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James Witts

Abstract

The aim of the project was to determine how machine learning tools can assist in
the process of drug discovery and in silico screening. As the development costs and
attrition rates for candidate compounds can be high, a method of predicting likelihood
for approval or for therapeutic promise with machine learning and high performance
computing tools could be of great benefit to medical researchers, biotech, chemical
and pharmaceutical industries. The first phase of the project was to determine if
knowledge of the recorded in vitro protein interactions of particular compounds (listed
in DrugBank and ToxCast) would be sufficient to determine whether a candidate
compound could be designated as having a good (i.e approved drug) or a bad (i.e
toxic) profile. The learning models assessed showed promise in correctly designating
candidate compounds based on a small number of proteins used for pharmacological
profiling, with over 90% overall profiling prediction accuracy in the best case, however
the vast majority of interactions between compounds and proteins are unknown
and so a predictive approach is needed. The second phase of the project was to
provide a method for predicting these hitherto unknown interactions, by predicting
protein-compound interaction pairs through clustering techniques. Several clustering
methods based on protein and compound similarity measurement techniques were
investigated and found that when tested on blind in vitro interactions, approximately
half on average were detected successfully, highlighting the promising potential to
strengthen the predictive profiling models. The third and final phase of the project
focused on the development of a compound and protein target prediction interface,
TargetPredict (http://proteins.swan.ac.uk/cheminf/), which incorporates the data
and methodologies presented throughout the whole project into a single centralised
source, to provide the sector for the first time with a unified tool, avoiding the
onerousness of current approaches that either require the use of multiple often
incompatible websites or require extensive coding experience.
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Chapter 1

Introduction and Background

1.1 Introduction

The purpose of this study was to investigate if data mining tools and techniques

were valuable for use in the fields of drug development and classification. A drug

as defined by the Oxford Online Dictionary is a ’medicine or other substance which

has a physiological effect when ingested or introduced into the body’ [1]. These

physiological effects can either be beneficial or detrimental in nature, and can vary

due to a number of factors such as the method of application or how much of a drug

is consumed (in quantity or over a period of time).

1.1.1 Aims and objectives

The aim of the project was to investigate and evaluate if a machine learning

approach could provide a benefit to specific areas of drug discovery and

drug development. This aim was split into three objectives.

1.1.1.1 Objective 1

Investigate the history and techniques of computational drug discovery

and development. The concepts, procedures and techniques applied within the

drug industry must be appraised before attempts could be made at classification and

clustering through machine learning. This objective included an analysis of the data

present within publicly available chemical and drug repositories such as DrugBank

[2] and ToxCast [3]. Also included were the steps needed to be performed in order to

make the repositories suitable for data mining operations.
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1.1.1.2 Objective 2

Investigate and evaluate machine learning techniques applied to in-silico

drug screening. Once appropriate research had been undertaken to understand the

structure of drug and chemical repositories, a suitable architecture was required to

store and aggregate the information across multiple databases. Once this information

had been obtained, an investigation was undertaken to determine if a machine

learning tool could be used to construct a classification model which would be able

to discriminate between ”good” (i.e approved) and ”bad” (i.e potentially toxic)

compound profiles. The objective considered classification model construction on

a number of fronts such as the documentation of protein interactions with drug

compounds or the physical properties of drugs such as molecular weight and charge.

Figure 1.1 provides a graphical representation of this objective.

The deliverables for this objective were an analysis and evaluation of the classifi-

cation models generated, and a comparison of model accuracy based on the variations

of attributes within the training data (i.e filtering to specific collections of proteins

such as the Bowes et al. Panel 44 set [4]) or sources of data (i.e the use of simulated

protein interactions with ToxCast/DrugBank compounds).

1.1.1.3 Objective 3

Investigate and evaluate machine learning techniques for the purpose of

clustering drug compounds or protein targets. This objective builds upon the

work of objective 2 through investigating if specific regions of compound (chemical)

or protein (biological) space could be clustered into related groups. One area of

exploration was investigating if a machine learning model could predict clusters of

compounds based on their documented protein targets. Another area focused work

on the opposite inference, to investigate if protein targets can be clustered based on

the chemical properties of a drug compound. This objective addressed a fundamental

question of discerning patterns in how compounds and proteins in chemical and

biological space respectively interact. Figure 1.2 provides a graphical representation

of this objective.
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Figure 1.1: Graphical representation of objective 2

Figure 1.2: Graphical representation of objective 3

1.2 Drug Regulation Process

In order to undertake an effective analysis of compound and protein details, an

appraisal of the current processes and techniques used within the pharmaceutical

industry was required. Generally, in order for a drug to be considered approved by a

regulator the benefits it provides to a patient must outweigh the risks associated with

its use. In the United Kingdom, in order for a drug to become approved for use and

marketed it must either have a license from the Medicines and Healthcare products

Regulatory Agency (MHRA) for UK sale, or from the European Medicines Agency
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(EMA) for sale across European Union member states. Within the United states,

drug safety regulation is controlled by the Food and Drug Administration (FDA).

1.2.1 UK Drug Regulation History

Effective drug regulation within the UK started due an incident over a medicine known

as thalidomide during the late 1950s. Smithells et al. describes that the chemical

had been marketed and prescribed for a wide variety of purposes such as asthma

and migraines. However, thalidomide’s use in the treatment of symptoms during

early pregnancy [5] resulted in it’s withdrawal when its use had been connected to

birth defects in children, an effect which had not been recorded at the time when

distributed.

Vargesson states that it was unclear whether or not the disaster could have been

prevented at that time, as the appropriate testing procedure at the time had been

carried out for the drug [6]. However, Vargesson also highlighted factors which might

have increased use of the drug, through minimal packaging information as shown in

Figure 1.3, through to the distribution of sample drugs to doctors and physicians

to distribute to patients who had suffered morning sickness symptoms. The episode

demonstrated that a flaw existed in the testing of drugs in that different species

had differing reactions and responses to drugs (mice were subsequently shown to

have a much lower adverse reaction to thalidomide), and procedures were put into

place to incorporate multiple species in vivo and extensive in vitro testing during the

drug screening process. While a form of thalidomide is still in use as a treatment to

diseases such as leprosy, its dangers are now clearly highlighted to patients as shown

in Figure 1.4.

Figure 1.3: A Thalidomide sample packet that was distributed to women in early pregnancy [6]

The MHRA states that as a result of this event, the Committee on the Safety of

Drugs (CSD) had been conceived to prevent such an incident from occurring again,

which in turn led to the formation of the Yellow Card Scheme, the Medicines Act
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Figure 1.4: Packaging for a variety of Thalidomide used from 2006

1968, and the formation of MHRA through mergers in 2003 [7].

The Stationary Office provides a history of the Yellow Card Scheme, and its

initial naming as the Register of Adverse Reaction to Drugs from the CSD, which

provided an ability for doctors and dentists to report side effects encountered by

patients from administering drugs [8]. In its first year of use, the report described

that up to 100 of the yellow coloured forms had been submitted to the CSD every

week. As of 2014, almost 750,000 yellow card reports for adverse drug reactions had

been submitted, and the scheme as of 2005 has been expanded to allow patients

to report adverse effects (to which up to approximately 1,750 patient reports are

submitted every year) [9].

The Medicines Act stipulates that in order for a person to sell or distribute

medicine, a licence must be obtained from the government [10]. The act also defined

three main categories of drugs with appropriate restrictions of distribution: general

sales list medicines, pharmacy only medicines and prescription only medicines, where

the latter categories are reserved for drugs with an increased level of risk, or potential

for misuse. Examples of misuse include the use of antibiotics for common illnesses, as

well as the use of opioids, sedatives and stimulants for either recreational purposes,

or for managing addictions.

1.2.2 UK Drug Approval Process

In order to obtain a license, a company must demonstrate that the drug is safe for

human use. There are four types of application to obtain a license in the UK [11]:

• A decentralised process in order to market a medicine within the UK and

specific European Union member states
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• A mutual recognition process if approval has been obtained within an EU

member state and a company desires to expand marketing to other countries

• A national process in order to market a medicine solely within the UK

• A centralised process with the European Medicines Agency in order to market

a medicine throughout the entire European Union

The Medicines and Healthcare Products Regulatory Agency (MHRA) can provide

guidance to developers of medicines before submission, which can include matters of

advertising and labelling, clinical and non-clinical matters for a fee. Once a license

has been obtained for marketing, organisations on behalf of National Health Service

(NHS) trusts provide guidance as to whether the drug is economically viable as well

as provide reasonable quality of care for patients. There are different organisations

for each nation in the UK which provide this guidance, which are:

• The National Institute for Health and Care Excellence (NICE) for English and

Welsh NHS Trusts [12]

• The Scottish Medicines Consortium (SMC) for NHS Scotland [13]

• The Department of Health, Social Services and Public Safety for Northern

Ireland [14]

• The All Wales Medicines Strategy Group (AWMSG) for Welsh NHS Trusts [15]

The scale of advice provided by these authorities can vary. In a report by Cairns

comparing the policies between the SMC and NICE, the author states that the SMC

has greater emphasis on delivering reviews rapidly to reduce inefficiency, while NICE

includes additional opportunities for stakeholders (patients, consultants etc.) to make

comments [16]. Figure 1.5 describes a simplified overview of the appraisal process

by Cairns. In the event that the NHS does not approve of a drug’s economic viability,

a company still has the option for providing the drug for private sale provided the

license from the MHRA is still valid.
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Figure 1.5: Overview of the SMC and NICE Appraisal process [16]

1.2.3 FDA Drug Regulation History

The FDA was known by its current name in 1930, but its existence began with the

foundation of the 1906 Pure Foods and Drugs Act. The law affirmed that the then

Bureau of Chemistry had the ability to regulate food and drugs to prevent the sale

of adulterated and misbranded products [17]. Before the act had been implemented,

some state governments within the United States were already performing some means

of regulation within the food dairy industry, which included penalizing industries

under charges of adulteration if they failed to indicate if impurities were present

within their products.

Interest in expanding state law federally increased during the 20th century due to

increased costs of regulation in interstate trade, in addition to concerns regarding

imperfections of enforcement within certain states. Although Law argued that food

and dairy quality improved through the act’s foundation, a lack of ability to create

legally binding statutes and small penalties for violations meant that enforcement by

the FDA may not have been that effective until the foundation to the Food, Drug

and Cosmetics Act 1938.

This view is shared by Kinch et al., who explored the failure of an anti-infective

variant of sulfanilamide which was initially discovered in the late 1930s [18]. Kinch

et al. explained that numerous variations were developed due to a need to combat

bacterial infections, and due to inconsistent quality control procedures, a variant

known as elixir sulfanilamide killed more than 100 people in 1937 due to poisoning

(many of whom were children which led to public outrage). Borchers et al. details the

additions and amendments made in the Food, Drug and Cosmetics Act which was
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formed following the incident [19]:

• A drug required scientific safety testing before it could be considered for

marketing which must be proven by the manufacturer

• Cosmetic and therapeutic devices were now under regulation by the FDA

• Proof of fraud was no longer required to challenge false claims made for drugs

• Addition of poisonous substances was prohibited except when required for

production or were otherwise unavoidable

• The establishment of food standards in order to promote honesty and fair

dealing in the interest of consumers

• Expansion of legal capacities of the FDA

Although the law itself has been revised during the decades since its concep-

tion, Borchers et al. affirm that the law’s requirement of scientific testing for drugs

was a first time approach, and became one of the major factors in the shaping of the

modern pharmaceutical industry. It was this, coupled with the large demand for the

antibiotic penicillin during World War 2 which also provided the ability for academics,

government scientists, drug companies and medical practitioners to collaborate with

one another.

1.2.4 FDA Approval Process

In order for a drug to be considered suitable for use by the FDA, the drug developer

must take a number of steps to prove that the drug performs as described and is

safe for its described use. Lipsky et al. states that the first step for a promising

pre-clinical drug is to file an application for an Investigational New Drug (IND) to the

FDA [20]. The report continues to explain that once the IND application has been

approved, the drug company must perform clinical trial phases of increasing sample

sizes to investigate factors such as dosage amounts, safety and drug effectiveness. On

compilation of this evidence, a New Drug Application is filed for which the FDA

will either approve or reject the drug, or request the company to perform further

study before a decision is made. Figure 1.6 provides a graphical representation of this

process [21]. A typical drug following this process would take approximately 10-15

years to develop following the FDA pipeline.
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Figure 1.6: Overview of the drug development and approval process for FDA approval [21]

1.2.5 Drug Assessment Phases

Although the exact procedures vary in getting a drug to market, there are some

broad similarities in the procedures of assessing a drug’s safety. There are two main

phases: a pre-clinical testing phase in a lab environment and clinical trials which

involve testing a drug’s response on human subjects. As a candidate drug progresses

along trials over the course of its development the scale and complexity of the tests

increase.

During all phases of assessment, the drug company must also follow good practice

procedures to ensure that the output remains to a high standard. These standards

can be summarised to three key practices, the first of which is Good Laboratory

Practices (GLP) [22], which details the conditions and processes which must be

followed for a clinical or non-clinical trial to be performed. The second practice,

Good Clinical Practice (GCP) [23], are a set of principles created by the International

Conference on Harmonization (ICH) that provide instructions on the design and

methodology of the study, and the output data which is to be expected within the

assessment. The final practice, Good Manufacturing Practice (GMP) [24], relates

to the regulation of the design and development of the drug in manufacture, which

includes the monitoring and quality control of production facilities.

In terms the US regulation to the above practices, the US Code of Federal

Regulations Title 21 Part 58 [25] states that the FDA requires researchers of companies

to undertake a good level of practice in undertaking this phase, which include

standards such as study conduct and reporting, operating procedures and quality

assurance procedures to ensure processes are followed correctly. The FDA’s Center

for Drug Evaluation and Research (CDER)’s Office of Pharmaceutical Quality (OPQ)

monitors and ensures standards are followed during a drug’s lifecycle within the FDA
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[26]. In terms of UK regulation, the MHRA and DHSC have published guidance

companies should follow with respect to GLP, GMP and GCP [27].

1.2.5.1 Pre-clinical Phases

Whitmore describes the pre-clinical phase as the establishment of safety required

for a drug which has not had a history of clinical use before human testing can be

performed [28]. In order to establish this level of safety, a company must demonstrate

sufficient testing to prove that a compound of interest does not cause an undesired

effect, or potential to cause serious harm. One of the main realms of testing is known

as in vitro testing which are laboratory experiments performed on cell receptor or

enzyme systems within a laboratory environment. Other formats of testing include in

vivo testing (experimentation on animals) as well as in-silico testing (experimentation

within a simulated virtual environment).

After tests have been conducted on pre-clinical phases, companies will then decide

if a drug has sufficient merit to proceed to human testing. In terms of success

rates to clinical trials, Paul et al. reported that the chances of progression from

preclinical to clinical trials was 69%, based on research and development data from

13 pharmaceutical companies [29].

1.2.5.2 Clinical Trials

If a drug proceeds to human testing, and has received approval on an IND application,

the drug company must begin the process of conducting trials to assess the effectiveness

and dosage limits for the medicine in question. The National Institute of Health

(NIH) provides a definition for the phases of trials involved [30]:

• Phase I Trials - A test performed on a small group of people (under 100) to

assess drug safety and record potential side effects

• Phase II Trials - A test administered to a larger group (several hundred) to

further assess drug safety and effectiveness

• Phase III Trials - A test administered to a large group (several thousand) of

people to confirm the findings of previous phases, monitor any recorded side

effects and to compare results against standard or equivalent treatments

• Phase IV Trials - A phase conducted after a drug has been marketed and

approved by a regulator in order to track its safety, risks and benefits and

optimal usage amounts
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In terms of difficulty of completing the trials, Table 1.1 reveals the likelihood of

approval rates in the various stages of FDA clinical trials from a study of 835 drugs

companies between 2003-2011 [31]. The table reveals that while companies may have

a good chance of generating promising data for progression in the first phase, the

chance decreases by almost 30% from phase II to III. This could be caused from new

issues revealed from the increased scale of testing, as the likelihood of further issues

and potential dangers increases with even larger scale group tests in further phases.

Phase Progress Success Rate (%)
Phase I to Phase II 64.5%

Phase II to Phase III 32.4%
Phase III to NDA Submission 60.1%
NDA Submission to Approval 83.2%

Table 1.1: Drug Success Rates [31]

1.2.6 Drug Development Cost and Attrition

In order for a drug to be considered as suitable for use by the general public, there

are a number of guidelines which must be followed which can vary according to

the procedures of the regulators of different countries. However, Lesk provides an

overview of characteristics of a suitable drug [32]:

• It must be safe to use in that the drug does not cause a severe detrimental

effect to patients

• It must be effective in its design in the process of diagnosis, treatment or

prevention of a disease

• It must be stable enough in order for the drug to perform its actions and not

remain in a patient’s system for longer than necessary

• Its contents must be available to produce in sufficient quantities either naturally

or synthetically

• Its concept should be novel so that the drug would not be duplicated by other

pharmaceutical companies which would result in a loss of profits necessary to

recover development costs

As chemical compounds could fail to meet these characteristics or fail a drug

regulator’s guidelines, there is a rate of attrition present within drug development
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where only a certain number of drug candidates are suitable for further testing and

production. Additional issues, such as a lack of efficacy, an unforseen toxicity or a

difficult pharmacological profile may also have an impact on the viability for further

development. This attrition rate can be considered to be quite high; one study by

Morgan et al. estimated that the success rate of drugs that were able to enter clinical

trials from primary in vitro work were between 11.7% and 24% across 5 studies of

drug approval rates [33].

The costs associated with the process of drug development can vary, with different

studies reporting varying figures and estimates of cost due to the lack of specific

financial information provided by pharmaceutical companies. One report by Morgan

et al. found that the development cost could vary between $92 million USD to $883.6

million USD, explaining that the cause for the variation found during their assessment

of a number of drug cost evaluation studies was due to differences in methodology,

sources and timescales. Another report by Sertkaya et al. found that development

costs were found to be more within the region of between $1.3 billion USD to $1.7

billion USD [34], however this report also provided additional detail in terms of the

estimated costs for each clinical trial phase, listed in Table 1.2. The report also

highlighted that some of the main contributors for expenditures were due to procedure

costs (15-22% of the total project cost), staff funding (11-29%) and site monitoring

procedures (9-14%).

Clinical Phase Level Estimated Cost ($ million USD)
Phase I 1.4 to 6.6
Phase II 7 to 19.6
Phase III 11.5 to 52.9

Table 1.2: Clinical Phase Costs [34]

Another assessment of drug costs was in an analysis performed by Paul et al.,

which viewed the drug development cost from a perspective of out of pocket expenses

for clinical trial studies, and for capitalized cost, the rate of return of investors

for funding the research [29]. Their study found that a drug launch would incur

approximately $873 million USD of out of pocket expenses, and a capitalized cost

of $1.7 billion USD, however the estimate did not include investments involved for

exploratory discovery or for expenses incurred post launch of the drug. Despite these

variations in estimated costs, there appears to be a large amount of expense involved

in the process of drug development, which can result in costly losses to a company in

the event that a candidate drug fails to launch due to particular issues.
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1.2.7 Approaches to reducing attrition

One approach which has been adopted to reduce the impact of drug attrition is

through in vitro pharmacological profiling, a technique which is explained by Bowes

et al. as identifying undesirable compounds through screening compounds against a

broad range of protein targets identified in previous studies [4]. Their paper explains

that the use of profiling can identify early stage hazards which could disrupt or halt a

drug development project, as well as reduce costs in safety assessments of compounds

where little or no off-target activities are found. In their study they analysed the

range of protein targets screened by four pharmaceutical companies, and identified a

minimal panel of 44 in vitro targets which provide an early indication of a hazardous

compound. This panel is commonly referred to as Panel 44, however two targets in

the paper make reference to two UniProt entry codes, resulting in a searchspace of

46 UniProt entry codes. This panel of proteins can be found on Table 1.3.

Another way of reducing drug attrition is through the process of replacement or

part replacement by in silico screening, a technique of using computer simulations

and programs to determine the likelihood of a protein becoming a target for a drug.

The main advantage of implementing in silico methods is that it provides a means of

expansion beyond what would be considered practical for an in vitro study, in turn

providing further information as to how a candidate drug could behave when used.

One study performed by Ramsundar et al. made use of a multitask network for the

purposes of virtual screening, and had found that the network had made accurate

predictions of drug interactions against differing diseases, but the network required

a considerable amount of infrastructure and time to execute. According to Google,

the results generated by the report were based on 37.8 million data points over 200

biological processes, and required over 50 million CPU hours to compute.

Another approach into this field is from a study conducted by Austin-Muttitt,

which made use of 3D protein and compound structure information in conjunction

with a collection of simulator software tools to output a set of binding properties [36].

An example of the initial process that was used for this study is shown in Figure 1.7.

These properties were then compared in terms of similarity to known protein-drug

interactions to calculate the likelihood that a link exists between a candidate drug

and a protein. The disadvantage of employing such a pipeline however is that access

to 3D structures of proteins and compounds is required to make use of the pipeline

to its full potential, which can be a limiting factor as some areas of chemical and

proteomic space do not possess accurate models currently.

There have also been studies with machine learning for predicting problematic and
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Figure 1.7: Illustration of initial process to generate in silico compound-protein interactions [36]

beneficial drugs. One study by Pereira et al. investigated the effectiveness of machine

learning algorithms in predicting toxicity of a compound [37]. In their investigation

they found that the use of molecular descriptors had generated high degrees of

accuracy for prediction of toxicity. Another study by Chen et al. investigated if

clustering algorithms could assist in identifying candidate drugs to treat Hepatitis C,

and had discovered 20 compounds of interest where a prior indication for treatment

had not been described [38].

Another set of approaches which have made use of machine learning techniques

is through the process of using similarity of drugs and proteins and clustering to

determine appropriate targets. The first study into this area was by Yamanishi

et al., which made use of a two stage process to predict interactions [39]. The

first phase was to construct a model based on a set of known compound-protein

interactions, in addition to scales of similarity of compounds and proteins against

one another. The second phase then involved the inclusion of compounds and

proteins which were not present in the model to assess the model’s reliability in

predicting known interactions. The study had found that when tested, the models had
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managed to predict the interaction profile of most of the test compounds, providing

a potentially suitable alternative to large scale screening between compounds and

proteins. The additional advantage to the use of this model is that there are fewer

requirements to process candidates, needing only the SMILES string code and amino

acid sequence for compounds and proteins respectively. Since the paper’s publication,

other studies have been published which make use of similar principles, but with

either different methodologies for constructing the interaction prediction model, or

differing techniques of calculating the similarity of drugs and proteins.

There have also been machine learning approaches applied to the prediction of

structure of proteins. Bruno et al. had achieved an accuracy rating of 94% with

identifying protein images into specific categories of clear, precipitate, crystal, and

other (where a protein was found to be significantly different to the other three

categories) [40]. This high degree of accuracy via a neural network, coupled with the

large amount (500,000) of image training data provides promise for large scale virtual

screening as an application.

UniProt ID Protein Entry Name
P04150 GCR HUMAN
P06239 LCK HUMAN
P07550 ADRB2 HUMAN
P08172 ACM2 HUMAN
P08588 ADRB1 HUMAN
P08908 5HT1A HUMAN
P08913 ADA2A HUMAN
P10275 ANDR HUMAN
P11229 ACM1 HUMAN
P14416 DRD2 HUMAN
P14867 GBRA1 HUMAN
P20309 ACM3 HUMAN
P21397 AOFA HUMAN
P21554 CNR1 HUMAN
P21728 DRD1 HUMAN
P22303 ACES HUMAN
P23219 PGH1 HUMAN
P23975 SC6A2 HUMAN
P25021 HRH2 HUMAN
P25101 EDNRA HUMAN
P28222 5HT1B HUMAN
P28223 5HT2A HUMAN
P29274 AA2AR HUMAN
P31645 SC6A4 HUMAN
P32238 CCKAR HUMAN
P34972 CNR2 HUMAN
P35348 ADA1A HUMAN
P35354 PGH2 HUMAN
P35367 HRH1 HUMAN
P35372 OPRM HUMAN
P37288 V1AR HUMAN
P41143 OPRD HUMAN
P41145 OPRK HUMAN
P41595 5HT2B HUMAN
P46098 5HT3A HUMAN
Q01959 SC6A3 HUMAN
Q05586 NMDZ1 HUMAN
Q08499 PDE4D HUMAN
Q12809 KCNH2 HUMAN
Q13936 CAC1C HUMAN
Q14432 PDE3A HUMAN
Q14524 SCN5A HUMAN
P15382 KCNE1 HUMAN
P51787 KCNQ1 HUMAN
P02708 ACHA HUMAN
P43681 ACHA4 HUMAN

Table 1.3: UniProt Entry Codes for Bowes et. al panel for pharmacological profiling [4]. Proteins
in bold separated by lines indicate two UniProt entry codes grouped into single targets by the panel
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1.3 Compound and Protein Database Reposito-

ries

This section describes the main database repositories which were considered for

gathering information on drugs, compounds, proteins and their interactions with one

another for use within the project. These sources are listed as follows:

• DrugBank and The Toxin and Toxin-target database (T3DB)

• ToxCast

• PubChem

• ChEMBL

• Matador

• CTDBase

• BindingDB

• UniProt

• KEGG

• Human Metabolome Database (HMDB)

To determine a potential interaction between a compound and a protein, the

source needed to specify that a link existed between them, in addition to providing

the means to be linked across other sources. This meant that assays would be selected

if a link could be established to UniProt (and for the scope of this study, linked with

the human species), and compounds would be selected if a link could be established

towards a single source, which was PubChem. Initially, all links between proteins

and compounds found from these repositories were merged into the largest dataset

possible, to maximise the amount of information captured. Further refinements were

then made to the selection of assay types and results in Chapters 4 and 5.

1.3.1 DrugBank, T3DB and HMDB

The DrugBank project is an online database which was created by the University of

Alberta, which allows users to view details on a variety of drugs which are held in

Page 16



James Witts

various categories such as experimental, withdrawn, illicit as well as FDA-approved

[2]. The database itself links protein sequences found within databases such as Swiss-

Prot and UniProt with data that is found within medicinal and chemical reference

handbooks. With the latter being in hard copy formats, most of the information

contained within the DrugBank database has been manually curated from a number

of sources over a number of years, and its transfer into a computer format has made

the website valuable to obtain information on drug and protein interactions.

Each drug record held on the website (an example of which is shown on Fig-

ure 1.8) contains information such as chemical properties, treatment information and

documented interactions with proteins. The website was primarily used to identify

drugs which were assigned to the FDA-approved group, which were then used as

a basis for beneficial protein interaction profiles (”Good” Profile compounds). In

addition to this, drugs which were assigned to the experimental drugs were gathered

for use as a potential test set. The website’s structure allows users to download these

types of specific sections without the need for downloading the whole database, which

reduced the requirements for additional filtering and pre-processing. The website is

free to use at the time of writing, with no requirement for licensing providing projects

that make use of the database are for non-commercial applications.

Figure 1.8: Screenshot of DrugBank website displaying information on the drug Abacavir [41]

Other databases that were also developed by the University of Alberta and were

also used in the project were the Toxin and Toxin Target Database (T3DB) [42],

and the The Human Metabolome Database (HMDB) [43], which was structured
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in a similar way to the DrugBank platform. T3DB contained protein interaction

information on toxins, which provided an ideal platform for identifying compounds

which were potentially harmful. HMDB’s focus was providing information of small

molecule metabolites within the human body, which also included interactions with

particular proteins. This also provided an ideal platform for identifying compounds

largely considered to be harmless. Both T3DB and HMDB databases were free to

use for non-commercial applications.

1.3.2 ToxCast

ToxCast is the database resulting from a toxic effect screening programme developed

by the United States Environment Protection Agency (EPA), which contained results

from mostly in vitro assays between compounds and proteins to observe for changes

which can suggest a potentially toxic effect has occurred [3]. The program primarily

focuses on compounds which have been highlighted as a concern by regulators but

have limited information on potential health effects. These are then passed through

a number of high throughput assays, before the results are quality control checked

and released to the public.

There is no interactive website platform for viewing the information within

ToxCast; instead the information is split into a number of packages which are freely

available to download online for commercial and non-commercial use [44]. The

database also contains a MySQL database dump and programming packages to access

all the high throughput information processed by ToxCast.

One feature which ToxCast contains that differs from other database sources is

that the assay summary files document cases where a chemical has been noted to

have no interaction with a protein, which is a useful data point for flagging potential

false positive cases. Assays can also be filtered by a specific source, providing an

additional means for further filtering. One of the sources of interest is Tox21, an EPA

programme that has amongst its goals to ”Prioritize specific compounds for more

extensive toxicological evaluation” [45]. The assays used by Tox21 are cell-based,

meaning the assays in question attempt to quantify a response of a compound to a

test organism which in turn can refer to more than one protein target. Another source

of interest is NovaScreen, a commercial panel for preclinical drug development and

was used for the Panel 331 report [46]. NovaScreen’s assays are biochemical, which

document binding activity of a compound to a biological molecule and is generally

focused on one protein target.

These features, coupled with the sample types of potentially harmful compounds
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made the ToxCast repository an ideal candidate for use in obtaining interaction

profiles of possibly harmful compounds.

1.3.3 ChEMBL

ChEMBL is a database developed by the European Bioinformatics Institute which

contains information on bioactive drug-like small molecules, and their interactions

with proteins [47]. The main motivations behind the ChEBML project were to

provide a centralized format on sources of bioactivity which were either difficult or

labour intensive to access due to differing formats, and to provide a freely available

platform for interactions which at the time would only have been available through

the use of commercial products. The interactions themselves are based upon peer

reviewed scientific journals, and the information contained within the database can

either be accessed on an interactive website or downloaded in its entirety for bulk

access.

To access the activity information contained within ChEMBL, a database dump

in the MySQL format was downloaded, which allowed the execution of queries to

filter the database to the required interactions of certain proteins. Cross references to

PubChem and UniProt also assisted in linking the compounds and proteins contained

within ChEMBL to other databases.

1.3.4 Matador

The Manually Annotated Targets and Drugs Online Resource (Matador for short) is

a repository of drug-protein interactions which had been annotated from abstracts

within PubMed [48] or Online Mendelian Inheritance in Man (OMIM) entries [49],

through the means of text mining techniques and manual automation [50]. The

Matador platform is a subset of the SuperTarget database where text mining of

interactions revealed the ability to determine the type of binding between drugs and

protein targets. The activities stored within this database primarily use PubChem

and UniProt identifiers, which made the recorded interactions easy to merge with

other databases. The website is also free to use, provided the information is not

used for commercial purposes in which case a license is required from the database

developers.
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1.3.5 CTDBase

The Comparative Toxicogenomics Database is a database developed by the MDI

Biological Laboratory, designed to provide links between chemicals, genes and diseases

[51]. In a description of the database, Davis et al. describe the three main differences

between CTDBase and the other data sources:

• The database’s primary focus is on environmental chemicals

• The database integrates sources from literature and information inferred from

other interactions listed within the database ( e.g. gene A is associated with

disease B because gene A has a curated interaction with chemical C, and

chemical C has a curated association with disease B)

• The database can provide a resource for generating hypotheses on chemical

actions and diseases which may not be otherwise apparent.

Figure 1.9 illustrates an overall model of the structure of the database, and

the process followed to create additional discovery links based on knowledge found

within the literature which is gathered by text mining software and then verified by

biocurators. The database contains an interactive web platform which can be used to

query for individual chemicals/genes/diseases, however a bulk query platform exists

to obtain results from multiple queries.

Figure 1.9: CTDBase Data curation process [51]. (a) reflects the types of information gathered by
curators. (b) reflects how connections are to be inferred based on prior knowledge found within the
database
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Individual sections of the database are also available for download for program-

matic access. CTDBase is listed as free to access, provided the database designers

have been notified for what purposes the information is used for. Although the

database drug and protein contents contain no direct reference to PubChem or

Uniprot, platforms exist to link entities to one another, making CTDBase an ideal

platform to discover additional drug-protein interactions as well as a link to proteins

and diseases for additional filtering or protein panel creation.

1.3.6 BindingDB

The Binding database is a website that was developed by the Skaggs School of

Pharmacy and Pharmaceutical Sciences based at the University of California [52].

Initially released in 2000, Gilson et al. explains that one of the unique aspects of the

database in its data collection methods was the capture of data from the US Patent

system, which is absent from scientific literature. As of 2015 the database claimed

to contain approximately 35,000 data points from recent US patients, however the

database also considers and gathers information from other databases and sources

of scientific literature not covered by other research group efforts. The interactions

stored within are mainly focused on protein targets which either contain a three

dimensional structure deposited in the Protein Data Bank, or that can be modelled

accurately.

The database as of July 2018 contains over approximately 150,000 compounds, and

1,361 target proteins, all of which is freely accessible either through individual searches

through the website, or through downloading specific sections from the database

for bulk access. This coupled with PubChem and UniProt references contained

within the database also make BindingDB a useful source for downloading additional

drug-protein target information.

1.3.7 UniProt

UniProt is described by the Uniprot Consortium as a freely accessible database which

contains manually annotated and reviewed information on proteins [53]. Designed as

a platform to organise an increasing number of sequenced proteins, the consortium

states that the UniProt platform consists of a number of key parts which satisfy

different requirements. The main section, UniProtKB/Swiss-Prot, is the section that

contains manually curated information on over half a million sequences. Another

section, UniProtKB/TrEMBL, contains information on proteins which are either
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unreviewed or have been user submitted, of which a significantly larger number of

sequences exists (80 million). Platforms also exist of sets of protein sequences which

are non-redudant based on varying levels of sequence similarity (50%, 90% and 100%

known as UniRef50, UniRef90 and Uniref100 respectively). Each record held on

the website (an example of which is shown in Figure 1.10) contains information

such as the protein entry name, gene, species as well as information on Amino Acid

Sequences and tissue group associations. The website also contains a platform which

can convert UniProt accession codes into identifiers used by other database systems,

and vice versa [54]. As a platform which is referenced and contains many references

of databases, the UniProt database was considered the most suitable reference for

documenting the human proteins featured within the project.

Figure 1.10: Screenshot of UniProt website displaying information on the Androgen Receptor
protein [55]

1.3.8 PubChem

PubChem is a freely accessible database which contains information on chemical

compounds, and is managed by the National Center for Biotechnology Information [56].

Initially launched to the public in 2004, there are 3 main components of the PubChem

platform, setup as individual databases: these are PubChem BioAssay, PubChem

Substance and PubChem Compound. The BioAssay database contains information

on the parameters and results of biological activity testing, while the Substance
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database contains chemical descriptions and properties of chemicals. Finally, the

PubChem Compound segment provides unique chemical structures of the content

found within the PubChem Substance database. Each compound in the combined

platform contains elements such as the 2D/3D structure, as well as chemical and

physical property information. Each compound also contains the results of all protein

screening test performed against it, stating whether or not a pair is active (a target)

or inactive (where no activity has been documented). Some of the interactions also

contain a reference to a UniProt accession code, making it possible to cross reference

to other database interaction profiles. The PubChem platform also contains an ability

to cross reference compounds to other compound databases. Coupled with PubChem

references being used in the other databases assessed, the PubChem platform provided

an ideal central reference to link to the other studied databases.

While a web platform exists for conducting individual queries, PubChem contains

multiple means of access for conducting bulk queries. Users can either download

the entirety of the database in bulk through PubChem’s file transfer protocol server,

or through the use of online job submission platforms or application programming

interfaces to programmatically filter the database to the required information. Al-

though some of the databases assessed by the project already contained chemical and

physical property information, the records provided by PubChem contained records

which were more recent and of higher quality. For example, chemical structure files

contained within the DrugBank platform were only provided in a 2D format when

accessed; however, PubChem compound records of the same chemical are provided in

3D co-ordinates.

1.3.9 KEGG

The Kyoto Encyclopedia of Genes and Genomes is a collection of databases which

are used to document diseases, genes, drugs and compounds [57]. Initiated in 1995 at

Kyoto University, Ogata et al. describe that the KEGG platform was designed as an

effort to link sets of genes with a network of interacting molecules in cells [58]. They

continue to describe the main database design, consisting of three segments:

• A pathway segment for representing additional details on interacting molecules

• A gene segment for documenting fully sequenced and partial genomes,

• A ligand segment for documenting all chemical compounds.
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A segment of the database interactions contained within KEGG has been widely

referenced as a baseline for considering machine learning methods with compounds

interacting with specific protein panels by Yamanishi et al. [39]. This set, referred

to as the ”gold standard”, provides a list of compound interactions by protein type,

which are enzymes, nuclear receptors, GPCRs, and ion channels. However, while

the interactions presented within these sets can be accessed and documented, higher

throughput access to the KEGG database beyond individual queries requires the

purchase of a subscription. The yearly end-user cost at the time of writing was $2000

a year. With the availability of other freely downloadable databases, this database

was not considered for this project beyond the information already already present in

the ”gold standard” compound-protein interaction matrices.

1.4 Program Language and Tool Analysis

This section will provide a summary of the tools which were considered and used

for retrieving and accessing the information used in the project. Where a tool has

been used specifically for the work described in certain chapters, these tools will be

specified within each section.

