
DOI: 10.4018/JDM.318414

Journal of Database Management
Volume 34 • Issue 2

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Android-IoT Malware Classification
and Detection Approach Using
Deep URL Features Analysis
Farhan Ullah, School of Software, Northwestern Polytechnical University, Xi’an, China*

 https://orcid.org/0000-0002-1030-1275

Xiaochun Cheng, Department of Computer Science, Swansea University, Bay Campus, Fabian Way, Swansea, UK

Leonardo Mostarda, Computer Science Department, Camerino University, Camerino, Italy

 https://orcid.org/0000-0001-8852-8317

Sohail Jabbar, Department of Computational Science, The University of Faisalabad, Faisalabad, Pakistan

ABSTRACT

Currently, malware attacks pose a high risk to compromise the security of Android-IoT apps. These
threats have the potential to steal critical information, causing economic, social, and financial harm.
Because of their constant availability on the network, Android apps are easily attacked by URL-
based traffic. In this paper, an Android malware classification and detection approach using deep
and broad URL feature mining is proposed. This study entails the development of a novel traffic data
preprocessing and transformation method that can detect malicious apps using network traffic analysis.
The encrypted URL-based traffic is mined to decrypt the transmitted data. To extract the sequenced
features, the N-gram analysis method is used, and afterward, the singular value decomposition (SVD)
method is utilized to reduce the features while preserving the actual semantics. The latent features are
extracted using the latent semantic analysis tool. Finally, CNN-LSTM, a multi-view deep learning
approach, is designed for effective malware classification and detection.

Keywords
Android, Deep Learning, HTTP flow analysis, Internet of Things, LSA, Malware detection, N-gram, Text
Semantics

1. INTRODUCTION

A malware infection can easily attack Android apps for malicious purposes and compromise
security (Lu & Da Xu, 2018). Mobile network expansion has increased the number of portable
devices. Because of this, financial malware apps threaten mobile users. Despite massive prevention
and mitigation efforts, malware remains a major cyber security threat. Thus, in 2016, Symantec

https://orcid.org/0000-0002-1030-1275
https://orcid.org/0000-0001-8852-8317

Journal of Database Management
Volume 34 • Issue 2

2

discovered 357,019,453, in 2017, 669,974,865, and in 2018, 246,002,762 new malware variants.
Yet more malware variants are attempting to bypass anti-virus tools and avoid detection by several
malware detection systems.

The rapid expansion of mobile interaction places a significant burden on smartphone security
management. According to a recent study1, the number of apps in the Google Play Store has increased
from 16K in Dec. 2009 to over 2 million in Feb. 2016. As a result, mobile traffic has topped 3.7
exabytes. The growth of the mobile ecosystem is seriously compromised by malicious apps. There has
been a massive increase in mobile malware, especially targeting Android devices. Devastating digital
payment thefts and other attacks threaten mobile security. Despite the Android platforms and mobile
antivirus security measures, sophisticated mobile malware continues to infiltrate mobile systems.
The widespread use of mobile devices also exposes users to multiple risks. So we urgently need
Android-based mobile malware detection systems (McLaughlin et al., 2017). A malware family is a
group of malicious apps sharing code. Various malware samples use the malware families’ codebase.
All samples with the same interpretation are combined.

Faruki et al. (Faruki et al., 2014) explore the characteristics of a huge assortment of malware
and categorizes existing mobile malware detection methods into static, dynamic, and traffic-based
categories. Static analysis has been used in several previous studies to discover data leakage, malware,
and security breaches in Android apps (Zhu et al., 2018). Nevertheless, static analysis of malware
is challenging due to code polymorphism and obfuscation. These methods are used to produce
malware variants to avoid detection. Numerous different dynamic analysis techniques strive to alter
the device’s operating system to monitor and access confidential information at runtime (Bader,
Lichy, Hajaj, Dubin, & Dvir, 2022; Ucci, Aniello, & Baldoni, 2019). Such methods are helpful, but
they necessitate a massive number of executions to encompass all app behavioral patterns (Ahmed,
Lin, & Srivastava, 2021).

