023)

Hybrid Algorithms This iswhen twoormore simple algorithmswork together to solveproblems that they
are not designed to solve alone. Includes various types of techniques that interact
with the data in different ways.

(Bagloee et al., 2018; Mojrian et al.,
2020)

Natural Language Pro-
cessing Algorithms

Combines computational linguistics, rule-based modelling of human language and
statistics to enable machines to understand, interpret, and derive meaning from
human languages.

(Arazy and Woo 2007; Sangers
et al.2013; Sidorov et al., 2014)

Table 4. Classification of AI algorithms between predictive and prescriptive.

Algorithms Descriptive & Predictive Methods Prescriptive Methods

Decision Tree Mainly used for description and prediction Must be combined with optimisation algorithms or expert systems
in a probabilistic context

Random Forest Mainly used for prediction Must be combined with optimisation algorithms or expert systems
in a probabilistic context

Artificial Neural Network (ANN) Mainly used for prediction Can be used for prescription
Support Vector Machine Mainly used for prediction Must be combined with optimisation algorithms or expert systems

in a probabilistic context
Classification Mainly used for description and prediction Must be combined with optimisation algorithms or expert systems

in a probabilistic context
Clustering Mainly used for description and prediction Must be combined with optimisation algorithms or expert systems

in a probabilistic context
Reinforcement Learning Can be used for prediction in specific contexts Mainly used for prescription
Regression Analysis Mainly used for diagnostic (descriptive) and prediction Must be combined with optimisation algorithms or expert systems

in a probabilistic context
Hybrid Algorithm Can be used for prediction in specific contexts Mainly used for prescription

it’s the ability to take actions that should return the
SC to its original state or better than before the dis-
ruption (Kahiluoto, Mäkinen, and Kaseva 2020; Sá de
et al. 2019; Wieland and Wallenburg 2013). SCR entails
a number of phases: preparedness, response, recovery,
and growth or adaption (Li and Zobel 2020; Sá de
et al. 2019; Stone and Rahimifard 2018). These dis-
ruptions can be internal, such as Volkswagen having
to halt production at three plants due to man-made
disruption (Bier, Lange, and Glock 2020), or external,

such as the flood of Tabasco in 2007, which severely
impactedMexico’s agricultural SC (Rodríguez-Espíndola
et al. 2020). To mitigate disruptions, companies must
actively understand the risk landscape, determine where
the risks are best owned and managed, and strengthen
the elements that help confront those risks (Kahilu-
oto, Mäkinen, and Kaseva 2020). These disruptions
affect the supply of goods and services and have been
shown to decrease stock prices (Hendricks and Singhal
2005).
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Figure 1. SLR process followed in this study.

3. Researchmethodology

The section outlines the process adopted in this study,
which follows the established guidelines and procedures
that Kitchenham et al. proposed (2004). This process
consists of 9 steps across three phases (see Figure 1),
namely, planning (3 steps), conducting (3 steps), and
documenting (3 steps). The rational for choosing the
Kitchenham et al. (2004) guidelines for conducting this
study over the many other widely used guidelines (e.g.
Fisch and Block 2018; Page 2021; Okoli and Schabram
2010; Webster and Watson 2002) was primarily influ-
enced by the specific needs of our review process. For
example, while PRISMA and its subsequent extensions
provide a checklist for improving the reporting of var-
ious knowledge synthesis studies, emphasising trans-
parency, replicability, and the usability of research find-
ings (Mishra and Mishra 2023; Sarkis-Onofre et al.
2021), it does not however, include recommendations for
methodological guidelines i.e. designing and conduct-
ing literature searches (Page et al. 2021). On the other
hand, the Kitchenham (2004) guidelines offer a rigorous
approach to the entire systematic review process, from
initial planning to protocol development to the execu-
tion and reporting of the review. This comprehensive

methodology, which includes detailed procedures for
quality assessment and data synthesis, proved invaluable
in enhancing the methodological rigour, analytical depth
and clarity of the tabular data reported in this study.
The three phases of the Kitchenham (2004) approach and
their respective steps are discussed in the remainder of
the section.

3.1. Planning the review

This section presents steps one, two, and three of the
planning stage of this SLR. The motivation for this SLR is
to curate and synthesise the fragmented body of knowl-
edge related to the different types of AI technologies used
to enable supply chain resilience across varying contexts
(Step 1). To achieve this objective, the following research
questions (Step 2) will be answered.

RQ.1 What is the current state of AI and supply chain
literature?

RQ1.1What 3∗ and 4∗ ranked journals are publish-
ing AI research in the context of supply chains?

RQ1.2What supply chain industries hasAI research
been applied to?
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RQ1.3 What elements of supply chain has AI func-
tions been applied to?

RQ1.4 What AI functions have been studied in SC
research?

RQ.2What are the different relationships betweenAI and
descriptive, predictive, and prescriptive analytics in SC
research?

RQ2.1 What methods are mostly used for descrip-
tive, predictive, and/or prescriptive analytics in SC?

RQ2.2 What are the specificities of AI for prescrip-
tive analytics in SC?

RQ.3 What are the reported challenges of AI in the
context of supply chains?

RQ.4 What are the claimed benefits of AI in the context
of supply chains?

Next, the search string, and inclusion and exclusion cri-
teria was developed based on the scope of this study
(Step 3).