1.4.1 R

The statistical programming language R is a freely available tool which was developed

and supported by the R Foundation for Statistical Computing [59]. Initially developed

in 1993 from a mixture of the S programming language and the Scheme programming

language, R provided support for utilising a number of statistical and visualisation

techniques, as well as providing the ability for users to create customised functions and

libraries through the use of packages to expand its functionality. A number of these

libraries and extensions were used in conjunction with the R language throughout

the project to process information and results, which are listed below:

• RStudio - an integrated development environment which provided a means to

organise and run multiple scripts. Also provided a means to easily preview data

objects in session for debugging [60].

• ReadR - a file reader library which provides an extension and additional

functionality to R’s existing file reader [61].
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• Biostrings - a package which provides support for reading and manipulating

compound and protein structure files [62].

• ChemmineR - a cheminformatics package for analysing small molecule data

within R.

• RCurl - a package which allows R to download and manipulate information

available on the Internet [63].

• RMySQL - a package which allows the access and execution of database queries

via the MySQL query language [64].

• JSONLite - a package which allows the reading and access of files in the JSON

format [65].

• RCDK - a package which allows the access and manipulation of compound

structure files within the R environment [66].

• fingerprint - a package used in conjunction with RCDK to generate compound

similarity matrices based on chemical fingerprinting, a process which generates

a string of flags to quickly compare compounds [67].

• foreign - a package which allows conversion of items within R to files suitable

for use within other programs such as WEKA [68].

• reshape2 - a package which provides R with the ability to easily transform a

list of similarity values into a similarity matrix [69].

• doParallel and foreach - packages which provide R to perform a large number

of similar tasks in parallel and make use of multiple CPU cores [70] [71].

The R language contains two main methods of execution: either through line by

line execution, or through scripts which contain a series of instructions. Both methods

save the output in a workspace which can either be accessed and altered directly, or

saved to reduce the amount of processing needed to review results. Workspaces also

provide an ideal space to debug potential faults that arise during development of the

project.
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1.4.2 Python

Python is a freely available programming language that was first distributed in 1991.

Like R, Python is an interpreted language which processes individual commands

or scripts of commands without the need for a compiler to create an executable,

which also allows for Python projects to be cross platform compatible. Designed as a

general purpose programming language to improve readability and simplicity of coding

solutions, Python’s functionality can be expanded through the installation of packages

that allow the language to perform more specialized tasks such as bioinformatics and

machine learning. One package, referred as PyDTI, makes use of the programming

language is a library which performs prediction of new interactions between drugs

and proteins using differing clustering techniques, which was used in the project

implementation in Chapter 5 [72]. Another package, referred to as ”Mordred” [73],

parses through compound structure files to generate a list of chemical properties

which are listed within the Appendix.

While Python could have been used to assist in compatibility with use of the

clustering library, there were also some feature differences between the two languages;

for example R’s natural ability to save and restore a workspace is not possible with

Python unless external packages are installed and used, which would have increased

the difficulty of debugging and analysing some variables, so R was chosen over Python

as the main language for the project. Python scripts could still be used in conjunction

with R when needed however, as a Python script could still be called via command

prompts using R. This reduced the project’s development time of replicating existing

clustering code as well the time for learning a new language set.

1.4.3 Matlab/Octave

The statistical programming language Matlab is a platform which was designed for

use by engineers and scientists. With programming primarily focused on matrix-like

structures, the language is ideally suited for solving and computing mathematical

problems, however access to Matlab requires the purchase of a yearly subscription

(some academic institutes include Matlab in their suites of software for students how-

ever). While open source alternatives to Matlab exist such as Octave, its functionality

is limited to Matlab, which can also cause compatibility issues when code is used on

both platforms. To maintain a wide audience of researchers that could replicate the

project implementation, this language was not considered.
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1.4.4 MySQL

In order to reduce the difficulty of filtering the information stored within the protein

and drug repositories, a database management system was necessary to maintain

the data in a consistent format. These systems could then be queried to filter and

generate the required information based on particular user parameters. One such

management system was MySQL, which is a freely available open source database

management system developed by the Swedish company MYSQL AB (now part of

Oracle Corporation) in 1995. The MySQL system provides users with a system that

could be easily and freely distributed across multiple platforms without concerns

over licensing. One of the advantages of using MySQL is that the system is normally

featured in combined software bundles known as AMPs (Apache-MySQL-PHP), which

allow for easy setup of local web and database servers by combining the components

together into a single package.

One of these software bundles which was used by the project was XAMPP [74],

an open source package which is compatible with multiple operating systems, and

an ideal platform for setup and replication of the project implementation. This

also allowed the generation of a local prototype quickly for generating a website to

demonstrate the project method and results.

1.4.5 WEKA

The Waikato Environment for Knowledge Analysis (WEKA) is an application which

contains a collection of machine learning algorithms used for solving classification

problems [75]. Built on the Java programming language, the application also contains

a number of visualisation and analysis tools which assist users with managing and

pre-processing datasets, as well as providing a platform to easily save and re-use

classification models. As a Java application, WEKA is cross-platform compatible,

and can be either be run via a graphical user interface or a command prompt terminal

similar to OpenBabel for programmatic access. Users can either perform individual

classification experiments using WEKA’s Explorer platform, or make use of the

Experimental platform to perform multiple classification experiments at once on a

dataset using equal model training and testing conditions. A package manager is also

included for installing user defined classifier or pre-processing methods.

As WEKA is freely available to use, the program was considered as a convenient

option for use in assessing drug profiling from protein interactions, as well as for

replication of the implementation and results. In order to process information via the
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WEKA platform, the program requires that data is loaded in a specific file format

known as ARFF which specified the type of information that is stored (i.e if a column

contains set values/classes, is a string or numeric). However, the R programming

language contained a library which was suitable for creating this type of file format

[68].

1.4.6 OpenBabel

OpenBabel is a program which provides the ability to process multiple chemical data

languages [76], with one of its main features being the ability to convert files into

multiple formats. The program also has the ability to process grouped chemical

structure files into individual files for quicker access via database queries. As the

PubChem platform returned a collection of compound structures as a single file, the

OpenBabel platform was considered an ideal method of splitting these entries into

individual records.

OpenBabel contains two main methods of operation: users can either make use of

a Graphical User Interface to perform simple individual queries, or make use of a

command prompt terminal for more thorough access of larger datasets. In addition

to this, packages exist within R which can interact with the program and generate

results in a format more suitable for further analysis [77]. The program and the

packages associated with it are open source and free to use, with no requirements for

licensing.

1.4.7 HPC Wales/Supercomputing Wales

To assist in the reduction of drug attrition, this project was conceived as part of

a wider project which focused on the implementation and scaling of ligand (drug)

docking algorithms on the high performance computing platform HPC Wales [78],

which worked upon computed structures of the entire human proteome with particular

application to drug discovery.

The HPC Wales project was a platform which allowed academic users to perform

multiple programming operations in parallel on high specification hardware. To

accomplish this, the platform design was based on a queueing system, where users

submitted a set of tasks in a job which was then processed when the user defined

requirements of resources were met. Jobs were then executed on the platform until

a conclusion is reached, or a user or organisation defined time limit is reached in

which case the processing is terminated. To request the use of the platform, academic
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users were required to submit the type of work that was needed to be performed, the

software required and the scale of the resources that were needed to accomplish the

task. The project requisitioned the resources of HPC Wales to perform high scale in

silico tests, as well as clustering operations which scaled orders of magnitude beyond

what a desktop environment could accomplish in a reasonable timeframe.

Based at multiple Universities across Wales, the programme was restructured

in 2017/2018 in the formation of Supercomputing Wales [79], which upgraded the

specifications of the hardware and changed its target towards academic institutions

and users, however support is still provided to commercial enterprises.

1.5 Summary

In this chapter, the project outlined a brief background of the rationale to the project,

and the tasks that were to be accomplished in providing a potential alternative means

to pharmacological profiling and drug target prediction. The development pipeline

and attrition rates for drug development can be high due to the costs associated with

clinical screening tests, and methods exist to potentially provide ways to reduce these

risks and costs. This chapter also reviewed some of the database repositories available

on the internet which provide information on drugs and protein targets, as well as

tools which are used to process and assess them and to replicate alternative methods

of pharmacological profiling and in silico screening. The following chapters describe

the methods and tools in more detail and their application in the accomplishment of

the specific tasks required by the project aims and objectives.
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Chapter 2

DrugReferenceDatabase -
Compiling interactions across
various drug and protein
repositories

2.1 Introduction

On researching the availability of interactions between drugs and proteins, it was found

that each source had stored their information in various formats, which increased

the difficulty to access and pre-process individual repository files with specific filters.

The purpose of this chapter is to document the steps that were taken to extract

the information from databases detailed in Chapter 1 with the intention of creating

a database which would then aggregate and centralize all of the drug and human

protein interaction information in a consistent format. Issues encountered during

dataset pre-processing, and database design and development will also be discussed

throughout this chapter, and the steps which were taken to resolve them.

2.2 Drug and Protein Repository Analysis

Before the requirements of the database could be considered, an analysis of the

foundations of each database source was necessary to discover which elements could

be documented, and which elements could be incorporated into the database. This

section will include a description of the features from each individual database, and

the steps needed to pre-process the databases to gather the information required.

The sources will be split into two segments: the first being main database sources
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which were the initial repositories used for the compilation of a drug profiling tool,

and the second being additional repositories which were considered for investigating

further interactions based on a centralized database field entry.

2.2.1 Main Database Sources

2.2.1.1 DrugBank

The DrugBank database contains a number of downloadable files which can be

accessed by users. According to the database documentation [1], protein interactions

for drugs can be accessed via two groups, the first being the type of interaction that

exists between the drugs and proteins. These types are listed below:

• Target - a protein to which a drug binds and causes an alteration of normal

function and a desirable effect.

• Enzyme - a protein which catalyzes chemical reactions

• Transporter - a protein which shuttles ions or molecules across membranes,

either into or out of cells

• Carrier - a protein which binds to drugs and carries them to cell transporters.

In addition to these binding types, each group contains a sub-group known as

pharmacologically active proteins, which list proteins directly related to the mechanism

of action of at least one drug. Once a binding type has been selected, a user can then

download interactions of proteins based on drug category groups. An individual drug

can be assigned to one or more drug groups, which are described as follows:

• Approved - A drug which has been considered approved by one or more drug

regulation body. These drugs are typically approved by the FDA

• Experimental - A compound which has been shown experimentally to bind to

specific proteins

• Withdrawn - A drug which has been withdrawn by at least one regulator.

• Illicit - A drug which has been scheduled by at least one regulator

• Investigational - A drug which is currently undergoing a drug approval process.
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All interaction types (Target, Enzyme, Transporters and Carriers) for approved

drugs were downloaded for the purposes of profiling, and experimental drugs for the

purposes of using these interactions as a potential test set for clustering operations.

The DrugBank website also contained a Structure Data Format (SDF) file for each

drug category group, of which all drugs listed in a group were populated into a single

SDF file. The version of DrugBank that was downloaded was Version 4.3, which was

released from June 22, 2015.

Figure 2.1 displays a window of protein targets with approved drugs, of which

Table 2.1 describes the data contained within each column that was used for the

project. All protein identifier files follow the same format. The first step was to filter

proteins to the human species only, of which the csv documented it either as the

string ”Human” or the Latin name ”Homo sapiens”. There was also a number of

records which were discovered to be human proteins but had no species information

listed, in which case the file was manually amended after the species was verified via

UniProt.

Figure 2.1: Screenshot of the DrugBank Protein Target Identifiers file. ID references the UniProt
accession code, whereas the Species and Drug IDs fields reference the species attached to the protein
and the drugs that are targets of the protein in question respectively

Field Name Description
ID The UniProt accession code for the protein

Species The species associated with the protein
Drug IDs The drugs associated with the protein, referenced by their ID on DrugBank. Stored in a

semi-colon delimited format

Table 2.1: Fields of interest used for pre-processing the DrugBank protein interaction sets

Once the file had been filtered, it was then necessary to transform the aggregated

protein interactions into aggregated drug interactions for the purposes of drug profiling.

This would generate a separate interaction profile for each interaction type. The next

step was to then merge the interaction types together into a single entity, providing

a complete interaction profile for all drugs. Figure 2.2 displays a sample table of

the filtered results after pre-processing, where the protein interactions were split
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by binding type (targets, enzymes, transporters and carriers), and also listed by

Drug Classification (set as ’Good-Profile’ for FDA approved drugs and ’Exp-Profile’

for experimental drugs). While this information would have been sufficient for use

in building a profiling model in conjunction with the ToxCast set and for report

formatting, these aggregate results needed to be split into individual protein-drug

interactions for the process of compiling a database table of interactions.

Figure 2.2: Screenshot of the DrugBank Interaction set after pre-processing was performed. Each
protein is grouped into the binding type file it was discovered in for a particular drug, with each
protein separated by a semi-colon (;).

2.2.1.2 ToxCast

The ToxCast database contains a summary file which is a matrix of compounds

screened against a set of assays to determine if toxic effects can be detected. From

the downloads section [2], two compressed archive files were download: one contained

chemical information files, while the other contained a summary of the interaction

results as well as details of the protein assays used. The version specified from the

files is version 2.0, which was available on October 2015. From these summary files,

the following were used for extracting compound, protein and interaction information:

• hitc Matrix 151020.csv - A file which provides an interaction matrix

• DSSTox ToxCastRelease 20151019.xlsx - A file providing detailed information

on the chemicals used for interaction testing

• Chemical Summary 151020.csv - A file providing summarised information on

the compounds used for testing.

• Assay Summary 151020.csv - A file providing details on the protein assays used

for testing.
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A screenshot of the summary matrix file can be seen on Figure 2.3. There are a

number of values present within the matrix according to the documentation [3]: a

value of 1 demonstrated that a binding had been found between a compound and

an assay, whereas a 0 value indicated that no binding had been found. NA values

represented pairs which had not yet been tested by the database, and a -1 value

indicated that insufficient information existed from testing to draw a conclusion.

The keys found on the outside of the interaction matrix reference the more detailed

protein testing panels and compound detail tables. The fields used in the protein

table are listed in Table 2.3, while the compound details are split into two tables,

of which the main fields used are referenced in Table 2.2 to gather the compound

information required for further processing.

Figure 2.3: Screenshot of a segment of the ToxCast in vitro interaction summary matrix. Values
of 1 demonstrated that a binding had found between a compound and protein, whereas values of 0
indicated no binding was found. NA values represented pairs which were inconclusive in binding or
had not been tested.

Field Name Description
chid The ToxCast reference for a compound
code The Chemistry abstracts service code referenced by the summary matrix. Each code

begins with a C.
Substance Name The name of the compound

Structure SMILES The SMILES string of the compound

Table 2.2: Fields of interest that were used in the compound reference tables in ToxCast

Field Name Description
assay component endpoint name The name of the protein assay tested in the summary matrix

organism col name The organism associated with the protein assay
technological target uniprot accession number The measured UniProt accession codes used in the assay

intended target uniprot accession number The objective UniProt accession codes used in the assay

Table 2.3: Fields of interest that were used in the protein assay table in ToxCast

The first step in filtering was extracting all assays which contained only human

organisms. Like DrugBank, there were some erroneous records present within the

file which required manual correction. One protein, listed by UniProt accession code

’P04386’ (Regulatory protein GAL4), was associated with baker’s yeast instead of
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human as specified by the assay information file. This was corrected manually in

the source file. Once the required proteins had been found, the interaction matrix

was then filtered down to assay panels linked to human organisms, and all binding

and non-binding protein-compound pairs were documented by stepping through the

matrix.

While the drug reference table contained information on individual drugs, there

were certain proteins in the protein reference table which consisted of one or more

UniProt protein identifiers. If an assay contained more than one protein it was

delimited by a ’|’ character. It was therefore necessary to detail all the individual

protein interactions in the event a multiple protein assay was found to be a target

or non-binding to a compound. The protein assay reference table also contained

information on technological targets, which according to the documentation [4]

specified proteins that were measured in the assay in addition to the objective protein

targets. These were also included in processing the interactions in ToxCast, to

ensure as much information as possible was gathered to determine a link between a

compound and a protein within the dataset.

Once the process had been completed, compounds found within ToxCast known

to interact with a human assay were appended to the interactions found within

DrugBank. These compounds had been labelled under an additional ”DrugClass”

category known as ”Bad-Profile”, to differentiate between FDA approved drugs

(”Good-Profile”) in the DrugBank repository. Columns to detail inactive protein-

compound pairs were also documented in an additional column. Figure 2.4 provides

a view of the dataset after addition of the ToxCast drugs. Note that as ToxCast did

not categorise the type of interaction that had took place, all ToxCast interactions

were listed under the TargetProt field along with DrugBank’s targets.

Figure 2.4: Interaction Set with ToxCast drugs added
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2.2.1.3 PubChem Compounds

In order to discover potential links between compounds within the repositories, it

was necessary to find a database which was cross referenced by the majority of

repositories, and also contained additional information which would have benefited

the process of compiling information for the database. The PubChem database

was found to be a platform which contained more detailed structure information

files than the repositories themselves, as well as providing more detailed chemical

property information. There are two main platforms on the PubChem website with

regard to compounds: the Substance platform, which provides repository supplied

information, and the Compound platform, which attempts to normalize a collection of

substances into a unique compound record, and also provides chemical and structural

information.

While compounds and substances can be viewed on an individual basis via the

website, a systematic approach was necessary to successfully link the DrugBank and

ToxCast repositories to the PubChem Compound platform which had no references

beyond a SMILES structure, chemical name, and in some instances an SDF file. To

accomplish this task, the PUGREST API was used [5] which was a system that

made use of URL links to download filtered database information to users. This API

was primarily used to find PubChem IDs on DrugBank and ToxCast, through two

methods of searching:

1. First, attempting to identify the compound via the SMILES string, and

2. If no record is found via the SMILES string, then attempting to find a compound

by its name.

For example, to search for a compound which contained the SMILES string of

CCCC (Butane), the following link would need to be constructed: https://pubc

hem.ncbi.nlm.nih.gov/rest/pug/compound/smiles/CCCC/cids/txt. This would

generate a text file of results to PubChem entries which would match the SMILES

string, which at the time of writing would reference the compound number of 7843.

A search for a compound by name such as butane would result in the following

URL: https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/butane

/cids/txt. Although named searches would have increased the likelihood of more

than one result being generated, it was considered necessary for some searches as

some compound SMILES strings generated errors when queried. In the event that

either search methods generated more than one result, the first entry from the result

generated by the API was used for linking.

Page 42

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/smiles/CCCC/cids/txt
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/smiles/CCCC/cids/txt
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/butane/cids/txt
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/butane/cids/txt


James Witts

A script was generated to iterate through all unique compounds of DrugBank

and ToxCast following the above pattern of searching. On DrugBank, this was

accomplished through finding the SMILES strings for any drug which had a structure;

if any query had failed, the DrugBank structure found within its database would

have been used. On ToxCast, the SMILES string in its compound reference table

was used, with the chemical name as a fallback if the SMILES query had failed. On

accomplishing these queries, it was found that only a small number of compounds

could not be linked to PubChem. In the case of DrugBank, 1,399 out of 1,592

approved drugs found a reference to the PubChem Compound repository. 8 drugs

were manually corrected to find a reference to PubChem Compound, which are

detailed in Table 2.4. In total, 8,753 compounds from ToxCast and 1,407 drugs

from the DrugBank approved group contained a link to the PubChem Compound

repository.

DrugBank ID DrugBank Name PubChem Compound ID
DB00115 Cyanocobalamin 44176380
DB00475 Chlordiazepoxide 2712
DB00707 Porfimer sodium 57166
DB00895 Benzylpenicilloyl Polylysine 45266800
DB00995 Auranofin 24199313
DB01590 Everolimus 6442177
DB06290 Simeprevir 24873435
DB06439 Tyloxapol 70789242

Table 2.4: DrugBank records which were manually annotated to PubChem

On development of a script using the PUGREST API interface, an alternative

platform was found known as the PubChem Identifier Exchange Service [6]. This

platform allowed users to provide multiple sets of information at once to perform

queries instead of performing queries compound by compound. This could have

been used on SMILES and drug synonyms to discover PubChem entries, but was

not used as the searches had already been concluded using the PUGREST API.

Instead, the exchange service had been used to discover the ”Parents” of PubChem

compounds, which are the foundation structure of PubChem compounds. These

items were more suited to performing docking operations as they were more likely to

contain 3D formats in their structure fields. While the exchange service provided an

ideal platform for performing queries in bulk, the API allowed a platform prototype

to conduct specific queries on custom compounds within a platform prototype.

Another web service which was used on PubChem was the Structure Download

Service [7], which allowed users to download SDF files in bulk. On the provision of

valid PubChem ID values, the website provides a single SDF file containing all the

compounds queried provided they exist within the database. The platform could be
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set to download files in either 2D or 3D co-ordinate format, however only compounds

with a 3D format would be presented in the result file if the latter option was selected.

As the file generated was a single SDF file, it was necessary to split it to reduce the

time needed to process individual compound records. This was performed through a

two-stage process:

1. Splitting the SDF file via OpenBabel, then

2. Applying a consistent storage and naming convention to the individual SDF

files

While OpenBabel allowed users to split a compound into individual records, it

did not name the split compounds by their PubChem compound ID, instead applying

a simple counter to the split SDF files. On further investigation of the individual

SDF files (as shown in Figure 2.5), the first line on each SDF was the PubChem

compound ID. Through the use of a bash command (Figure 2.6), it was possible to

apply a renaming command on all SDFs within a directory using the first line in each

file.

Figure 2.5: A view of the contents of a PubChem SDF for aspirin. The first line of each SDF
within PubChem makes reference to its Compound ID within the PubChem Compound system

for f in *.sdf; do mv "$f" "$(head -n1 "$f").sdf"; done;

Figure 2.6: Bash Command to rename batch SDF files generated by OpenBabel to PubChem
Compound IDs
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2.2.2 Additional Database Sources

After processing the DrugBank and ToxCast datasets, there were 2,305 human proteins

present which are defined as proteins of interest. As this represented approximately

10% of the human genome, it was considered to be of suitable training and testing

scale for the purposes of formulating a prototype within the project timescale, while

also reducing the amount of resources and storage needed to process the whole human

proteome from additional repositories. This section describes the process of extracting

additional interaction information from these repositories, as well as any information

considered beneficial for the purposes of filtering and further development of the

database in the future.

2.2.2.1 T3DB

Although the T3DB repository was designed and built by the same group that

developed the DrugBank platform, the interaction files are stored in a somewhat

different format. In order to obtain interactions from T3DB, two files were needed:

• The Toxin Data Field File, which contained information on drugs assessed by

the repository and contained a reference to the PubChem Compound platform

• The Toxin-Target Mechanisms of Action file, which detailed the individual

interactions between T3DB drugs and Uniprot accession codes

Both files were available in either a CSV or JSON format for access [8], which were

downloaded in September 2017. When attempts were made to load the Toxin Data

field file in a CSV format, there were errors present within the file which prevented

complete loading within R. Further investigation of this error had found that the file

contained text abstracts which contained commas and were not escaped correctly

with speech quotes, which in turn caused the parser to generate more columns than

necessary for certain compounds and fail. When the JSON format was used, all

compounds had parsed successfully as the parser did not rely on commas to separate

columns. Figure 2.7 shows the Toxin Data Field file parsed and truncated to columns

of interest.

Figure 2.8 shows a truncated sample table of T3DB’s mechanism of action file. For

the purposes of the project, all compounds which contained a reference to PubChem

and interacted with the protein targets detailed in ToxCast and DrugBank were

considered and incorporated in the database.
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Figure 2.7: A screenshot of T3DB Compounds

Figure 2.8: A screenshot of T3DB Targets

2.2.2.2 Matador

The interactions found within Matador are downloadable via a single tab separated

file [9], of which a screenshot of the data downloaded from 27th September, 2017

is shown in Figure 2.9. The fields of interest within the Matador file were the

’chemical id’ and ’uniprot id’ fields which contained the PubChem Compound ID and

UniProt accession codes, respectively. As the file contained aggregated interactions

by compound, the only steps needed in preprocessing the dataset was to split the

space delimited protein accession codes into individual interactions, and then to filter

these codes to proteins of interest.

2.2.2.3 BindingDB

While users can download the entirety of the BindingDB database for access, the

database curators have also split the interactions element of the database into tab

separated files. These files contain references to other databases, one of which is

PubChem. Figure 2.10 displays a screenshot of the main segments of the BindingDB

interaction dataset downloaded from 1st July 2017, which provides interactions of

PubChem compound IDs against UniProt accession codes.
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Figure 2.9: A screenshot of the Matador interaction set

Figure 2.10: A screenshot of a segment of the BindingDB interactions set and the fields which
were used for the purposes of finding interactions of interest

According to the documentation, interactions are listed individually, though in

the case of UniProt accession codes there is a column (UniProt Secondary IDs) which

lists deprecated or obsolete protein codes at the time of the dataset’s creation. As

the project was working on information obtained from 2015 onwards, this field was

also considered in documenting potential interactions in the event an obsolete protein

had been recorded. The secondary list was delimited by commas, which required

splitting so that all protein codes were considered.

2.2.2.4 ChEMBL

In order to extract interactions from ChEMBL, it was necessary to download a

MySQL dump of the database to perform the necessary queries [10]. The version

of ChEMBL used was version 23, downloaded on September 2017. While cross

references to PubChem existed within this version, the PubChem references were

solely to the PubChem Substance platform. In order to obtain the interactions of

interest, a two-step query was performed:
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1. Query the ChEMBL platform to determine which ChEMBL compounds con-

tained a reference to a PubChem Substance

2. Query the ChEMBL platform to determine which ChEMBL compounds had

proteins listed in DrugBank/ToxCast listed as targets

These queries were separated to reduce the amount of duplicated records that

would have been generated in the interactions from different substance references.

The query for obtaining substance references is shown on Figure 2.11. With the

retrieval of all substances from the first query, PubChem’s identifier exchange service

was used to convert the database’s stored substances to the PubChem Compound

platform. In most cases, multiple substance references involved single compounds,

however in the case of 680 ChEMBL records there were entries which referred to

multiple compounds. These compounds were processed directly by their ChEMBL

ID in the Identifier Exchange Service to determine the correct individual record for

the database.

SELECT DISTINCT md.molregno, md.chembl_id, cr.src_compound_id

FROM activities act JOIN molecule_dictionary md

ON act.molregno = md.molregno JOIN compound_structures cs

ON md.molregno = cs.molregno JOIN compound_records cr

ON cr.molregno = act.molregno JOIN source src

ON src.src_id = cr.src_id AND src.src_id = ’7’;

Figure 2.11: SQL Query used to gather PubChem Substance references of ChEMBL compounds

An example query used to extract all PubChem interactions with UniProt proteins

is shown on Figure 2.12. To save on space, only a few example proteins were included

in the figure, however this query was executed to find all interactions involving the

human protein accession codes found in DrugBank and ToxCast.

SELECT DISTINCT mol.molregno,mol.chembl_id,comp.accession

FROM component_sequences as comp, target_components as tc,

compound_records cr, source src, assays as assay,

activities as act, molecule_dictionary as mol

WHERE comp.accession IN ("A5X5Y0","A8MPY1","A9UF02","O00141")

AND tc.component_id = comp.component_id AND assay.tid = tc.tid

AND act.assay_id = assay.assay_id AND mol.molregno = act.molregno

AND cr.molregno = act.molregno AND src.src_id = cr.src_id

AND src.src_id = ’7’ ORDER BY comp.accession;

Figure 2.12: SQL Query used to gather UniProt interactions of ChEMBL compounds that contain
a reference to PubChem
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2.2.2.5 UniProt FASTA Files

While most compound databases contained references to the UniProt website, it

was necessary to use some of the UniProt website’s functions to gather additional

information, such as retrieving all accession codes from the human genome and to

obtain tissue groups associated with each protein. Searching the database would also

have provided the ability to search for potential obsolete records which had been

gathered during the extraction process.

To retrieve all human proteins, the website provided an interactive view of a

download facility for proteins which have been filtered. As Figure 2.13 shows, it was

possible to gather the codes by simply selecting ”Human” from the organism tab and

then selecting the download button to retrieve the accession codes in a readable file

format. The viewer could also be altered to select specific fields, which included the

amino acid string. The download option on the viewer provided users with the ability

to download the filtered results, as well as text files of the individual proteins grouped

together to provide information which was not present in the column selection window.

Figure 2.14 displays an example of a protein text output which provided information

on the tissue groups that were associated with that protein. While the project was

mainly focused on the extraction of the proteins present in DrugBank and ToxCast,

all documented human proteins within UniProt were extracted to assist in the process

of integrating the whole human proteome for future iterations of the database.

In order to effectively group proteins into similar tissue groups, a compartment list

of 47 tissue groups was generated from popular tissue groups within the protein text

files. These tissue names are listed within Table 2.5, of which 61,777 protein/tissue

associations were found when querying the 20,224 human proteins found.

Figure 2.13: UniProt results when filtered to the human organism only [11]
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Figure 2.14: Text entry of the protein Androgen receptor (ANDR HUMAN), Uniprot accession
code P10275 [12]. Note the highlighted text displays a tissue field associated with the protein

Adipose Tissue Mammary Gland
Adrenal Gland Mesenchyma - Stem Cell
Amnion Mesothelium
Brain Muscle - Connective Tissue
Blood Vessels Nasopharynx
Blood Circulation Nervous System
Bone Ovary
Cartilage Pancreas
Carcinoma Parathyroid Gland
Cervix Penis
Colon Placenta
Ear Prostate
Embryo - Fetus Skin
Endothelium Smooth Muscle
Epithelium Synovium
Esophagus Stomach
Eye Testis
Fibroblast Thyroid
Hair Tooth
Heart Umbilicus
Intestine Urinary Bladder
Kidney Uterus
Liver Vagina
Lung

Table 2.5: List of Compartments used for gathering tissue groups for human protein text files
gathered via UniProt

2.2.2.6 CTDBase

The structure of CTDBase allowed users to either download segments of interactions

or associations [13], or to construct queries to generate filtered results on batch

queries [14]. The areas of interest from this database were Chemical-gene interactions

and the gene disease associations, however there were some practicality issues in
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downloading these sections of the database. While the chemical-gene interaction table

was of a fairly small size (22MB compressed from the set downloaded at February

2016), the gene disease association table was over 1GB in size compressed, which

meant it would have been more efficient to use the batch query function using the

protein accession codes gathered from DrugBank and ToxCast to obtain a set of

disease associations. This batch query platform, shown in Figure 2.15, allowed users

to obtain either directly referenced or assumed associations between specific proteins

and diseases amongst other connections, however the values that the platform accepts

for search terms did not allow UniProt accession codes. The lack of cross-referencing

is also apparent with the chemicals, with no PubChem compound values present in

either the interaction set or CTDBase’s chemical vocabulary set.

To resolve the cross-referencing issues with proteins, CTDBase’s gene vocabulary

list was downloaded, which contained cross references to UniProt accession codes.

Once these CTD protein ID values were obtained, the chemical-gene interaction

dataset could then be filtered to compounds which only interacted with proteins of

interest. The ID values also permitted a search for gene-disease associations, provided

that the numerical values were specified in the platform to the gene reference values.

For example, a gene ID with the value of 2 would need to have the search term

’gene:2’ in the search field. This search was primarily focused on curated gene-

disease associations only. To resolve the cross referencing issues with compounds,

PubChem Compound IDs were passed to the identity exchange service which directed

to database references within CTDBase.

Figures 2.16 and 2.17 display screenshots of some of the results generated by the

batch query and part of the interaction dataset, whereas Table 2.6 displays the fields

which were of interest to document within the database.
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Figure 2.15: Screenshot of the CTD Batch Query interface [14]. Users can select associations
which have a direct reference (Curated) or from links generated by prior knowledge within the
database (Inferred)

Figure 2.16: Screenshot of the results of querying diseases linked to human proteins
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Figure 2.17: Screenshot of a segment of the CTDBase Interactions

Field Name Description
GeneID The Entrez Gene ID identifier
DiseaseName The name of the disease identified to be connected to

a gene
ChemicalID CTDBase’s reference of a compound

Table 2.6: Fields of interest within the CTDBase files. GeneID references are possible to be
cross-referenced to UniProt proteins via the UniProt website [15]. ChemicalID references are
possible to be cross-referenced via PubChem’s Identifier Exchange Service [6].

2.2.2.7 PubChem BioAssay

In addition to storing information on compounds, PubChem also features a platform

which stored interactions between compounds and proteins. Known as Bioassay, this

platform also contains non-interacting compound-protein pairs, which was considered

a valuable additional source of additional information as only ToxCast contained

information on non-interacting pairs. Two methods of access existed for obtaining the

BioAssay interaction data: either through downloading and filtering the entirety of

the BioAssay platform by downloading individual assay XML files via the FTP [16],

or through accessing specific interactions via a URL. As the former method involved

processing approximately 1 million bioassays to determine which contained UniProt

accession codes, it was considered more practical to make use of programmatic

URL access to download interactions on the 2,305 human proteins required for

documentation in the project.

The method of access for BioAssay however was more complex in comparison

to using the PUGREST API. For example, to query all interactions associated

with a UniProt accession code, a user would need to construct the following link

https://pubchem.ncbi.nlm.nih.gov/assay/pcget.cgi? with the additional

arguments detailed in Table 2.7, with each argument seperated by an ’&’ symbol.

On submission of a query, a tab delimited file was returned which contained all

the active or inactive bindings listed within the BioAssay platform for that particular

protein, an example of which is shown on Figure 2.18. These results tables were filtered

to remove instances where no PubChem Compound ID was referenced. A limitation of
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Argument Description Example
task The type of information required

from PubChem
task=bioactivity sameseq

protacxn The UniProt protein accession
code

protacxn=P10275

start At what position in the interaction
list to start the download

start=1

limit At what position in the interaction
list to limit the download to

limit=1000000

actvty What type of bindings to
download (active or inactive)

actvty=active

Table 2.7: The arguments passed to PubChem to retrieve BioAssay interactions or inactive bindings
for a single UniProt accession code

the scraping of these results is that the specific assay experiment details were not able

to be extracted, however a method exists within the PubChem website to trace back

to the assay for a particular compound and protein. For example, to extract the assay

results generated between the Epidermal Growth Factor Receptor (UniProt Accession

Code P00533) and the compound N-(3-Bromophenyl)-6,7-diethoxyquinazolin-4-amine

(PubChem Compound ID 2857), entering the following URL https://pubchem.nc

bi.nlm.nih.gov/target/protein/P00533#cid=2857 will generate a page of all

experiments which have taken place between that protein and compound. While

impractical for bulk gathering, it is a suitable method for investigating individual

experiments of interest from the BioAssay platform.

Another potential issue discovered during the download process was that of

querying for inactive compound protein pairs, some compound protein pairs made

reference to a RefSeq accession code as shown in Figure 2.19. These codes were being

used in the same way as UniProt accession codes by the BioAssay system when the

results table was compiled. While converting these codes into UniProt accession

codes was a trivial matter, the different codes can lead to issues in tracking individual

results within BioAssay’s XML files, as no reference is made to the RefSeq accession

codes.
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Figure 2.18: A screenshot of BioAssay active results of D(2) dopamine receptor (Uniprot Accession
Code P14416)

Figure 2.19: A screenshot of BioAssay inactive results of D(2) dopamine receptor (Uniprot
Accession Code P14416)

2.3 Database Design and Implementation

In order to satisfy the requirements of the project, the database design needed to

possess the following capabilities:

• To document all compounds and drugs and their modes of action (active or

inactive) with human proteins on the database repositories considered

• To differentiate between any compounds found to be initially classified as ”Good”

(DrugBank approved drugs) or ”Bad” (ToxCast screened compounds).

• To cross-reference all drug and compound sources within a centralised database

(PubChem)

• To cross-reference all human proteins within a centralised database (UniProt)

Page 55



James Witts

• To highlight which databases contained information relating to specific in vitro

protein-compound interactions

• To document the location of the structures of all compounds, if available

• To document the amino acid sequence of all proteins, if available

In addition to the above, the following features were also considered to be desirable

for the purposes of additional filtering:

• To document the tissue groups associated with each protein

• To document all diseases associated with each protein

Figure 2.20 illustrates the relationships that needed to be created within the

database in order to satisfy the above requirements. Drugs from the database sources

needed the ability to link to protein targets, as well as the ability to link to PubChem

compound IDs in order to properly organise the databases and remove potential

duplicates from experiments, thus enhancing the integrity of the database. Proteins

would need to have information on their amino acid sequences, and links to potential

diseases and associated tissue groups.

Figure 2.20: Diagram demonstrating a simplified conceptual overview of the database and the
relationships required to be established

To reduce the amount of duplicated data that would exist from creating these

links, the database design focused on link tables which would connect various elements

with one another through IDs. The Entity Relationship Digram that incorporated

these link tables is shown in Figure 2.21, where link tables make use of the primary
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keys of the detailed drug, protein, tissue and disease tables to reduce duplication.