1.1 Motivation
Many virus detection techniques concentrate on the network traffic generated by mobile apps.
Malware is identified by abnormal network behavior patterns. This type of malware detection system
has the potential to be effective because the majority of Android malware performs its malicious
functions via network traffic (Zhou & Jiang, 2012). The malware must communicate with a remote
server over the Internet to carry out malicious tasks. These traces can be used to identify and track
down specific malware. Furthermore, malware detection strategies based on network characteristics
are more straightforward to design and implement than static or dynamic analytic approaches. For
example, methods based on traffic detection can be installed at an access point or gateway. These
methods rely solely on user-generated network traffic data, ensuring that users do not lose access to
their mobile resources. Furthermore, these solutions do not necessitate any user actions aside from
granting licenses to the detection service (W. Li, Bao, Zhang, & Li, 2022; S. Wang et al., 2020).
The goal of network traffic-based approaches is to find distinguishing features that can be used to
classify malware more effectively. Selecting efficient features, on the other hand, is a difficult task.
We concentrate our investigation on malware samples that use the HTTP/HTTPS protocol to send
data. Because HTTP accounts for 70% of the network traffic generated by Android apps, we chose it
for our research. (Dai, Tongaonkar, Wang, Nucci, & Song, 2013). However, because HTTP traffic is
generated in encrypted form, extracting useful information from it is extremely difficult.

1.2 Contributions
Previously, researchers used statistical features and network traffic content to deduce malware
behavior, which can be tedious and inefficient. Therefore, we develop a method for detecting malware
using malicious URLs (HTTP/HTTPS). It does not require a lengthy and complex feature selection
procedure. To accomplish the automatic feature selection, we employ a novel features extraction
process (Mikolov, Chen, Corrado, & Dean, 2013; S. Wang et al., 2017a). This method can automatically

Journal of Database Management
Volume 34 • Issue 2

3

mine URL feature representations at numerous levels to tackle the problem of selecting features
while preserving the high-level semantics. The main contributions of the paper are given as follows:

1. 	 On the URLs in network traffic, we conduct feature extraction and selection using a text-based
approach. Our research involves the development of a novel traffic data preprocessing and
transformation method that is effective in the detection of malware using network flows.

2. 	 The N-gram features analysis approach is used to mine the features’ sequencing and then the
Singular Value Decomposition (SVD) method is applied for features reduction preserving
the actual semantics. The Latent Semantic Analysis (LSA) tool is employed to extract the
latent features.

3. 	 To extract deep and broad feature learning, we design a multi-view deep learning approach called
Convolution Neural Network-Long Short Term Memory (CNN-LSTM). The novel approach
is capable of producing discriminant features and thus mitigates the difficulty associated with
feature selection in network traffic-based malware detection methods.

The remaining sections of the paper are as follows: Section 2 describes recent and related
literature, Section 3 describes the proposed approach, Section 4 describes the results and discussions,
and Section 5 concludes.

2. BACKGROUND

Several studies (Chiramdasu, Srivastava, Bhattacharya, Reddy, & Gadekallu, 2021; Varma, Raj,
& Raju, 2017) show that the Android platform employs a variety of security measures, including
authorization mechanisms to protect infecting target devices. But users must be sufficiently aware
of security issues to benefit from authorization-based protection. These constraints of over-reliance
on the consumer make Android malware invade and spread through mobile devices. Most of these
scanners look at things like authorizations and harmful programs to see if an app is malicious or
not. These anti-virus scanners protect against harmful software. But malicious programs are always
evolving and diversifying. So malware detection must be improved. There are now several malware
detection tools that can dissect APK files without executing them. Sanz et al. (Sanz et al., 2013)
proposed a static-based analysis that captures the app’s uses-permission and uses-feature details for
malware classification, with an accuracy of 86.41%.

Shanshan et al. (S. Wang et al., 2017a) suggested using network traffic as semantic content to
detect malware. A mobile app’s HTTP flow is a text file. Natural Language Processing (NLP) can
extract semantics from HTTP traffic data stored in text files. The next step is to detect malware using
network traffic textual properties. The suggested approach obtains the classification performance with
an accuracy rate of 99%. Aresu et al. (Aresu, Ariu, Ahmadi, Maiorca, & Giacinto, 2015), look at HTTP
traffic when Android malware communicates with distant malicious servers. It also uses clustering
to build malware family signatures. This signature is used to detect malicious attacks. Wang et al.
(S. Wang et al., 2017b), proposed the TextDroid approach that divides the HTTP packet’s content
by special characters, and after that, generates n-gram sequence information to study the ordering in
the collected features. Further, it collected sequence-based information fed into a machine-learning
model for malware detection. However, the detection performance for this semantic-based approach
is only 76.99%. Shyong et al. (Shyong, Jeng, & Chen, 2020), identified Android apps using both
static and dynamic network monitoring. Dynamic analysis identifies malware families by analyzing
network data. The static technique classified valid and harmful content at 98.86%. Also, the dynamic
app family classification is 96% accurate.