3.2. Conducting the review

This section presents steps four, five, and six that were
applied when conducting the review. To ensure the
retrieval of the most relevant publications (Step 4), the
search was conducted within three databases (i.e. Scopus,
Web of Science, AIS) as these are the largest databases
for abstracts and citations (Ballew 2009; Manikandan
and Amsaveni 2016). The search retrieved 5, 293 AI
and SC publications from January 2000 to December
2023. The 3∗ and 4∗ CABS ranking criteria were applied,
which resulted in 517 remaining papers. The 517 papers
were screened based on title and abstract (Step 5), which
resulted in 142 remaining papers. Next, an in-depth
review and quality assessment of the 142 papers was
conducted independently by two authors to identify the
relevant primary studies (Step 6). This process resulted in
the identification of 76 primary studies (see Appendix).

3.3. Documenting the review

This section presents steps seven, eight, and nine which
were applied to document the analysis and reporting
of this review. The 76 primary papers were subject to
an in-depth analysis (Step 7) using bibliometric analy-
sis as this approach studies bibliographic material using
quantitative methods (Martínez-López et al. 2018) and
it has been previously used to study SC management
(Fahimnia, Sarkis, and Davarzani 2015; Mishra et al.
2018), economics (Bonilla, Merigó, and Torres-Abad
2015), and big data analytics (Batistič and van der Laken
2019; Zhang et al. 2019). This study follows the guidelines

proposed by Gaviria-Marin, Merigó, and Baier-Fuentes
(2019) and uses the ‘h-index’ and its derivative ‘m-index’
as the main statistics used to evaluate productivity and
influence. The h-index is the number of papers with
citation number ≥ h, where h represents the number of
papers published. The major advantage of using the h-
index as one of the main statistics is that it measures both
productivity and influence in a single number criterion
(Bornmann and Daniel 2005). The m-index is calculated
by dividing the h-index by the ‘academic age’ of the indi-
vidual. Academic age is the number of years since the
first publication of the individual. The additional statis-
tics utilised in this study are derived from citation counts
and yearly research output.

A synthesis of the findings (Step 8) was completed to
provide the current state of AI and analytics in supply
chain resilience literature, which includes the classifica-
tion of the 76 primary studies across the descriptive,
predictive, and prescriptive stages and identification of
their relationships with AI for SC. A synthesis and cat-
egorisation of the reported challenges and claimed ben-
efits of these technologies is also provided. Step 9 is the
publication of this review.

4. Key findings and analysis

This section presents the state-of-the-art of AI research
in the context of SC, based on the following (i) publica-
tion by year, (ii) type of journals, (iii) citation count, (iv)
industry type, (v) elements of the SC, (vi) AI functions,
(vii) reported challenges, and (ix) claimed benefits. The
acronyms used in Figures 2–5 are presented below;

• TP: Total publications included in the study
• ≥200, ≥ 100, ≥ 50: Articles with more than 200,

100, and 50 citations
• <50: Articles with less than 50 citations
• TC: Total citations
• C/Y: Citations per year
• Avg Cit: Average citations
• IF: Impact factor
• YFP: Year of first publication
• YP: Year published

4.1. RQ 1.1What 3∗ and 4∗ ranked journals are
publishing AI research in the context of supply
chains between 2000 and 2023?

No studies were reported in 2000 and 2001, followed by
two publications in 2002. The number of articles that met
the inclusion criteria grew from 2 in 2002 to 76 at the
end of 2023, this represents over a 38-fold increase in
a 21-year span. During the seven-year period between
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Figure 2. Journal sources of AI and supply chain research.

Figure 3. Supply chain industries where AI research been applied.

Figure 4. AI functions studied in supply chain research.

2016 and 2023, 57 out of the 76 primary papers were
published, nearly three times the number of publications
received in the 16 years prior. A possible explanation for
this recent surge in interest is partly due to the increasing
capabilities of various technologies (Baryannis et al. 2019;
Fragapane et al. 2021) and that AI research has spread
into a variety of contexts (Borges et al. 2021b; Grover, Kar,
and Dwivedi 2020).

The articles included in this study were sourced from
a total of 14 journals (see Figure 2), with the Interna-
tional Journal of Production Research (IJPR) account-
ing for approximately 49% of the analysed articles. The
journals are ordered according to the total publications
included (TP) and the h-index of the journal, which
is calculated based on the citations and number of
publications.
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Figure 5. Machine learning paper statistics.

IJPR was the most productive and influential jour-
nal in this field with 37 publications and a h-index of
25, gathering a total of 2149 citations. While technologi-
cal forecasting and social change and journal of business
review only made their first AI and SC publications in
2021, their included papers have averaged 108 and 116
citations per paper respectively, indicating their high level
of influence. Interestingly, 7 out of the 14 journals made
their first publications in this field in the last 5 years,
highlighting the growing interest among researchers and
journals.

4.2. RQ1.2What supply chain industries has AI
research been applied to?

The articles in this study applied their research in a num-
ber of different industries. The industries are presented
in Figure 3, ordered by TP.

Manufacturing and retail are the most widely studied
industries in AI and SC research, with 30 and 17 publi-
cations respectively, accounting for 62% of the primary
papers. Additionally, manufacturing and retail account
for 71% of all citations. Prior to 2016 a total of three

SC industries had been the focus of AI research, how-
ever since 2020, AI research has branched into four new
industries; healthcare, agriculture, forestry, and pharma-
ceutical.