The design also incorporated a historical entry system; in the event that a drug

or protein had changed in terms of database identifiers, the database could keep a

historical record of changes without resulting in a large number of changes to the

database. Alternate keys would then ensure that a user could gather all entries from

an individual record from the inception of the database, while the primary keys in

conjunction with the start and end dates can provide a snapshot of a record over a

certain period of time.

Figure 2.21: Entity Relationship Diagram of the first revision of the database, where ToxCast
and DrugBank were the initial main database sources. This design allowed users to quickly discover
areas which were shared by both DrugBank and ToxCast via cross-referencing to PubChem. PK
refers to Primary Key, FK refers to Foreign Key

2.3.1 Implementing the initial design

To incorporate the design, the interactions, compounds and proteins gathered from

the repository analysis needed to be transformed to populate the tables. This involved

a multiple step process using R scripts to compile the necessary database tables.

2.3.1.1 Step 1: Creating the Detailed Record Tables

For the first step, it was necessary to transform all found drugs and proteins into

individual unique records. Once all unique entries had been found, an alternate
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key was generated for each new record which in conjunction with a date field would

allow the database to keep track of any changes that were needed on the records,

such as a change of an entry name. These were generated with a combination of an

auto-counter and a string of characters, normally associated with the table itself (i.e

the alternate key for a protein would be constructed as PROT1, PROT2, and so on

for each new unique record). The table’s primary key would continually increment

and be used in the link tables so the user would have the ability to view interactions

from a certain point in time in the databases’ history. Figure 2.22 provides a graphical

summary of this process.

Figure 2.22: Graphical example of creating a detailed record table from UniProt Accession codes

2.3.1.2 Step 2: Creating the Link Tables

Once the detailed record tables had been compiled, it was then possible to join areas

of the database with one another via link tables, which made reference to the primary

keys generated in the detailed record tables. This operation reduced the amount of

duplicated data needed within the database as SQL queries could be used to retrieve

the duplicated information. This mainly involved merging the already compiled

interaction, disease and PubChem link tables with the detailed record tables, and

Page 58



James Witts

then filtering the sets so that only the reference keys remained with the necessary

additional table information (for example, the presence of absence of a hit or miss

relating to a potential interaction in the link table between drugs and proteins). With

the use of SQL INNER JOIN statements, specific information on the detailed record

tables could then be referenced when a query is made on a link table. Figure 2.23

provides an illustrated example of creating link tables, while Figure 2.24 provides

an example of a type of SQL query performed on the initial design to access specific

details of drugs and proteins from the population of listed interactions.

Figure 2.23: Graphical example of creating a link table between drugs and protein targets

SELECT d.DrugDatabaseID, p.UniprotID, ldp.HitMissFlag

FROM linkdrugprotein ldp

INNER JOIN drug d on d.DrugID=ldp.DrugID

INNER JOIN protein p on p.ProteinID=ldp.ProteinID

WHERE ldp.HitMissFlag="Hit"

Figure 2.24: Example SQL Query to obtain all targets from the database

2.3.1.3 Step 3: Transfer to MySQL

After the compilation of the link and detailed record tables, a MySQL database was

created using the XAMPP platform to populate the database with tables. Initially,
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the files were imported via PhpMyAdmin which would create the tables and headers

based on the information found in the files imported, however the platform was not

suitable for some of the larger detailed record tables. This process was then adjusted

to creating empty tables with the necessary fields, and then using MySQL’s command

line interface to populate the tables from an external CSV file.

2.3.1.4 Limitations

While the initial design was suited for documenting the targets found within DrugBank

and ToxCast, it was found that conflicts existed between some repositories. As an

example, the database contained one inactive pairing between ToxCast Drug C99661

(Valproic Acid) and UniProt Accession code O00570 (Transcription factor SOX-1).

When cross-referenced with the PubChem database to Compound ID 3121, it was

found that this pairing was also listed as a target-drug interaction in the database

within DrugBank, under DrugBank reference DB00313. Table 2.8 shows some of the

51 conflicts that were found between listed DrugBank targets and ToxCast inactive

pairs. With the initial design of Table 2.21, it would have been difficult to determine

whether a pairing conflict was ultimately validated as a target or inactive, or to

highlight if an issue existed with a particular pairing. With the planned incorporation

of additional repositories within the database, the design needed to be altered.

ToxCast
Reference

DrugBank
Reference

Name PubChem
Compound
ID

Uniprot ID Uniprot
Entry Name

C99661 DB00313 Valproic Acid 3121 O00570 SOX1
HUMAN

C58559 DB00277 Theophylline 2153 O76074 PDE5A
HUMAN

C797637 DB00367 Levonorgestrel 13109 P11511 CP19A
HUMAN

C298464 DB00564 Carbamazepine 2554 P33261 CP2CJ
HUMAN

C73314 DB01065 Melatonin 896 Q92753 RORB
HUMAN

Table 2.8: 5 target and inactive pair conflicts found within DrugBank and ToxCast

Another issue these conflicts raised was the potential for an entry to exist within

multiple repositories, causing a potential conflict in training a profiling tool where

a protein-drug pairing existed to inform both a ”Good” and ”Bad” profile if the

repository’s database reference was solely used as a means of identification. The

database in its initial design would also have separated protein interactions with

the same compound if the database sources were different, resulting in potentially

incomplete compound-protein interaction profiles.
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2.3.2 Implementing the revised design

To address the concerns raised in the limitations of the initial design, a revision was

necessary to some of the tables within the database. Figure 2.25 displays the impact

of the revised design on the interaction table, with the key changes documented

below:

• Targets and inactive compound-protein pairs were listed separately, as not all

databases allowed the documentation of inactive sites and would have introduced

a degree of confusion and irrelevant data for non-interactive bindings.

• A conflict table to specify whether a conflict has since been identified and con-

firmed as a target or non-interactive pair, either through a literature/database

update or through other means

• Validity flags for targets and inactive compound-protein pairs, to isolate poten-

tial conflicts from the main data set

• Flags to indicate in which repository an interaction pair was documented. This

provided the ability to assess which repositories caused the most conflicts with

one another

Figure 2.25: Entity relationship diagram of changes taken to document interactions. This replaced
the LinkInteraction element found in Figure 2.21, and interactions were linked directly via the
PubChem table instead of via a repository’s internal database reference.
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These changes provided additional flexibility to the database structure, allowing

users not only the ability to filter interactions and inactive sites to specific databases,

but also to investigate, isolate and potentially resolve conflicts that exist between

repositories. The focus on PubChem compounds as a centralized source also allowed

the combination of protein interaction profiles for a single compound, where certain

proteins were considered in one database but not in another.

2.3.2.1 Creation of Hit, Miss and Conflict Tables

For the changes to be implemented, a number of modifications were needed to the

process of compiling interaction link tables, in particular for the active and inactive

compound-protein pairs which now needed to specify in which database the instance

of activity or inactivity was documented. To accomplish this, interaction files for

each repository were compiled and given an individual ’Yes’ flag for that particular

repository. When all the repository interactions were merged with the reference

keys generated in the detailed record tables, a list would be generated with the

’Yes’ flags combined in an individual protein-compound interaction, and ’NA’ values

for the remainder of fields where a flag was not found. These were easily replaced

with a ’No’ flag to clearly distinguish that the repository had not documented the

interaction in question. Finally, a validity flag was inserted to specify whether or

not an instance of activity or inactivity has been determined to be valid, removing

its potential erroneous impact on queries while still preserving the information as to

which repository the information was gathered from within the database. Figure 2.26

displays a graphical representation of compiling a segment of the active interaction

table as an example.

In order to document the conflicts, both tables were searched for matching protein

and compound reference key pairs. Once these had been found, a new table was

compiled of specified pairs which had been found within the hit and miss tables,

along with additional fields to specify if the conflict had been resolved, and which

outcome had been decided. Until this conclusion had been reached or a solution

had been found to these conflicts, all pairs found within this conflict table were to

be considered as invalid results, and not used as part of a training set for the drug

profiling experiments within Chapter 3.
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Figure 2.26: Graphical example of creating the database’s active interaction table

2.3.2.2 Analysis of Interactions and Conflicts

On compilation of the revised database design, an analysis was conducted on the

amount of information which had been compiled from each repository. Table 2.9

provides a summary of all active and inactive results that had been recorded from the

repositories that were considered in the project, based on the parameters of searching

for the human proteins which were present within DrugBank or ToxCast. The overall

entry in this table provides a summary of the numbers of all unique records within

the database, of which ChEMBL and PubChem BioAssay provide the majority of

active and inactive results.

Repository Number of
Active Results

Number of
Inactive Results

Number of
Compounds

Number of
Proteins

DrugBank 13,658 N/A 4,276 2,070
ChEMBL 1,340,634 N/A 357,298 1,239
CTDBase 204,945 N/A 9,383 2,257
BindingDB 31,067 N/A 23,739 234
Matador 8,182 N/A 781 1,089
T3DB 29,476 N/A 3,117 1,353
ToxCast 69,754 315,612 8,719 276
PubChem
BioAssay

344,229 24,956,727 360,602 1,087

Overall 1,868,271 25,220,443 373,661 2,305

Table 2.9: Summary of all active and inactive results found in the repositories considered based
on the DrugBank and ToxCast protein panels

Table 2.10 provides a summary of where conflicts had resided, of which a large

proportion of conflicts had been drawn from ChEMBL, BioAssay, and BindingDB.
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These conflicts were further assessed to determine how many repositories with active

interactions had been flagged as ”Yes” per conflict. As shown in Table 2.11, it was

shown that 90% of the conflicts found only had one repository flagged as ”Yes” within

the Hit Table. These one hit flag only conflicts were further investigated to determine

which miss repository generated the conflict, and as shown in Table 2.12 it was found

that the main source of these conflicts were caused either by ChEMBL active pairs

against BioAssay-listed inactive pairs, or from BioAssay listing both an active and

inactive pairing.

Repository Actives Flagged
as Conflicts

Actives Flagged
as Conflicts (%)

Inactives
Flagged as
Conflicts

Inactives
Flagged as
Conflicts (%)

DrugBank 532 3.9 N/A N/A
ChEMBL 319,964 23.87 N/A N/A
CTDBase 12,088 5.9 N/A N/A
BindingDB 14,795 47.62 N/A N/A
Matador 306 3.74 N/A N/A
T3DB 2,054 6.97 N/A N/A
ToxCast 10,516 15.08 15,860 5.03
PubChem
BioAssay

180,835 52.53 471,811 1.89

Overall 482,588 25.83 482,588 1.91

Table 2.10: Summary of all conflicts for the DrugBank and ToxCast protein panels detected in
the repositories considered

Number of Repositories
flagged as ”Yes” in Conflict

Number of Conflicts Proportion of Conflicts Found
(%)

1 435,165 90.17
2 37,461 7.76
3 9,174 1.9
4 518 0.1
5 to 7 270 0.06

Table 2.11: Distribution of the number of repositories which flagged a discovered protein-compound
conflict as active when an inactive pairing is indicated within another repository
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Hit Repository Miss Repository Number of Conflicts Found
ChEMBL PubChem BioAssay 271,256
PubChem BioAssay PubChem BioAssay 138,494
ToxCast PubChem BioAssay 5,818
ChEMBL ToxCast 5,009
CTDBase PubChem BioAssay 4,024
CTDBase ToxCast 3,796
BindingDB PubChem BioAssay 1,035
T3DB ToxCast 720
PubChem BioAssay ToxCast 318
ToxCast ToxCast 94
T3DB PubChem BioAssay 62
Matador PubChem BioAssay 38
DrugBank PubChem BioAssay 28
Matador ToxCast 14
DrugBank ToxCast 4
BindingDB ToxCast 0

Table 2.12: Table investigating conflicts which have been flagged as active by one repository and
inactive by one repository

2.3.2.3 Resolving Conflicts

On further investigation of these conflicts, three issues had been identified. The

first issue with regard to BioAssay internal conflicts is that multiple assays were

on occasion present within the repository which list differing results for a specific

compound-protein pairing. In order to resolve these conflicts further investigation

would be necessary into the testing parameters and types of assay performed. A

solution to resolve these conflicts would likely involve parsing through the XML assay

files which are available on PubChem’s FTP server.

With regard to the second issue of ChEMBL conflicts, on further analysis of

the database schema it had been found that activities listed within this repository

contained comments which specified the type of binding, of which some activities

listed contained inactive records that had not been documented correctly. There

had also been instances of inconclusive interactions which had been incorrectly listed

as targets. Figure 2.27 provides an example of the modified query to obtain these

comments, of which 1,419 differing types of comments had been listed for the 2,305

protein codes queried. As there was little consistency to the formatting of the activity

comments listed within the repository, a collection of activity types was used to filter

the ChEMBL activity set, which documented the majority of interactions that had

been found.

Table 2.13 provides a summary of the comment search terms that had been used

to gather the majority of the active and inactive compound-protein pairings in the

query results, however further work would be needed to document all interactions

present and to filter comments considered to be unclear. On obtaining the activities

Page 65



James Witts

from ChEMBL, it was found that instead of 1.3 million active protein/compound

instances, there were only 195,350 instances that were considered as active, while

398,879 instances were considered inactive. Approximately 721,000 instances were

considered as inconclusive and required removal from the database.

SELECT DISTINCT mol.molregno,mol.chembl_id,comp.accession,

act.activity_comment

FROM component_sequences as comp, target_components as tc,

compound_records cr, source src, assays as assay,

activities as act, molecule_dictionary as mol

WHERE comp.accession IN ("A5X5Y0","A8MPY1","A9UF02","O00141")

AND tc.component_id = comp.component_id AND assay.tid = tc.tid

AND act.assay_id = assay.assay_id AND mol.molregno = act.molregno

AND cr.molregno = act.molregno AND src.src_id = cr.src_id

AND src.src_id = ’7’ ORDER BY comp.accession;

Figure 2.27: Modification to the SQL query to obtain activity comments from ChEMBL

Active Search Terms Inactive Search Terms
active inactive
inhibitor not active
substrate no inhibition
antagonist

Table 2.13: Summary of search terms used to gather active and inactive protein-compound pairs
from ChEMBL

The third issue found was the high proportion of BindingDB conflicts. The cause

of these conflicts was due to the source of the interactions found in the file downloaded

from BindingDB. On the downloads section of BindingDB, users could download

either the entirety of the database or segments where the source of interaction was

from differing repositories. In the initial analysis, only the interactions from PubChem

had been retrieved of which a high proportion of conflicts are present. To correct this

issue, the entire BindingDB interaction file was downloaded, which not only increased

the number of interactions from the repository, but also the number of compounds.

Once these changes had been made to the ways of extracting information from

BindingDB and ChEMBL, the total figures for actives, inactives, and conflicts were

revised, found in Table 2.14 and Table 2.15 respectively. This also included changes to

the search space within BioAssay to include all compounds found within the proteins

queried. While the number of active records had been reduced from the corrections

to ChEMBL, the amount of conflicts that were present within the database was also

reduced as can be seen on Table 2.16 and Table 2.17. In the revised summary, the
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number of conflicts between PubChem BioAssay and ChEMBL had been reduced

from 271,256 conflicts (the largest amount of conflicts before the revision) to 432

conflicts. The largest number of conflicts now resided entirely on interactions only

documented by the PubChem BioAssay platform, with 154,259 conflicts detected.

Although the revised design had reduced the amount of conflicts that had been

detected in the initial revision, a prior consideration of assay types from the various

sources could have further reduced the amount of conflicts present, such as through

the removal of assays which would be incompatible by the majority of other repository

assay types.

Repository Number of
Active Results

Number of
Inactive Results

Number of
Compounds

Number of
Proteins

DrugBank 13,658 N/A 4,276 2,070
ChEMBL 193,647 395,314 235,316 864
CTDBase 204,945 N/A 9,383 2,257
BindingDB 670,933 N/A 406,927 1,213
Matador 8,182 N/A 781 1,089
T3DB 29,476 N/A 3,117 1,353
ToxCast 69,754 315,612 8,719 276
PubChem
BioAssay

731,059 30,212,401 953,481 1,261

Overall 1,509,574 30,665,860 1,157,529 2,305

Table 2.14: Summary of all active and inactive results found in the repositories considered based
on the DrugBank and ToxCast protein panels, after revisions

Repository Actives Flagged
as Conflicts

Actives Flagged
as Conflicts (%)

Inactives
Flagged as
Conflicts

Inactives
Flagged as
Conflicts (%)

DrugBank 1,062 7.78 N/A N/A
ChEMBL 30,749 15.88 30,881 7.81
CTDBase 14,818 7.23 N/A N/A
BindingDB 27,749 4.14 N/A N/A
Matador 580 7.09 N/A N/A
T3DB 2,362 8.01 N/A N/A
ToxCast 11,122 15.94 9,253 2.93
PubChem
BioAssay

200,705 27.45 220,913 0.73

Overall 236,628 15.68 236,628 0.77

Table 2.15: Summary of all conflicts for the DrugBank and ToxCast protein panels detected in
the repositories considered, after revisions
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Number of Repositories
flagged as ”Yes” in Conflict

Number of Conflicts Proportion of Conflicts Found
(%)

1 193,357 81.71
2 35,661 15.05
3 6,648 2.81
4 622 0.26
5 to 7 390 0.16

Table 2.16: Distribution of the number of repositories which flagged a discovered protein-compound
conflict as active when an inactive pairing is indicated within another repository, after revisions

Hit Repository Miss Repository Number of Conflicts Found
PubChem BioAssay PubChem BioAssay 154,259
ToxCast PubChem BioAssay 6,441
CTDBase PubChem BioAssay 4,187
CTDBase ToxCast 3,964
BindingDB ChEMBL 3,591
BindingDB PubChem BioAssay 3,181
CTDBase ChEMBL 2,061
ChEMBL ChEMBL 1,637
T3DB ToxCast 731
PubChem BioAssay ToxCast 444
ChEMBL PubChem BioAssay 353
ToxCast ChEMBL 259
DrugBank ChEMBL 165
ChEMBL ToxCast 113
ToxCast ToxCast 108
Matador ChEMBL 83
PubChem BioAssay ChEMBL 79
T3DB PubChem BioAssay 59
Matador PubChem BioAssay 40
DrugBank PubChem BioAssay 33
T3DB ChEMBL 17
Matador ToxCast 14
BindingDB ToxCast 12
DrugBank ToxCast 4

Table 2.17: Revised numbers of conflicts which have been flagged as active by one repository and
active by one other repository following consideration of activity comments from ChEMBL

2.3.2.4 Limitations

One of the limitations noted by the DrugReferenceDatabase is that in some instances

PubChem records retrieved via the PUGREST platform returned results which

had at some point been specified as a non-live record. A non-live record in this

instance referred to a compound which had either not yet been released publicly

or had been declared later as obsolete or found to be incorrect. The presence of

these non-live records had been highlighted when attempting to process parent

compounds via PubChem’s identifier exchange service, where certain compound ID

entries had not returned a result. Figure 2.28 displays an example of a non-live

record which would only be directly retrievable by entering the ID directly into

the URL. Of the 373,692 PubChem entries documented within the database, 62
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compound entries had been identified as potential non-live records. As Figure 2.29

shows, ChEMBL had been the primary source of non-live records being introduced

into to the DrugReferenceDatabase, with only a small proportion being introduced

from querying BioAssay, ToxCast and DrugBank.

Another limitation of the database is that the interactions documented do not

specify the conditions of the assay that led to the interaction being classified, which

in turn led to the large number of conflicts detected. Further consideration of the

types of assay that had been performed would have reduced the amount of conflicts,

as well as provide the means of filtering for specific assays of interest whilst compiling

a list of interactions.

Figure 2.28: Entry for a non-live PubChem record CID 653, associated with the Matador Database
under the chemical name DTC

As the PUGREST API and ChEMBL platforms have the capacity to return non-

live records, these entries have remained in the database but have been documented

for potential flagging as invalid hits and misses until a solution has been determined

through an update by the PubChem team or through further filtering of the API’s

results to determine whether a result is a correct record before integrating further

species or all human protein accession codes. Further work must also be undertaken to

determine if these non-live entries already exist within the database under a different

live PubChem Compound ID, to investigate the potential for merging cross-references.
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Figure 2.29: Bar chart demonstrating number of non-live PubChem Compound IDs introduced
from data obtained from extracting the compound repositories

2.4 Discussion

On implementation of the revised design, the database contained interactions between

compounds and human proteins from a significant number of repositories detailing

a vast collection of functional data. Over 1.1 million PubChem entries are stored

with interactions of the 2,305 proteins contained within DrugBank and ToxCast,

where over 1.5 million instances of interactions and over 30 million instances of

non-interactions are stored. The database also contains references to repositories that

use their own identifiers, of which over 250,000 cross-references are present. For ease

of installation, the complete database has been exported into an individual SQL file

which can be obtained from the project appendix.

Despite the vast amount of information that is currently contained within this

database, the information captured and gathered by the repositories considered only

represents a very small scale of the protein-drug search space, and further work is

necessary in order to refine issues encountered during the data gathering phase. For

example, to document the protein interaction profiles of all compounds found with

the 2,305 proteins would require approximately 2 billion instances of active or inactive

pairings to be stored. This would be exponentially increased if the database was to
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consider the whole human genome (proteome) which includes over 20,000 UniProt

accession codes. The information captured by the database is also subject to further

scrutiny and information retrieval, as the testing methods of each repository could

deliver differing results and in turn generate conflicts.

2.4.1 Further Work

From the numbers of conflicts which have been detected between the repositories, in

particular with BioAssay itself, it is clear that further information beyond records

of ”bare” interaction is needed. A possible approach would be to consider the

experimental parameters for tests between compounds and proteins to further assess

which tests would be the most appropriate to use as a classification of activity.

However, as each repository has different experimental parameters and methods of

storing them, a further revision of the database’s design would be needed to store

these parameters correctly and efficiently for comparison and analysis purposes. A

means to accomplish this would have been to assess the type of assay, such as in

the case of ToxCast as described in Chapter 1 where assays were categorised into

biochemical and cell-based assays.

Another area for further consideration is the planned changes for PubChem which

were ongoing at the time of writing. One of these changes to the platform which was

under testing in beta at the time of writing included a bulk search function, which

allowed users to pass either compound, substance or BioAssay entry fields via a CSV

file to generate a downloadable list of information within PubChem. This bulk search

functionality has the potential to remove the need to use the Identifier Exchange

Service or the PUGREST API for both small and large scale queries; however use of

the bulk search platform raised similar issues to the API and Exchange service in

large scale queries, where the website would time out and cancel a query attempt

if result compilation exceeded a timeout value assigned by the PubChem website.

Another change announced by the PubChem team was the retirement and eventual

decommissioning of the PubChem BioAssay Tools platform from November 1, 2018

[17]. This would likely cause an impact on the current method of web based scraping

of BioAssay interactions based on UniProt accession codes, however XML file scraping

would likely need to be applied in further data gathering attempts going forward to

obtain the experimental parameters of the assays in bulk from the BioAssay platform.
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Chapter 3

Using machine learning
approaches for profiling
drug-protein interactions

3.1 Introduction

On conclusion of the implementation of the DrugReferenceDatabase, it was possible

to quickly extract via database queries the customised drug-protein interaction panels

necessary to conduct investigations of computational drug profiling and interaction

prediction. This chapter will focus on the construction of classification models to

predict the profile of candidate compounds, as to whether or not their properties and

their interaction with proteins (not considering dosage) would be sufficient to label

the compound as a ”Good” (i.e FDA-like) or a ”Bad” (i.e ToxCast associated) profile.

In order to accomplish this goal, the chapter provides an overview of recent similar

studies within the field of drug discovery which made use of machine learning tools

and conduct a review of the tools and classification algorithms that are intended

to be used for constructing this classification model. The chapter then provides a

description and discussion of the testing procedures used in the process of training

and testing these profiling models, followed by a summary of findings and areas for

further work.

3.1.1 Background

Machine learning tools have been used in a number of studies in the drug discovery

process in a variety of approaches. They have also been increasingly adopted by

industries within the drug development process; in a review of artificial intelligence

processes by Mak et al., a number of partnerships have been formed between AI
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companies and pharmaceutical companies [1]. Some examples of pharmaceutical

industry involvement highlighted within the review include work by Bayer in the

process of predicting treatment response to certain cancer types, and AstraZeneca

in evaluating targets against neurodegenerative diseases. While the review found

that no developed drugs had yet made use of AI approaches, it highlighted that the

possibility was increasingly likely within 2 to 3 years.

Machine learning methods have also become increasingly portable with improve-

ments in processing power. In a review of machine learning methods in pharmaceutical

research by Ekins, the review had found some models such as drug-drug interaction

prediction and target prediction could be implemented on mobile phone platforms [2].

Mobile phone platforms have also been used in increasing frequency in crowd-sourcing,

with projects on the BOINC platform providing the means for users to contribute

various types of hardware to large scale computing problems, including mobile phones

via an app [3] [4]. While these approaches described in this section explore different

questions to the core question being addressed in this work, their discussion highlights

the depth of information that can be applied to a classification problem.

In terms of recent academic studies in drug discovery and machine learning, one

good example is a study conducted by Scheeder et al. which assessed the use of

machine learning tools through using small molecule drug images [5]. This study

reported that there were a number of fields of interest through the use of images,

from method of action and toxicity prediction to drug similarity clustering, however

such techniques required further efforts from research groups in sharing of datasets

to verify results. A similar study by Jimenez-Carretero et al. also proposed and

applied an automated means of using microscopy images for the purposes of toxicity

screening [6]. They found that the models trained with this method had predicted

toxicity of drugs with a different mechanism of molecular action than that present in

the training set, which was later found to be confirmed through cell assays. Another

toxicity prediction platform approach reported similar promising results of accuracy,

with the eToxPred platform being able to identify as much as 72% of toxic compounds

tested [7].

Another example but in a narrower field of application by Esteva et al. made similar

use of image classification to determine differing levels of skin cancer progression [8].

Within this study they had found that the developed model had performed to an

equivalent level to a dermatologist in classifying cancer types, and although they

had acknowledged that a dermatologist would use additional means beyond visual

identification of skin, further work to complement the classifier within a professional
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setting could provide benefits.

Other studies made use of machine learning in drug discovery for a different

application through identifying organ targets through the assessment of in vitro

pharmacological profiles [9]. In the report by Remez et al., an approach was developed

to create a profile of the impact of drugs on organs within the human body (split

into 47 individual entities) as an alternative to conducting in vivo studies. They

found that in some cases organ toxicity was related to a drug’s primary targets,

however in most cases additional information was required to identify potential organ

hazards, in which in silico target predictions assisted in complementing existing in

vitro interaction profiles. Another example which makes use of panels for predictions

include a technique named CDRScan[10]; a response prediction algorithm which

attempts to identify ideal candidates for cancer treatment. The study in question

makes use of predictive values of compounds’ activity against cancer cell lines, for

which a panel of 567 genes strongly associated with cancer pathology were used in the

process of predicting potential interactions. The report concluded that a high degree

of accuracy had been obtained, and proposed 14 oncology and 23 non-oncology drugs

with potential anti-cancer properties.

Other recent drug discovery approaches include to treatment options for specific

population groups. In one study by Aljumah et al., models were constructed of

treatment preferences between young and old patient groups in the management of

diabetes, and found that in older age groups in Saudi Arabia that drug treatment

was more appropriate, while for younger age groups diet and weight control were of

higher importance.[11].

Machine learning also provides a case for improving rates of diagnosis for conditions.

Another study related to diabetes constructed training models in WEKA to predict

the diagnosis of patients from suffering the type 2 variant of the condition [12]. That

study had found the model, which was based on patient’s health properties such as

blood pressure and body mass index, had achieved a result of 95.2% accuracy in

assessing positive and negative cases of type 2 diabetes.

Other approaches also make use of the same data sources as described in Chapter

2. One example is a report by Rodŕıguez-Pérez et al. which made use of the PubChem

BioAssay platform for generating protein-compound matrices for machine learning

[13]. In the study they found that in most cases machine learning methods making

use of compound-protein matrices were complicated by issues of data imbalance,

where most screenings which took place are classified as inactive. In addition to this,

another problem which was highlighted in the study was the lack of information which
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could be contributed by industry findings due to it being withheld from the public.

This finding was reeinforced by the data gathering exercise that was conducted for

proteins in Chapter 2. The researchers found that with the BioAssay platform it was

possible to construct a complete active/inactive compound-protein interaction matrix

from certain assays, however as stated in the report by Vogt et al. discussing the

method of interaction, no quality checks were performed for potential conflicts which

have been highlighted in this study’s attempts of extracting interactions from the

BioAssay platform itself [14].

In terms of studies which make use of interaction matrices for the purposes of

machine learning, some papers make reference to methods of predicting interactions

through the use of drug and protein structural similarity [15] [16]. These kind of

methods however are beyond the scope of this chapter, instead these individual

approaches are considered in more detail in Chapter 5. The approach presented

within this chapter differs from other studies in that it makes use of only in vitro

interaction information or known chemical properties to make predictions.

3.2 Methodology

In order to ensure the data gathered was explored efficiently in generating a profiling

model, three approaches were considered in generating a data set. The first approach

involves the use of the protein panel discussed in Chapter 1 from the report by

Bowes et al. [17]; referred to as Panel 44, this panel contained 44 targets to identify

potentially hazardous compounds. As two targets within this panel refer to two

protein entries, the Panel is defined by 46 UniProt accession codes. The second

approach refers to another protein panel commonly referred to as Panel 331 [18], of

which 144 human proteins were present. The third approach considered proteins had

been listed as pharmacologically active in DrugBank, of which 668 proteins were

present within the DrugReferenceDatabase. This protein panel was referred to as the

Pharmacology Panel. While the database contained more information to generate a

greater searchspace for profiling, the use of these protein panels was considered to

be plausible for the generation of a potential profiling tool. The UniProt Accession

codes attached to each of these panels are included in the Appendix.

With the generated datasets, a selection of features and attributes were then used

to investigate their impact on profiling accuracy. The first approach would consider

a simple activity flag matrix between compounds and proteins. The second approach

expands on this matrix with the inclusion of inactive compound protein pairs and
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inconclusive results. The final approach implements chemical property attributes,

both as individual entities and in conjunction with the active protein compound

pairs.

3.2.1 Software and Hardware

To ensure that a variety of classification algorithms were freely available to allow

appropriate reproducibility for this study, the classification software WEKA had

been used, which is a Java based application that provides a collection of different

types of classifier which were free to use. While most classifiers are based on a

similar principle of building a set of rules based on the attributes presented within

a dataset, their methods of execution and presentation of models can differ. For

example, while models generated by the J48 and REPTree algorithms would generate

binary decision trees for classifying candidate drugs, rule-based classifiers such as

JRip would construct models which base decisions on 1 or more attributes to reach a

decision of a single instance. Table 3.1 provides a summary of the types of classifiers

which were used in the classification experiments. A variety of classifier types were

used to assess performance, however additional classifiers are also available from

WEKA’s package manager.

Classifier Name Classifier Type
DecisionTable [19] Ruleset

JRip [20] Ruleset
PART [21] Ruleset

J48 [22] Decision Tree
RandomForest [23] Decision Tree
RandomTree [23] Decision Tree

REPTree [24] Decision Tree
Logistic [25] Functional

Naive Bayes [26] Bayes

Table 3.1: Caption describing the classifiers used within WEKA for all experiments

All tests were performed with default settings defined by WEKA, of which version

3.8.3 was used. All classifiers were evaluated by 10 fold cross validation, which

distributes the dataset 10 times into a 90%/10% training/test split to provide an

average performance of the classification results, and so that all instances within the

dataset are considered for evaluation purposes. The environment which was used

to train and test the classifier models was a HP EliteBook 745 G3 laptop, which

contained an AMD processor, a 256GB SSD drive and 8GB of RAM.
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3.3 Active Pairs Only

In order to construct a dataset which was suitable for use within a classifier, it was

necessary to format a list of interactions into a matrix of a similar style to the dataset

within ToxCast. Figure 3.1 illustrates a graphical example of a small scale interaction

matrix, where each row in the matrix comprises of a compound which had interactions

present within one of the protein panels listed. Columns would comprise of proteins

of interest, and individual cell values within this matrix would represent one of the

following:

• 0 - Indicating that no interaction had been found between a compound and a

protein

• 1 - Indicating that an interaction had been found between a compound and a

protein

Figure 3.1: Illustrative example of an interaction matrix

Figure 3.3 provides an example of a truncated query which was used by the

database to retrieve the interacting compounds of interest. In order to ensure that as

many interactions as possible were retrieved, all repositories documented within the

database were considered in the retrieval. Any interactions which were flagged as a

conflict as described in Chapter 2 were not included in the training or test sets to

ensure that the models used the most correct information possible.

Figure 3.2 provides a summary of the numbers of compounds that were retrieved

from the three main panel approaches, which would be the numbers considered for all

approaches as they contain at least one interaction. The fourth column in the table

details compounds which are present within both databases (i.e compounds which

contain interaction information from both DrugBank and ToxCast as described in

Chapter 2). These were initially removed from the model to provide the best chance of
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demonstrating a differentiation between the DrugBank and ToxCast sources, however

this presented the test with a heavier class imbalance between ”Good” and ”Bad”

profiles.

Once the lists had been retrieved and pre-processed, the task of conversion to

a format suitable for WEKA could commence. Figure 3.4 provides an illustrated

example of this process, where the database’s individual interactions are converted

into a matrix format. In addition to this, WEKA has a specific format known

as ARFF which provides header information to describe each attribute within the

dataset. Attributes which can be considered within WEKA include numeric, string

and nominal (i.e class) values. R provided a library package known as ”foreign” to

easily generate the header file of the matrix for this purpose [27].

Figure 3.2: Summary of distribution of ”Good” (DrugBank) and ”Bad” (ToxCast) profile com-
pounds based on active interactions only. The number of conflicting compounds refers to compounds
which were present within both DrugBank and ToxCast and which were excluded from the training

SELECT p.CompoundID,u.UniprotID FROM hit h

INNER JOIN pubhcem p ON p.PubchemID=h.PubchemID

INNER JOIN protein u ON u.ProteinID=h.ProteinID

WHERE d.DrugClass="Good-Profile" AND h.IsValid="TRUE"

AND u.UniprotID IN (’P10275’,’P04150’,...)

Figure 3.3: Example query used to obtain active compound-protein pairings for ”Good-Profile”
drugs
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Figure 3.4: Illustrated example of the process used to convert interactions found in the database
to a format suitable for use in WEKA

3.3.1 Initial Findings

From initial analysis, it was clear that there was an imbalance present between

both classes within all sets, which could cause an impact on the performance of

the classifiers. In addition, there was also a clear imbalance in the reported protein

screenings involving several proteins. Table 3.2, 3.3 and 3.4 provides a summary

of the 15 most screened proteins in terms of active results for Panel 44, Panel 331

and Pharmacology panel respectively after potential conflicts had been removed.

Between all panels, there is a greater degree of interactions present with the ”Bad”

ToxCast compounds in comparison to the ”Good” DrugBank compounds, in particular

with a handful of proteins which have significantly higher amounts of interaction in

comparison to the rest of the panel. This is likely due to the higher reported incidence

of interactions of the ”Bad” profile class, in addition to the way that the ToxCast

interaction matrix had been parsed, with certain assays involving more than one

protein. Despite this, there appeared to be some distinction present between both

classes for highly screened proteins to potentially determine a difference in interaction

profiles. For example, in the case of Panel 44, each class in the top 15 interactions
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had 5 proteins which were not present within the opposing class, whilst for Panel 331

and the Pharmacological panel the top 15 proteins in each class were different.

In order to prevent issues regarding the class imbalance, further adjustments were

made to the classes in terms of their weighting, which is the impact an instance’s class

will have within the dataset. This was accomplished through the use of WEKA’s

ClassBalancer pre-processing command, which adjusted the weighting of attributes

so that the smaller population of ”Good” profile compounds were overall considered

equally to the ”Bad” profile compounds by the classifiers. The weight adjusted values

were considered in conjunction with the dataset unmodified with all panels to assess

their impact on overall performance.

Panel 44
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
Q12809 KCNH2 HUMAN 75 P10275 ANDR HUMAN 1,449
P11229 ACM1 HUMAN 74 P04150 GCR HUMAN 1,034
P08172 ACM2 HUMAN 72 P22303 ACES HUMAN 288
P35367 HRH1 HUMAN 66 Q01959 SC6A3 HUMAN 245
P35348 ADA1A HUMAN 64 P35354 PGH2 HUMAN 233
P08913 ADA2A HUMAN 60 P23975 SC6A2 HUMAN 226
P20309 ACM3 HUMAN 60 Q12809 KCNH2 HUMAN 150
P23975 SC6A2 HUMAN 58 P20309 ACM3 HUMAN 141
P28223 5HT2A HUMAN 58 P08913 ADA2A HUMAN 134
P31645 SC6A4 HUMAN 53 P08172 ACM2 HUMAN 130
P14416 DRD2 HUMAN 52 P28223 5HT2A HUMAN 121
P08908 5HT1A HUMAN 51 P35372 OPRM HUMAN 119
Q01959 SC6A3 HUMAN 50 P14416 DRD2 HUMAN 117
P07550 ADRB2 HUMAN 47 P21728 DRD1 HUMAN 111
P35354 PGH2 HUMAN 46 P35367 HRH1 HUMAN 107

Table 3.2: Top 15 interacting proteins in Panel 44. Proteins which are not present in the opposite
class’ top 15 interactions are highlighted in bold font.

Panel 331
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P10635 CP2D6 HUMAN 101 O75469 NR1I2 HUMAN 2054
P08684 CP3A4 HUMAN 88 P37231 PPARG HUMAN 1532
P42574 CASP3 HUMAN 75 P10275 ANDR HUMAN 1449
Q12809 KCNH2 HUMAN 75 Q96RI1 NR1H4 HUMAN 1409
P11229 ACM1 HUMAN 74 P04150 GCR HUMAN 1034
P08172 ACM2 HUMAN 72 P11511 CP19A HUMAN 938
P35367 HRH1 HUMAN 66 P10826 RARB HUMAN 581
P05177 CP1A2 HUMAN 63 Q14994 NR1I3 HUMAN 551
P08913 ADA2A HUMAN 60 P12931 SRC HUMAN 518
P20813 CP2B6 HUMAN 60 P05177 CP1A2 HUMAN 500
P23975 SC6A2 HUMAN 58 P04798 CP1A1 HUMAN 467
P28223 5HT2A HUMAN 58 P03956 MMP1 HUMAN 465
P31645 SC6A4 HUMAN 53 P14780 MMP9 HUMAN 453
P11712 CP2C9 HUMAN 52 Q07869 PPARA HUMAN 451
P14416 DRD2 HUMAN 52 P33261 CP2CJ HUMAN 370

Table 3.3: Top 15 interacting proteins in Panel 331
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Pharmacology Panel
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P10635 CP2D6 HUMAN 101 O75469 NR1I2 HUMAN 2054
P01375 TNFA HUMAN 93 P37231 PPARG HUMAN 1532
P08183 MDR1 HUMAN 92 P10275 ANDR HUMAN 1449
P08684 CP3A4 HUMAN 88 Q03181 PPARD HUMAN 1208
Q12809 KCNH2 HUMAN 75 P04150 GCR HUMAN 1034
P11229 ACM1 HUMAN 74 P11511 CP19A HUMAN 938
P05231 IL6 HUMAN 72 P11473 VDR HUMAN 814
P08172 ACM2 HUMAN 72 P19838 NFKB1 HUMAN 748
P10415 BCL2 HUMAN 70 P13500 CCL2 HUMAN 701
P35367 HRH1 HUMAN 66 P28702 RXRB HUMAN 633
P35348 ADA1A HUMAN 64 P05412 JUN HUMAN 582
Q92887 MRP2 HUMAN 63 P10826 RARB HUMAN 581
P01584 IL1B HUMAN 60 Q03405 UPAR HUMAN 556
P08913 ADA2A HUMAN 60 P13631 RARG HUMAN 540
P20309 ACM3 HUMAN 60 P05121 PAI1 HUMAN 526

Table 3.4: Top 15 interacting proteins in the Pharmacology Panel

3.3.2 Classifier Results

Table 3.5 displays the results of the classifiers against the panels specified where

weights were unmodified. The first classifier in the table (ZeroR) simply classifies all

instances as the majority class within the training fold, so classifiers which have better

accuracy levels than ZeroR are generating decisions which are better than simply

assuming all instances are the training dataset’s majority class. In this instance, most

classifiers did not exceed overall accuracy levels significantly, and accuracy levels for

classifying ”Good” profile compounds were poor. In terms of panel selection having

an impact on accuracy, the increase of scale in search space had a positive impact

on performance. Table 3.6 displays the result of the classifiers when class balancing

was performed, which showed that while ”Good” profile accuracy had improved with

this alteration, ”bad” profile accuracy had suffered in turn. Increases in the scale of

protein search space had also increased accuracy levels with the weighting change

implemented.
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Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 0 100 85.71 0 100 89.3 0 100 88.14

DecisionTable 27.5 96.9 87.02 18.7 98.5 89.94 26.2 97.8 89.32
JRip 33.4 96.3 87.28 30.9 97.4 90.32 34.2 96.9 89.49

PART 30.4 95.9 86.56 42.9 96.2 90.51 52.1 94.9 89.81
J48 31.6 96.3 87.02 30 97.2 90 38.7 96 89.16

RandomForest 28.1 96 86.27 39.3 97.3 91.12 36.1 97.6 90.32
RandomTree 25.4 95.1 85.15 37.2 95.6 89.37 37.9 95.2 88.39

REPTree 30 96.3 86.82 30.5 97.4 90.26 41.2 96.3 89.79
Logistic 29.1 96.6 86.95 38.4 97.1 90.8 47.1 93.9 88.33

NaiveBayes 41.9 91.5 84.43 47.3 92.7 87.83 44.7 92.8 87.14

Table 3.5: Classifier results for active interactions only where attributes were unmodified in
weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 29.5 70 64.19 50.4 50.1 50.09 50.4 50 50.08

DecisionTable 87.2 68.9 71.52 87.8 75.7 77 91.3 67 69.92
JRip 84.9 72.3 74.13 89.3 76.7 78.04 90.8 71.4 73.73

PART 73 79.4 78.45 74.6 84.8 83.75 61.8 92.1 88.49
J48 81 75.5 76.29 75.4 83.1 82.24 64.3 90.3 87.23

RandomForest 68.6 81.5 79.63 74.6 85.6 84.45 64 92.7 89.3
RandomTree 60.9 81.2 78.29 66 85.7 83.59 51.9 91.2 86.56

REPTree 82.2 75.2 76.23 88 76.7 77.89 84.7 78.1 78.84
Logistic 81.2 75.4 76.19 78.4 84.6 83.96 63.6 89.1 86.1

NaiveBayes 71.2 79.7 78.52 80.5 81.4 81.3 64.9 89.3 86.43

Table 3.6: Classifier results for active interactions only where class balancing was performed

3.3.3 Discussion

From the results gathered from the protein panels, it was found that the class

imbalance had some impact on overall classification accuracy, requiring the need

for implementing some element of class distribution adjustment in order to retrieve

more satisfactory classification levels for ”Good” profile compounds. To illustrate

an example of the impact of balancing on the classifier models, Figure 3.5 displays

an example model of the J48 classifier generated from the complete unmodified

dataset within Panel44, while Figure 3.6 displays the model with the ClassBalancer

implemented on the dataset. On the class decision branches, the number on the left

indicates how many instances were classified correctly, while the one on the right

indicates how many instances were classed incorrectly by the model. It can be noted

that while the tops of both trees place similar emphasis on the heavily screened

proteins listed earlier, the balanced tree places additional emphasis on interactions

taking place more widely within the panel which led to the increase in accuracy.

While the classifiers did not perform as well with regard to ”Good” profile

compounds, it was pleasing to find that a large majority of the ”Bad” profile class
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had been classified on models which made use of a number of proteins for potential

profiling, with some classifiers correctly predicting 80+% of the compounds on

the cross validation testing. With some compound crossover being found between

DrugBank and ToxCast, it is expected that there may be some instances where

certain compounds could be considered beneficial in one context but can also have the

potential to cause harm in another. Further consideration should therefore have been

made between the modes of action and dosage to further refine the classifications.

However, there is some reasonable basis to the categorisations, as they distinguish

between two general groupings of compounds – those that are largely non-toxic at

typical therapeutic dosage levels and those that are largely not.

This would require further analysis in determining which beneficial compounds

could be considered too harmful; one area of promise would be in the use of different

repositories to determine beneficial and harmful candidate drugs not considered by

the model and to be considered later in the chapter after all avenues of modification

have been explored.
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Figure 3.5: Segment of the J48 Classification tree applied to Panel 44 interactions, before class balancing
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Figure 3.6: Segment of the J48 Classification tree applied to Panel 44 interactions, after class balancing
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3.4 Active and Inactive Pairs

To consider inactive compound protein pairings for this part of the analysis, it was

necessary to perform some modifications to the construction process of the interaction

matrix. In this instance, two types of modification were performed and assessed: in

the first modification, the matrix assigned a ’-1’ nominal value to areas of the matrix

where an inactive pairing had been found. This would leave the ’0’ nominal value as

instances where no active or inactive confirmation had been documented in order to

be considered by the classifier. The second modification would involve replacing the

’0’ nominal value for undocumented pairs as a non-applicable value so they would

not be considered as a value within the classifier’s training or testing. As the vast

majority of the interaction search space being queried is missing, it was expected

that the overall performance of this second modification would be poor. Figure 3.7

displays an illustrated example of the changes that were made to accommodate both

modifications, while Figure 3.8 provides an example of the query that had been used

to retrieve inactive protein-compound pairs from the DrugReferenceDatabase.

Figure 3.7: Illustrated example of the revised process used to convert active and inactive compound-
protein pairs found in the database to a format suitable for use within WEKA
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SELECT p.CompoundID,u.UniprotID FROM miss m

INNER JOIN pubhcem p ON p.PubchemID=m.PubchemID

INNER JOIN protein u ON u.ProteinID=m.ProteinID

WHERE d.DrugClass="Good-Profile" AND m.IsValid="TRUE"

AND u.UniprotID IN (’P10275’,’P04150’,...)

Figure 3.8: Query used to obtain inactive compound-protein pairings for ”Good-Profile” drugs

3.4.1 Initial Findings

Tables 3.7, 3.8 and 3.9 provide summaries of the top 15 proteins which were

considered to be inactive in the panels used. The distributions highlighted in these

tables highlight that an equivalent or greater number of inactive results exist within

the searchspace, however even with the inclusion of these results there would still be a

large proportion of the interaction matrix which would be considered as inconclusive.

This in turn would lead either to classifiers being trained on a large proportion of

missing information, or classifiers which would likely mainly focus on inconclusive

results. In the former case, the classifiers would likely assume that the majority class

would be the most accurate decision path, while the latter would likely have issues

on compounds which have been screened more heavily and contain more active and

inactive results than those found in the training model.

Panel 44
Good Profile Compounds (DrugBank Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P21728 DRD1 HUMAN 85 P04150 GCR HUMAN 1467
P37288 V1AR HUMAN 78 P10275 ANDR HUMAN 890
P41143 OPRD HUMAN 70 P35372 OPRM HUMAN 644
P35372 OPRM HUMAN 69 P41143 OPRD HUMAN 638
P41145 OPRK HUMAN 69 P37288 V1AR HUMAN 615
P32238 CCKAR HUMAN 61 P14416 DRD2 HUMAN 611
P25101 EDNRA HUMAN 60 P11229 ACM1 HUMAN 577
P06239 LCK HUMAN 58 P21728 DRD1 HUMAN 495
P21554 CNR1 HUMAN 58 Q12809 KCNH2 HUMAN 421
P14416 DRD2 HUMAN 57 P41145 OPRK HUMAN 375
P29274 AA2AR HUMAN 57 P51787 KCNQ1 HUMAN 335
P21397 AOFA HUMAN 56 P08908 5HT1A HUMAN 142
P22303 ACES HUMAN 52 P31645 SC6A4 HUMAN 138
P23219 PGH1 HUMAN 52 P28223 5HT2A HUMAN 137
P04150 GCR HUMAN 51 P08588 ADRB1 HUMAN 136

Table 3.7: Top 15 proteins with inactive results in Panel 44
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Panel 331
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P29466 CASP1 HUMAN 125 P04150 GCR HUMAN 3170
P28482 MK01 HUMAN 113 P11511 CP19A HUMAN 2822
P21728 DRD1 HUMAN 102 P37231 PPARG HUMAN 2629
P37288 V1AR HUMAN 102 P10276 RARA HUMAN 2575
P35372 OPRM HUMAN 92 Q96RI1 NR1H4 HUMAN 2544
P49146 NPY2R HUMAN 86 P10275 ANDR HUMAN 2485
P25929 NPY1R HUMAN 85 P10827 THA HUMAN 2361
P11712 CP2C9 HUMAN 83 Q07869 PPARA HUMAN 2033
P08246 ELNE HUMAN 79 P10826 RARB HUMAN 2020
P33261 CP2CJ HUMAN 79 Q14994 NR1I3 HUMAN 1994
P08575 PTPRC HUMAN 78 P03372 ESR1 HUMAN 1763
P14416 DRD2 HUMAN 78 P29466 CASP1 HUMAN 1119
P25101 EDNRA HUMAN 78 P28482 MK01 HUMAN 1074
P08912 ACM5 HUMAN 77 P35968 VGFR2 HUMAN 1054
P21452 NK2R HUMAN 77 P12931 SRC HUMAN 1031

Table 3.8: Top 15 proteins with inactive results in Panel 331

Pharmacology Panel
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P13569 CFTR HUMAN 233 P16473 TSHR HUMAN 3876
P11473 VDR HUMAN 208 P04150 GCR HUMAN 3775
P10828 THB HUMAN 141 P19838 NFKB1 HUMAN 3703
P10253 LYAG HUMAN 137 P19793 RXRA HUMAN 3422
P28482 MK01 HUMAN 134 P11511 CP19A HUMAN 3404
P21728 DRD1 HUMAN 121 Q92731 ESR2 HUMAN 3401
P37288 V1AR HUMAN 115 Q03181 PPARD HUMAN 3291
P41143 OPRD HUMAN 104 P37231 PPARG HUMAN 3266
P35372 OPRM HUMAN 103 P10276 RARA HUMAN 3095
P41145 OPRK HUMAN 101 P10275 ANDR HUMAN 3082
P11712 CP2C9 HUMAN 97 P05412 JUN HUMAN 3025
P14416 DRD2 HUMAN 92 P62508 ERR3 HUMAN 2650
P33261 CP2CJ HUMAN 92 P11473 VDR HUMAN 2610
P08246 ELNE HUMAN 88 P10827 THA HUMAN 2495
P08912 ACM5 HUMAN 88 P03372 ESR1 HUMAN 2269

Table 3.9: Top 15 proteins with inactive results within the Pharmacology Panel
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3.4.2 Classifier Results

Tables 3.10 and 3.11 show the results of the classifiers when inactive results were

considered and unknown pairings were excluded from consideration. The results

show that the removal of the unknown variables had a negative impact on the overall

accuracy of the results in the unmodified analysis, and in most cases classifiers had

assumed the same majority only model as ZeroR. In the instance of the DecisionTable

rule, which achieved far higher accuracy levels, the models generated resorted to

using a very small selection of highly screened proteins within the panel to determine

a compound’s potential profile, and so this is likely to be overfitted. While class

balancing improved overall accuracy levels, these metrics did not exceed the levels that

were obtained in Table 3.6, where class balancing was applied on active interactions

where attributes were unmodified in weightings.

For the second approach, the results of which are found in Tables 3.12 and 3.13,

inconclusive values were given a separate nominal class in conjunction with the intro-

duction of inactive classes. The addition of inactive pairs provided an improvement

in overall accuracy in comparison to Tables 3.5 and 3.6 in both unmodified and

profile weight balanced cases, however these models are again likely to be overfitted

to the dataset. Further assessment of some of the classifier models confirmed that

some comparisons relied on inconclusive results to make decisions, which would likely

cause issues for compounds which have been more heavily screened and contain more

active and inactive results than the profiles used to train the models. While a similar

metric was applied during the Active Only experiment, it was not possible to obtain

a complete screening profile for the compounds, and it was reasonable to group all

instances of a protein containing no active or target results against a compound as a

class in itself during the Active Only experiments.

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 0 100 85.71 0 100 89.3 0 100 88.14

DecisionTable 83.3 98.1 95.95 94.7 99.6 99.08 95.7 99.8 99.32
JRip 13.5 98.1 86 5.3 99.2 89.14 0 0 0

PART 0 100 85.71 0 100 89.3 0 100 88.14
J48 0 100 85.71 0 100 89.3 0 100 88.14

RandomForest 0 100 85.71 0 100 89.3 0 100 88.14
RandomTree 0 100 85.71 0 100 89.3 0 100 88.14

REPTree 0 100 85.71 0 100 89.3 0.6 100 88.19
Logistic 38.9 97 88.72 35.3 97.5 90.83 37.6 97.4 90.3

NaiveBayes 21.3 96 85.28 30.2 90.1 83.69 40 92 85.87

Table 3.10: Classifier results when inactive results (excluding inconclusive results) are incorporated,
and where attributes were unmodified in weightings
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Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 29.5 70 64.19 50.4 50.1 50.09 50.4 50 50.08

DecisionTable 93.6 93.9 93.88 96.8 98.1 98 98.4 98.9 98.81
JRip 78.9 80.4 80.15 86.6 86.9 86.87 83.9 90.5 89.74

PART 65 65.7 65.57 59.5 72.7 71.26 74.8 78.2 77.77
J48 50.3 64.6 62.59 63.4 64.6 64.44 50.5 78.8 75.43

RandomForest 63.6 70.9 69.88 63.6 70.9 69.88 74.7 73.8 73.92
RandomTree 61.6 69.9 68.71 76.1 71.2 71.69 73.3 71.2 71.46

REPTree 62.9 66.5 65.99 77.3 71.9 72.5 78.7 76.6 76.81
Logistic 91.8 68.3 71.62 83.6 76.5 77.28 84.9 78 78.83

NaiveBayes 62.9 55.9 56.9 80.9 87.9 87.12 79.1 91 89.6

Table 3.11: Classifier results when inactive results (excluding inconclusive results) are incorporated,
and class balancing was performed

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 0 100 85.71 0 100 89.3 0 100 88.14

DecisionTable 83.3 98.1 95.95 94.8 99.6 99.1 95.7 99.8 99.31
JRip 91.1 97.4 96.5 96.4 99.2 98.92 97.3 99.4 99.19

PART 87.4 97.7 96.24 94.8 99.3 98.96 96.1 99.8 99.37
J48 87.2 97.7 96.21 93.1 99.5 98.78 92.4 99.7 98.88

RandomForest 87.4 98.4 96.83 96.2 99.9 99.49 94.8 100 99.35
RandomTree 83.1 97.4 95.32 92.2 99.2 98.49 90.5 98.4 97.47

REPTree 88.1 97.8 96.4 95.6 99.6 99.14 96.3 99.7 99.26
Logistic 83.5 97.5 95.52 91.8 97.6 96.96 78.4 96.1 93.96

NaiveBayes 86.7 91.6 90.91 98.9 96.7 96.92 98.2 93.6 94.17

Table 3.12: Classifier results when inactive results (including inconclusive results) are incorporated,
and where attributes were unmodified in weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 29.5 70 64.19 50.4 50.1 50.09 50 50.4 50.08

DecisionTable 93.6 93.9 93.88 96.8 98.2 98.04 98.4 98.9 98.81
JRip 93.6 92.3 92.48 98.3 98.9 98.82 97.5 99.3 99.07

PART 92.9 93.6 93.49 96.6 99.2 98.92 97.5 99.5 99.28
J48 93.1 94.2 94.08 96.9 98.9 98.67 96.7 99.2 98.93

RandomForest 93.1 95.1 94.8 98.3 99.8 99.61 98.7 99.7 99.61
RandomTree 83.3 94.1 92.58 92.9 99 98.35 91 98.6 97.66

REPTree 94.3 93.8 93.85 96.9 98.9 98.71 98.1 99.3 99.12
Logistic 91.8 93.2 93 94.8 98.9 98.49 94.7 99.3 98.77

NaiveBayes 91.8 90.5 90.71 98.9 96.2 96.49 98.5 92.5 93.18

Table 3.13: Classifier results when inactive results (including inconclusive results) are incorporated,
and class balancing was performed

3.4.3 Discussion

While the inclusion of inactive results showed promise in providing an improvement in

accuracy of profiling, it is unlikely that such accuracy levels would be obtained when

tested in a real world situation. It is a more likely scenario that despite the inclusion

of various repositories in the searching for interactions, certain compounds will only

be assessed in association with certain proteins, which appears to be providing a

distinction between repositories instead of providing a protein interaction model

Page 92



James Witts

of promise for further development. As it would be impractical for this study to

conduct complete experimental panel screening of the compounds used for training,

in silico work would likely be needed to fill in gaps in an interaction matrix to ensure

that the most complete interaction profile possible can be provided for training the

classifiers, or to provide additional information from more easily extracted resources

to differentiate between the ”Good” and ”Bad” compounds assessed.

3.5 Chemical Properties

In addition to considering a compound’s protein interaction profile, another area

which was considered for profiling was a compound’s chemical composition. Two

avenues of approach were considered for evaluating models in this section: the first

involved the use of only the chemical property flags present within the compound’s

SDF file that could be practically implemented by a classifier, while the second

approach would use these properties in conjunction with the protein interaction flags

from the previous analyses. The second approach considered both the active targets

only analysis in addition to the active and inactive targets analysis to assess the

impact that the addition of chemical properties would have on the model accuracy

levels.

To obtain the chemical properties, the python external library ”Mordred” [28]

was used to parse through the training SDF files in order to generate a collection

of properties. As the DrugReferenceDatabase contained references to compound

SDF files, Mordred provided an automated means of extracting property information,

in addition to providing greater levels of detail than that provided by the use of

PubChem’s PUGREST platform.

3.5.1 Initial Findings

On running the script on all documented compounds, it was found that in some

instances a compound caused the ”Mordred” descriptor script to crash as a result of

a failure to parse the SDF when extracting certain properties. This affected only 5

compounds of the 6,349 compounds queried which had an SDF, and so these were

removed from this section of the analysis. The compounds in question are documented

in Table 3.14, along with the potential impact on the panels caused by their removal.

Once the script had parsed the structures successfully, 1,613 chemical attributes

were generated from the set which were suitable for use within a classifier. These
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attributes are listed within the Appendix. In cases where attributes with either little

or no variation were removed (via WEKA’s RemoveUseless pre-processing filter), the

actual number of attributes would range between 1,400-1,500 attributes depending

on the scale of the panel screened; specific attribute numbers are shown in Figure 3.9.

Figure 3.10 provides a revised distribution of classes for the training set after chemical

properties have been incorporated.

PubChem
Compound ID

Compound
Name

Impact on Panel
44

Impact on Panel
331

Impact on
Pharma Panel

62390 Nickelocene No No Yes
79154 Chromium No Yes Yes
82917 Dichlorovanadocene Yes Yes Yes
92884 Cobaltocene Yes No Yes
299728 Triphenylbismuth

dichloride
Yes Yes Yes

Table 3.14: List of five compounds which could not be parsed through the Mordred library

Figure 3.9: Graph of the number of attributes within each panel after incorporating chemical
properties
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Figure 3.10: Summary of distribution of ”Good” (DrugBank) and ”Bad” (ToxCast) profile
compounds after parsing for chemical properties. Conflicting compounds between classes have
already been removed for this graph.

3.5.2 Classifier Results

Tables 3.15 and 3.16 provide the results of profiling classifiers based solely on the

chemical properties, with which performance metrics were improved slightly in

comparison to using active interactions only. One element of interest from the results

was that with the NaiveBayes classifier, the consideration of properties had caused a

”flip” in the pattern of class accuracy in comparison to the other classifiers, and had

performed well in classifying ”Good” profile instances but toiled in misclassifying over

half of the compounds considered to be a ”Bad” profile. Class balancing once again

revealed similar findings to before, with ”Good” profile prediction accuracy levels

improving but with a trade-off of slightly poorer ”Bad” profile prediction accuracy.

Tables 3.17 and 3.18 provide the results for the classifiers when chemical properties

are considered in conjunction with the protein active flags specified in the ”Active

Pairs Only” experiment. These attributes when combined had provided an increase

in accuracy levels for a majority of classifiers in comparison to considering each

method individually. For example, on the unweighted REPTree classifier and Panel

44, the profile prediction accuracy levels for ”Good” and ”Bad” profile compounds

were 41.9% and 94.7% respectively on just using chemical properties, and 30% and
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96.3% with the protein activities only. With chemical properties combined with the

interaction profiles, the profile prediction accuracy levels increased to 59.5% and

and 94.5% for ”Good” and ”Bad” profile compounds respectively. This provides an

increase of between 17.6% to 29.5% on ”Good” profile prediction accuracy, with a

negligible decrease in ”Bad” profile prediction accuracy. This highlights promise that

attributes from each set are being used to reach better conclusions.

In terms of Panel performance, larger sized panels again did not necessarily provide

an increase in profiling performance, with the Pharmacology panel not providing

as much of a performance increase in comparison to the smaller panels of Panel

44 and Panel 331. For example with the unbalanced REPTree classifier and the

Pharmacology Panel, the increase of ”Good” profile prediction accuracy was between

7.4% to 20.2%, indicating that the greater amount of time to train and evaluate the

larger sets may not be beneficial.

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 0 100 85.7 0 100 89.3 0 100 88.13

DecisionTable 33.4 95.5 86.64 22.3 97.7 89.67 18.7 97.7 88.29
JRip 51.5 91 85.33 41 94.4 88.73 44.3 93 87.21

PART 45.5 94.8 87.79 39.5 96 89.99 37.5 96.1 89.18
J48 49.7 92.2 86.12 50 94.3 89.52 50.7 93.1 88.02

RandomForest 19.5 97.7 86.55 14.3 98.7 89.67 14.1 98.3 88.34
RandomTree 37.1 90.1 82.52 31.7 93.2 86.6 34.4 91.8 85

REPTree 41.9 94.7 87.1 38.2 96.2 89.99 28.4 97.2 89.01
Logistic 51.3 84 79.28 45.8 89.5 84.84 44.6 88.3 83.13

NaiveBayes 86.3 44.7 50.64 83.2 58.3 60.95 73 66.7 67.43

Table 3.15: Classifier results using only chemical property attributes unmodified in weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 20.1 80.1 71.48 39.7 60 57.84 39.7 60 57.6

DecisionTable 79.9 82 81.73 77.7 80.6 80.29 79.9 80.7 80.62
JRip 77.8 80.4 80.07 77.3 83.5 82.84 76.6 81.5 80.9

PART 74.1 83.4 82.09 75.2 85.5 84.44 74.7 84 82.87
J48 67 85.3 82.65 61.5 88 85.13 62.1 86.4 83.49

RandomForest 50.3 93.5 87.37 44.8 95 89.6 45.5 93.8 88.04
RandomTree 36.4 90.2 82.52 31.7 92.5 86 31.3 91.5 84.35

REPTree 78.7 82.7 82.16 80.3 80.7 80.7 75.9 83 82.18
Logistic 49.4 86.6 81.31 45.6 89.3 84.64 45 88.2 83.1

NaiveBayes 86.5 44.6 50.57 83.6 58 60.7 73.5 66.5 67.34

Table 3.16: Classifier results using only chemical property attributes where class balancing was
performed

Page 96



James Witts

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 0 100 85.7 0 100 89.3 0 100 88.13

DecisionTable 65.4 96.8 92.31 35.1 97.4 90.71 35.3 97.4 90.03
JRip 67.7 90.9 87.59 62.4 93.5 90.13 49.9 94 88.76

PART 61.1 93.7 89.03 57.1 96.3 92.1 54.5 96.1 91.19
J48 59.5 93.3 88.45 49.6 95.8 90.87 46.1 95.7 89.85

RandomForest 19.7 97.9 86.71 14.5 98.9 89.83 15.3 98.6 88.71
RandomTree 39.1 91 83.57 30.3 93.3 86.58 33.2 92.3 85.3

REPTree 59.5 94.5 89.53 52.7 96 91.32 48.6 95.5 89.98
Logistic 54.9 85.8 81.41 53.6 90.3 86.34 57 88.5 84.75

NaiveBayes 86.5 44.8 50.8 83.8 58.7 61.42 73.6 67.3 68.08

Table 3.17: Classifier results using chemical properties in conjunction with protein active flags
where attributes were unmodified in weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (Baseline) 20.1 80.1 71.49 39.7 60 57.84 39.7 60 57.6

DecisionTable 82.6 81.8 81.93 77.5 83.9 83.23 79.3 81.6 81.34
JRip 80.3 84.4 83.83 76.7 86.9 85.8 76 85.6 84.44

PART 79.9 87.5 86.38 72.5 90.8 88.87 69.8 92.3 89.66
J48 71.2 88.6 86.12 68.3 91.7 89.24 68.1 90.7 87.99

RandomForest 50.3 93.8 87.56 47.9 95.8 90.67 47.9 95 89.38
RandomTree 38 89.8 82.42 33.4 93.5 87.07 36.1 92.5 85.82

REPTree 80.1 85.4 84.68 78.1 87 86.07 81.8 83.9 83.66
Logistic 50.3 87.7 82.32 46.9 91.5 86.76 51.7 90.6 86

NaiveBayes 87 44.7 50.77 83.8 58.5 61.23 73.8 67.2 67.99

Table 3.18: Classifier results using chemical properties in conjunction with protein active flags
where class balancing was performed

3.5.3 Discussion

The process of using chemical properties in conjunction with protein indicator flags

has provided potentially promising models for consideration, but there are a few

issues that needed to be resolved with regard to the chemical parsing in order for the

approach to be considered feasible for processing potential candidates on a wider scale

and automation of the process. The Mordred parser’s code would likely require further

investigation to highlight and potentially skip compounds which would prove to be

problematic, however considering the very small impact the problematic compounds

had on the overall number of compounds considered, a fix was not implemented.
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3.6 Blind Testing

While testing was performed by cross validation on the datasets compiled, some of

the test results generated made it necessary to incorporate an additional dataset to

determine whether or not the protein interactions and chemical properties gathered

thus far hold potential promise for a profiling model, or if further work was required

in the processing of active and inactive protein pair. To accomplish this, compounds

and interactions were gathered from two repositories, which were as follows:

• T3DB [29], to incorporate potentially harmful compounds which had not been

considered by either ToxCast or DrugBank. These would be labelled as the

test’s ”Bad” profile compounds.

• The Human Metabolome Database (HMDB) [30], a repository which contains

protein interaction information of metabolites present within the human body

and are thus not considered as harmful. These would be labelled as the test’s

”Good” profile compounds.

While T3DB compounds were available for access via the DrugReferenceDatabase,

the HMDB repository needed to be processed and converted to equivalent PubChem

compounds to be considered for both the protein and chemical property comparison.

As a large number of metabolites were available from HMDB, test compound sets

from this repository were generated and filtered to have a similar size in terms of

molecular weight to the majority of compounds which had been trained. As a final

step of processing the test set, any compounds which were found to be present within

the training sets by virtue of being listed in more than one source were removed.

Table 3.19 displays the number of compounds that were available for testing within

each panel after processing and filtering had been performed.

Number of Compounds
Drug Class Panel 44 Panel 331 Pharma Panel
Good Profile 272 389 797
Bad Profile 732 986 1,706

Table 3.19: Distribution of classes on the blind testing set

As the repositories used for testing had no information related to inactive results,

any inactive results were gathered via the DrugReferenceDatabase through querying

the relevant PubChem compounds that were present in other repositories. These

results in conjunction with the active results and chemical property attribute test
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sets could then be passed to WEKA, which provided the ability to easily assess

classification accuracy on the trained models built in the previous tests.

3.6.1 Classifier Results

Table 3.20 and 3.21 provide the classifier results of the active only classifier models

against all panels studied. Accuracy levels from the blind tests were poor, with only a

small proportion of the test Good Profile compounds being correctly classified. While

the models generated through weight balancing improved the Good Profile accuracy

level, the performance degradation on Bad Profile compounds was to a far greater

extent than observed with the training data set. Figure 3.11 provides an example

of the extent of the accuracy drop to the J48 classifier when applied to the training

and blind testing set. These testing results, in conjunction with the results of the

training data indicate that the interaction profiles of compounds in both classes were

currently too similar in its current form to generate a clear distinction, despite the

removal of conflicting compounds.

Table 3.22 and 3.23 provide the classifier results of models where inactive

compound-protein results were separated from results which were considered to

be inconclusive. Surprisingly it was found that the training model’s rule sets were in

a large disagreement with the test data. On further investigation of the distribution

of the training and test sets, it was found that the distribution of inactive results were

different between both sets; while the training set had a majority of inactive results

placed within the ”Bad” Profile group, a majority of inactive results in the test set

were actually within the ”Good” Profile group. This led to the models on the training

set associating inactive results with ”Bad” Profile compounds, which in turn resulted

in the test set misclassifying to such a degree that inverse decisions were taking place.

This further indicates that there is not enough interaction information present to

generate a clear distinction between both classes of compounds. Balancing generated

similar findings, but with a small improvement in Good Profile classification accuracy.

Tables 3.24 and 3.25 detail the classifier results of the compound property only

experiment. While accuracy levels were still poorer than had been obtained from

cross-validation with the training set, there was a smaller improvement in overall

accuracy in comparison to the protein activity analyses. This highlights some promise

in a distinction being present between both classes in terms of chemical properties.

However, when these properties were used in conjunction with protein activity flags,

the classification results shown in Tables 3.26 and 3.27 show that no significant

differences in accuracy levels were detected. This is in contradiction to the findings
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from the cross-validation analysis using the training set, which indicates that further

work is likely needed in terms of refinement of the classifier rulesets on protein

interactions.