4.3. RQ1.3What elements of supply chains have AI
functions been applied to?

The studies where AI functions have been applied across
supply chain elements are listed in Table 5. Most notable
is that only 3 out of the 4 AI functions have been reported
in the 76 primary studies.

The findings of this review indicate that AI has a vast
potential for applications across the SC industry. The
data that is generated in each of these stages can be
used to support various AI functions to perform spe-
cific tasks. ML as expected, has the largest application
area among all AI functions. However, ML should not
overshadow the benefits that can be achieved through
the remaining functions of AI. The findings suggest that
AI can improve overall efficiency, provide effective deci-
sion support, and address the industry’s most alarm-
ing challenges, such as forecasting, SC configuration,

Table 5. Elements of supply chain where AI has been applied.

AI Functions Supply chain elements Primary paper source

Machine Learning Demand forecasting P1, P7, P16, P17, P21, P34, P38, P42, P44, P50, P52, P58, P66, P67, P69, P70,
P71, P74

Supplier selection and evaluation P35, P69
Automation and decision support for inventory
management and replenishment

P3, P6, P18, P20, P23, P36, P43, P48, P58, P63, P66, P67, P68, P69, P70, P71,
P73, P74, P76

Optimisation of processes and procedures P2, P5, P16, P39, P41, P46, P48, P49, P54, P65
Risk management P8, P11, P42, P46, P47, P70, P72, P75, P76
Predict disruptions P30, P47
Selecting appropriate forecasting models P33
SC visibility P9, P25, P28, P32, P37, P42, P57
Automation and decision support for SCCDP P5, P8, P11, P12, P13, P14, P15, P19, P26, P27, P29, P39, P48, P51, P59, P60,

P61, P62, P64, P65, P68, P71, P73, P74, P75, P76
Provide insight into customers P3
Extract supply chain maps P9
Obtain previously inaccessible data P3, P57, P70, P71
Improve production and quality control P17, P22, P53, P55, P56, P58, P74

Expert Systems Supplier selection P10
Decision support for SCCDP P40, P45, P70, P71, P75
Solve SC optimisation and logistic problems P24

AI Autonomous Robotics Advanced automation P4
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Table 6. ML algorithms used in supply chain research.

Machine learning algorithms Primary paper source

Decision Tree P14, P27, P36, P40, P48, P51, P69, P74, P76
Random Forest P2, P16, P18, P36, P37, P49, P54, P69
Artificial Neural Network (ANN) P1, P6, P7, P9, P10, P11, P12, P14, P16, P17, P18, P19, P21, P22, P24, P25, P28, P30, P31, P32, P33, P35, P38, P39, P42,

P44, P45, P46, P47, P50, P52, P53, P55, P57, P58, P59, P60, P61, P62, P68, P69, P70, P73, P74
Support Vector Machine P1, P37, P40, P42, P51, P52, P57, P58, P70, P74
Classification P2, P16, P36, P37, P68, P69, P70
Clustering P6, P17, P74
Reinforcement Learning P15, P20, P33, P63, P66, P67, P68, P70
Regression Analysis P5, P40, P47
Hybrid Algorithm P3, P8, P23, P26, P46, P54, P56, P58, P65, P68, P69
Natural Language Processing Algorithms P3, P9, P57, P70, P71

Table 7. Relationships between AI and the different stages of analytics.

Stages of analytics Methods used Primary study

1 Predictive Machine learning, neural network, fuzzy control, statistical
analysis methods

P1, P14, P17, P19, P22, P27, P28, P29, P30, P32, P34, P38,
P44, P47, P50, P52, P57, P59, P60, P61, P62, P64

2 Prescriptive Simulation, mathematical programming, and stochastic
optimisation models, reinforcement learning (RL), Markov
decision processes (MDP)

P2, P3, P4, P5, P6, P10, P11, P15, P16, P18, P20, P23, P24,
P36, P37, P40, P41, P43, P45, P49, P51, P53, P54, P55, P56,
P63, P65, P66, P67, P68, P70, P71, P73

3 Predictive and Prescriptive Machine learning, data mining algorithms, Expert systems,
Hybrid classification model combining probabilistic neural
network, rough sets anddecision tree,Markov chain, Neural
Networks combined with optimisation models

P4, P7, P8, P9, P12, P13, P21, P25, P26, P31, P33, P35, P39,
P46, P48, P58, P69, P72, P74, P75, P76

design, and planning (SCCDP), optimisation, and man-
aging SC disruptions. The potential benefits of AI can
enable SC organisations to survive in turbulent market
conditions.

4.4. RQ 1.4What AI functions have been studied in
SC research?

Figure 4 presents the 4 AI functions that have been
applied in SC research, and ordered according to the TP
included in the study.

The popularity of ML algorithms being used in SC
research is listed in Table 6. This is primarily due to
a wide array of ML applications (Carbonneau, Lafram-
boise, and Vahidov 2008; Ma, Wang, and Wang 2018;
Sharma et al. 2020). Mahmud et al. (2017) claim that AI
research has evolved into two main directions, namely,
ML and Expert Systems (ES). The findings of this study
support this claim as ML is examined in 73 of the 76
primary papers, ES accounts for 7, and AI autonomous
robotics for 1. Although the AI functions outside of ML
have received little attention from the SC research com-
munity to date, this study indicates this is changing. For
example, AI autonomous robotics was first published in a
SC journal in 2020, yet, it has the second-highest average
citations, indicating the evident relevancy and interest
among researchers.