Figure 3.11: Graph comparing results of the J48 classifier models when applied to the training
set and blind testing set. Note that the actions taken by class balancing has generated a larger
difference in class accuracy when the model had been applied to the blind testing set.
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Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 0 100 72.91 0 100 71.71 0 100 68.16

DecTable 14.7 91.4 70.62 21.1 96.2 74.98 14.1 97.3 70.8
Jrip 17.3 94 73.2 29.3 95.3 76.65 17.8 93.8 69.64

PART 13.6 83.2 64.34 34.4 88.4 73.16 28.7 83.5 66.04
J48 16.2 88.1 68.63 17.5 91.6 70.62 19.3 93.4 69.8

RandomForest 18.8 94.8 74.2 24.2 91.7 72.58 39.9 86.6 71.75
RandomTree 19.5 93.9 73.71 26.2 89.8 71.78 42.7 88.6 73.99

REPTree 17.3 94.3 73.41 25.4 91.5 72.8 17.2 87.2 64.92
Logistic 15.1 95.6 73.8 29.6 91.6 74.04 33.1 86.2 69.32

NaiveBayes 24.3 90.4 72.51 31.4 85.5 70.18 18.9 80.2 60.73

Table 3.20: Blind testing classifier results on active interactions only where attributes were
unmodified in weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 100 0 27.09 0 100 71.71 100 0 31.84

DecTable 82.4 25.1 40.64 80.7 20.4 37.45 86.6 13.5 36.8
Jrip 80.5 38.1 49.6 77.1 18.4 34.98 85.4 18.6 39.87

PART 70.6 45.9 52.59 58.9 37.5 43.56 55.6 74.5 68.48
J48 75.7 45.1 53.39 67.9 33.1 42.91 57.2 63.8 61.73

RandomForest 68 48.2 53.59 62.2 38.4 45.16 54.3 75 68.44
RandomTree 66.9 48.2 53.29 55.5 38.1 43.05 47.1 75.2 66.24

REPTree 75.4 39.1 48.9 76.3 16.3 33.31 82.3 36.3 50.98
Logistic 79.4 37.6 48.9 74.6 22.9 37.53 64.5 59 60.73

NaiveBayes 50.7 65.6 61.55 79.4 29.1 43.35 31.4 71.7 58.89

Table 3.21: Blind testing classifier results on active interactions only where class balancing was
performed

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 0 100 72.91 0 100 71.71 0 100 68.15

DecTable 24.6 26.1 25.7 27 13.2 17.09 55.5 9.6 24.2
Jrip 27.6 26.6 26.89 30.6 12.1 17.31 58.1 7.7 23.73

PART 25 25.4 25.3 25.7 16.6 19.2 55.7 9.6 24.25
J48 29.4 31.6 30.98 27.2 17 19.93 54 11.3 24.85

RandomForest 24.6 28.3 27.29 26.5 16.1 19.05 53.6 11.8 25.13
RandomTree 33.5 26.9 28.69 30.3 16.1 20.15 55.8 21.8 32.64

REPTree 30.5 23.4 25.3 28.3 13.5 17.67 56.6 10.2 24.97
Logistic 30.5 30.7 30.68 34.7 14.7 20.36 58.1 17.7 30.56

NaiveBayes 64.3 35.9 43.63 47.3 8.9 19.78 65.7 5.8 24.89

Table 3.22: Blind testing classifier results when inactive results (including inconclusive results)
are incorporated, and where attributes were unmodified in weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 100 0 27.09 0 100 71.71 100 0 31.84

DecTable 34.9 10.2 16.93 30.1 11.4 16.65 58.3 7.9 23.93
Jrip 37.5 9.4 17.03 32.1 10.6 16.73 56 7.9 23.21

PART 32.7 11.7 17.43 27.8 13 17.16 56.3 8.1 23.49
J48 32 12.3 17.63 28.5 14 18.11 57.6 7.9 23.69

RandomForest 30.5 14.9 19.12 28.8 12.7 17.24 56.5 8.3 23.65
RandomTree 32.7 16.8 21.12 29 19.2 21.96 57.8 11.4 26.17

REPTree 31.3 12.7 17.73 29.6 12.9 17.6 57.5 7.7 23.57
Logistic 36.8 12.2 18.82 29.3 15.6 19.49 58 12 26.64

NaiveBayes 65.4 23.4 34.76 46.5 8.7 19.42 65.4 5.7 24.69

Table 3.23: Blind testing classifier results when inactive results (including inconclusive results)
are incorporated, and class balancing was performed
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Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 0 100 72.91 0 100 71.71 0 100 68.16

DecTable 30.1 95.1 77.49 13.9 97.5 73.82 11.3 96.5 69.4
Jrip 31.3 93 76.29 29.8 91.9 74.33 21.3 92.5 69.84

PART 33.1 93.4 77.09 19 95.7 74.04 15.8 95.8 70.32
J48 35.7 89.9 75.2 21.9 92.5 72.51 15.7 95 69.72

RandomForest 16.5 97.5 75.6 9.8 98.7 73.53 5.3 98.5 68.84
RandomTree 37.9 85.9 72.91 20.6 93.1 72.58 18.3 91.6 68.28

REPTree 36.8 93.2 77.89 19 93.9 72.73 15.2 95.5 69.92
Logistic 40.4 74.3 65.14 36.5 86.6 72.44 30 84 66.8

NaiveBayes 86.4 66.3 71.71 79.4 76.3 77.16 56.2 80.7 72.91

Table 3.24: Blind testing classifier results using only chemical property attributes unmodified in
weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 0 100 72.91 100 0 28.29 100 0 31.84

DecTable 52.6 82.4 74.3 43.7 85.6 73.75 42.3 84.8 71.23
Jrip 62.5 74.2 71.02 48.3 84.8 74.47 41.3 73.7 63.36

PART 59.2 78.3 73.11 58.1 81.4 74.84 48.6 82.1 71.43
J48 54 79.2 72.41 42.4 87.8 74.98 38.1 81.9 68

RandomForest 37.1 91.4 76.69 30.1 92.3 74.69 18.1 93.1 69.2
RandomTree 34.9 91.5 76.2 30.8 87.9 71.78 20.5 91.6 68.96

REPTree 59.6 65.8 64.14 45 86.3 74.62 59.1 78.7 72.47
Logistic 38.2 72.8 63.45 36.2 86.8 72.51 30.4 84.2 67.08

NaiveBayes 86.4 66.3 71.71 79.4 76 76.95 57 80.2 72.79

Table 3.25: Blind testing classifier results using only chemical property attributes where class
balancing was performed

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 0 100 72.91 0 100 71.71 0 100 68.16

DecTable 33.1 92.8 76.59 19 91.2 70.76 8.5 96.6 68.56
Jrip 41.5 86.6 74.4 36.2 86.2 72.07 19.7 91.7 68.76

PART 43.4 87.8 75.8 39.8 88.9 75.05 30.4 88.5 69.96
J48 49.3 85 75.3 33.7 90.6 74.47 18.7 90.5 67.64

RandomForest 16.9 97.7 75.8 10.3 98.6 73.6 4.1 98.3 68.32
RandomTree 32.4 90.4 74.7 28.5 91.6 73.75 17.6 94.4 69.92

REPTree 29.8 92.1 75.2 19.3 94.7 73.38 24 92.8 70.88
Logistic 46 71.2 64.34 49.1 60.3 57.16 37.4 67.4 57.81

NaiveBayes 86.4 66.3 71.71 79.9 76.4 77.38 56 80.3 72.55

Table 3.26: Blind testing classifier results using chemical properties in conjunction with protein
active flags where attributes unmodified in weightings

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR 0 100 72.91 100 0 28.29 100 0 31.84

DecTable 67.6 47.5 52.99 60.9 80.9 75.27 48.8 80 70.08
Jrip 69.5 72.8 71.91 63.5 51.7 55.05 47.6 80.4 69.92

PART 73.2 66.7 68.43 68.6 83.9 79.56 49.4 84.2 73.15
J48 60.3 74.3 70.52 56.3 82.8 75.27 53.1 80.9 72.07

RandomForest 37.5 89.9 75.7 30.1 91.5 74.11 19.3 92.4 69.12
RandomTree 37.1 89.5 75.3 20.3 90.6 70.69 16.1 92.6 68.24

REPTree 56.3 74.9 69.82 62 76.9 72.65 46.2 84.8 72.51
Logistic 46 79.9 70.71 52.7 78.8 71.42 39.1 77.3 65.16

NaiveBayes 86.4 65.8 71.41 79.9 76.2 77.24 56.7 80.1 72.67

Table 3.27: Blind testing classifier results using chemical properties in conjunction with protein
active flags where class balancing was performed
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3.6.2 Discussion

Overall, the model decisions on the blind test set provided some informative steps

forward in terms of further work. As revealed in the initial findings of the protein

activity sets, only a small number of proteins in the panel studies had been revealed

to be highly flagged as active or inactive. These highly screened proteins in turn could

heavily impact the outcome of the models, therefore further work would be needed

to balance out the number of highly screened proteins while in turn not causing a

significant impact on the scale of compounds being parsed for training and testing.

One solution to resolve this problem is to change the interpretation of an active ”hit”

and and inactive ”miss” from the repositories where it is possible to do so. Currently

a large amount of conflicting information is present in the DrugReferenceDatabase

which has not been accounted for in these tests, and the process of solely obtaining

links between compounds and proteins is now proven to be insufficient for a profiling

tool. Further database revisions would be needed to attempt to gather assay result

values and units where available, so that queries can be performed to extract different

sets of definitions for active and inactive compound protein pairings. This could in

theory reduce the number of conflicts which are currently present within PubChem

BioAssay and ChEMBL, which in turn could provide a cleaner interaction matrix and

overall higher classification accuracy levels. As these changes require an alteration

to the database schema and the process of gathering the information from the

repositories, the tasks of generating this database and the results from this process

will be discussed fully in the next chapter.

3.7 Conclusions

In this chapter, the interactions and chemical properties obtained from various

repositories were used to build classification models which attempted to differentiate

between ”Good” Profile (i.e FDA-like) and ”Bad” Profile (i.e ToxCast) compounds.

During the process of filtering the pharmacology protein panel, it had been found

that a small number of proteins were being screened to far higher levels than the rest

of the panel, which in turn impacted upon the models generated by the classifiers

which focused on these highly screened proteins. While initial classification results

based on cross-validation of the training sets provided some promise of a reasonable

distinction between the two classes of compounds, results obtained on consideration

of ”unknown compounds” not included in the previous training sets revealed that no

proper discrimination could be achieved at this stage.
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While these results were somewhat disappointing, there are a number of avenues

which can be explored to further refine the amount of information which is being

used to build and evaluate these models, while incorporating as much information

from the considered repositories as possible. One of these areas is that dosage was

not taken into consideration against the broadness of DrugBank and ToxCast. For

example, while an FDA-approved drug could be considered beneficial if taken at the

correct dosage, higher levels of dosage could generate a harmful response and not be

considered as beneficial. Furthermore, some compounds featured in ToxCast may

not have caused harm by direct interaction with specific proteins but might have

been assigned as toxins due to the interactions or effects of downstream metabolites.

Other compounds are assigned as toxins due to cellular and tissue effects that cannot

be attributed to interactions with proteins at all.

Assignments of interaction may also be further refined by consideration of assay

types, as documented within ToxCast and discussed in Chapter 1 of the availability of

specified biochemical and cell-based assays. Detailed examination of the sources and

types of assay from all sources could provide further clues for compound classification,

as well as provide cleaner output in reducing the amount of conflicts that were

discovered by ensuring assays are compatible.

With implementation of these avenues, in conjunction with more extensive protein

screening from future revisions of the repositories studied, this profiling approach could

provide better integration of compound and protein properties, in turn generating

a tool to assist in reliably predicting potential candidates for drug discovery and

development and early detection of toxicity.
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Chapter 4

Refinement of drug profiling
approaches by incorporation of
experimental assay results

4.1 Introduction

In the previous chapter, classifiers were assessed on their suitability as a potential

tool for profiling promising candidate compounds, based on a mixture of documented

interactions (without considering dosage), and compound properties. While initial

results showed promise on cross-validation, the classifier models when assessed on

different interaction repositories had shown that a clear differentiation between a

potentially beneficial compound and a potentially toxic compound was not possible

based on the information gathered. The purpose of this chapter is to describe

a different approach to determine interactions through the consideration of assay

concentration values and outcomes, and in turn compare the results found in the

HMDB/T3DB repositories to investigate if narrowing the interaction searchspace

would deliver performance improvements. The chapter first approached the compound

concentrations and test types which the repositories shared in common, in addition

to determining the values used to consider a protein compound pair as active. The

classifiers were then retrained on the revised dataset and assessed against the test

repositories, and their results compared with those of Chapter 3. Finally, the chapter

concluded with a discussion of the design of a revised schema which could incorporate

the customised thresholds efficiently.
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4.2 Reassessing the DrugReferenceDatabase

In the iteration of the DrugReferenceDatabase discussed in Chapter 2, links between

compounds and proteins were gathered from various repositories based on keywords,

or from repository’s documentation stating that a pair between a compound and

protein was defined as active or inactive. As the repositories could have varying

definitions of active and inactive results, an attempt was made to remove instances

where pairs were classified as both active and inactive in order to deliver confident

declarations of activities to the profiling classifiers. These attempts however had

uncovered a large amount of conflicts in certain repositories, which in conjunction

with poor accuracy levels of non-conflicting interactions meant that further work

was required in order to reveal a clearer pattern between ”Good” and ”Bad” profile

candidate drugs.

One avenue which was not explored in the DrugReferenceDatabase attempt was

to consider the experimental result values which have been documented in certain

studied repositories (BindingDB, ChEMBL, PubChem BioAssay, ToxCast). These

parameters were not documented in the first iterations of the database in order to

gather as many links between proteins and compounds as possible for the classifier,

and due to potential compatibility issues with repositories such as DrugBank where

no experimental results were documented, only target links. To ensure that as

much relevant information as possible was gathered for a thresholding attempt, the

repositories needed to be reassessed to determine which elements would be suitable

for a revised design of the database which is focused on experimental parameters and

their values. In addition to this, a review of the literature was also needed in order to

determine what values and scales would be used to define active and inactive results

for a compound-protein pairing. The benefit of such a process being undertaken would

allow the consideration of pairings which did not contain a keyword, but instead

possessed an experimental value which would be indicative of an active or inactive

result. Once these steps were undertaken the protein-specific experiments described

in Chapter 3 could then be reassessed to investigate whether or not these measures

presented an improvement in profiling accuracy.

4.2.1 Potency Values

Beyond listing a link between a compound and a target, some repositories provide

additional tabulated information on the conditions and results which took place during

the experiment. One of these attributes which is commonly shared by the repositories
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Expression of Potency Measure
EC50/AC50 The molar concentration of an agonist that produces 50% of the maximal possible

effect of that agonist.
IC50 The molar concentration of an antagonist that reduces the response to an agonist

by 50%
Ki The negative logarithm to the equilibrium dissociation constant of a compound

determined directly in a binding assay using a labeled form of the compound
Kd The negative logarithm to the equilibrium dissociation constant of a compound

determined in inhibition studies

Table 4.1: Definitions of some common measures of potency [4]

studied by this project is the scale of potency, which is defined by Waldman as an

expression of the activity of a drug in terms of the concentration or amount of the

drug required to produce a defined effect [1]; higher levels of potency would therefore

require lower concentrations of a compound. Table 4.1 provides a summary of some

typical experimental measures which are used to define certain expressions of potency,

typically measured in mols (the amount of molecules of a compound).

In terms of the use of these concentration values to determine activity, a strong

active pairing could be determined if the concentration result documented in an assay

is very small. The exact concentration value to use to determine a compound protein

pair as active can vary between applications: in one discussion by Parmentier et

al., a potent IC50 concentration is defined by concentrations under 1 micromolar,

while marginal and weak potencies are defined as between 1 and 10 micromolar and

above 10 micromolar respectively [2]. Another report by Hughes et al. also describes

relevant potency concentrations, and how compound screening assays for hit discovery

are typically run at concentrations between 1 to 10 micromolar [3]. As the aim of

this chapter was to reduce the number of potentially weak cases of interactions being

considered in the DrugReferenceDatabase, it was considered reasonable to classify

assays with documented potencies of under 10 micromolar as representing a potential

interaction between a compound and a protein. While this is a very low concentration

to consider, all potency values would be documented so that variable thresholds for

activity could be applied later if needed. This potency extraction process, coupled

with some alterations to the data extraction process of certain repositories would

lead to more confident identification of protein-compound interactions, and in turn

to more focused and accurate classifier models.
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4.2.2 Repository Parameter Review

4.2.2.1 DrugBank

In DrugBank’s documentation, each protein-drug association is listed under one of four

categories: targets, enzymes, transporters and carriers, with each documented link

containing at least one reference. Figure 4.1 provides an example of a documented

target for the drug Oxycodone (DrugBank reference DB00497), and the type of

parameters which are available from the pairing. While the repository contains no

experimental parameters to consider for thresholding, these targets were considered

to be a reliable source for activity given that only a small number (202) of conflicts

against inactive compound-protein pairs had been found, the majority of which (165)

were present on the ChEMBL repository which contained experimental parameters

and could be filtered to a further degree.

Figure 4.1: Example of documentation of a target in DrugBank (Mu-type opioid receptor on the
drug Oxycodone) [5]

4.2.2.2 ToxCast

In the ToxCast repository, interaction results were documented in a matrix environ-

ment, where compounds displayed an active, inactive or inconclusive/unknown value

against a range of assays. In the initial approach when this repository was considered

for the DrugReferenceDatabase, this matrix was parsed to consider a potential link

between a compound and a protein, even if an assay that was flagged as ’1’ inside

the matrix contained more than one protein in the assay. This was performed in

order to gather as much protein information as possible from ToxCast. This process

however had introduced some ”noise” in the form of conflicts, in addition to some

highly screened proteins sourced from ToxCast having a presence in assays of multiple
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proteins. Figure 4.2 displays an example of the data files where one assay assesses a

single protein, while another assesses multiple proteins.

In terms of experimental parameters for ToxCast, another matrix file is present

in the dataset files which provides AC50 values. The values present in the matrix are

measured in micromolar, where a value is documented between a compound and assay

if it has been tested and defined as Active inside the hit matrix. In the event that a

pair has been listed as inactive, the matrix provides a default constant value of 1 mol,

which is represented as 1 million micromolar in the matrix. These results therefore

indicate that in some cases, a label of activity from ToxCast may not necessarily

reflect a strong interaction when compared with the other repositories. All in vitro

assays with a single UniProt entry code were considered for assessment of a potential

interaction with a compound.

Figure 4.2: Example of the UniProt targets associated with ToxCast assays, where some assays
contain multiple proteins

4.2.2.3 BindingDB

For the BindingDB repository, there is a list of binding affinity values for each

compound and protein target. The assay values listed for each instance which were

related to potency are Ki, IC50, Kd and EC50, and concentrations for each of these

potencies were measured in nanomolar. Like ToxCast, BindingDB does contain

compound results against multiple protein assays; to ensure that a direct link between

a compound and protein could be made, any results gathered were filtered to single

protein assays.

In addition to the assay values, BindingDB also provides a source field which

specified from which area the repository had obtained the information. In most cases

the source of the interaction had originated from US Patent documentation as per

the project’s goal and description, however there were a number of sources which
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made reference to either ChEMBL or PubChem BioAssay entries, highlighting the

potential for duplication of experimental results whilst querying for interactions.

4.2.2.4 ChEMBL

In order to extract experimental parameters from ChEMBL, some alterations were

required to the ChEMBL database query to expand on the interaction results already

gathered. Figure 4.3 displays the altered query used to extract these parameters,

where one of the main changes was to reference proteins directly through their

ChEMBL code instead of the UniProt accession code (conversion of UniProt IDs to

ChEMBL IDs was carried out via UniProt’s cross reference platform). This reduced

the database query’s complexity by reducing the number of joins needed, while in

turn ensuring that only single protein assays were selected. Assay results which were

obtained from the query related to potency were AC50, EC50, IC50, Kd, Ki, and

Potency, and all concentrations were listed in nanomolar. In some cases the experiment

values listed relations other than equals (for example concentrations listed as more

than or less than a certain value); to ensure the most accurate concentrations were

gathered from ChEMBL, only precise measurements were considered for thresholding.

On further analysis of the results from this modified query, it was found that

the majority of activity labels documented in ChEMBL from Chapter 2 were only

related to interactions that were sourced from PubChem BioAssay entries. This

would explain the cause of the removal of such a large number of ChEMBL records

from Chapter 2 when these activity labels were considered, and that a large area of

the ChEMBL searchspace remained unexplored by the classifiers.

SELECT m.chembl_id AS compound_chembl_id, s.canonical_smiles, r.compound_key,

NVL(TO_CHAR(d.pubmed_id),d.doi) AS pubmed_id_or_doi,

a.description AS assay_description, act.standard_type,

act.standard_relation, act.standard_value, act.standard_units,

act.activity_comment

FROM compound_structures s, molecule_dictionary m, compound_records r, docs d, activities act,

assays a, target_dictionary t

WHERE s.molregno (+) = m.molregno AND m.molregno = r.molregno

AND r.record_id = act.record_id AND r.doc_id = d.doc_id

AND act.assay_id = a.assay_id AND a.tid = t.tid

AND t.chembl_id IN ("CHEMBL2109242","CHEMBL2343",...)

Figure 4.3: Revised Query of the ChEMBL database to retrieve activity values from proteins of
interest [6] [7]
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4.2.2.5 Repositories not considered

As the purpose of the chapter was to determine interactions which had the potential

to be thresholded for generating new classifier models, there were repositories which

were studied in Chapter 2 that were not considered in this chapter. These were

CTDBase and Matador. In the case of CTDBase, compound-protein pairs were

defined by a delimited list of keywords which specify the kind of interaction which

takes place (such as ”affects binding” or ”increases activity”). However, as these

recorded interactions did not comprise any experimental values it was difficult to

determine which were likely candidates for strong interactions taking place. With the

large number of keywords present in this dataset, attempts to extract thresholded

interactions from these keywords would have been impractical for this analysis, and

also had the potential to introduce a large degree of noise.

In the case of Matador, compound protein pairs are scored using two columns:

these are defined as ”protein score” which is a scale of confidence for the interaction,

and ”mesh score” which according to the documentation is scored according to

Medical Subject Headings, where interactions derived from such sources receive lower

scores. Matador then uses the maximum of these two scores to determine a ”Matador

Score”. On further analysis of the values present it was decided not to include the

Matador interactions as it was difficult to determine the calculations which form the

basis of these scores. This, coupled with the lack of variety on the ”protein score” field

(where interactions were either scored as 95% or 0%) and lack of concentration-based

measures meant that the interactions in Matador would have been difficult to filter

to the other repositories.

Finally, while it was possible to obtain experimental values from PubChem

BioAssay as was highlighted during the discussion of Chapter 2, a number of issues

were present in the raw results which were difficult to troubleshoot without further

parsing of the raw XML files. These issues were the lack of a BioAssay ID to determine

the experimental conditions which took place between a compound and protein, and a

large number of instances being classified as ”PubChem Standard Value” where unit

measurements and types were not specified. As the raw XML files would require a

considerable degree of storage space and time to extract reliable instances of chemical

properties, it was decided that BioAssay would not be parsed or considered usable

for this analysis, and so instead as an alternative use was made of the values which

had been provided from BindingDB and ChEMBL which had listed BioAssay as the

source of interaction.
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4.2.3 Initial Findings

After obtaining the experimental results from all repositories which possessed com-

parable values, the datasets were pre-processed to remove values which could be

considered as not applicable to the analysis. These included potentially erroneous in-

stances (molar concentrations documented as negative where no logarithm is defined),

and instances where the molar concentration was greater than 1 mol (concentrations

requiring a considerable amount of the compound tested to detect an interaction).

Table 4.2 provides a summary of the number of interactions found from each reposi-

tory after pre-processing. This table also includes the DrugBank repository where

drugs classified as ”Approved” are considered.

When compared with the summaries from Chapter 2, there have been decreases

across all repositories. One area of particular note is the scale of activity results, where

there has been a decrease of results from approximately 32 million to approximately

2 million. Another area of interest is the scale of reduction of compounds, where

numbers have decreased from approximately 1.1 million to 600 thousand, likely caused

by the removal of the BioAssay platform due to the difficulty in determining reliable

assay results. Changes to the processing of ToxCast has also led to a considerable

reduction in size from approximately 380 thousand results and 8,700 compounds,

highlighting the high frequency of multi-protein assays in the dataset.

Table 4.3 provides a summary of the amount of active compound-protein results

once the activity levels were filtered to under or equal to 10 micromolar. While

ToxCast results had been reduced to a large degree from applying the threshold,

both ChEMBL and BindingDB had a large proportion of results which met the

thresholding condition, indicating that a reasonable searchspace existed. In terms of

activities related to individual proteins, the large imbalance between the top scoring

proteins and the rest of the panel has also been reduced. Tables 4.4, 4.5 and 4.6

feature the top 15 proteins in the panels studied, which reveal that the proteins are

now more evenly distributed than before thresholding was performed. For example,

in Panel 44 the protein accession codes P10275 and P04150 had 1,449 and 1,034

compounds respectively linked to these proteins as active. After thresholding and

further pre-processing was performed, these counts were reduced to 209 and 112

compounds respectively.
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Repository Source Number of Results considered Active Number of Compounds Number of Proteins
ChEMBL 1,159,623 510,168 1,206

BindingDB 706,390 368,192 1,198
ToxCast 215,453 2,189 228

DrugBank 9,480 1,407 1,469
Overall 2,090,946 604,173 1,868

Table 4.2: Summary of all active results found before thresholding. DrugBank is listed in italics
as a repository which does not have assay results but clearly specifies targets

Repository Source Number of Results considered Active Number of Compounds Number of Proteins
ChEMBL 785,244 396,121 1,133

BindingDB 627,994 333,629 1,128
ToxCast 11,175 1,288 211

DrugBank 9,480 1,407 1,469
Overall 1,433,843 482,345 1,847

Table 4.3: Summary of all active results found after thresholding to assay concentration levels
under or equal to 10 micromolar. DrugBank is listed in italics as a repository which does not have
assay results but clearly specifies targets

Panel 44
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P08913 ADA2A HUMAN 122 P10275 ANDR HUMAN 209
P28223 5HT2A HUMAN 117 P04150 GCR HUMAN 112
P11229 ACM1 HUMAN 112 Q01959 SC6A3 HUMAN 104
P08172 ACM2 HUMAN 106 P23975 SC6A2 HUMAN 88
P35367 HRH1 HUMAN 104 P35372 OPRM HUMAN 57
P35348 ADA1A HUMAN 102 P08172 ACM2 HUMAN 52
P23975 SC6A2 HUMAN 99 P21728 DRD1 HUMAN 44
P14416 DRD2 HUMAN 97 P22303 ACES HUMAN 44
P20309 ACM3 HUMAN 95 P11229 ACM1 HUMAN 41
P41595 5HT2B HUMAN 94 P14416 DRD2 HUMAN 41
Q12809 KCNH2 HUMAN 92 P08913 ADA2A HUMAN 40
P31645 SC6A4 HUMAN 87 P20309 ACM3 HUMAN 39
P08908 5HT1A HUMAN 81 P35367 HRH1 HUMAN 32
Q01959 SC6A3 HUMAN 77 Q12809 KCNH2 HUMAN 31
P07550 ADRB2 HUMAN 75 P29274 AA2AR HUMAN 29

Table 4.4: Top 15 interacting proteins in Panel 44 after thresholding was applied. Proteins which
are not present in the opposite class’ top 15 interactions are highlighted in bold font.
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Panel 331
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P08684 CP3A4 HUMAN 196 P03372 ESR1 HUMAN 349
P10635 CP2D6 HUMAN 193 P33261 CP2CJ HUMAN 277
P05177 CP1A2 HUMAN 142 P10275 ANDR HUMAN 209
P33261 CP2CJ HUMAN 141 P03956 MMP1 HUMAN 190
P11712 CP2C9 HUMAN 136 P11712 CP2C9 HUMAN 167
P08913 ADA2A HUMAN 122 O75469 NR1I2 HUMAN 147
P28223 5HT2A HUMAN 117 P37231 PPARG HUMAN 145
P11229 ACM1 HUMAN 112 P05177 CP1A2 HUMAN 137
P08172 ACM2 HUMAN 106 P11511 CP19A HUMAN 136
P35367 HRH1 HUMAN 104 Q96RI1 NR1H4 HUMAN 121
P23975 SC6A2 HUMAN 99 P08684 CP3A4 HUMAN 120
P20813 CP2B6 HUMAN 98 P04150 GCR HUMAN 112
P14416 DRD2 HUMAN 97 Q01959 SC6A3 HUMAN 104
Q12809 KCNH2 HUMAN 92 P20813 CP2B6 HUMAN 91
P18825 ADA2C HUMAN 89 P35968 VGFR2 HUMAN 89

Table 4.5: Top 15 interacting proteins in Panel 331 after thresholding was applied. Proteins which
are not present in the opposite class’ top 15 interactions are highlighted in bold font.

Pharmacology Panel
Good Profile Compounds (DrugBank) Bad Profile Compounds (ToxCast)

UniProt ID Entry Name No. of Interactions UniProt ID Entry Name No. of Interactions
P08684 CP3A4 HUMAN 196 P03372 ESR1 HUMAN 349
P10635 CP2D6 HUMAN 193 P33261 CP2CJ HUMAN 277
P33261 CP2CJ HUMAN 141 P05121 PAI1 HUMAN 268
P11712 CP2C9 HUMAN 136 Q03405 UPAR HUMAN 236
P08913 ADA2A HUMAN 122 P13500 CCL2 HUMAN 222
P28223 5HT2A HUMAN 117 P10275 ANDR HUMAN 209
P08183 MDR1 HUMAN 114 P03956 MMP1 HUMAN 190
P11229 ACM1 HUMAN 112 P11712 CP2C9 HUMAN 167
P08172 ACM2 HUMAN 106 O75469 NR1I2 HUMAN 147
P35367 HRH1 HUMAN 104 P37231 PPARG HUMAN 145
P35348 ADA1A HUMAN 102 P11511 CP19A HUMAN 136
P28335 5HT2C HUMAN 101 P00750 TPA HUMAN 124
P18089 ADA2B HUMAN 100 P08684 CP3A4 HUMAN 120
P23975 SC6A2 HUMAN 99 P00749 UROK HUMAN 115
P20813 CP2B6 HUMAN 98 P04150 GCR HUMAN 112

Table 4.6: Top 15 interacting proteins in the Pharmacology Panel after thresholding was applied.
Proteins which are not present in the opposite class’ top 15 interactions are highlighted in bold font.

4.3 Revised Analysis

With the interactions found thus far, the experiments which made use of protein

activity flags could be reassessed to determine if an improvement in accuracy could

be obtained from the test interactions found from HMDB and T3DB as the ”Good”

Profile and ”Bad” Profile candidates respectively. The experiments selected for this

chapter were the ”Active Only” and ”Proteins and Property”, following the decision

that data that did not meet the threshold would be grouped together with potential
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inconclusive results. Interactions and compounds found in HMDB and T3DB were

kept separate from the other repositories to ensure the training data had no influence

on testing. Furthermore, the weight restriction on the HMDB repository was removed

to observe the impact of the classifier performance on all metabolites which had

interactions with the panels studied.

Table 4.7 provides a summary of the numbers of compounds used for both

training and testing on both analysis sets across all panels studied. In terms of class

distribution of the training set, the imbalance that was present in Chapter 3 has now

been reduced, with the skew now towards towards ”Good” profile compounds. While

this imbalance is to a greater degree on testing sets now that all metabolites are

included from HMDB, this would have no impact on the training sets used to build

the classifier models.

The analysis process was to first train classifiers on the thresholded interactions

from ToxCast, ChEMBL and BindingDB (including the targets from DrugBank

approved drugs), which were then tested directly on the HMDB and T3DB compounds

and targets. Results were presented in a similar format to Chapter 3, where unbalanced

and balanced training sets (Using the ClassBalancer filter) would be assessed.

Number of Compounds
Training Testing

Panel Good Profile Bad Profile Good Profile Bad Profile
Panel 44 (Active Only) 714 430 122 713

Panel 44 (With Chemical Properties) 714 430 122 707
Panel 331 (Active Only) 862 983 1,954 1,018

Panel 331 (With Chemical Properties) 862 983 1,954 1,016
Pharma Panel (Active Only) 1,224 1,071 18,562 1,851

Pharma Panel (With Chemical Properties) 1,224 1,071 18,562 1,843

Table 4.7: Distribution of compounds for the training and testing sets used for the thresholding
analysis

4.3.1 Active Interactions Only

Table 4.8 displays the classifier results for the test set when no class balancing has been

performed. Overall performance has been improved on two panels with thresholding

implemented, with Panel 331 in particular demonstrating a considerable improvement

in classification accuracy. Further investigation of this Panel’s results highlighted

that while performance for ”Bad” profile drugs had decreased from levels of 95%

to 70%, ”Good” profile drugs had increased to degrees of almost 50% with some

classifiers, indicating that some clear interaction patterns are being found in Panel

331. While the larger Pharmacology panel provided some improvement in overall
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performance in comparison to Chapter 3’s results, it was not to the extent of that for

Panel 331, indicating the same findings as Chapter 3 - that the provision of additional

information would not necessarily provide higher degrees of accuracy. Panel 44 was

the only dataset which did not provide a significant improvement in performance,

with most instances being classified as ”Good” profile. Another feature of the test

results was in that in all cases, high accuracy performance was found with the test

metabolites regardless of weighting restrictions, demonstrating that the compounds

found in HMDB shared similar interaction profiles to the FDA-approved DrugBank

compounds.

Attempts at weight balancing the training set as shown in Table 4.9 had produced

mixed results in comparison to the test result findings in Chapter 3. While some

classifiers such as the DecisionTable had produced improvements in prediction of the

minority ”Bad” profile class across all panels, other classifiers such as Naive Bayes did

not produce an accuracy improvement in comparison to the unbalanced training set

models. Panel 331 continued to be the highest accuracy protein panel after balancing,

with Panel 44 still providing the worst overall accuracy despite small improvements

in ”Bad” profile classification.
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Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (0) 100 (100) 0 (72.91) 14.61 (0) 0 (100) 100 (71.71) 34.25 (0) 100 (100) 0 (68.16) 90.93

DecTable (14.7) 96.7 (91.4) 19.2 (70.62) 30.54 (21.1) 77.2 (96.2) 70.7 (74.98) 74.97 (14.1) 99.9 (97.3) 45.9 (70.80) 95.02
Jrip (17.3) 94.3 (94.0) 37.9 (73.20) 46.11 (29.3) 96.5 (95.3) 63.3 (76.65) 85.09 (17.8) 99.6 (93.8) 35.7 (69.64) 93.78

PART (13.6) 94.3 (83.2) 26.9 (64.34) 36.77 (34.4) 76.6 (88.4) 72.1 (73.16) 75.03 (28.7) 99.5 (83.5) 38.5 (66.04) 93.97
J48 (16.2) 97.5 (88.1) 10.1 (68.63) 22.87 (17.5) 95.2 (91.6) 67.5 (70.62) 85.73 (19.3) 99.6 (93.4) 35.9 (69.80) 93.8

RandomForest (18.8) 93.4 (94.8) 26.5 (74.2) 36.29 (24.2) 97.7 (91.7) 69.2 (72.58) 87.95 (39.9) 99.5 (86.6) 36.1 (71.75) 93.78
RandomTree (19.5) 90.2 (93.9) 26.4 (73.71) 35.69 (26.2) 97.4 (89.8) 71.7 (71.78) 88.59 (42.7) 99.5 (88.6) 30.9 (73.99) 93.28

REPTree (17.3) 92.6 (94.3) 27.3 (73.41) 36.89 (25.4) 95.8 (91.5) 72.3 (72.8) 87.72 (17.2) 99.5 (87.2) 35.8 (64.92) 93.74
Logistic (15.1) 90.2 (95.6) 30 (73.80) 38.8 (29.6) 76.8 (91.6) 64.4 (74.04) 72.54 (33.1) 99.5 (86.2) 36.9 (69.32) 93.78

NaiveBayes (24.3) 91.8 (90.4) 41.5 (72.51) 48.86 (31.4) 76.3 (85.5) 73.1 (70.18) 75.17 (18.9) 98.5 (80.2) 54.5 (60.73) 94.47

Table 4.8: Classifier results on interactions thresholded under 10 micromolar potencies of Ki, Kd, EC50, IC50, and AC50, unmodified in weightings.
Results from the blind testing on Chapter 3 are shown in brackets

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (100) 100 (0) 0 (27.09) 14.61 (0) 100 (100) 0 (71.71) 65.75 (100) 0 (0) 100 (31.84) 9.07

DecTable (82.4) 92.6 (25.1) 37.9 (40.64) 45.87 (80.7) 97.4 (20.4) 69.4 (37.45) 87.82 (86.6) 99.7 (13.5) 49.9 (36.80) 95.21
Jrip (80.5) 92.6 (38.1) 39.1 (49.60) 46.95 (77.1) 95.4 (18.4) 67.1 (34.98) 85.73 (85.4) 99.5 (18.6) 34 (39.87) 93.58

PART (70.6) 88.5 (45.9) 42.8 (52.59) 49.46 (58.9) 77.9 (37.5) 72 (43.56) 75.91 (55.6) 99.5 (74.5) 37.2 (68.48) 93.82
J48 (75.7) 86.1 (45.1) 42.4 (53.39) 48.74 (67.9) 97.2 (33.1) 66.5 (42.91) 86.68 (57.2) 99.6 (63.8) 35.9 (61.73) 93.8

RandomForest (68.0) 91.8 (48.2) 37.3 (53.59) 45.27 (62.2) 97.7 (38.4) 69.1 (45.16) 87.92 (54.3) 99.5 (75.0) 25.7 (68.44) 92.84
RandomTree (66.9) 89.3 (48.2) 39.4 (53.29) 46.71 (55.5) 96 (38.1) 63.5 (43.05) 84.83 (47.1) 99.5 (75.2) 45.1 (66.24) 94.54

REPTree (75.4) 93.4 (39.1) 38.6 (48.90) 46.59 (76.3) 96.9 (16.3) 70.3 (33.31) 87.82 (82.3) 99.5 (36.3) 37.8 (50.98) 93.88
Logistic (79.4) 88.5 (37.6) 41.7 (48.90) 48.5 (74.6) 77.3 (22.9) 62.1 (37.53) 72.07 (64.5) 99.3 (59) 34.4 (60.73) 93.41

NaiveBayes (50.7) 89.3 (65.6) 41.9 (61.55) 48.86 (79.4) 76.5 (29.1) 73 (43.35) 75.27 (31.4) 97.7 (71.7) 55.1 (58.89) 93.84

Table 4.9: Classifier results on interactions thresholded under 10 micromolar potencies of Ki, Kd, EC50, IC50, and AC50, where class balancing was
performed. Results from the blind testing on Chapter 3 are shown in brackets
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4.3.1.1 Discussion

Although thresholding experimental assay values had considerably reduced the size

of the data set being considered by the classifiers, the results where only protein

interactions are considered has so far delivered potentially promising patterns, with

higher accuracy levels being reported across most classifiers and protein panels. The

modifications made have also generated models of a similar scale in terms of decisions

and rules to those found in Chapter 3, which indicates that there is still sufficient

information present after the threshold was applied to make a distinction between

protein interaction profiles of compounds. For example, in the case of Panel 331

and the J48 tree classifier, the interaction link dataset had generated a tree of 65

decision leaves (areas leading to a classification of a compound instance), of which

129 attribute branches are present (all areas involving comparison of an attribute).

The thresholded protein dataset had generated a similarly sized decision tree of 53

decision leaves, with 105 attribute branches.

While some classifiers reveal some interesting protein activity patterns and ac-

curacy levels, there are some rulesets and decision trees which highlight that there

could still be insufficient levels of coverage for protein-compound activity to come

to sound conclusions. One classifier of interest found during the model assessment

was the JRIP classifier on the unbalanced Panel 331 dataset: 5 rules were generated

by this classifier, which only considered a mixture of activity flags for 9 out of the

144 proteins present in the panel and so was based on a highly restricted subset of

proteins. This small ruleset had led to accuracy levels of 96.5% and 63.3% for ”Good”

and ”Bad” profile test compounds respectively, and as the ruleset in Figure 4.4 shows,

almost all of the tested compounds in HMDB would be satisfied being assessed by

the interactions (or lack thereof) of these 9 proteins. The entry names attached to

these proteins referenced by this ruleset in question are detailed in Table 4.10. While

this may be considered effective and applicable based on the current information

stored in the repositories, there is concern that more widely screened compounds

would nod be classified correctly with the use of these classifiers despite incorporation

of thresholding.
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JRIP rules:

===========

Rule 1) (P03372 = 0) and (P03956 = 0) and (P10635 = 1) and (P34969 = 0) and (P28223 = 1)

=> DrugClass=Good-Profile (43.0/0.0)

Rule 2) (P03372 = 0) and (P03956 = 0) and (P10275 = 0) and (P10635 = 1)

=> DrugClass=Good-Profile (176.0/29.0)

Rule 3) (P03372 = 0) and (P03956 = 0) and (P33261 = 0) and (P10275 = 0) and (P37231 = 0)

=> DrugClass=Good-Profile (835.0/266.0)

Rule 4) (P11509 = 1) => DrugClass=Good-Profile (10.0/0.0)

Rule 5) (Default if all rules fail) => DrugClass=Bad-Profile (781.0/93.0)

Figure 4.4: JRIP ruleset for Panel 331 on the thresholded and unbalanced dataset

UniProt Accession ID Entry Code Protein name
P03372 ESR1 HUMAN Estrogen receptor
P03956 MMP1 HUMAN Interstital collagenase
P10635 CP2D6 HUMAN Cytochrome P450 2D6
P34969 5HT7R HUMAN 5-hydroxytryptamine receptor 7
P28223 5HT2A HUMAN 5-hydroxytryptamine receptor 2A
P33261 CP2CJ HUMAN Cytochrome P450 2C19
P37231 PPARG HUMAN Peroxisome proliferator-activated receptor gamma
P11509 CP2A6 HUMAN Cytochrome P450 2A6
P10275 ANDR HUMAN Androgen Receptor

Table 4.10: Details of proteins referenced by the JRIP ruleset

4.3.2 Active Interactions with Chemical Properties

Table 4.11 displays the results for the classifiers without class balancing implemented,

when the thresholded interactions are combined with the chemical properties. The

table also provides the test results obtained from Chapter 3, shown in brackets.

From analysis of these results it appears as though the thresholding has had more

of a positive impact when used in conjunction with the chemical properties, with

high accuracy levels reported for most classifiers and panels. Panel 331 continues to

provide the highest levels of improvement in comparison to other panels, while Panel

44 provides a greater degree of improvement when chemical properties are considered.

A result of particular interest from all results was from the J48 decision tree and

Panel 331, which reported a very high level of accuracy when assessed against the

test compounds (”Good” profile accuracy of 97.7%, ”Bad” profile accuracy of 85.5%).

This is a considerable improvement on the chapter 3 ”Good” profile accuracy rate of

33.7% from J48, but with a tradeoff of a decrease in ”Bad” profile accuracy which

was previously at 90.6%. Notwithstanding the slight fall in ”Bad” profile accuracy,

the attainment of an overall average classification accuracy of 93.5% is an exceptional

outcome.

With class balancing implemented, the results shown in Table 4.12 also show

an overall improvement in performance for most classifiers when compared to the

Chapter 3 results. The act of class balancing however had a varied impact on
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performance depending on the protein panel and classifier used. In one example with

the Decision Table classifier, performance from Panel 44 and the Pharmacology Panel

show worse performance overall compared to the findings of Chapter 3. In the case of

Panel 331 however, overall performance improved by approximately 14% compared

to the findings of Chapter 3 when class balancing was applied. This result is also

an improvement over the unbalanced Panel 331 dataset, which performed poorly to

the other panels when compared to the findings of Chapter 3. Another classifier

of interest from further analysis of the balanced dataset include the RandomForest

classifier, which reported high level of accuracy on the Pharmacology panel, with an

overall performance improvement of approximately 26%. This classifier however had

performed poorly in Panel 44 and Panel 331 when compared to the Chapter 3 results.
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Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (0) 100 (100) 0 (72.91) 14.72 (0) 0 (100) 100 (71.71) 34.21 (0) 100 (100) 0 (68.16) 90.97

DecTable (33.1) 69.7 (92.8) 39.3 (76.59) 43.79 (19) 10.6 (91.2) 89.9 (70.76) 37.74 (8.5) 62.1 (96.6) 46.6 (68.56) 60.74
Jrip (41.5) 84.4 (86.6) 58.3 (74.4) 62.12 (36.2) 74.1 (86.2) 77.2 (72.07) 75.15 (19.7) 15.3 (91.7) 59.3 (68.76) 19.28

PART (43.4) 70.5 (87.8) 58.8 (75.8) 60.55 (39.8) 78.5 (88.9) 77.9 (75.05) 78.28 (30.4) 94.6 (88.5) 64.7 (69.96) 91.94
J48 (49.3) 83.6 (85) 61.7 (75.3) 64.9 (33.7) 97.7 (90.6) 85.5 (74.47) 93.54 (18.7) 53.8 (90.5) 61.3 (67.64) 54.48

RandomForest (16.9) 66.4 (97.7) 59 (75.8) 60.07 (10.3) 24.4 (98.6) 88.7 (73.6) 46.36 (4.1) 43.4 (98.3) 80 (68.32) 46.67
RandomTree (32.4) 74.6 (90.4) 49.1 (74.7) 52.83 (28.5) 75.3 (91.6) 78.9 (73.75) 76.57 (17.6) 26.2 (94.4) 60.4 (69.92) 29.27

REPTree (29.8) 75.4 (92.1) 49.1 (75.2) 52.96 (19.3) 92.7 (94.7) 81.5 (73.38) 88.89 (24) 38.3 (92.8) 65 (70.88) 40.67
Logistic (46) 71.3 (71.2) 43.7 (64.34) 47.77 (49.1) 59.7 (60.3) 56.4 (57.16) 58.55 (37.4) 10.2 (67.4) 55.8 (57.81) 14.34

NaiveBayes (86.4) 65.6 (66.3) 69 (71.71) 68.52 (79.9) 97.1 (76.4) 80.6 (77.38) 91.45 (56) 97.8 (80.3) 85.2 (72.55) 96.66

Table 4.11: Classifier results on interactions thresholded under 10 micromolar potencies of Ki, Kd, EC50, IC50, and AC50, in addition to chemical
properties with no modifications to weights. Results from the blind testing on Chapter 3 are shown in brackets

Accuracy (%)
Panel 44 Panel 331 Pharma Panel

Classifier Algorithm Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall Good Prof. Bad Prof. Overall
ZeroR (0) 100 (100) 0 (72.91) 14.72 (100) 100 (0) 0 (28.29) 65.79 (100) 0 (0) 100 (31.84) 9.03

DecTable (67.6) 68 (47.5) 33 (52.99) 38.12 (60.9) 96.4 (80.9) 76.5 (75.27) 89.56 (48.8) 16.3 (80) 81.1 (70.08) 22.15
Jrip (69.5) 78.7 (72.8) 57.1 (71.91) 60.31 (63.5) 59.6 (51.7) 79.3 (55.05) 66.33 (47.6) 91.2 (80.4) 82 (69.92) 90.4

PART (73.2) 91.8 (66.7) 59.7 (68.43) 64.42 (68.6) 98.5 (83.9) 79.9 (79.56) 92.12 (49.4) 99.1 (84.2) 66.2 (73.15) 96.12
J48 (60.3) 91 (74.3) 52.8 (70.52) 58.38 (56.3) 98 (82.8) 82.9 (75.27) 92.83 (53.1) 55.7 (80.9) 57.5 (72.07) 55.9

RandomForest (37.5) 61.5 (89.9) 70.2 (75.7) 68.88 (30.1) 20.1 (91.5) 87.3 (74.11) 43.09 (19.3) 97.1 (92.4) 81 (69.12) 95.65
RandomTree (37.1) 57.4 (89.5) 55.9 (75.3) 56.09 (20.3) 49.9 (90.6) 78 (70.69) 59.53 (16.1) 96.9 (92.6) 68.6 (68.24) 94.33

REPTree (56.3) 77 (74.9) 64.9 (69.82) 66.71 (62) 77.5 (76.9) 86.8 (72.65) 80.67 (46.2) 16.1 (84.8) 74.1 (72.51) 21.38
Logistic (46) 72.1 (79.9) 47.7 (70.71) 51.27 (52.7) 75.1 (78.8) 58.5 (71.42) 69.43 (39.1) 21.8 (77.3) 54.4 (65.16) 24.75

NaiveBayes (86.4) 65.6 (65.8) 69 (71.41) 68.52 (79.9) 97.1 (76.2) 80.6 (77.24) 91.45 (56.7) 97.8 (80.1) 85.1 (72.67) 96.65

Table 4.12: Classifier results on interactions thresholded under 10 micromolar potencies of Ki, Kd, EC50, IC50, and AC50, in addition to chemical
properties, where class balancing was performed. Results from the blind testing on Chapter 3 are shown in brackets
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4.3.2.1 Discussion

Whilst the previous investigation into using chemical properties in conjunction with

protein interaction flags had led to somewhat disappointing results, the results

generated when thresholding was applied has led to some interesting findings being

made. Performance on classifying test compounds appears to vary according to

particular classifiers and the panel assessed, and performance improvements are not

necessarily connected to increases in search space size.

One area of interest on further assessment of the classifier models was that in the

case of the JRIP rule based classifier, it appears as though the chemical property rules

were only assigned despite the presence of protein activity flags, but these rulsets

in turn have delivered high levels of accuracy when tested. Figure 4.5 displays an

example of the JRIP ruleset on the unbalanced chemical and protein flag dataset for

Panel 331. In comparison to the classifier results obtained from Chapter 3 (36.2%

”Good” Profile accuracy, 86.2% ”Bad” profile accuracy), the thresholded dataset

had generated better performance for ”Good” profile drugs (74.1% accuracy) with

a small decrease in ”Bad” profile accuracy (77.2% accuracy). While the additional

compounds from Chapter 3 should in theory have generated a more accurate classifier,

it appears as though the reduction in compounds from thresholding interactions has

led to more distinct patterns being detected when chemical properties have been

considered. While no proteins were present in this particular example’s ruleset, it

should be assumed that a candidate compound being tested should have at least one

interaction recorded in the panel as per the training set requirements, in order to

be considered for assessment by the model. Full details of the chemical properties

specified in the ruleset can be found in Mordred’s online documentation[8].

While some classifiers only made use of chemical properties, protein flags have been

used in addition to chemical properties with some models which generated high levels

of accuracy. One of these models is the J48 decision tree with the unbalanced Panel

331 dataset, where Figure 4.6 displays a segment of the decision tree in question. This

tree had managed to successfully classify 97.7% of the ”Good” profile test instances,

and 85.5% of the ”Bad” profile test instances, while containing a mixture of both

protein flag and chemical property decisions in the tree. Table 4.13 highlights the

proteins which were present in the complete sized tree, which contained 84 leaves

and contained 167 decision points.
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JRIP rules:

===========

Rule 1) (nBase >= 1) and (ETA_beta_ns >= 1.5)

=> DrugClass=Good-Profile (531.0/53.0)

Rule 2) (SpMAD_Dt >= 18.859751) and (P03372 = 0) and (ETA_dEpsilon_B <= 0.058233)

=> DrugClass=Good-Profile (118.0/12.0)

Rule 3) (MID_N >= 2.061687) and (SlogP_VSA2 >= 29.486992) and (Mm <= 0.676512)

=> DrugClass=Good-Profile (71.0/27.0)

Rule 4) (MID_N >= 3.797155) and (ZMIC2 <= 30.557898) and (MAXdO >= 10.708321)

=> DrugClass=Good-Profile (79.0/17.0)

Rule 5) (IC4 >= 4.7213) and (MID_O <= 5.481618) and (AATS0i <= 161.054881)

=> DrugClass=Good-Profile (54.0/16.0)

Rule 6) (TopoPSA(NO) >= 76.72) and (ZMIC3 <= 27.602677) and (ETA_epsilon_5 <= 0.801852)

=> DrugClass=Good-Profile (14.0/0.0)

Rule 7) (MINsssCH <= -0.488589) and (MATS4p <= -0.138851)

=> DrugClass=Good-Profile (15.0/4.0)

Rule 8) (AXp-0d <= 0.730514) and (ATSC2i >= -0.212614) and (AATSC4dv <= -0.580355)

=> DrugClass=Good-Profile (29.0/9.0)

Rule 9) (ATSC0s >= 82.873946) and (GATS7c <= 0.867391) and (MATS1i <= -0.215065)

=> DrugClass=Good-Profile (9.0/1.0)

Rule 10) (TIC3 >= 205.195441) and (BCUTc-1l >= -0.364677)

=> DrugClass=Good-Profile (17.0/6.0)

Rule 11) (AXp-6d <= 0.045192) and (MATS2s >= 0.101228) and (AXp-0d <= 0.726224)

=> DrugClass=Good-Profile (15.0/4.0)

Rule 12) (SlogP_VSA1 >= 5.316789) and (ATSC3d <= -11.252078) and (AATS6m <= 44.859391)

=> DrugClass=Good-Profile (11.0/4.0)

Rule 13) (SM1_Dzpe >= 1.357252) and (MID_h <= 11.275799) and (MATS1c <= -0.522564)

=> DrugClass=Good-Profile (15.0/6.0)

Rule 14) (TopoPSA >= 76.74) and (AATSC3c >= 0.004934) and (GATS5c <= 0.758399)

=> DrugClass=Good-Profile (9.0/3.0)

Rule 15) => DrugClass=Bad-Profile (858.0/37.0)

Figure 4.5: JRIP Ruleset for Panel 331 on the unbalanced protein and chemical property dataset
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UniProt Accession ID Entry Code Protein name Times referenced in tree
P11509 CP2A6 HUMAN Cytochrome P450 2A6 6
P10275 ANDR HUMAN Androgen receptor 4
P10635 CP2D6 HUMAN Cytochrome P450 2D6 4
O15111 IKKA HUMAN Inhibitor of nuclear factor kappa-B kinase subunit alpha 2
P03372 ESR1 HUMAN Estrogen receptor 2
P03956 MMP1 HUMAN Interstitial collagenase 2
P04798 CP1A1 HUMAN Cytochrome P450 1A1 2
P05177 CP1A2 HUMAN Cytochrome P450 1A2 2
P06401 PRGR HUMAN Progesterone receptor 2
P07948 LYN HUMAN Tyrosine-protein kinase Lyn 2
P08246 ELNE HUMAN Neutrophil elastase 2
P08253 MMP2 HUMAN 72 kDa type IV collagenase 2
P11511 CP19A HUMAN Aromatase 2
P11712 CP2C9 HUMAN Cytochrome P450 2C9 2
P29074 PTN4 HUMAN Tyrosine-protein phosphatase non-receptor type 4 2
P30536 TSPO HUMAN Translocator protein 2
P33261 CP2CJ HUMAN Cytochrome P450 2C19 2
P35968 VGFR2 HUMAN Vascular endothelial growth factor receptor 2 2
P37231 PPARG HUMAN Peroxisome proliferator-activated receptor gamma 2
P45452 MMP13 HUMAN Collagenase 3 2
P47898 5HT5A HUMAN 5-hydroxytryptamine receptor 5A 2
P48730 KC1D HUMAN Casein kinase I isoform delta 2
P49137 MAPK2 HUMAN MAP kinase-activated protein kinase 2 2
P49146 NPY2R HUMAN Neuropeptide Y receptor type 2 2
P51452 DUS3 HUMAN Dual specificity protein phosphatase 3 2
Q07869 PPARA HUMAN Peroxisome proliferator-activated receptor alpha 2
Q14994 NR1I3 HUMAN Nuclear receptor subfamily 1 group I member 3 2
Q96RI1 NR1H4 HUMAN Bile acid receptor 2
Q9HCS2 CP4FC HUMAN Cytochrome P450 4F12 2
Q9UBN7 HDAC6 HUMAN Histone deacetylase 6 2

Table 4.13: Details of proteins referenced by the full J48 decision tree in Figure 4.6
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Figure 4.6: Segment of the J48 Classification tree on the unbalanced Panel 331 dataset after thresholding was applied
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4.4 Database Schema Redesign

Although the thresholding works on similar information to that used in Chapters

2 and 3, the process of documenting the assay experimental values and the revised

definition of activity between a compound and protein meant that a database schema

redesign was necessary in order to effectively store and query the information needed

quickly and efficiently.

The schema defined in Chapter 2 made use of three main components for the

defining the type of action which occurs between a compound and a protein: a hit

table, which specified the repositories where an active classification was made; a miss

table, which specified the repositories where an inactive classification was made; and

finally a conflict table which specified pairs which were present in both tables for

exclusion. As the definition of what threshold potency might constitute an active

”hit” might vary from user to user, a database that considers assay experiment values

would need to document all instances in one table. Figure 4.7 displays an example

of a schema design prototype which could be used in order to store the information

required for applying customised threshold levels. The table AssayResults reference

directly to a UniProt protein accession code and PubChem compound ID, in addition

to defining the repository which specified the result and the type and measurement

method used. To ensure that some means of tracing the interaction to the source can

be undertaken, cross reference database tables for drugs and proteins were needed to

specify the IDs used in the other repositories.

While this database schema would be suitable for documenting the interactions

discussed in this chapter, there are a number of areas for improvement which require

further investigation before a database prototype could be considered for implement.

One issue raised by reassessment of the repositories is that there may be instances

where duplication may be present; whilst this issue was minimised somewhat with

repository flags in the initial DrugReferenceDatabase design, the combination of all

results into one table can lead to examples where multiple instances of the same

compound protein pair experiment could be duplicated. Another area for improvement

would be finding an efficient means of documenting the particular assay ID of a

repository; whilst an addition of this to the schema would make the process of tracing

the interaction to the source more efficient, there are some repositories which make

no reference to a particular assay which in turn would make documentation complex.

There are also instances which make no reference towards quantitative assay results,

but would still be considered as relevant and potentially reliable sources of information,
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such as the DrugBank approved target interactions. The altered schema would need

to have the ability to incorporate and exclude these results efficiently when further

repositories are considered. Finally, the schema should be able to incorporate and

differentiate between what is considered as a single protein and multiple protein assay

to ensure that users would be able to differentiate between different assay results

when needed.
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Figure 4.7: A revised Entity Relationship diagram of the DrugReferenceDatabase incorporating assay results to determine targets of interest
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4.5 Conclusions and Further Work

Overall, applying quantitative assay experimental results and filtering the numbers

have generated some substantial enhancements for the classifiers used for profiling.

Despite these improvements however, there is still some further work which could be

undertaken to improve the classifier’s potential. One of these areas for instance would

be further experimentation with differing concentration thresholds of Ki and IC50 etc.

. The work detailed in this chapter only explored the potential of interaction being

assigned when concentrations were under 10 micromolar, but further analyses could

also be undertaken with differing values. These could include but are not limited to

applying concentrations which could be considered as defining borderline activity, and

also concentrations which could be considered as clearly inactive. Further observation

should also have been applied to the descriptions and experimental conditions supplied

from each repository to ensure that results provided from a particular repository were

compatible with others.

Other areas for potential include looking beyond molar concentration values to

assess levels of activity. On some of repositories considered such as BindingDB and

ChEMBL there are a number of additional result parameters stored such as the

temperature of the assay, or the pH level of the solution which might be suitable

as additional parameters. Further considerations could also have been made with

regard to dosage levels if documented by the assay, to further validate if a compound

is correctly classified as beneficial or harmful.
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Chapter 5

Protein-compound interaction
prediction based on compound and
protein similarity

5.1 Introduction

In previous chapters, only database in vitro interactions were considered, where a

repository specified either through target listings or through recorded assay results

that activity existed between a compound and a protein. While the information

provided by extracting interactions this way led to interesting protein interaction

profiles being found, it was also appreciated that in most circumstances there was still

a great deal of the related compound and protein search space for which knowledge

of interactions is undocumented and inconclusive. The purpose of this chapter is to

describe the consideration and implementation of some of the in silico techniques

that could be used to provide knowledge of potential interactions. The first method

in question involves the use of similarity measurement techniques with the rationale

that a similar compound or protein should share a similar interaction profile if they

were believed to be similar in structure. Another approach which will be used in

conjunction with the similarity prediction technique is the application of a docking

pipeline which can predict an interaction between a compound and a protein through

comparing binding strengths and properties to those of known hits and misses. This

method will be used to investigate high scoring pairs to determine if the similarity

clustering methods holds merit.
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5.2 Similarity Comparison Review

When discussing chemical groupings, Cronin describes that similar objects have

a tendency to share similar properties, and that when this method is applied to

chemicals, a compound which has a presence within a group of well documented

compounds could have its features and activities determined [1]. This term is defined

as ”Read-Across”, in that toxicology, activity and properties could be read across in

a selected group. One of the techniques used to accomplish this is via Quantitative

Structure Activity Relationships, defined by Cronin as ’a mathematical model that

relates (usually statistically) the activity or potency of a series of chemicals to

physio-chemical properties or descriptors of chemicals’.

One study which made use of drug and protein similarities in such a fashion to

determine potential interactions was reported by Yamanishi et al., who designed

and assessed a number of statistical methods to make predictions relating to four

protein panels, split according to four types of protein: enzymes, ion channels, G-

protein-coupled receptors (GPCRs) and nuclear receptors [2]. The report makes

use of three main sets of information to make these predictions: the first being

the chemical structure similarity of compounds, the second being the amino acid

sequence similarity of proteins, and the third piece of information being the binary

interaction matrix of proteins and compounds, where a value of 1 indicated an active

compound-protein pairing and a value 0 was indicated all other cases. An illustration

of this method in principle is shown in Figure 5.1, in that if a compound shares a

high degree of similarity with another compound, there could be a high likelihood

that their interaction profiles would be compatible. The same would also apply to

proteins, where similarly sequenced structures could also in theory have a similar

interaction profile.

5.2.1 Initial Approach

Following compilation of the similarities and interaction matrices, Yamanishi et al.

assessed three different prediction techniques. The first and most naive of methods,

the nearest profile method, made use of the assumption specified above, where the

interaction profile of a new compound or protein would follow a proportion of the

interaction profile of a compound or protein which was most similar. The second

technique provides an expansion of the first technique by considering other nearest

compounds, providing a weighted interaction profile. The interaction profile of a new

compound could then be determined from the most similar compounds. The final
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Figure 5.1: Predicting interaction profiles via similarity clustering. It could be assumed that
proteins and compounds which are similar in structure should in general share similar interaction
profiles.

method described was the bipartite graph, which attempted to detect interaction

patterns between chemical and protein space to create a pharmacological space. This

generates a matrix of confidence values to specify the likelihood of an interaction

between a compound and a protein, and after application of a threshold provides

the interaction profile for a new compound or protein. To assess these methods,

the interaction sets of the 4 protein panels were split into training and test sets

via 10-fold cross validation to determine if the methods had successfully predicted

the correct interaction profile. To determine accuracy levels at various thresholds,

receiver operating curves were used from which an average performance value could

be determined by measuring the area under the curve (AUC).

On further analysis of the results outlined in Table 5.1, the bipartite graphs were

revealed to have the highest performance of the methods, with the enzyme protein

panel being able to successfully identify 57.4% of the activities tested when targets

were defined as the top 1% of prediction scores. While other protein panels did not

perform as well in predicting all the activities in the test set, those that it did predict

when thresholded were mostly correct when assessing the positive predictive value

(PPV).
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Data Method AUC Sensitivity Specificity PPV
Enzyme Nearest profile 0.767 0.538 0.995 0.532

Weighted profile 0.812 0.386 0.993 0.384
Bipartite graph learning 0.904 0.574 0.995 0.570

Ion Nearest profile 0.751 0.166 0.995 0.576
channel Weighted profile 0.811 0.239 0.998 0.826

Bipartite graph learning 0.851 0.271 0.999 0.936
GPCR Nearest profile 0.729 0.156 0.994 0.474

Weighted profile 0.739 0.146 0.994 0.444
Bipartite graph learning 0.899 0.234 0.996 0.681

Nuclear Nearest profile 0.710 0.073 0.993 0.440
receptor Weighted profile 0.626 0.114 0.998 0.818

Bipartite graph learning 0.843 0.148 0.999 0.954

Table 5.1: Performance of the methods tested by Yamanishi et al [2]

5.2.2 Alternative Similarity Clustering Methods

While the work of Yamanishi and colleagues is from 2008, there have been other

reports which have made use of the dataset presented by Yamanishi et al., either

to test their own methods of target prediction or to provide alternative methods

of calculating similarity of compounds and proteins. This section will provide an

overview of some recent advances.

5.2.2.1 WNN-GIP

The Weighted Nearest Neighbour Gaussian Interaction Profile (WNN-GIP) method

was presented in a report from 2013 by Van Laarhoven et al. [3]. This method

combined two elements: the first element of a Gaussian Interaction Profile (GIP)

constructs kernel matrices of the similarity and interaction matrices, which are then

used with a new compound’s interaction profile to provide a series of scores. The

limitation of this feature used on its own is that a candidate drug would require at

least one known interaction. This limitation could however be circumvented through

the use of the weighted nearest neighbours technique (WNN), which would build an

interaction profile based on similarly structured compounds and then pass this profile

as input to the GIP kernels.

5.2.2.2 NetLapRLS

The NetLapRLS method was a technique proposed by Xia et al. in 2010, which

composed of two elements [4]. The first and main element of the method was the

Laplacian Regularized Least Square (LapRLS) technique, which creates one score

matrix for drugs and one score matrix for proteins. These scores would then have

a regularized term applied with their respective similarity matrices. The final step

of this process would then be to average the separated score matrices to obtain a
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final score matrix of predictions. The Net, or network element of the process is a

modification of the parameters of this process, which generates a matrix that directly

incorporates the known interaction matrix into the regularization function. The

method in question has been described as computationally efficient as all scores can

be calculated at the same time in comparison to methods which require multiple

calculations or iterations.

5.2.2.3 BLM-NII

The BLM-NII method, as described by Mei et al. combined the bipartite graph

learning model (BLM) of Yamanishi et al. with a method referred to as neighbour-

based interaction profile inferring (NII) [5]. The rationale behind an expansion was to

compensate for a weakness of the bipartite learning model’s requirement for candidate

drugs having some form of interaction profile, where candidates with no interaction

profile would have weak predictions from a lack of information.

In principle, the BLM-NII routine behaves similarly to the WNN process, where

neighbour interaction profiles are used as part of the final prediction, however there

are two main differences. The first difference is that the interaction prediction profile

is used to assist the labelling of interactions inside the interaction matrix before

training the model, while the WNN method uses the prediction profile directly as

final prediction scores. The second difference is that of efficiency, where the NII

element is an extension of the BLM model and is only triggered by new drug and

target candidates, whereas the WNN method is applied towards all drug and target

candidates. While the authors state that their method had performed better overall to

Yamanishi’s method [2] and GIP [6], Van Laarhoven et al. had stated in his WNN-GIP

study that the evaluation technique of selecting test compounds or proteins with only

one interaction would produce a bias in results [3].

5.2.2.4 MSCMF

The multiple similarities collaborative matrix factorization model (MSCMF) is a

technique that had been proposed by Zheng et al. in 2013, based on the premise that

while many methods had been considered in the similarity prediction field, most had

only allowed a single similarity matrix as a form of input [7]. This method improves

upon this by allowing the use of more than one similarity matrix for drugs and

proteins. These similarities are then weighted and projected into a low rank matrix

to select the best similarity candidates as input for predicting targets. Predictions
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are then calculated through the inner products of these low rank matrices. While

this technique provides the ability for users to experiment with the combination of

different kinds of similarity measurement, this is offset by the increased computation

time needed to compile the similarities in addition to weighting and combining these

matrices into predicted interactions. It is possible however to execute predictions via

this algorithm with a single interaction matrix for both proteins and drugs.

5.2.2.5 KBMF2K

Another method which was studied with similarity interaction prediction was KBMF2k,

which made use of a Bayesian formula in conjunction with dimensionality reduc-

tion and matrix factorization to make predictions in association with the similarity

matrices [8]. Essentially the process creates a projection of a low dimensional phar-

macological space of both drugs and proteins through a combination of two inputs:

the first being a kernel matrix of the drug/protein similarity matrix, and the second

being a parameter matrix of drugs and proteins. Once the low dimensional spaces

have been compiled (one for drugs and one for proteins), these are then used as

parameters to compile a final interaction matrix.

While this method was shown to have an overall improvement in target prediction

in comparison to Yamanishi’s method, it was noted to require a large computation

time due to the calculations required to compile the protein/drug parameter matrices

and the final prediction matrix. In addition to this, source code for the KBMF2k

method required Matlab software which is a commercial application and was more

restricted to those compiled via an open source language.

5.2.2.6 SELF-BLM

Although each study discussed so far has provided their own set of results which

have shown promise in determining interactions from the Yamanishi dataset, the

main limitation of most methods described is that they do not have the ability to

consider inactive compound-protein pairs which can be present within the interaction

searchspace. This presented a potential issue where new interactions could have a high

likelihood of interaction but have experimental evidence (or a lack of it) indicating the

opposite. While this issue could be circumvented with manual filtering of interactions

classified as inactive, performance could potentially be improved if these elements

were considered as input for the model’s predictions. One such example of this

technique being used is from a report in 2017 by Keum et al., which presented a
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technique known as SELF-BLM [9]. This technique clustered proteins and compounds

into similar groups, and then assessed existing interactions; if all drugs inside a cluster

did not interact with an individual protein or with the other proteins in its cluster,

these drugs were labelled as negative for interaction with that particular protein.

5.2.2.7 NRLMF and PyDTI

While all of the discussed methods have provided promising findings, most have either

not included source code to easily replicate the experiments, or have evaluated the

methods under different evaluation conditions which made the process of assessment

with customised sets difficult. However, one recent study in 2016 by Liu et al.

presented a python library which combined some of the clustering methods assessed

in a single python library [10]. Referred to as PyDTI, the library allowed users to

run most of the reviewed techniques (WNN-GIP, BLMNII, NetlapRLS and CMF) in

similar testing conditions. The KBMF2k method is also available via this library,

but this requires a Matlab environment in order to function.

In addition to the provision of this library, Liu also included his own technique

at target prediction with the library: Neighborhood Regularized Logistic Matrix

Factorization (NRLMF). In summary, the NRLMF method functions similarly to

KBMF2k, but attempts to assign higher importance and weighting on areas in the

interaction matrix that are labelled as confirmed. This algorithm and library were

expanded in another study to further improve on its prediction performance on

compounds with little recorded activity levels [11].

5.2.3 Alternative Compound Comparison Methods

In addition to the variety of methods available, there have also been approaches which

consider alternate approaches to compiling the similarity matrices. To determine

the similarity of the compound on the Yamanishi et al dataset, a tool known as

SIMCOMP was used which provided a similarity score based on substructures which

were shared between two tested compounds. To determine protein similarity, amino

acid sequences were compared by the Smith and Waterman algorithm [12], which

provided high scores for matching amino acid strings while penalising mismatches in

sequence and length. One alternative compound similarity method was assessed by

Öztürk et al., which proposed the use of comparing compounds via their SMILES

codes, which presents a simplified structure of a compound in the form of a string

of characters [13]. The report explores 13 avenues of comparison with the SMILES
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Section Bit Positions Description
Hierarchic Element Counts 0 to 114 Test for the presence or count of individual chemical

atoms represented by their atomic symbol
Rings in a canonic ESSSR ring set 115 to 262 Test for the presence or count of the Extended Smallest

Set of Smallest Rings, which is a ring which does not
share three consecutive atoms with any other ring in a
chemical’s structure

Simple atom pairs 263 to 326 Test for the presence of patterns of bonded atom pairs
Simple atom nearest neighbours 327 to 415 Test for the presence of atom nearest neighbour

patterns regardless of bond order or count, but where
bond aromaticity is significant

Detailed atom neighbourhoods 416 to 459 Test for the presence of detailed atom neighbourhood
patterns regardless of count, but where bond orders are
specific, and the bond aromaticity matches both single
and double bond

Simple SMARTS patterns 460 to 712 Test for the presence of simple SMARTS patterns
Complex SMARTS patterns 713 to 880 Test for the presence of complex SMARTS patterns

Table 5.2: Description of the elements used in the PubChem Fingerprint System

string, of which some simple examples include edit distance (comparing the amount

of edit operations needed to have one compound match another), the longest common

subsequence (finding the longest SMILES element which is compatible with both

compounds) and fingerprinting (the setup of binary flags for common patterns and

comparing the flags triggered between two compounds). When these comparison

methods were explored by the WNN-GIP algorithm, Öztürk et al. found equivalent

performance with the SIMCOMP compound comparison, but noted that the use

of SMILES comparison techniques was more efficient in computation time. The

supplementary information of the report includes Java source code to compile the

similarity matrices.

In terms of fingerprinting, there are various types available each containing different

features and lengths. One example of a fingerprint format is the Pubchem Fingerprint

[14], which contains 881 flags represented as binary bits. The PubChem system

splits these bits into 7 sections, which are detailed in Table 5.2. Another example

of a fingerprinting system is the MACCS format, which is a shorter fingerprint

format of 166 bits and mainly detects interesting chemical features in a compound’s

substructural patterns (SMARTS). To calculate the similarity between two compound

fingerprints, the Tanimoto coefficient is typically used.

5.2.4 Alternative Protein Comparison Methods

For comparing the similarity of proteins, all methods make use of the Smith and

Waterman algorithm, which is a process developed in 1981 to perform local sequence

alignment [12]. The motivation behind the algorithm was an alternative to comparing

the entire protein sequence, instead focusing on the comparison of regions of varying
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length to detect regions of the protein which are similar. This is accomplished

in several stages. The first stage initializes a substitution matrix, which typically

provides scores on matching amino acid sequences and penalties for mismatching

amino acids (though in some cases a reduced score may be given if the amino acid

is similar in nature). The scoring matrix can either be user defined, or make use of

typically used substitution scores such as the Blocks Substitution Matrix (BLOSUM)

which can be altered depending on the expected scale of similarity present within the

dataset (BLOSUM62 for instance is used for scoring proteins which could typically

have less than 62% similarity). In addition to substitution matrix scoring, a gap

penalty scheme is defined which determines the penalty of a score when a segment

comparison requires opening or extending gaps. Once these scoring values have been

defined, a scoring matrix is constructed where the dimensions are the length of the

two protein sequences. The matrix is then traversed from left to right, top to bottom

to compare amino acid sequences and considering outcomes of substitutions or adding

gaps. The highest score occupies the scoring matrix (defaulting to 0 if only negative

values are present), and the source of this score is specified so a traceback can be

performed of a similar region which is shared between two amino acid strings. The

final score is then determined from the highest score detected in the matrix.

To convert the scores into similarities, equation 5.1 is followed, where Sim(A,B)

is the similarity measurement between proteins A and B, and where SW represents

the Smith and Waterman algorithm score output. While this method is effective at

detecting similar regions on comparisons of variable length proteins, the procedure of

calculating similarities can be computationally expensive on either large collections

of proteins or proteins which have a long amino acid sequence.

Sim(A,B) =
SW (A,B)√

SW (A,A)
√
SW (B,B)

(5.1)

An alternative process which can be used to measure similarity is the Basic

Local Alignment Search Tool (BLAST) [15]. This open source heuristic algorithm is

developed by NCBI and returns the most similar matches from a protein database

provided by a user. This in turn generates a partially filled similarity matrix of

high scoring matches. Compared to the Smith and Waterman algorithm, BLAST

is considered to be more efficient in terms of computation time and resource usage,

however at a cost of thoroughness as BLAST will not document or score patterns

which are difficult to detect. The algorithm is available for use either via the web

platform, or through installation of a program which can be called via command line.
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5.3 In Silico Docking Pipeline

Another method of determining inconclusive activities between compounds and

proteins is to make use of molecular docking pipelines to detect if a predicted binding

between a protein and compound is similar in properties to those which are considered

to be active. One process developed by Austin-Muttitt parsed through a selection of

compounds and proteins through a selection of docking programs [16]. This process

would first be run on compound-protein pairs with a known activity in order to build

a profile of outputs which could be most associated with an active classification.

Unknown pairings could then be run and compared with these reference profiles to

generate a prediction of likelihood of activity. A summary of the in silico process

used is shown in Figure 5.2.

In order for the pipeline to function, the process would require a protein in

FASTA format, and a compound structure (in either a 3D or 2D format). These

inputs would then follow a pre-processing stage which would provide the correct

format for docking operations to be performed. For proteins, homology modelling is

performed which attempts a conversion of the amino acid sequence into a 3D structure

based on similar structures in the Protein Data Bank (PDB). The co-factor process

attached to homology modelling attempts to either search for cofactor or prosthetic

group molecules (for example, haems and flavins) if they exist within the protein, or

attempts to search for and generate cofactors if they do not exist through querying

similar protein structures. This is followed by other preparation operations to ensure

that all necessary inputs are present for the docking algorithm, and the identification

of sites in the protein which would be ideal attachment sites for compounds.

In terms of compounds, ideally the structures should be in a 3D format. This is

not always possible however, either due to the complexity of the compound or the

protein in question or due to the absence of a model. There is a process available

however which attempts to transform 2D structures into 3D space, however the

results in turn may not be as reliable as validated 3D structures. Both 2D and 3D

structures must also follow additional preparation steps, such as the removal of ions

and structures which are separate from the main compound structure to reduce any

scope for error at the docking stage.

Once the structures have been pre-processed and the active sites identified, these

are then used as inputs for the PSOVina2 program, which generates a combined

protein-compound structure, and predicts the binding energies of the complex. These

values can then be compared with other binding energies to determine if the results
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generated are indicative of an active or inactive compound-protein pairing.