Further evidence of the growing popularity of ML
in SC research is evidenced in Figure 5, with 52 ML
publications being received between 2021 and 2023,
22 of these publications focusing on Artificial Neural

Networks (ANN). ANN is the most widely applied ML
algorithm in the SC industry. A possible explanation for
this increase in this likely due to the predictive power
of ANN and the flexibility of its architecture (Hou et al.
2017; Lau, Ho, and Zhao 2013; Tsai and Huang 2017).
Despite 6 out of the 10ML algorithms receiving their first
publications before 2010, 89 out of the 108MLalgorithms
examined in the 76 primary papers were published after
2016. Again, this reiterating the growing trend of ML
research in SCs. In contrast, clustering algorithms have
received little attention since its introduction in 2009,
with only two additional studies being published over a
14-year span.Despite this, clustering has the highest aver-
age citations out of all algorithms, indicating the promi-
nent influence of the clustering studies and outlining the
potential interest for future clustering research.

4.5. RQ 2What are the relationships between AI and
predictive and prescriptive analytics?

How the various AI methods used can be related to the
stages of analytics are listed in Table 7. None of the papers
was descriptive. We have added a section for predictive
and prescriptive analytics as a number of authors have
intentionally underlined clearly the double objective of
their methodology.

Machine learning and data mining algorithms (e.g.
ANN) were used in SC primarily for prediction (P1, P30,
P38), while other papers were combined with optimisa-
tion and probabilistic models to add prescriptive aims
(P7, P9, P12, P25, P26, P31, P35, P46). While simulation,



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 11

mathematical programming, and stochastic optimisation
models were used for prescription. Hybrid Algorithms
(P3, P20, P23, P26), Reinforcement Learning algorithms
such as Semi-Markov Average Reward Technique (P11)
were also used only for prescriptive analytics. Regres-
sion can be combined with optimisation methods for
prescriptive designs (P5, P40). Reinforcement Learning
algorithms (P20) can be used for prescriptive aims but
also can improve forecasting methods. Support Vector
Machine, a predictive method (P1, P52) was also com-
bined with other algorithms (such k-Nearest Neighbour
for example) to offer prescriptive outputs (P37, P40, P51).
Worth noting is that predictive methods such as Support
Vector Machines inherently focus on forecasting out-
comes based on historical data. To transition frommerely
predicting to prescribing actions, these methods must be
integratedwith optimisation techniques. This integration
enables the formulation of actionable recommendations
by not just forecasting outcomes but also evaluating and
suggesting optimal decisions based on those forecasts.
RandomForest was only used in prescriptive designs (P2,
P16, P18, P36, P37, P49, P54).

4.6. RQ2.2.What are the specificities of AI for
prescriptive analytics in SC?

Building on Table 7, there is a growing trend towards
combining methods to implement more and more pre-
scriptive designs to solve SC problems. Prescriptive
designs offer the possibility to benefit from timely
informed decisions based on real-time data analyses.
The combination of Machine Learning and data mining
algorithms with optimisation and probabilistic models
is considered as a way to modelise real-world complex-
ity and uncertainty (P33). Prescriptive models have also
the advantage to rely on expert knowledge represented
in the Expert systems (P10, P24, P40, P45). Experts’
input can reduce the sensitivity of prescriptive designs
to hidden and unchecked data biases (Merhi and Har-
fouche 2023) compared with predictive algorithms that
uses only the available data to develop theirmodels. Since

the business environment is becoming more volatile
and unpredictable (Akter and Wamba 2019), a timely
response to changes plays a key role in organisations’
capacity to survive. Prescriptive designs can implement
adaptation technics (the reinforcement mechanisms for
example) that offer the unique possibility to include new
constraints when there are changes in the business envi-
ronment (P15, P20, P33).

4.7. RQ3What are the reported challenges of AI in
the context of supply chains?

The primary studies in this review outlined challenges
faced by the SC industry, which the study later addressed
through the implementation of an AI. This review has
synthesised these challenges and categorised them into
seven categories (see Table 8). Each challenge is explained
based on the analysis of primary papers.

Challenge 1 – Problems resulting from using traditional
forecasting techniques: Twenty-one studies reported
forecasting-related issues, making it the most promi-
nent challenge from AI and SC literature. Forecasting
refers to customer demand forecasting ormaking predic-
tions about internal processes and operations. Traditional
forecasting techniques (TFT) are severely limited when
applied to complex systems (Chien, Lin, and Lin 2020;
Jaipuria and Mahapatra 2014; Wong and Guo 2010).
Considering the growing intricacies of SCs (Bozarth et al.
2009), TFTs will struggle to yield effective and efficient
predictions.

Challenge 2 – Difficulties of selecting appropriate sup-
pliers and managing supplier relationships: Four stud-
ies highlighted supplier selection (SS) and supplier
management problems. Due to rising global compet-
itiveness (Zhao and Yu 2011) and customers grow-
ing need for efficient delivery (Aksoy and Öztürk
2011), SS and supplier management have become
increasingly a challenging decision for SC organi-
sations (Sharma et al. 2020). Therefore, to make
an informed decision, companies must incorporate
a large number of tangible and intangible factors

Table 8. Reported challenges of AI in the context of supply chains.