Figure 5.2: High level summary of the in silico pipeline [16]. Protein and compound structures are
pre-processed into a suitable format for docking operations. Ideal binding sites are also identified on
the protein. Once pre-processing is complete, PSOVina2 generates a combined protein-compound
structure, and predicts the binding energy of the complex.
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5.4 Methodology

With all methods that used similarity comparison methods making use of the Ya-

manishi dataset, the purpose of the work outlined in this chapter was to assess how

the similarly documented techniques would perform on customised datasets. The

intention of this was to assess the performance and present potential new targets from

the three protein panels assessed in previous chapters. A three stage process was con-

sidered: the first stage being the investigation of Area under the Receiver Operating

Characteristic Curve (AUC) and the Area under the Precision Recall Curve (AUPR),

using the protein panels assessed during the profiling tool experiments. Typically for

this type of analysis where there is only a small number of instances available for the

class of interest (active compound-protein pairings), the AUPR would be considered

the most appropriate measure of performance; Van Laarhoven et al. state that in

comparison to AUC, the AUPR metric punishes the presence of false positives, which

would be considered costly considering the lack of true interactions present in a typical

compound-protein interaction search space. In addition to the Panels used in the

profiling chapters, a protein set which combines the proteins from all panels was also

considered. This combined protein panel was to ensure that all protein similarities

were considered in a single environment. 10-fold cross validation was performed for

testing these methods, where random drug-target pairings (approximately 10% of the

interaction matrix) are labelled as inconclusive in the interaction matrix to assess

the scores that would be generated. Table 5.3 provides a summary of the number

of compounds, proteins and interactions present from each protein panel for this

analysis.

Panel Number of
Active
Results

Number of
Compounds

Number of
Proteins

Total
Searchspace

Proportion of
Targets (%)

Panel44 3,482 1,144 46 52,624 6.617
Panel331 8,203 1,845 142 261,990 3.131
PharmaPanel 13,552 2,295 571 1,310,445 1.034
All 14,899 2,338 636 1,486,968 1.001

Table 5.3: The statistics of the thresholded interaction datasets used for the clustering analyses

In addition to assessing the difference in performance between panels, different

methods of calculating similarities of proteins and drugs were also considered. In

terms of compound similarity, the algorithms will be assessed on the PubChem

and MACCS fingerprint formats measured on the Tanimoto coefficient. Whilst the

SIMCOMP method used in the Yamanishi studies is the main similarity measurement

method used in previous studies, the technique is only accessible for compounds
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which contain a KEGG database reference. The use of fingerprinting would therefore

ensure as many compounds as possible would be considered for predictions.

In terms of protein similarity, the algorithms will be assessed using the Smith

and Waterman algorithm and BLAST algorithm. As no parameters were present for

gap opening penalties or the substitution method used for the Yamanishi similarity

matrix, protein similarity matrices were compiled with parameters which were deemed

suitable for a majority of comparisons on EMBOSS Water [17], which is a platform

which calculates individual pairwise similarities and makes use of the Smith and

Waterman algorithm. These default values were BLOSUM62 for the substitution

matrix, and gap open and gap extension penalties of 10 and 0.5 respectively. For

BLAST protein similarity queries, default values were applied and the percentage

identities were used to compile a matrix of similarities. In the event that there was

more than one entry for scoring from BLAST (caused by the splitting of large protein

sequences of for multiple comparisons), the final similarity score would be the average

of all entries. To prevent potential division by zero errors on the BLAST similarity

matrix, a small default value (0.01) was assigned to protein comparisons which did not

return a result via BLAST. This was typically in keeping with the similarity values

returned for dissimilar proteins calculated via the Smith and Waterman method.

The second phase of the analysis considers the top 1,000 interaction predictions

on the panels and methods which were shown to be the most promising in predicting

targets in terms of AUC and AUPR performance metrics. As the methods available

via the PyDTI library do not consider inactive compound-protein pairs in their

predictions, any prediction made will be compared against known inactive pairs to

assess their overall presence in the predictions. For the purpose of this analysis,

inactive compound-protein pairs would be assay potencies which were documented

above 10 micromolar.

The final stage of the process is to use the highest scoring new interactions

documented through docking simulations to determine whether the newly predicted

interactions hold any promise. Whilst other studies have verified new interactions

from future versions of repositories, there were either no updates or an insufficient

amount of additional data on the repositories assessed to assist with the verification

process here. The in silico pipeline on the other hand would consider all of the

inconclusive interactions which were not considered inactive, and provide a better

overview of potentially promising targets.
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5.5 Results

5.5.1 AUC and AUPR Performance

Tables 5.4 and 5.5 provide the AUC values of the various combinations of panels,

prediction methods and similarity measurement techniques. The first finding from

these results is that in terms of similarity measurement, there appears to be no

significant difference in performance measurements, which indicates that the quicker

and more efficient similarity measurement techniques could be just as effective as the

more detailed comparison methods. Secondly, the number of proteins within a panel

appears to have some degree of impact on performance, depending on the clustering

method that is applied. For example, with the CMF method using BLAST and

MACCS similarity metrics performance had typically improved with the larger sized

panels, with an AUC and AUPR performance metric of 0.901 and 0.475 respectively

for the Pharmacology Panel, while methods such as WNN-GIP under the same

conditions did not perform as well in terms of accuracy, with an AUC and AUPR

performance metric of 0.578 and 0.016 respectively.

Overall from assessment of the AUPR values, the most promising techniques

for further evaluation with all the panels assessed would be the NetLapRLS and

NRLMF methods. Whilst these methods show that only about half of the blind

targets tested were detected, the AUPR values exceed the proportion of targets

that would be detected solely by chance, which would be the proportion of active

interactions present within a Panel’s interaction matrix.

Panel
Similarity Method and Technique (AUC)

BLAST and PubChem BLAST and MACCS
BLMNII WNN-GIP NetLapRLS NRLMF CMF BLMNII WNN-GIP NetLapRLS NRLMF CMF

Panel 44 0.888654 0.809544 0.843829 0.920768 0.608573 0.889338 0.817318 0.84371 0.926787 0.624856
Panel 331 0.902232 0.756118 0.895371 0.893767 0.794667 0.90164 0.719048 0.895398 0.896903 0.837919
Pharma Panel 0.92846 0.569696 0.952315 0.923112 0.898545 0.930801 0.577776 0.952522 0.923865 0.901112
All 0.923389 0.548911 0.949937 0.916686 0.896142 0.930514 0.562718 0.950086 0.917315 0.897169

Panel
Similarity Method and Technique (AUPR)

BLAST and PubChem BLAST and MACCS
BLMNII WNN-GIP NetLapRLS NRLMF CMF BLMNII WNN-GIP NetLapRLS NRLMF CMF

Panel 44 0.372323 0.341152 0.515327 0.625003 0.121649 0.36554 0.340736 0.515523 0.627035 0.126813
Panel 331 0.31349 0.160590 0.434463 0.422046 0.280216 0.308407 0.128566 0.434511 0.424384 0.352034
Pharma Panel 0.278411 0.016069 0.50186 0.494855 0.471786 0.286922 0.016601 0.501955 0.493723 0.475117
All 0.262354 0.012777 0.485837 0.465314 0.46002 0.286209 0.013402 0.485907 0.465187 0.460665

Table 5.4: AUC and AUPR values of datasets using the BLAST for assessing protein similarity
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Panel
Similarity Method and Technique (AUC)

SW and PubChem SW and MACCS
BLMNII WNN-GIP NetLapRLS NRLMF CMF BLMNII WNN-GIP NetLapRLS NRLMF CMF

Panel 44 0.88914 0.821760 0.843828 0.920224 0.614128 0.899602 0.836698 0.843702 0.926263 0.625839
Panel 331 0.905905 0.787639 0.895347 0.893444 0.813731 0.905299 0.783345 0.895374 0.896574 0.840536
Pharma Panel 0.941587 0.816201 0.952216 0.923102 0.896723 0.943427 0.830181 0.952421 0.923879 0.900114
All 0.937656 0.822222 0.949767 0.916658 0.894634 0.944773 0.830561 0.949916 0.917384 0.895914

Panel
Similarity Method and Technique (AUPR)

SW and PubChem SW and MACCS
BLMNII WNN-GIP NetLapRLS NRLMF CMF BLMNII WNN-GIP NetLapRLS NRLMF CMF

Panel 44 0.374415 0.352173 0.515336 0.622474 0.119878 0.367246 0.377115 0.515527 0.624457 0.12668
Panel 331 0.319472 0.216278 0.434428 0.423553 0.309744 0.314619 0.195570 0.434476 0.425764 0.354777
Pharma Panel 0.300181 0.170556 0.501704 0.496097 0.467857 0.308962 0.185169 0.501801 0.494985 0.471301
All 0.291216 0.167899 0.485685 0.466793 0.454673 0.318713 0.168581 0.485756 0.466688 0.455549

Table 5.5: AUC and AUPR Values of datasets using the Smith and Waterman (SW) method for
assessing protein similarity

5.5.2 Prediction of New Interactions

Table 5.6 shows the number of inactive compound-protein pairs that were found

in the top 1,000 potential new interactions, for which the rate of false positives

detected ranged from 12% to 32% depending on the dataset used. In general Panel

44 generated the fewest false positives in its predictions, with the larger protein

panels predicting a somewhat higher but similar level of false positives to each other.

With the results filtered to the top 100 ranked predictions, the false positive rates

change to a range of 6% to 38%, with Panel 44 still providing the lowest level of false

positives. Whilst this analysis provides a preliminary indication of the reliability of

the algorithm’s top predictions, it should be pointed out that the inactive results

were all instances where the recorded potency of Ki/AC50/IC50 etc. was more than

10 micromolar, but where there was nevertheless some form of recorded interaction,

and that a large proportion of the interaction space is therefore still considered to be

not fully conclusive. The results of this type of analysis would therefore be subject

to alteration if the threshold is adjusted or further interactions are introduced from

updated repositories. On further assessment of the other methods, CMF’s predictions

were found to be of note after detecting the lowest number of inactive interactions,

with a range of 1% to 13% of new interactions being identified as inactive records. The

data produced in this approach have also been incorporated with the new interaction

predictions by the in silico pipeline.
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Method Data Set Inactives Flagged Inactives Flagged (Top 100)
NRLMF Panel44SWMaccs 127 (12.7%) 8 (8%)

Panel44BlastMaccs 130 (13.0%) 8 (8%)
Panel44BlastPub 134 (13.4%) 6 (6%)
Panel44SWPub 137 (13.7%) 6 (6%)
PanelPharmaBlastMaccs 242 (24.2%) 23 (23%)
PanelPharmaSWMaccs 243 (24.3%) 23 (23%)
PanelPharmaBlastPub 246 (24.6%) 24 (24%)
PanelPharmaSWPub 249 (24.9%) 24 (24%)
AllSWMaccs 276 (27.6%) 32 (32%)
AllBlastMaccs 277 (27.7%) 32 (32%)
AllBlastPub 285 (28.5%) 37 (37%)
AllSWPub 285 (28.5%) 37 (37%)
Panel331BlastMaccs 321 (32.1%) 33 (33%)
Panel331SWMaccs 323 (32.3%) 34 (34%)
Panel331BlastPub 326 (32.6%) 36 (36%)
Panel331SWPub 327 (32.7%) 35 (35%)

NetLapRLS Panel44BlastPub 144 (14.4%) 15 (15%)
Panel44SWPub 144 (14.4%) 15 (15%)
Panel44BlastMaccs 145 (14.5%) 15 (15%)
Panel44SWMaccs 145 (14.5%) 15 (15%)
PanelPharmaSWPub 229 (22.9%) 21 (21%)
PanelPharmaBlastPub 230 (23.0%) 21 (21%)
PanelPharmaBlastMaccs 233 (23.3%) 21 (21%)
PanelPharmaSWMaccs 233 (23.3%) 21 (21%)
AllBlastMaccs 237 (23.7%) 26 (26%)
AllBlastPub 237 (23.7%) 26 (26%)
AllSWMaccs 237 (23.7%) 26 (26%)
AllSWPub 237 (23.7%) 26 (26%)
Panel331BlastMaccs 300 (30.0%) 38 (38%)
Panel331BlastPub 300 (30.0%) 38 (38%)
Panel331SWMaccs 300 (30.0%) 38 (38%)
Panel331SWPub 300 (30.0%) 38 (38%)

CMF Panel44BlastMaccs 7 (0.7%) 0 (0%)
AllBlastPub 13 (1.3%) 0 (0%)
AllBlastMaccs 15 (1.5%) 1 (1%)
PanelPharmaBlastPub 23 (2.3%) 5 (5%)
PanelPharmaSWMaccs 24 (2.4%) 1 (1%)
Panel44SWPub 25 (2.5%) 4 (4%)
AllSWPub 27 (2.7%) 6 (6%)
Panel331SWPub 32 (3.2%) 6 (6%)
PanelPharmaSWPub 43 (4.3%) 7 (7%)
PanelPharmaBlastMaccs 46 (4.6%) 5 (5%)
AllSWMaccs 60 (6.0%) 10 (10%)
Panel331BlastPub 62 (6.2%) 3 (3%)
Panel44BlastPub 71 (7.1%) 12 (12%)
Panel44SWMaccs 86 (8.6%) 7 (7%)
Panel331SWMaccs 98 (9.8%) 13 (13%)
Panel331BlastMaccs 108 (10.8%) 9 (9%)

Table 5.6: Number of inactive results detected in the top 1,000 new interacting pairs for the
NRLMF and NetLapRLS methods. SW is the abbreviated term for Smith and Waterman, while
Pub is the abbreviated term for the PubChem fingerprint method
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5.5.3 Verification of New Interactions

To verify the results and attempt to confirm whether or not the top interaction

predictions were likely to be genuine targets, an in silico method was used on the

data produced by the best performing clustering methods (NRLMF and NetLapRLS),

in conjunction with the predictions on the CMF method which flagged the least

amount of false positives on investigating the new interactions. As the in silico

method required a significant amount of time to process dockings, a subset of the

new interactions from each of the three methods were selected for assessment. The

selection of the top 10 and bottom 10 results from the 1,000 set generated a suitable

amount of results for assessment as a small scale case study of the in silico method,

as well as testing whether or not there is a significant difference present between high

scoring and low scoring interaction predictions. In addition to this, predictions within

this subset which had been classed as inactive from assessment of the repository

interactions was also considered to determine if a difference in binding might be

detected to verify their determination as inactive.

To ensure that as diverse a set of compounds and proteins as possible were

considered for assessing the predictions in silico, the combined protein panel was

used for this purpose, with the BLAST algorithm for comparing proteins and the

MACCS fingerprint format for comparing compounds.

5.5.3.1 Initial Findings

Tables 5.7, 5.8, and 5.9 provide a summary of the top and bottom ranked dockings for

each method assessed, with indicators highlighting whether or not the interaction was

found to be inactive (outside the 10 micromolar potency threshold) and if the SDF

structure for the compound was in a 3D format and optimal for the in silico pipeline.

For predictions of the top 10 and bottom 10 groups being labelled as inactive via

thresholding, CMF flagged 1 prediction as inactive from the bottom 10 and none

from the top 10, whereas NetLapRLS and NRLMF methods flagged 4 (1 from the

top 10, 3 from bottom 10) and 7 (6 from top 10 and 1 from bottom 10) predictions

as inactive respectively. These results were on the face of it, broadly disappointing.

However, closer scrutiny of the predictions revealed some possible explanations. A

particularly striking finding is that NRLMF identified 6 of its top 10 predictions as

inactive, though on further investigation of these predictions, it was found that most

of the Ki/Kd/IC50 etc. potencies returned were very close to the 10 micromolar

threshold, and in some cases had been labelled as active by ToxCast. Table 5.10
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provide a summary of the inactive predictions, and Table 5.11 provide details of

the ToxCast assays connected to the predictions. Of the 12 predictions which were

labelled as inactive in the groups assessed, 20 assay results were returned which

provided micromolar concentration measurements of AC50, IC50, Ki. In some cases

multiple assay results were returned on an inactive protein-compound pair when

queried, such as the PubChem Compound ID 60196404 (DSSTox CID 27353), which

returned 6 different concentration values for the UniProt accession code P03372

(Estrogen Receptor).

Overall however, the predictions generated have shown a disagreement on the in

vitro assay results. On comparing all of the top 10 predictions (where inactive results

should not be expected), 7 out of 30 predictions were found to have been inactive

through existing assay results, and were therefore potentially incorrect predictions.

On comparing all of the bottom 10 predictions (where inactive results should be

expected), 25 out of 30 predictions were found not to have an inactive assay result,

and were also potentially incorrect predictions. Therefore, on initial findings, only 28

out of 60 predictions appear to be correct. This indicated that either a modification

would be needed to the active threshold level, or additional data points for the top

and bottom groupings would be needed.

Ranking
CMF Predictions

Compound ID Compound Name UniProt ID Gene Code Inactive? 3D?

Top 10

71349 Lanreotide P31644 GBRA5 No No
86160 Spiroxamine P31644 GBRA5 No Yes
451668 Decitabine P31644 GBRA5 No Yes
8364 2-Ethylhexyl Salicylate P31644 GBRA5 No Yes
5311128 Goserelin P31644 GBRA5 No No
19700 Brilliant Blue FCF P08913 ADA2A No No
11097730 Cyclanilide P31644 GBRA5 No Yes
2585 Carvedilol P31644 GBRA5 No Yes
4054 Memantine P31644 GBRA5 No Yes
66494 Phenolphthalin P08913 ADA2A No Yes

Bottom 10

1923 8-Hydroxyquinoline P08913 ADA2A No Yes
5978 Vincristine P31644 GBRA5 No No
86160 Spiroxamine P22303 ACES No Yes
25015677 Ro3280 P08913 ADA2A Yes Yes
4506 Nitrazepam P08913 ADA2A No Yes
40839 Vindesine P36544 ACHA7 No No
71349 Lanreotide Q12923 PTN13 No No
33746 Ketazolam P05023 AT1A1 No Yes
9854073 Cabazitaxel P08913 ADA2A No No
19700 Brilliant Blue FCF Q9HB55 CP343 No No

Table 5.7: Top 10 and Bottom 10 of the 1,000 predictions made by the CMF Method. Column
Compound ID refers to the ID within the PubChem Compound database. Column Inactive refers
to whether the prediction has been detected by the repository as above the 10 micromolar active
threshold. Column 3D refers to whether or not the compound in this prediction has an SDF model
in a 3D format.
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Ranking
NetLapRLS Predictions

Compound ID Compound Name UniProt ID Gene Code Inactive? 3D?

Top 10

3369 Fludiazepam P48169 GBRA4 No Yes
3369 Fludiazepam Q16445 GBRA6 No Yes
3033621 Cinolazepam P48169 GBRA4 No Yes
3033621 Cinolazepam Q16445 GBRA6 No Yes
702 Ethanol P18507 GBRG2 No Yes
2811 Clotiazepam P48169 GBRA4 No Yes
2811 Clotiazepam Q16445 GBRA6 No Yes
3369 Fludiazepam Q9UN88 GBRT No Yes
3033621 Cinolazepam Q9UN88 GBRT No Yes
2157 Amiodarone P10635 CP2D6 Yes Yes

Bottom 10

47811 Pergolide P08173 ACM4 No Yes
3034368 Mancozeb P05177 CP1A2 Yes No
941651 Thiothixene P18089 ADA2B No Yes
5533 Trazodone P08172 ACM2 No Yes
60196404 DSSTox CID 27353 P03372 ESR1 Yes No
11954293 SCHEMBL6029138 P20309 ACM3 No No
3000715 Thiopental Q9UN88 GBRT No Yes
5353853 Oxiconazole P35367 HRH1 No Yes
63062 Afimoxifene P10635 CP2D6 No Yes
4485 Nifedipine P10635 CP2D6 Yes Yes

Table 5.8: Top 10 and Bottom 10 of the 1,000 predictions made by the NetLapRLS Method.
Column Compound ID refers to the ID within the PubChem Compound database. Column Inactive
refers to whether the prediction has been detected by the repository as above the 10 micromolar
active threshold. Column 3D refers to whether or not the compound in this prediction has an SDF
model in a 3D format.
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Ranking
NRLMF Predictions

Compound ID Compound Name UniProt ID Gene Code Inactive? 3D?

Top 10

156328 Besonprodil P14416 DRD2 Yes Yes
11982778 DSSTox CID 28150 P11229 ACM1 No No
4170 Metolazone P00915 CAH1 Yes Yes
9849616 Surinabant Q9HCS2 CP4FC No Yes
11057 Crystal violet P50406 5HT6R Yes No
2520 Verapamil P10635 CP2D6 Yes Yes
15096 Tributyltin chloride P18825 ADA2C Yes No
3198 Econazole P18825 ADA2C No Yes
37175 Imazalil Q01959 SC6A3 Yes Yes
5280961 Genistein P50406 5HT6R No Yes

Bottom 10

9909677 DSSTox CID 27347 P25101 EDNRA No Yes
4037 Meclofenamic acid P16473 TSHR No Yes
60196408 DSSTox CID 27379 P37288 V1AR Yes No
4184 Mianserin Q99720 SGMR1 No Yes
3562 Halothane P42261 GRIA1 No Yes
6128 Androstenedione P08172 ACM2 No Yes
3744660 DSSTox CID 24928 Q06187 BTK No No
4940 Propiomazine P18825 ADA2C No Yes
9872438 DSSTox CID 27368 P34969 5HT7R No Yes
5957 Adenosine triphosphate P15692 VEGFA No Yes

Table 5.9: Top 10 and Bottom 10 of the 1,000 predictions made by the NRLMF Method. Column
Compound ID refers to the ID within the PubChem Compound database. Column Inactive refers
to if the prediction has been detected by the repository as above the 10 micromolar active threshold.
Column 3D refers to whether or not the compound in this prediction has an SDF model in a 3D
format.

CompoundID UniProtID Assay Type Assay Value Standard Units Source
25015677 P08913 ac50 20.747 µm ToxCast
3034368 P05177 ac50 1000000 µm ToxCast
60196404 P03372 ac50 1000000 µm ToxCast
60196404 P03372 ac50 51.358 µm ToxCast
60196404 P03372 ac50 16.598 µm ToxCast
60196404 P03372 ac50 32.096 µm ToxCast
60196404 P03372 ac50 68.607 µm ToxCast
60196404 P03372 ac50 59.345 µm ToxCast
156328 P14416 ac50 16.221 µm ToxCast
11057 P50406 ac50 17.759 µm ToxCast
15096 P18825 ac50 1000000 µm ToxCast
37175 Q01959 ac50 12.304 µm ToxCast
60196408 P37288 ac50 1000000 µm ToxCast
4170 P00915 ki 54 µm BindingDB
2520 P10635 ic50 43.3 µm BindingDB
2157 P10635 ac50* 31.623 µm ChEMBL
4485 P10635 ac50* 39.811 µm ChEMBL
2520 P10635 ic50 43.3 µm ChEMBL

Table 5.10: Assay results of the predictions classed as inactive. Column Compound ID refers to
the ID within the PubChem Compound database. *These compounds had been listed as ’potency’
under ChEMBL, but refer to AC50 assay types from PubChem BioAssay
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CompoundID ToxCast Assay Name UniProtID Assay Value (AC50 µm)
25015677 NVS GPCR hAdra2A P08913 20.747
3034368 NVS ADME hCYP1A2 Activator P05177 1000000
3034368 NVS ADME hCYP1A2 P05177 1000000
60196404 OT ERa EREGFP 0480 P03372 1000000
60196404 ATG ERa TRANS up P03372 1000000
60196404 OT ER ERaERa 0480 P03372 1000000
60196404 TOX21 ERa BLA Antagonist ratio P03372 51.358
60196404 OT ERa EREGFP 0120 P03372 16.598
60196404 ACEA T47D 80hr Positive P03372 1000000
60196404 TOX21 ERa LUC BG1 Agonist P03372 1000000
60196404 NVS NR hER P03372 32.096
60196404 TOX21 ERa BLA Agonist ratio P03372 68.607
60196404 ATG ERE CIS up P03372 1000000
60196404 TOX21 ERa LUC BG1 Antagonist P03372 59.345
156328 NVS GPCR hDRD2s P14416 16.221
11057 NVS GPCR h5HT6 P50406 17.759
15096 NVS GPCR hAdra2C P18825 1000000
37175 NVS TR hDAT Q01959 12.304
60196408 NVS GPCR hV1A P37288 1000000

Table 5.11: Details of the ToxCast assays of the predictions found to be inactive through thresh-
olding

5.5.3.2 Docking Results

Table 5.12, Table 5.13 and Table 5.14 detail the binding energies which were output

by the in silico pipeline from the CMF, NRLMF and NetLapRLS methods, where

lower binding energies are indicative of stronger levels of binding and in turn increased

likelihood of activity. Values which are labelled as NA were docking operations which

were not scored, either due to a model being rendered incorrectly or an erroneous

binding site being defined. Of the 60 total docking operations passed to the in silico

pipeline, 59 operations returned a binding energy value.

As an illustrative example, Figure 5.3 provides an example of a protein-compound

pair which has generated a high binding energy value from the results generated. In

this example, the docking has placed the compound closely to the protein structure,

with the compound having many contact points with the protein (highlighted by

dashed red lines). On the other hand, Figure 5.4 shows a protein-compound pair

which has provided a lower binding energy value, approximately half the strength

of the association of that on Figure 5.3. In this instance, the compound has fewer

contact points, and is located towards the periphery of the protein structure which

in turn has contributed to the generation of a lower binding energy value.
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CompoundID UniProtID Is Inactive? Docking Binding Energy (kcal/mol)
Top 10

71349 P31644 No -5.40
86160 P31644 No -4.44
451668 P31644 No -5.06
8364 P31644 No -4.03
5311128 P31644 No -2.28
19700 P08913 No -8.61
11097730 P31644 No -4.96
2585 P31644 No -4.68
4054 P31644 No -5.57
66494 P08913 No -8.70

Bottom 10
1923 P08913 No -6.46
5978 P31644 No -4.97
86160 P22303 No -6.30
25015677 P08913 Yes -9.30
4506 P08913 No -8.08
40839 P36544 No -5.26
71349 Q12923 No -6.22
33746 P05023 No -7.32
9854073 P08913 No -7.56
19700 Q9HB55 No -7.48

Table 5.12: Binding energies for the top 10 and bottom 10 of the 1,000 predictions made using
the CMF method.

CompoundID UniProtID Is Inactive? Docking Binding Energy (kcal/mol)
Top 10

3369 P48169 No -6.45
3369 Q16445 No -6.54
3033621 P48169 No -6.09
3033621 Q16445 No -6.60
702 P18507 No -2.49
2811 P48169 No -5.94
2811 Q16445 No -5.76
3369 Q9UN88 No -6.62
3033621 Q9UN88 No -6.36
2157 P10635 Yes -7.34

Bottom 10
47811 P08173 No -7.19
3034368 P05177 Yes -4.45
941651 P18089 No -8.31
5533 P08172 No -8.04
60196404 P03372 Yes -5.68
11954293 P20309 No -9.83
3000715 Q9UN88 No -4.80
5353853 P35367 No -9.62
63062 P10635 No -7.24
4485 P10635 Yes -6.26

Table 5.13: Binding energies for the top 10 and bottom 10 of the 1,000 predictions made using
the NetLapRLS method
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CompoundID UniProtID Is Inactive? Docking Binding Energy (kcal/mol)
Top 10

156328 P14416 Yes -8.74
11982778 P11229 No -8.87
4170 P00915 Yes -7.92
9849616 Q9HCS2 No -6.73
11057 P50406 Yes -7.92
2520 P10635 Yes -6.68
15096 P18825 Yes NA
3198 P18825 No -5.84
37175 Q01959 Yes -6.81
5280961 P50406 No -7.98

Bottom 10
9909677 P25101 No -5.73
4037 P16473 No -5.24
60196408 P37288 Yes -6.89
4184 Q99720 No -8.56
3562 P42261 No -4.16
6128 P08172 No -8.19
3744660 Q06187 No -4.19
4940 P18825 No -5.63
9872438 P34969 No -9.55
5957 P15692 No -5.65

Table 5.14: Binding energies for the top 10 and bottom 10 of the 1,000 predictions made using
the NRLMF method. Binding energies labelled NA indicate a docking which was not considered
due to incomplete output.

Figure 5.3: Simulated binding of PubChem Compound ID 11982778 (YM218) with UniProt ID
P11229 (ACM1 HUMAN), with a binding energy of -8.87 kcal/mol. Hydrogen bonds between the
compound and protein are shown as blue solid lines. Contact points between the compound and
protein are shown as dashed red lines.
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Figure 5.4: Simulated binding of PubChem CompoundID 3744660 (36673-16-2) with UniProt ID
Q06187 (BTK HUMAN), with a binding energy of -4.19 kcal/mol. Hydrogen bonds between the
compound and protein are shown as blue solid lines. Contact points between the compound and
protein are shown as dashed red lines.

To determine if the top prediction’s binding energies were significantly stronger

than the scores on the bottom of the 1,000 predictions, a two sample Kolmogorov-

Smirnov test was performed [18]. This testing method calculates the distribution

function of two groups of values, and measures the largest gap between the two

groups. On the alternative hypothesis that the distribution function in the top group

exceeds that of the bottom group, a low p value would indicate the layout of the top

group is stronger in binding energy than the bottom group. These tests indicated

that in the case of CMF and NetLapRLS, the top scores were not significantly

stronger in binding energies, with p values of 0.9048 and 0.6703 respectively. In the

case of NRLMF however, the scores on the top prediction brackets were considered

significantly stronger, with a p value of 0.033. Figure 5.5 displays the distribution

function plot of the NRLMF prediction brackets. This highlights that in the case

of one of methods, the predictions made by the clustering method were compatible

with those of the in silico pipeline.

In terms of predictions determined to be inactive from 10 micromolar thresholding,

binding energies generated from the in silico platform were compared to the in vitro

assay results. In the event that a compound-protein pair had more than one assay

type measurement, the results were averaged for visualisation in a scatter plot shown

in Figure 5.6, which exclude 4 ToxCast assay results which had a recorded assay result
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of 1 mol. There is some indication that in general as reported potency of Ki/Kd/IC50

etc. decreases, the binding energy value obtained by the in silico pipeline increases,

however this is not the case with the Ki assay measurements, and the number of

datapoints are insufficient to indicate the correlation is statistically significant with

a p value of 0.1983. Additional datapoints and separation of assay types would be

needed in future work to increase and balance representation of the assay types, and

to investigate if modifications would be needed to thresholding values applied.

Figure 5.5: Plot of the Empirical Distribution Function between the top 10 and bottom 10
predictions of the NRLMF method. The red dots and line signifies the maximum distance between
the distribution of both groups.
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Figure 5.6: Assay concentration values against the in silico pipeline binding energies

5.6 Conclusions

In this chapter, an assessment was made of methods which predicted compound-

protein interactions through the clustering of similar structures. Whilst studies into

this field have evaluated their techniques on a standard interaction set, no approaches

have considered use on a panel beyond the Yamanishi dataset. A three-phased

approach was undertaken: the first phase was to assess which combination of methods,

comparison measurements and protein panels were shown to have to most promise in

predicting interactions. It was found that of the 5 clustering methods assessed, two

methods (NRLMF and NetLapRLS) were shown to be the most promising candidates

with the protein panels used, which when tested on blinded in vitro interactions,

approximately half on average were detected successfully.

The second phase of the analysis was to determine how many of the top scoring

interactions from these clustering methods were determined to be inactive through

searching assay results which were found to be above a 10 micromolar concentration

result. Of the top 1,000 interactions from the NRLMF and NetLapRLS methods,

between 12% to 32% of interactions were determined to be inactive, depending on the
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protein panel and comparison metrics used. Of the methods which found the least

number of inactive interactions, CMF was found to have flagged the fewest inactive

interactions, with a range of 1% to 13%.

The final phase of the analysis was to determine if the predictions made via the

CMF, NetLapRLS and NRLMF methods could be used in conjunction with an in

silico docking pipeline, to verify whether the predictions could be considered accurate

and whether there was a distinction between the top (10) and bottom (10) ends of

the top 1,000 predictions. Although the NetLapRLS and CMF methods did not show

a difference in binding energies between the top and bottom groups, the NRLMF

method’s top predictions were found to have significantly stronger binding energies

in comparison to the bottom predictions. This highlights that there is potential

for similarity clustering and the in silico pipeline to be used in combination in a

complementary way.

5.6.1 Further Work

Although the findings of the clustering platform show promise as a method to

complement the drug development process, further work and scoping would be needed

to expand on this case study. One of the main limitations of the clustering techniques

for example is that compound-protein pairs which are considered to be inactive are

not considered as input, and although approaches exist which carry out these methods,

code to replicate the process is not freely available i.e. to use to replicate the analysis

alongside other methods. Further investigation would therefore be needed to assess if

the approaches can be adapted to incorporate inactive interactions, and to construct

an environment where all methods can be tested in similar experimental conditions.

Another area for exploration includes consideration of other compound and protein

comparison methods; whilst the findings demonstrated no significant difference

between the comparison techniques assessed, this represented only a small selection

of a wide variety of comparison methods available. In addition to this, a mixture of

comparison methods could also be considered to generate an average of similarities

(a consensus approach) so that a more substantial number of properties might be

considered for comparison.

Finally, a point for further consideration is the scale of the in silico operations.

Although the case study’s small scale revealed that predictions of one of the clustering

methods promisingly provided higher binding energies, a wider study would further

verify the findings, as well as provide additional data points to gauge inactive predic-

tions against assay values. This would in turn determine the extent of modification
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that might be needed to the 10 micromolar threshold, and to assess any impacts on

performance due to these modifications.

5.7 References

[1] Cronin, M. T. D., “Chapter 1 an introduction to chemical grouping, categories

and read-across to predict toxicity,” in Chemical Toxicity Prediction: Category

Formation and Read-Across, The Royal Society of Chemistry, 2013, pp. 1–29,

isbn: 978-1-84973-384-7. doi: 10.1039/9781849734400-00001.

[2] Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M.,

“Prediction of drug–target interaction networks from the integration of chemical

and genomic spaces,” Bioinformatics, vol. 24, no. 13, pp. i232–i240, 2008.

[3] Van Laarhoven, T. and Marchiori, E., “Predicting drug-target interactions for

new drug compounds using a weighted nearest neighbor profile,” PloS one,

vol. 8, no. 6, e66952, 2013.

[4] Xia, Z., Wu, L.-Y., Zhou, X., and Wong, S. T., “Semi-supervised drug-protein

interaction prediction from heterogeneous biological spaces,” in BMC systems

biology, BioMed Central, vol. 4, 2010, S6.

[5] Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L., and Zheng, J., “Drug–target

interaction prediction by learning from local information and neighbors,” Bioin-

formatics, vol. 29, no. 2, pp. 238–245, 2012.

[6] Laarhoven, T. van, Nabuurs, S. B., and Marchiori, E., “Gaussian interaction

profile kernels for predicting drug–target interaction,” Bioinformatics, vol. 27,

no. 21, pp. 3036–3043, 2011.

[7] Zheng, X., Ding, H., Mamitsuka, H., and Zhu, S., “Collaborative matrix fac-

torization with multiple similarities for predicting drug-target interactions,” in

Proceedings of the 19th ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2013, pp. 1025–1033.

[8] Gönen, M., “Predicting drug–target interactions from chemical and genomic

kernels using bayesian matrix factorization,” Bioinformatics, vol. 28, no. 18,

pp. 2304–2310, 2012.

[9] Keum, J. and Nam, H., “Self-blm: Prediction of drug-target interactions via

self-training svm,” PloS one, vol. 12, no. 2, e0171839, 2017.

Page 161

https://doi.org/10.1039/9781849734400-00001


James Witts

[10] Liu, Y., Wu, M., Miao, C., Zhao, P., and Li, X.-L., “Neighborhood regular-

ized logistic matrix factorization for drug-target interaction prediction,” PLoS

computational biology, vol. 12, no. 2, e1004760, 2016.

[11] Ban, T., Ohue, M., and Akiyama, Y., “Nrlmfβ: Beta-distribution-rescored

neighborhood regularized logistic matrix factorization for improving the per-

formance of drug–target interaction prediction,” Biochemistry and biophysics

reports, vol. 18, p. 100 615, 2019.

[12] Smith, T. F., Waterman, M. S., et al., “Identification of common molecular

subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981.
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Chapter 6

TargetPredict: Design and
Implementation of an Interface for
Drug Profiling and Interaction
Similarity Clustering

6.1 Introduction

Although the work thus far has revealed promise for establishing new approaches for

compound profiling, one of the current limitations with most methods is a lack of

ability to easily reproduce the analyses and although some methods have provided

source code of workings, those with limited technical expertise in the programming

languages use may struggle to make use of them. The aim of this chapter is to present

the design and implementation of a small-scale prototype which attempts to make

available reproducible techniques and methods to a wider community. The interface

itself is available online at http://proteins.swan.ac.uk/cheminf.

6.2 Requirements

For the interface to be implemented successfully, a number of requirements needed

to be satisfied. This section will detail the main requirements, as well as a number

of desirable requirements. As this interface is a small-scale prototype, only the

information gathered from the work described in Chapters 4 and 5 was used.

Traversal of the compiled data. In order for a user to be able to determine

the information that was employed in this project, the interface should ideally have

the means to allow a user to navigate and search for specific targets and assay result
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values. Specific search terms (such as assay types, assay thresholding values and

protein accession codes) and a table download facility would allow a user to construct

small customised datasets without programming knowledge.

Calculation of nearest neighbours. As part of the attempts towards discov-

ering interactions for a candidate compound, a method of quickly detecting similar

structures and the display of their documented interaction profiles would provide a

user with a selection of potential candidates for further investigation. The interface

must allow a user to upload a user-specified compound or protein, and view the

nearest neighbours present in the interface’s similarity matrix. For the purposes of

compound similarity, the MACCS and PubChem fingerprint formats were used. For

proteins, the Smith and Waterman and BLAST methods were used.

Prediction of interactions. To incorporate the similarity clustering methods

used in Chapter 5, the interface needs to have the ability to compile a customised

similarity matrix relating to a user-selected protein or compound. The interface must

then have the ability to communicate with the Python PyDTI library and process

predicted interactions with the custom protein or compound, and determine which

are likely to be correct predictions

Profiling of custom compounds. To incorporate the profiling methods imple-

mented in Chapters 3 and 4, the interface should provide the ability to potentially

classify a user-selected compound. This can be accomplished by identifying the

interaction profile of similarly structured compounds and identifying those which are

present in DrugBank [1] or ToxCast [2].

To assist in the satisfaction of these requirements, the R package ”Shiny” was

used, which allows users of the package to construct webpages and in turn make use

of the datasets and functions in R to generate customised datasets for presentation

[3]. Not only would the use of this package reduce the amount of time needed to

manually construct a webpage design via HTML, it also allows the use of existing

scripts to construct and present datasets based on user input on the page, in turn

further reducing the amount of time needed to compile additional scripts in languages

different to those used throughout the project.

6.3 Constructing the Interface

To construct the interface, it was necessary to compile and store the datasets required

for the interface to query and manipulate in an easily accessible format. Websites

constructed with the ”Shiny” package are composed of two elements: a ”UI” element
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which presents the tables, tabs and user input elements, and a ”Server” element

which performs the appropriate actions when certain actions are triggered by the

user. Before a ”Shiny” app is implemented however, a user can load and perform

start up functions which can then be accessed by all users of the app. On small scale

datasets it is possible for a workspace to be saved in a format that can be restored in

a single command by R, and this was used to compile the necessary elements for the

server’s use. For the interface to function in line with the requirements, the following

elements were required:

Interaction and Similarity Matrices. With an interaction and similarity

matrix stored in the app’s environment, it is possible for the app to quickly append

a custom compound or protein into the matrix when required. The storage of the

matrices also allows the app to compile temporary datasets for use by the PyDTI

python library to make predictions by means of the clustering techniques, outlined in

Chapter 5.

Fingerprint sets. To compare custom compounds against those present in the

interaction space, the storage of the fingerprint sets of each compound would allow

comparisons to be executed quickly, while reducing the amount of space needed to

store SDF coordinates of a compound. The ”Rcdk” library referenced in Chapter

5 allows fingerprint sets of compounds to be saved inside an R workspace for this

purpose.

Protein FASTA files. The storage of protein FASTA files will allow a custom

protein to be quickly compared against those present in the interaction space.

Assay/Interaction Result sets. The storage of the assay results (from ToxCast,

BindingDB and ChEMBL) and target lists (from DrugBank) will allow the app to

filter these datasets based on user input.

6.4 Interface Design

Figure 6.1 provides an overview of the planned design for the interface. The main

page design consists of two main elements: a user input segment which allows the

user to provide input and custom structures, and a result segment which displays the

appropriate result tables according to the features and inputs the user has selected.

To navigate the interface, the user will have a number of tabs to select: the top tab

will provide the ability for the user to traverse to separate tools of the interface, such

as one tab for the assay and target browser and one tab for the similarity clustering.

The tabs placed above the result segment of the page will specify individual features
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of the current tool selected by the user; for example if the user has selected the

interaction browser, they will be able to cycle through the individual databases for

results of individual proteins. On the other hand with the similarity clustering, the

user’s options would be to either cycle through nearest neighbour comparisons or

interaction predictions of a custom compound/protein.

Figure 6.1: Simple illustration of the design of the interface

6.4.1 Compound Target Browser

Figure 6.2 provides an overview of the design for the Compound Target Browser tab.

In this tab, the user will be able to browse through the information gathered from

DrugBank, ToxCast, ChEMBL and BindingDB. For the purposes of this prototype,

the information presented would be limited to the information described in Chapters

4 and 5, and be limited to interactions of proteins present in Panel 44, Panel 331 or

the Pharmacology Panel. This provides a reasonably sized dataset for browsing and

downloading whilst keeping the server load time to a minimum.
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Figure 6.2: Simple illustration of the design of the Compound Browser Tab

To provide the user with the ability to filter the information presented, user input

bars are provided on the left-hand side, which can vary depending on the repository

selected by the user. For example, information from DrugBank is limited to displaying

target links between compounds and proteins, thus the input field would be limited to

solely selecting the UniProt accession code. With other datasets however information

is given by assay result values, therefore additional input fields would be needed to

select items such as the assay type performed, and threshold values for the minimum

and maximum assay result value to be displayed.

Another feature included with the design is the ability for users to access specific

repositories with the references provided by the browser (such as providing a URL

for a specific DrugBank compound). This could be accomplished by simply applying

a URL reference tag (< a >) to the correct repository using the reference on the

table of results. Furthermore, the user should have the ability to download an easily

accessible version of the results which have been displayed on the interface.
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6.4.2 Compound/Protein Similarity

Figure 6.3 and 6.4 provide design overviews of the Nearest Neighbour and Interaction

Prediction Tabs if the Compound/Protein similarity tab is selected. In these tabs, the

user will be able to upload user-specified proteins and compounds in order to make

predictions on possible interactions and in turn investigate its structural similarity to

structures present in the searchspace. The nearest neighbours tab would display a

user-specified compound/protein’s nearest neighbours and display their interaction

profile, whilst the interaction prediction tab would focus on the clustering methods

described in Chapter 5 to build an interaction profile of a custom compound or

protein.

Figure 6.3: Design of the Nearest Neighbour Tab
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Figure 6.4: Design of the Interaction Prediction Tab

6.4.2.1 Nearest Neighbours

To calculate the nearest neighbours for a user-supplied compound or protein, the user

needs the ability to upload their own structures to the app. Once uploaded, the server

loads the file into the appropriate format and performs the similarity operations. As

there was a selection of comparison techniques used for the investigation in Chapter

5, the design of the app would provide the ability for the user to select a comparison

technique. This would mean selecting either the PubChem or MACCS fingerprint

formats for compounds, and either the Smith and Waterman or BLAST algorithms

for protein similarity.

Whilst information on similar compounds and proteins is informative, other

information can be retrieved to provide further benefit to a user. In the case of

compounds for example, a compound with high similarity can have an interaction

profile extracted from the repositories to provide the user with likely protein candidates

of interaction. This can also be further expanded to include whether or not the

nearest neighbour compound contains appropriate information in certain repositories.

For example, a compound with high similarity linked to DrugBank could be connected

to an existing approved drug, whereas a compound with high similarity linked to
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ToxCast has been connected to toxicity screening and testing. Whilst such a format

is more limited than that provided by the classification models developed during

Chapters 3 and 4, this information can still provide useful information as to what

extent a candidate compound settles in certain repositories.

6.4.2.2 Interaction Prediction

While nearest neighbours provide interaction information on compounds and proteins

similar to the user-supplied entry uploaded by the user, this information is limited to

individual compounds, which can make aggregation of a complete interaction profile

difficult. The clustering methods investigated in Chapter 5 consider all compounds

and proteins to output a prediction profile of a compound/protein, and the method’s

prediction of likelihood of an interaction taking place.

The process of preparing a compound or protein for interaction is similar to that of

the Nearest Neighbours in terms of uploading a structure and selecting a comparison

method, however there are a number of additions to the input design to incorporate

the prediction pipeline. One of these additions is the selection of a clustering method,

such as WNN-GIP, NRLMF and so on. Another addition is the selection of other

similarity comparison techniques to conduct further analyses, such as the selection of

the protein comparison method if a user is uploading a user-specified compound, and

vice versa.

6.5 Implementation

6.5.1 Compound Browser

To implement the Compound Browser, the interface was required to generate result

tables based on user input. To accomplish this, the R Package ”Shiny” makes use of

reactive variables, which perform actions on the server in the event that a variable

on an input field has been changed. For the purposes of the Compound Browser,

that would mean that in the event the UniProt accession code or assay specific

values had changed, this would trigger a variable change event on the server and then

generate a new result table for the user. An example of a reactive variable is shown on

Figure 6.5, which alters the DrugBank target list according to the UniProt accession

code selected by the user. In addition to this, the target list is modified to provide

URLs of elements which are accessible via their repository’s websites, allowing a user

to extract further information if needed.
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To download a table, ”Shiny” has a DownloadHanlder element which triggers a

download event on the user’s browser, using the results table that is generated and

currently visible on the user’s page. To ensure the table is easily accessible for analysis,

URLs are not integrated on downloaded tables. Figure 6.6 displays a screenshot of

the completed Compound Browser, showing all the input fields that can be selected.

In the event the user enters information that does not exist in the selected repository,

an empty result table will be generated. To minimise the potential for empty tables

to be generated, the selection fields for each repository have been restricted to the

fields that are only present in that repository. For example, in the case of ToxCast

assay results, values are restricted to AC50 assay results, which means that no Assay

Type filter has been included as shown in Figure 6.7. Another example is with regard

to UniProt Accession codes, of which the options available to filter the result tables

to are restricted to the proteins present in the user’s currently selected repository.

filteredDB <- reactive({

#If input is empty return empty table

if(is.null(input$proteinDBInput))

{

return(NULL)

}

DrugBank %>%

#DrugBank ID

mutate(‘DrugBank ID‘ = paste0(’<a href="https://www.drugbank.ca/drugs/’,

DrugDatabaseID,’" target="_blank">’,DrugDatabaseID,’</a>’,sep="")) %>%

#UniProt ID

mutate(‘Uniprot Accession Code‘ = paste0(’<a href="https://www.uniprot.org/uniprot/’,

UniprotID,’" target="_blank">’,UniprotID,’</a>’,sep="")) %>%

#PubChem ID

mutate(‘PubChem Compound ID‘ = paste0(’<a href="https://pubchem.ncbi.nlm.nih.gov/compound/’,

CompoundID,’" target="_blank">’,CompoundID,’</a>’,sep="")) %>%

#Search Term

filter(UniprotID == input$proteinDBInput) %>%

#Select Fields for Display

select(‘DrugBank ID‘,‘Uniprot Accession Code‘,‘PubChem Compound ID‘)

})

Figure 6.5: Example of a reactive variable in the Interface server code. This example generates a
target list from DrugBank whenever the user selects a UniProt Accession code from a selection bar
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Figure 6.6: Screenshot of the Compound Browser when ChEMBL is selected. The results in
the table displayed on the right are from results selected by the input fields entered on the left.
Input fields on the left are generated according to the repository selected; as the selected ChEMBL
repository contains a variety of assay results, assay types and threshold value fields are generated
appropriately.

Figure 6.7: Screenshot of the Compound Browser when ToxCast is selected. As ToxCast is limited
to AC50 assay results, the input fields on the left do not provide an option for filtering to specific
assay types as is the case for BindingDB and ChEMBL.
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6.5.2 Nearest Neighbours Predictions

For nearest neighbours of compounds and proteins to be processed, the server needed

the ability for users to upload files to the server where the app was resided. To

allow file uploads, ”Shiny” provides developers with a FileInput field, on which a

file upload will store a file in a temporary directory attached to the user. When

a user disconnects from the server by closing the interface window, the temporary

directory is deleted to free server space. These file input fields can be restricted to

certain file extensions to prevent accidental upload of erroneous files. In the case

of uploading a user-supplied compound, comparisons can be made with either the

compound’s structure file or the SMILES code, meaning that the file input field for a

user-supplied compound is restricted to SDF files or text files containing a SMILES

code. For user-supplied proteins, the file input field was restricted to FASTA format

files. To initiate a nearest neighbour comparison event, the process of triggering the

server is slightly different to that of the Compound Browser as all inputs are required

to be selected before computation can commence. Instead of using a reactive variable

to respond to a change in an input field, ”Shiny” allows a developer to associate

processes with the execution of an event with the interface, such as the user clicking

a button. This means that a button can be used to execute the nearest neighbour

comparison based on the input the user has selected.

With regard to the event of comparing nearest neighbours, the app required the

ability to call on external programmes, as not all comparison methods were able to

be executed from inside R’s environment. Whilst compound comparison methods

and the Smith and Waterman algorithm for proteins could be contained in the R

workspace for calculation, the BLAST algorithm for comparing proteins could only

be accessed via command prompt and also required an external file for querying

a custom protein against a set. The process needed to satisfy the requirements of

BLAST was two-fold: first, on provision of a user-specified protein, an external file

was created and provided with a temporary id which cannot be used by any other user

until the operation was completed. Once the temporary file is compiled, R can make

use of a function called ”system”, which allows a developer to call scripts and pass

arguments outside the R environment. To reduce the need for storing a temporary

result file, the ”system” command could also store output which was generated by the

command line. Once a user has ended their session by closing the browser window

with the interface, any files which have been uploaded by the user are deleted from

the system. Files which are also compiled for use by other systems (i.e. Python’s

PyDTI library) are also removed once the script has concluded.
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Figure 6.8 displays an example of the nearest neighbour tab when a custom

compound has been assigned. To provide information beyond the similarity results as

described in the Interface design, the elements in the Compound Browser were filtered

to gather results and targets of interest for a similar compound. To provide additional

information on a custom protein, the result will specify the nearest neighbour’s

presence in either Panel 44, Panel 331 or the Pharmacology panel. Whilst the target

lists present in DrugBank could be confirmed as an active protein-compound pairing,

the definition of an active protein-compound pairing could depend on the assay

results from ChEMBL, ToxCast and BindingDB. For the purposes of the prototype, a

number of conditions were applied to the information from the Compound Browser to

reduce the overall size and processing time needed to discover the nearest neighbours

and perform the interaction predictions via clustering. The conditions used are listed

below:

• Compounds must originate from either DrugBank or ToxCast, however interac-

tions can be referenced from ChEMBL and BindingDB

• Interactions are limited to the proteins contained in Panel 44, Panel 331 and

the Pharmacology Panel.

• An interaction is defined as a compound-protein interaction listed in DrugBank,

or as an assay result present in ToxCast, ChEMBL or BindingDB provided a

molar concentration has been documented as less than 10 micromolar

Figure 6.8: Screenshot of the Nearest Neighbour Predictions tab with a custom compound. The
table not only provides a list of the most similar compounds, but also provides their interaction
profile and specifies whether or not the compound is present in DrugBank or ToxCast
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6.5.3 Interaction Prediction

To predict interactions as per the analysis of Chapter 5, the interface required a

means to store similarity and interaction matrices with the custom compound or

protein incorporated into the set. This required expansion of the nearest neighbour

calculations is managed through appending the results to the similarity matrix

requiring modification, and assigning a custom ID to the user-supplied compound or

protein uploaded. Once compiled, the modified similarity matrix is then be written to

temporary memory on the server along with the interaction matrix (containing a blank

interaction profile for the custom compound or protein), and a similarity matrix where

a custom structure has not been provided (so if a custom compound was provided

the user would select either a Smith and Waterman or BLAST similarity methods for

proteins). For the purposes of the prototype, the similarity and interaction matrices

against which custom structures could be compared against was restricted to one

panel, which was the combination of Panel 44, Panel 331 and the Pharmacology

Panel. This combined matrix of all proteins provided the widest possible searchspace

for demonstrating the features of the interface whilst reducing its visual complexity.

Once these user-supplied structures had been written, the PyDTI library could

be called to access this temporary panel and make predictions. As the PyDTI library

was built to output the top predictions from each method, an addition was made

to the python library to filter new interactions to the custom compound or protein

supplied by the user, instead of filtering the list of new predictions to a certain

number. Although there are R libraries available which can call and store python

functions and variables in the R workspace [4], the library is restricted to use of a

single CPU core. This impacts the library’s performance, as the numeric analysis

platform Numpy used by the PyDTI library can make use of multiple cores for their

calculations if they are present on the hardware.

Figure 6.9 gives an example view of the prediction interface when a custom

compound has been supplied. The first column reflects the raw cluster score which

was provided by the library clustering method. The scale and range of values can

vary according to the function, so to provide some consistency for all methods, a

normalization function was applied to distribute all the predictions to a 0 to 1 scale,

where 1 indicates an extremely likely interaction, and 0 indicates an extremely unlikely

interaction. The PyDTI authors had implemented a function which normalized the

predictions made by their own method, NRLMF, for which equation 6.1 was used,

where x indicates the prediction scores of the method.

The equation used by NRLMF however was not practical to use for methods where
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extremely small cluster values were generated. For example, the NetLapRLS method

generated small raw cluster values for all predictions made, and applying the above

formula would have led to a projected value of 0.5 for all predictions, which would

make differentiating high scoring and low scoring predictions difficult. Therefore an

alteration was made to the normalization formula which was applied to all methods

except NRLMF, shown in equation 6.2, where x̄ is the mean of the predictions,

and |x| is the standard deviation of the predictions. This alters the normalization

according to the overall distribution of the method’s predictions, in turn providing an

easier scale of comparison of high scoring and low scoring predictions for a particular

custom compound or protein.

Norm(x) =
1

1 + e−x
(6.1)

Norm(x) =
1

1 + e−(x−x̄)/|x| (6.2)

Figure 6.9: Screenshot of the Interaction Prediction Tab with a custom compound. This table
provides the score of the cluster method, as well as a score which attempts to normalize the score to
a 0 to 1 scale.

Although the interface successfully conveyed predictions, an issue was detected

when multiple users tested the interface. In the event that a reactive variable has

been triggered and requires a long computation time, the ”Shiny” package can halt

other processes. This meant that if a new user triggered an interaction prediction,

the interface would freeze for other users until the interaction prediction function

had been completed. This issue had not been detected during the testing of the

Compound Browser and Nearest Neighbour tabs due to the short processing time
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needed to generate the required results for users.

To circumvent this issue, a data analysis company FellStat proposed a solution

which made use of a package referred to as ”future” [5] [6]. This package creates a

separate process within R to calculate the predictions, and assigns a ”promise” to the

interface that the result table will be compiled in the future. This ”promise” would

prevent the server from halting other processes in the event a time consuming task is

currently in progress. When the separate process has been completed, the package

would then generate a results table for display on the website. A limitation to the

use of a separate process however is that tracking the progress of the prediction is

difficult if the majority of the process is outside the R environment.
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6.6 Discussion

The implementation of a user interface has provided the ability for users to quickly

and easily view and utilise elements of the analyses undertaken throughout this

work, in turn avoiding the requirement for coding experience (needed to make use

of source code examples), or the use of multiple websites. The platform not only

holds a considerable wealth of aggregated interaction information, but it also provides

users with the means of uploading their own compound and protein structures and

in return receiving valuable target predictions, as well as the interaction profiles of

similarly structured candidates.

In comparison to other publicly available interfaces, the prototype presented

provides additional functionality and comprehensiveness, however there are some

elements that can be further improved upon to strengthen the platform’s features.

For example, in the case of the PubChem-informed screen as shown in Figure 6.10,

a similarity search can be performed but the results do not indicate interactions

associated with similar compounds unless individual records are accessed. Furthermore

the precise degree of similarity is not clearly displayed to indicate how similar a

structure is to the compound used in the query, but a threshold can be applied to

limit the results to compounds beyond a certain degree of similarity (which by default

is set to 90% by the platform). The DrugBank-informed screen shown in Figure 6.11

also provides a facility which allows users to upload and compare user-supplied

compounds, and in turn has provided further filtering options such as weight and

drug category, however the method of designation of similarity is not specified and

the platform at present does not allow the comparison of protein sequences.

In terms of other clustering similarity projects which have provided an interface,

one project referred to as DrugE-Rank allowed users to perform multiple similarity

clustering operations on user-supplied compounds and proteins at once, but did not

provide a means of displaying the raw value output from each method, or a means of

specifying the type of comparison to be performed on a user-supplied compound or

protein [7]. The DrugE-Rank interface did however allow users to supply a DrugBank

identifier or UniProt accession code in lieu of a structure, which could be incorporated

as a means of input for future revisions of the interface developed in this work.

Although this demo only contains a small search space, the implementation process

has established the foundations for further development, and in turn the process

has highlighted areas for further expansion and development to further widen the

scope, functionality and the presentation of these promising approaches and findings
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to the wider public. An online version of the interface prototype is available at

http://proteins.swan.ac.uk/cheminf.

Figure 6.10: Screenshot of PubChem’s Similarity Search Platform [8]. Structures within PubChem
can be compared to other structures within the repository, and filtered to a certain threshold,
however further information is limited to the individual record pages.

Figure 6.11: Screenshot of the DrugBank Chemical Structure Search platform [9]. Structures can
either be drawn or uploaded to the platform and compared against other drugs within DrugBank.

Page 179

http://proteins.swan.ac.uk/cheminf


James Witts

6.6.1 Further Work

While the interface provides a user with the means of compiling an interaction profile

for a user-supplied compound or protein, there are several areas that may be identified

for further improvement. One such example is to improve the Compound Browser

to allow the querying of more than one protein accession code, allowing users to

construct specialised interaction panels based on results in certain repositories. This

could be further expanded on the interface design to allow users to create specialised

interaction and similarity panels for use in the PyDTI clustering methods.

Another area for further implementation is the incorporation of the the in silico

pipeline used in Chapter 5, which at present requires a degree of manual preparation

for structures. Although the classifier models used in Chapters 3 and 4 could in

theory be applied to predicted interactions above a certain threshold score, further

work is needed in verifying the findings made by the interaction predictions to ensure

that genuine targets are being identified before the profiling classifier models can be

implemented. An R package known as ”RWeka” allows the use of WEKA classifiers

in the R workspace [10], meaning it would be possible to train and evaluate classifiers

on predefined interaction sets.

Another area of note is that while the current format and use of saved workspaces

is practical for small scale datasets, a larger platform would require some alteration

to the design and infrastructure to reduce the amount of resources used by a system,

and to reduce load and use time by users. Ideally a database platform would need

to be implemented to allow users to save custom panels and results to the server to

reduce the requirement for users running the same experiment repeatedly or to have

to download and filter results manually. Further investigation of database security

methods would also be necessary for a database platform to be implemented on a

public platform.

Finally, one limitation of the ”Shiny” package is that when no connection has

been established by a user, the server may close down the R workspace to reduce

load on the deployed server. This leads to increased load times if the interface has

not been accessed in some time due to the workspace being reloaded. A configuration

option is however available in the ”Shiny” server setup files that allows a user to

alter or disable this timeout. A script could be implemented to allow the server to

be restarted once this shutdown threshold has been reached and to perform certain

”housekeeping” tasks, such as checking for updated workspaces and files and the

removal of temporary files.
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Chapter 7

Discussion

7.1 Introduction

Overall, this study has investigated and utilised a number of data-based avenues in

the compound discovery and in silico screening fields, handling not only a sizeable

aggregated collection of interactions across several repositories, but also a collection

of experimental assay results which can be further analysed, filtered and adapted

for further studies. The purpose of this final discussion is to reflect upon the

knowledgebase and literature exploited in the project, and to specify the limitations

and further areas for improvement for future studies within this area.

7.2 Objective Review

As part of the discussion process, the objectives presented in Chapter 1 are revisited

and progress reviewed. This section will summarise the key findings of the work

described in each chapter and discuss the overall advances made.

7.2.1 Objective 1 Review

The first objective of the project was to explore the history and techniques

of computational drug discovery and development. Through a review of the

literature, it was confirmed that the drug development process can be costly, both in

terms of the outlay money required [1], and in terms of attrition rates where drug

development had been abandoned due to increased risks or hazards detected during

testing [2]. This formed one of the drivers for this study, to investigate and develop

approaches that could potentially complement the drug development process and in

turn reduce attrition rates.
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This led to a review of publicly available drug and protein repositories, of which

a number were used throughout the project. One of these was DrugBank [3], which

contained sufficient information to form a good foundation for identifying compound-

protein pairings, as well as providing a source of FDA-approved drugs which could

be used as a reference for what could be considered a beneficial or ”good” interaction

profile for candidate compounds. The DrugBank repository has since expanded and

improved, with the 5th revision [4] not only providing cross references to other repos-

itories (circumventing the need to run cross-referencing operations when aggregating

information from different sources), but also through the release of a platform referred

to as DrugBankPlus [5], which is a commercial platform directed towards providing

pre-prepared formats of DrugBank suitable for machine learning uses. These improve-

ments highlight the efforts repository holders are making towards the amenability of

their sources for machine learning approaches.

The ToxCast repository on the other hand provided an ideal reference for interac-

tion profiles which could be considered harmful [6], as the repository’s purpose was

to measure toxicity of compounds against a panel of proteins. This was then used as

a reference for what could be considered a ”bad” interaction profile for candidate

compounds. This repository has also been received a major update, with Version 4 of

the database released in August 2019 [7]. Other repositories such as ChEMBL [8] and

BindingDB [9] supplemented the interaction profiles of compounds present within

ToxCast and DrugBank, through documenting potency assay results (Ki, Kd, IC50

etc.) that could be filtered to define what constitutes an active compound-protein

pairing. ChEMBL in turn has also received an update since information was last ex-

tracted [10], whilst BindingDB is updated on a monthly basis and warrants continual

revisiting for addition of new data points.

On reflection of the repositories utilised however, we had perhaps attempted to

gather too much information in the process of building the DrugReferenceDatabase,

which attempted to aggregate all interactions found into a single accessible point

instead of querying multiple sources. Some repositories which were used in initial

approaches were later considered to be incompatible with other repositories going

forward. One such repository was the PubChem BioAssay platform [11], which

contained a large number of conflicting information elements in assignment of activity

of particular compound-protein pairs. The retrieval method used in the project to

access assay results of particular proteins generated inconsistent potency types and

unit measurements, information which was needed to determine which compound-

protein pairings could be classified as active or inactive. Further investigation of the
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platform discovered that it would be necessary to parse through Bioassay’s XML

files to obtain these results, which was considered impractical due to the scale of

information which is present within the files. There has however been development

of a number of approaches and platforms that attempt to retrieve the information

from BioAssay’s XML files, such as a package in R developed by Backman et al.

[12], which captures information relating to small molecules recorded in the BioAssay

platform into the R workspace.

Other repositories found to be unsuitable for further interaction pre-processing

towards the later stages of the project also included CTDBase [13], which did not

specify clearly the type or strength of the interactions which took place between

proteins and targets, that made the process of filtering the results impossible for

thresholding. This database however provided a valuable link to proteins involved

in specific diseases in the implementation of a potential filter for searching proteins

and compounds implicated in specific diseases for further investigation. Issues were

also present for the Matador database, where the confidence metrics and scores were

difficult to use to determine activity strength of a compound-protein pairing, and

thus was incompatible with thresholded assay results.

Despite these obstacles, the DrugReferenceDatabase platform that emerged from

the investigation of repository sources has generated a substantial combined repository

for multiple compound-protein links to be extracted, in addition to establishing an

initial schema which could be further expanded to accommodate more assay results in

future revisions, and populate additional datapoints from future releases of repositories.

Further work into considering modes of action, dosage and assay types would also

improve the quality of links that have been generated, however investigation would

be necessary to determine if these types of filters would be compatible across all

repositories utilised in this thesis.

7.2.2 Objective 2 Review

The second objective of the project was to investigate and evaluate machine

learning techniques applied to in silico drug screening. The main goal of this

objective was to determine if this approach could be applied to determine whether

a candidate drug could be designated as having a good (i.e approved drug from

DrugBank) or a bad (i.e sourced from ToxCast) profile. To allow results to be easily

reproduced, the WEKA system had been used which provided a collection of classifiers

suitable for constructing profiler models [14].

The initial approach had considered the non-conflicting active and inactive
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compound-protein pairs from the DrugReferenceDatabase, in addition to consid-

eration of chemical properties obtained through a chemical structure parser known as

”Mordred” [15]. These interaction training sets were focused on three panels which

have a history in pharmacological profiling: Panel 44 [16], Panel 331 [17], and the

DrugBank Pharmacology Panel. The classifier models trained on this information

had generated somewhat disappointing results, with models being unable to dis-

tinguish test candidates introduced from HMDB, which contained interactions of

human metabolites, and T3DB, which contained interactions involving known toxic

compounds. It was concluded on further investigation of these results that the poor

prediction accuracy levels could have been caused by the high degree of conflicting

definitions of activity from referencing multiple repositories.

These findings led to a separate approach from that of the interactions of the

DrugReferenceDatabase, through the consideration and thresholding of experimental

assay results and potencies (such as Ki, IC50 etc.). While the available number of

applicable interactions had decreased considerably from this approach, prediction

levels had considerably improved. One result of particular note was the use of the

J48 decision tree classifier with Panel 331 interactions. When these interactions were

used in conjunction with compound chemical properties, the generated model when

tested on HMDB and T3DB compounds provided an overall accuracy level of 93.5%,

which is an exceptional outcome and a great improvement over the initial approach.

Although the analyses overall provided a promising first step in the development

of a profiling tool, there are still a number of avenues that could be explored through

further work around this objective. One such approach is to further manipulate a

potency thresholding value that had been used to define activity of an assay result.

The approach in this work made use of a 10 micromolar threshold in accordance

with a study by Hughes et al. which assessed common definitions of potency [18],

however alterations to this threshold value might improve profiling accuracy from

further clarification of interacting compound-protein pairs.

Another avenue to be considered is the selection process for selecting all compounds

under certain sources to be ”Good” (DrugBank and HMDB compounds) or ”Bad”

(ToxCast and T3DB compound) references for the classifiers. This was a generalisation

of course as most drug compounds are toxic at higher concentrations, some indeed

have tolerable toxicity at therapeutic concentration; and many compounds regarded as

toxins can be tolerable at low concentration. Further consideration should therefore

have been made between the modes of action and dosage to further refine the

classifications. However, there is some reasonable basis to the categorisations, as they
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distinguish between two general groupings of compounds – those that are largely

non-toxic at typical therapeutic dosage levels and those that are largely not. Further

refinements in the selection process would however have provided the means of

introducing additional training/testing candidates for classifiers from other sources.

Another area for further consideration is the consideration of alternative tools and

classifiers that could be used on interaction datasets. In the case of WEKA, further

classifiers could be introduced via the integrated Package Manager, such as CSForest

which is a decision tree which is specifically designed to work on imbalanced datasets

[19]. In terms of tools, the eToxPred platform by Pu et al. discussed during the

exploration of machine learning approaches had achieved a high degree of accuracy

in determining compound toxicity [20]. This tool could be used to assist in the

reduction of conflicting information, such as determining if compounds residing in

both DrugBank and ToxCast should be assigned to either a ”Good” or ”Bad” profile

class, in addition to consideration of dosage. This in turn could provide additional

training or test points to enrich the analysis. Furthermore there are other types

of classifier that could be explored, such as in a survey by Stephenson et al. which

highlighted that Deep Learning and Neural Network approaches appear to have

increasing use in recent publications [21].

7.2.3 Objective 3 Review

The third objective of the project was to investigate and evaluate machine

learning techniques for the purpose of clustering similar drug compounds

or protein targets. A review of the literature revealed that two avenues were highly

applicable to this aim: the first was to predict interactions via structural similarity

clustering, through a ”Read-Across” principle where a compound or protein belonging

to a highly documented group of objects would share similar properties, typically

applied with a mathematical model known as a QSAR (Quantitative Structure

Activity Relationships) [22]. The second avenue involved the implementation of

in silico docking pipelines, to simulate binding energies and locations between a

compound and protein to determine the likelihood of activity between them. The

similarity approaches considered made use of a Python library called PyDTI [23],

which was developed by Liu et al., but further similarity approaches could in turn be

considered in further approaches. For example, as noted in the review in Chapter

4, a report by Ban et al. has provided an expansion to the similarity clustering

method of NRLMF [23], which attempts to improve on target prediction performance

for compounds with little recorded protein activity [24]. Furthermore, a report by
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Kurgan et al. has surveyed and documented 35 approaches of similarity clustering,

some of which contain source code which could be used for replication and further

assessment and analysis [25].

Of the similarity clustering methods available within PyDTI, two (NRLMF [23]

and NetLapRLS [26]) had managed to successfully predict approximately half of

tested interactions, which were random in vitro interactions that had been ”blinded”

(removed as a target) from the interaction search space. These models were then

assessed on new interaction predictions, however analysis of these predictions revealed

two anomalies. The first anomaly was that a fairly large proportion (approximately

27%) of the high ranking positive predictions had been identified as inactive based

on referencing protein-compound assay results which did not meet the 10 micromolar

potency threshold, whilst low ranking predictions did not highlight as many inactive

results as expected. This further supports the idea that a re-evaluation of the

threshold may be necessary in a future approach to observe the impact additional

data points might have on widening the activity search space. When other models

had been investigated for potential false positives, the CMF method [27] had flagged

the least number of inactive assay results, which warranted further investigation of

in silico docking for these predictions.

The second anomaly was the binding energies generated by an in silico docking

pipeline [28], that had been used to attempt to identify if high and low scoring

compound-protein predictions were appropriately active or inactive. On analysis of

the in silico pipeline results, only one method (NRLMF) had shown agreement between

the pipeline’s high binding energies (indicative of a likely active protein-compound

pairing), and the clustering method’s top predictions. This finding highlights some

promise in combining structural clustering and in silico docking in unison, however

a further approach might be considered to further verify top scoring interactions.

Van Laarhoven et al. for instance in his similarity clustering approach assessed new

interaction predictions against updated revisions of compound-protein interaction

repositories [29], and found that approximately 21% of the top 100 predictions made

via WNN-GIP were found in an updated revision. This technique could also be

applied in future approaches now that several major revisions have taken place on a

good proportion of the repositories assessed.

Overall, the analyses had revealed a number of promising avenues, and in order

to provide users with the ability to make use of the similarity clustering pipeline,

a web interface platform prototype was implemented and released. The platform,

named TargetPredict, not only allows users to browse and download the assay results
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gathered from the various repositories throughout the project, but also provides

the ability to generate predicted interaction profiles of user-selected proteins and

compounds. This interface, with further modifications and expansion of features and

interaction search space, could have the potential to provide users who have limited

or no programming experience to make use of the rich data incorporated in a single

combined platform, in an area of research which is currently limited by the need to

engage with separate platforms across multiple websites.

7.3 Further Work

In terms of further work for the wider project approach, it should be emphasised

that although a significant amount of information has been integrated, the results

that have been presented thus far are based only on a small proportion of the overall

interaction search space, and that a large area still remains unexplored. As future

revisions of repositories will provide additional datapoints, it will become necessary

to implement a revised database schema, in order to store and utilise the additional

information efficiently. Future revisions of the database would in turn require adoption

of suitable security measures, to ensure the database and server is secure when used

in conjunction with the TargetPredict platform.

Another area for potential future incorporation is to consider the proteins of other

species in the analyses. The current retrieval approaches have either been restricted

to a single species, or to protein panels composed to be relevant to pharmacological

profiling or toxicity prediction. With additional time, the analyses can be expanded

to investigate and potentially include other species commonly used in in vitro testing,

which would be useful for application in the pharmaceutical industry. The introduction

of these species could also introduce proteins that share sequence similarity to certain

human protein sequences, and in turn enrich the similarity clustering pipeline.

Finally, the design and implementation of a queueing and logging system should

be considered, so that potentially time consuming tasks can be performed via the

interface. As some of the tasks performed can take a long period of time to execute

even on a small dataset, the increase of the search space would further increase the

execution time and make the current requirement of a user remaining on the interface

platform impractical. A queueing system would reduce the resource load on the

hardware where the interface is implemented, as well as provide the ability for a user

to submit a job to the TargetPredict platform and return to retrieve results after a

period of time has elapsed, or upon notification to the user. Further investigation
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would be necessary into the use of an email system to assist with the notification

process.

7.4 Concluding Remarks

Overall, the research has generated two notable computational tools which have

aggregated and compiled a vast amount of information across multiple sources

into one consistent source, and provides the community with access to a wealth

of standardised information in a single platform that may be applied to important

biological and medical questions without requiring a degree of coding experience.

This wealth of information provides a powerful source of input for predictions

when used in conjunction with the promising findings of similarity clustering and

compound profiling, and the developments made so far have provided a foundation

for further development and expansion with the potential of providing a valuable tool

to complement the compound discovery pipelines. The interface is freely available for

use at http://proteins.swan.ac.uk/cheminf/.
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Appendix

The SQL database of the DrugReferenceDatabase, raw results from the findings of

Chapters 3, 4 and 5, and the protein panels assessed are available on the flash drive

attached to this thesis. Example structures and proteins are also included for use in

the TargetPredict platform.
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