Challenges Primary study source

1 Problems resulting from using traditional forecasting techniques P1, P7, P13, P14, P18, P19, P21, P28, P31, P33, P34, P37, P38, P39, P52, P58,
P66, P67, P69, P71, P74

2 Difficulties of selecting appropriate suppliers andmanaging supplier rela-
tionships

P5, P10, P44, P69

3 Managing supply chain disruptions and risk mitigation P8, P11, P17, P18, P22, P26, P30, P42, P46, P47, P48, P50, P57, P59, P68, P69,
P70, P72, P75, P76

4 Managing inventory and selecting appropriate replenishment strategies P6, P16, P18, P20, P23, P58, P63, P66, P67, P68, P69, P71, P73, P74, P76
5 Issues related to supply chain configuration, design, and planning

(SCCDP)
P5, P12, P15, P24, P27, P29, P32, P36, P40, P42, P45, P48, P51, P57, P59, P60,
P61, P62, P64, P68, P70, P71, P73, P74, P75, P76

6 Problems faced during the production process P4, P17, P53, P55, P56, P58, P74
7 Difficulties in optimising supply chain processes and procedures P2, P5, P8, P36, P39, P41, P48, P49, P54, P65
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into the decision-making process (Choy, Lee, and Lo
2003).

Challenge 3 – Managing supply chain disruptions
and risk mitigation: Twenty studies reported challenges
related to disruptions and risk management. SC disrup-
tions and risk management are grouped as they have
the same objective: to minimise SC interruptions and
delays. The aversion of risks has long been a troubling
task for SC organisations (Baryannis et al. 2019; Modgil,
Singh, and Hannibal 2021), SC risk management aims to
ensure that these risk do not turn into disruptions. SC
disruptions pose a significant threat to business opera-
tions and can result in increased costs, damaged company
reputation and lose of profit (Bier, Lange, and Glock
2020; Hendricks, Singhal, and Zhang 2009; Wagner and
Bode 2008).

Challenge 4 – Managing inventory and selecting appro-
priate replenishment strategies: Fifteen papers high-
lighted inventory and vendor-related challenges. Cus-
tomer demand continuously evolves and grows (Bodaghi,
Jolai, and Rabbani 2018), forcing SC companies to
become more responsive to change (Golpîra 2020). As
inventory is the cornerstone of every SC (Badakhshan
and Ball 2023a; Jauhar et al. 2023), SC must evolve to
meet customer demand, and therefore, the inventory and
vendor management strategy must adapt to the changing
environment. This in conjunction with the complexity
of today’s SCs makes ensuring a smooth flow of mate-
rial a difficult task for all SC companies (Chi et al. 2007;
Vanvuchelen, Gijsbrechts, and Boute 2020).

Challenge 5 – Issues related to supply chain config-
uration, design, and planning: 26 studies reported SC
configuration, design, and planning (SCCDP) problems.
SCCDP plays a critical role in establishing a competi-
tive advantage and ensuring the responsiveness of the
SC (Parmigiani, Klassen, and Russo 2011). It must har-
moniously draw upon all the available resources and
capabilities to meet demand. Considering the disrup-
tions (Brintrup et al. 2020; Nezamoddini, Gholami, and
Aqlan 2020), and fluctuations in demand (Chien, Lin,
and Lin 2020; Fragapane et al. 2021) that contempo-
rary SCs endure, ensuring that the SCCDP is optimal is
critical.

Challenge 6 – Problems faced during the production
process: 7 studies reported production-related problems.
As a result of the increasing pressure to provide higher
quality products (Rong, Akkerman, and Grunow 2011)
and increased transparency into SC processes (Sodhi and
Tang 2019), SC production is under increased scrutiny.

Challenge 7 – Difficulties in optimising supply chain
processes and procedures: Ten studies highlighted SC
optimisation issues, which has been a frequent chal-
lenge for the SC industry (cf. Philpott and Everett 2001;
Fahimnia, Sarkis, andDavarzani 2015). This issue is exac-
erbated due to the increasing scale and complexity of SCs
(Abbasi et al. 2020). Traditionalmethods for solving opti-
misation problems typically lack the ability to capture
the nonlinearity and complexity of SCs, resulting in an
underper-
forming SC.

The most prominent reported challenge in AI and SC
research is issues relating to SCCDP. However, studies
like Ferreira and Borenstein (2011) have demonstrated
the potential of using non-traditional methods for solv-
ing SCCDP issues such as simulations, which allow for
SC logistics to be realistically modelled and observed
for improvements. Research question three will highlight
how can AI can address the aforementioned challenges.

4.8. RQ3What are the claimed benefits of AI in the
context of supply chains?

This research question aims to identify and synthesise
the claimed benefits of using AI in the SC industry.
These benefits were categorised into eight categories (see
Table 9), this review acknowledges that some of these
categories could be mapped to more than one category,
however, to avoid complexity they are mapped to the
most relevant category. Each reported benefit is explained
based on the analysis of 76 primary papers.

Benefit 1 – Improved demand forecasting (DF) accu-
racy: A total of 17 predictive and prescriptive papers
reported the benefits of using ML for DF, making DF the
third most reported benefit of AI. DF plays a critical role
in the design and operation of SCs (Jaipuria and Maha-
patra 2014; Turrado García, García Villalba, and Portela

Table 9. Reported benefits of AI in supply chains.

Benefits Primary study source

1 Improved demand forecasting accuracy P1, P7, P8, P19, P21, P28, P33, P34, P38, P39, P52, P58, P66, P67, P69, P71, P74
2 Increased supply chain visibility and responsiveness P8, P9, P11, P17, P22, P25, P30, P37, P42, P47, P48, P50, P57, P68, P70, P72, P75, P76
3 Enhanced data extraction P3, P44, P70
4 Strengthened supply chain configuration, design, and planning P5, P12, P13, P15, P26, P27, P29, P32, P36, P40, P42, P45, P48, P51, P57, P59, P60, P61,

P62, P64, P68, P69, P70, P71, P73, P74, P75, P76
5 Optimised supply chain processes and procedures P2, P5, P8, P24, P41, P36, P39, P46, P48, P49, P54, P63, P65
6 More efficient and higher quality production P4, P14, P17, P28, P31, P53, P55, P56, P58, P74
7 Improved supplier selection and management P10, P35, P69
8 Enhanced inventory and vendor management P6, P16, P18, P20, P23, P43, P58, P66, P67, P68, P69, P71, P73, P74, P76
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2012). Forecastingwas themost challenging problem fac-
ing the SC industry. Traditional DF methods can result
in a demand to fluctuate and become distorted (Car-
bonneau, Laframboise, and Vahidov 2008), however, as
the 17 primary papers suggest, ML can accurately make
predictions into customer demand. These DF predic-
tions enable SC organisations to align production output
(Kantasa-ard et al. 2020) and enable effective SCplanning
(Lau, Ho, and Zhao 2013).

Benefit 2 – Increased supply chain visibility and respon-
siveness: 18 primary prescriptive studies demonstrated
the benefits of AI for improving SC visibility and respon-
siveness. This study has highlighted the evident need for
SCR in today’s turbulent environment. SC visibility and
responsiveness are some of the key contributors in build-
ing a resilient SC. Implementing AI can dramatically
improve SC visibility as it has the ability to process and
feedback information in real time (Hong, Kim, and Kim
2010), and can automate SC mapping (Wichmann et al.
2020), providing SC organisations with a more compre-
hensive and detailed view of the entire SC, which in turn
benefits SC disruption risk management (Ivanov, Dolgui,
and Sokolov 2019). Moreover, ML has the ability to pre-
dict SC disruptions (Brintrup et al. 2020; Liu et al. 2016),
which enables organisations to plan and become more
responsive to interruptions and delays adequately.

Benefit 3 – Enhanced data extraction: This was the
least reported benefit of AI along with supplier selection
and management, with 3 primary studies conveying AI’s
ability to extract and distil unstructured data from pre-
viously unobtainable sources. ML algorithms can sieve
through vast information, extract what’s applicable, and
then transform into structured useable data (Arazy and
Woo 2007). This data is valuable to organisations as it
provides an improved insight into customers (Maiyar
et al. 2019), and the additional data can improve MLs’
predictive capabilities (Cui et al. 2018).

Benefit 4 – Strengthened supply chain configuration,
design, and planning (SCCDP): SCCDP was the most
reported challenge facing SC organisations (Table 7),
however, it is evident that the various applications of
AI can be advantageous for SCCDP as it was the most
claimed benefit of AI. As previously highlighted, effective
SCCDP is a primary element of a successful SC organ-
isation (Parmigiani, Klassen, and Russo 2011). SCCDP
is more relevant now than ever before as SC organ-
isations endure more turbulence and complexity than
ever before. Prescriptive AI designs can provide effi-
cient and effective decision support for SCCDPproblems.
For example, Morin et al. (2020) utilised ML models to
solve wood allocation issues in sawmills, a design and

configuration decision that involves a multitude of vari-
ables. AI can simulate SC operations to provide decision-
makers a more in-depth insight into their processes (Fer-
reira and Borenstein 2011; Thomas, Thomas, and Suhner
2011). Moreover, AI can take a more prominent role and
automate SC configuration and formation (Piramuthu
2005a; 2005b).

Benefit 5 – Optimised SC processes and procedures:
13 prescriptive studies reported benefits of AI for SC
optimisation. As previously mentioned SC optimisation
is a continuous challenge for SC organisations. These
optimisation problems often include a large amount of
variables, meaning that traditional methods can be time-
consuming and often lack the capabilities to adequately
address the complexity of the issues (Yan et al. 2017).
However, AI excels at optimisation problems and saving
time and resources of the organisation (Abbasi et al. 2020;
Nezamoddini, Gholami, and Aqlan 2020).

Benefit 6 –More efficient and higher quality production:
10 primary studies indicated that AI can improve SC pro-
duction, which is highly susceptible to external pressures.
As a result, SC production must seek alternative meth-
ods to help address these pressing concerns. The pri-
mary studies illustrate that AI based autonomous agents
can provide physical assistance to production (Fragapane
et al. 2021), additionally, ML can be used for quality
inspection and control of products (Karimi-Mamaghan
et al. 2020;Ma,Wang, andWang 2018; Zhang et al. 2011).

Benefit 7 – Improved supplier selection and manage-
ment: 3 studies reported benefits of AI for supplier selec-
tion and management. Under the SC environment’s cur-
rent complexity, selecting and evaluating suppliers has
become critical for an enterprise’s healthy growth (Zhao
and Yu 2011). ML and ES can incorporate a large number
of variables into the decision-making process (Aksoy and
Öztürk 2011; Belhadi et al. 2022; Choy, Lee, and Lo
2003), meaning that the results will be comprehensive
and provide an accurate depiction.

Benefit 8 – Enhanced inventory and vendor manage-
ment (IVM): 15 studies indicated that AI can improve
IVM. Similarly to SC optimisation, IVM requires organi-
sations to consider a large of factors to determine the cor-
rect strategy. Moreover, the fast-changing environment
of modern SCs requires organisations to continuously
adapt their IVM strategies (Priore et al. 2019). How-
ever through the adoption of AI, SC organisations can
automate the identification of the optimal replenishment
strategy (Chi et al. 2007; Vanvuchelen, Gijsbrechts, and
Boute 2020) and improve their inventory management
(Doganis, Aggelogiannaki, and Sarimveis 2008;Giannoc-
caro and Pontrandolfo 2002).
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5. Discussion, implications, and future research

This review addresses a prominent gap in AI and SC
literature. Previous SLRs have been largely fragmented
into different research streams failing to provide a com-
plete overview of AI in SCs. These reviews have either
focused on a specific function of AI such as machine
learning (Hosseini and Ivanov 2020; Sharma et al. 2020),
or a single aspect of supply chains such as risk man-
agement (Baryannis et al. 2019), or a particular applica-
tion of AI such as decision support systems (Ngai et al.
2014). However, this review broadens the focus of pre-
vious SLRs to include all functions, aspects, and appli-
cations of AI in the SC industry, forming a complete
picture for both researchers and practitioners to build
upon.

The results and analysis of the study reveal novel
insights. Firstly, AI research in the context of SCs has
only covered 3 of the 4 functions of AI. While this could
be largely due to the capabilities of current technology,
it still illustrates a prominent gap in the literature that
is impeding both SC researchers and practitioners from
leveraging the full potential of AI, and analytics in gen-
eral. Despite that 73 of the 76 primary papers examined
ML, the benefits of the remaining functions of AI should
not be overshadowed, AI autonomous robotics in par-
ticular. Despite only one primary paper that analysed AI
autonomous robotics in SCs, the potential increase in effi-
ciency and control was evident. While this reinforces the
need for more research, it is vital that researchers diver-
sify away from a heavyML focus and not only investigate
the applications of the different functions of AI, but also
how these functions collectively interact with each other
to achieve previously inaccessible gains. Lastly, the syn-
thesisation of the applications, challenges, and benefits
highlighted in AI and SC literature has enabled this
review to provide a comprehensive view of AI in SCs that
has not been provided to date, to the best of the author’s
knowledge. Therefore, based on this aggregation of this
knowledge, this review shows that AI has the poten-
tial to enable supply chain-centric organisations to thrive
in increasingly complex, and turbulent environments.
Nevertheless, we make the call to action for an orches-
trated effort within and between academic disciplines
and organisations reliant on global SC (e.g. agri-food,
humanitarian response) to ensure AI can be leveraged for
economic and social value. Against this background, we
provide a roadmap for future SC researchers to address
these issues (see Table 10).

To enhance the resilience and efficiency of sup-
ply chains through AI, future research should focus
on the integration of various AI functions, the explo-
ration of emerging technologies, and the development of
collaborative models between AI and human expertise.

Table 10. AI in SC – a research agenda.

AI Function Research Questions

Machine
Learning (1) What ML algorithms perform best for predicting SC

Disruptions?
(2) How can ML be used for SC risk identification and

mitigation?
(3) Can ML be integrated with machine vision to

improve SC visibility?
Expert System

(1) How effective are expert systems at selecting sup-
pliers in comparison to ML?

(2) How can expert systems be used to optimise and
solve SC logistic problems?

(3) Can expert systems be integrated with robotics to
improve their reasoning capabilities?

AI Autonomous
Robotics (1) How can robotics be used for advanced automation

in SCs?
(2) What benefits would robotic automation have for

SCR?
(3) Can integrating machine vision with robotics

enable for more complex tasks to be automated?
Machine Vision

(1) Canmachine vison be used to improve SC visibility?
(2) What benefits can be generated from integrating

machine vision across the SC?
(3) Can machine vision be used to monitor production

quality?

Investigating sector-specific applications, ethical and sus-
tainability considerations, and the role of AI in global
supply chains are also crucial. Additionally, longitudi-
nal studies and advancedAI-driven analytics for scenario
planning will provide deeper insights into the evolving
impact of AI on supply chain resilience. This compre-
hensive approach will pave the way for innovative solu-
tions and responsible management practices in the face
of increasingly complex supply chain challenges.

5.1. Implications for decisionmakers

This review of AI in SCs can help key decision makers
towards a better understanding of AI and it’s applica-
tions, moreover as it highlights how AI can aid in the
development of SCR, which is becoming an increas-
ingly challenging task in today’s turbulent environment
(Remko 2020; Zheng et al. 2021). This review indicates
the inherent challenges of traditional methods that are
widely adopted across SCs. These traditional methods
are used for demand forecasting, supplier selection, and
the optimisation of SC configuration, inventory manage-
ment, and internal processes. SCs are growing in com-
plexity (Bode and Wagner 2015; Bozarth et al. 2009;
Hosseini and Ivanov 2020a), therefore, SC organisations
should consider alternative methods to address this esca-
lating intricacy, as traditional techniques are severely lim-
ited when applied to complex systems (Chien, Lin, and
Lin 2020; Jaipuria and Mahapatra 2014; Wong and Guo
2010). Additionally, this review illustrates the difficul-
ties SC organisations can experience with managing the
risk of SC disruptions. However, the potential benefits
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Figure 6. Strategic AI Resilience Framework.

of AI can significantly outweigh the risk of not embed-
ding AI into SC to enhance its resilience. Further, this
review offers a concise overview of the applications of
the different functions of AI, in addition to the benefits
of AI that can enable organisations to manage their SC
effectively and efficiently. As a result, this review can con-
clusively say that AI has the potential to positively impact
all major aspects of the SC. This includes but not limited
to, providing an improved insight into customers, select-
ing appropriate suppliers, optimising internal processes,
strengthening SC configuration and planning, improving
SC visibility, and process automation.Worth noting is the
potential of AI as a cybersecurity tool, an application of
AI that was not studied in the primary papers. Radan-
liev et al. (2022) illustrate how the advancements of AI
will cause the current methods of cybersecurity to fail.
However, by developing cybersecurity solutions based
on AI algorithms, organisations can achieve improved
cyber risk management (Radanliev et al. 2022a; 2022b),
indicating that AI will become an essential cyber risk
management tool for all organisations.

The reported benefits of AI and analytics can greatly
improve the resiliency of SC across the four phases,
namely preparedness, responsiveness, recovery, and
growth or adaption (Li and Zobel 2020; Sá de et al. 2019;
Wieland and Wallenburg 2013). From the applications
highlighted in this review, it is evident that AI has the
potential to greatly improve an organisation’s prepared-
ness and responsiveness. Preparedness refers to anticipa-
tion of a disruption and requires the continuous moni-
toring of the environment (Stone and Rahimifard 2018),
AI’s ability to enhance insight into customer demand
and preferences, predict disruptions, and increase visi-
bility along the supply chain to significantly improve an
organisation’s preparedness for a disruption. Moreover,

responsiveness refers to the pre-planned elements that
mitigate the impact of disruptions (Fahimnia and Jab-
barzadeh 2016; Leat and Revoredo-Giha 2013), it has
been reported that AI can improve an organisation’s risk
management, select appropriate suppliers that are less
likely to fulfil orders and strengthen SC configuration
making the SC as a whole less susceptible to disruptions.
The aggregation of the collective knowledge on AI in SCs
provides practitioners a clear benchmark of the poten-
tial of AI. Therefore, this review not only illustrates the
rationale for organisations to adapt, but it also serves as
a reference point for organisations seeking to implement
AI, providing an overview of the many applications and
benefits AI has to offer the SC industry.

Through the analysis of the primary papers and
theorisation of AI for SC resilience, we propose the
Strategic AI Resilience Framework (see Figure 6) that
enables decision-makers to strategically leverage AI for
enhancing supply chain resilience, by focusing on iden-
tifying vulnerabilities, integrating AI technologies, and
developing resilience strategies. This framework articu-
lates how AI applications can be systematically applied
to preempt, manage, and recover from disruptions to the
SC. This framework includes the assertion that AI-driven
prescriptive analytics significantly improves decision-
making processes, enabling proactive responses to poten-
tial supply chain disruptions. Additionally, the frame-
work proposes the exploration of the role of AI in fos-
tering collaborative SC ecosystems, enhancing visibility,
agility, and ultimately resilience.

5.2. Implications for research

Building on previous research, this study contributes to
the analysis of the application of AI in the SC industry
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guided by an SLR that covers studies conducted over 20
years. Firstly, this research describes the current state of
AI and SC resilience literature, illustrating publication
trends, journals, and influential articles, which collec-
tively provide researchers with the most updated knowl-
edge of relevant studies. Secondly, this paper provides an
evidenced-based research agenda that outlines important
research questions about each AI function in the context
of SCs. This study synthesis the applications of the dif-
ferent AI functions (i.e. machine learning) in the context
of SCs. Moreover, studies that have included all the func-
tions of AI have focused on a specific application of AI in
SCs (e.g. risk management) rather than SCs as a whole.
Therefore, this research contributes to the accumulation
of knowledge andprovides researchers a complete picture
ofAI in SCs. Collectively, this reviewprovides researchers
with a strong foundation of knowledge that will enable
them to further examine the extent of the applications of
AI in the context of SCs.

5.3. Limitations

This work is not without limitations. Firstly, three inter-
national databases were used to source articles. Future
studieswhichmeans that any articles not indexed in these
will not have been covered. Secondly, this review only
covers literature published in the last 23 years. Lastly,
the articles selected for review are drawn from 3∗ and
4∗ CABS journals. Other CABS ranked journals and non
CABS ranking journals, as well as conference papers and
non-peer reviewedmaterials were not in the scope of this
study. Future studies could include these sources which
might offer a broader understanding of this research
topic.

6. Conclusion

The vulnerability of SCs highlighted by recent global
events motivated this study to provide a state-of-the-
art of AI and predictive analytics research in supply
chains, with the overarching goal of outlining the appli-
cations that can enable the development of supply chain
resilience. The findings suggest that AI has a vast array
of applications and benefits to SC organisations and that
AI has the potential to address many of the challenges
identified in SC literature. Notably, AI is increasingly
being utilised for the development of prescriptive ana-
lytics to enable supply chain resilience. Moreover, the
claimed benefits of AI can play a role in creating a SC
that is aligned with their customer needs, is more stream-
lined and efficient, has greater visibility, and can ulti-
mately adapt to the rapidly changing and turbulent global
environment that supply chain organisations operate

in. Further research, however, is warranted to advance
understanding of the potential of AI as a key enabler of
supply chain resilience.
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