Several deep learning-based malware classification studies have attained outstanding results (S.
Wang et al., 2018; Xu, Eckert, & Zarras, 2021). Chen et al. (Chen, Yu, Zhang, Zhang, & Xu, 2016),
proposed a convolutional neural network (CNN) method that uses HTTP headers to identify different

Journal of Database Management
Volume 34 • Issue 2

4

types of apps based on their generated traces. The use of CNN speeds up the process of selecting
features and produces precise results in traffic identification. The given method achieved an average
classification accuracy of 98%. David et al. (David & Netanyahu, 2015) presented a deep belief
networks approach known as DeepSign. It can produce immutable compact interpretations of malware
actions, possibly allowing it to distinguish nearly all current malware variants efficiently with an
accuracy rate of 98.6%. Shanshan et al. (S. Wang et al., 2020), presented a malware detection system
based on app HTTP visits. Then a multi-view neural network detects malicious acts with depth. This
method can focus smooth attention on specific input variable traits. This method’s accuracy rates are
98.81% and 89.3%, respectively. Brandon et al. (Laughlin, Sankaranarayanan, & El-Khatib, 2020)
describe a service plate form for delivering contextual data obtained from network flow. It creates
a set of contexts for network-based features such as host addresses, apps in use, and the time of the
event. The system finds the nearest neighbors in each context, evaluates the feature proportions, and
employs an ensemble of the unsupervised outlier detection algorithm. The proposed method has an
accuracy of 85.56%.

We use deep features analysis to process HTTP network analysis because it is the most widely
used protocol for mobile apps. HTTP-based encrypted data packets are collected and filtered using
a features extraction process, and then the SVD mathematical model is used to extract the most
significant features in a reduced dimensional space. CNN-LSTM, a multi-view deep learning strategy,
is developed to obtain extensive feature learning.

3. ANDROID MALWARE CLASSIFICATION AND DETECTION APPROACH

Figure 1 depicts the proposed method. The Android HTTP traffic is collected and fed into the malware
detection system. Because the data is encrypted, a packet parser is required to decrypt it. Then, n-gram
analysis is used to extract features with ordering details, and TFIDF is used to mine each feature’s
importance. The approach also aims to extract meaningful features in a reduced dimensional space.

Figure 1. Proposed Framework for Android Malware Classification and Detection using URLs

Journal of Database Management
Volume 34 • Issue 2

5

The reduced features are used in a CNN-LSTM model for malware classification and detection.
Examples of malware families are shown in Figure 2. Each sample has its way of executing malicious
Android apps. For instance, Adware is a type of computer program that displays ads on screen while
using a web browser. Similarly, a botnet can be used to launch Distributed Denial of Service (DDoS)
attacks, steal information, spear phishing, and allow hackers to obtain access to the device (Rieck,
Holz, Willems, Düssel, & Laskov, 2008).

3.1 URL Collection
An app can be infected with malware after visiting a malicious URL. Malware frequently uses
URL information to receive inputs and conduct suspicious attacks. So, detecting malware via
URLs is useful. Android devices collect HTTP-based network data while online. The data is
encrypted and may contain malicious or benign activities. Wireshark, a packet parser, decrypts
network packets so that Android apps can explore network flows. It contains a lot of noisy data
after decryption, which could affect malware classification accuracy. We use Wireshark’s packet
filtering command to mine the URLs because we need to focus on HTTP-based network traces.
In addition, in the next step, we mined HTTP and HTTPS network traffic for features analysis
(Narudin, Feizollah, Anuar, & Gani, 2016).

3.2 URL Preprocessing and Features Extraction
The network flow is a fundamental unit in malicious traffic detection. However, many app-generated
HTTP flows are mixed. So, we must extract each comprehensive flow from the complex traffic file
and segment them.

3.2.1 Traffic Flow Segmentation
Processing the URL into useful segments is difficult because standard tokens (like spacing or
punctuation) are not available. Each URL contains a long string of characters, none of which can convey
complex information. For instance, the extraction of a single character from the URL “www.yahoo.
com” can be illogical. This can only exhibit a full domain name is considered as an entity. Another
example of a video URL, i.e. “https://www.youtube.com/watch?v=-JAYqHNx5rU” is composed
of some common and special characters. These prefixes are called HTTP flow headers. They show
the method, encoding type, URL, and browser information in a coherent way. Each URL has basic
segments that convey a specific piece of information. Because not all segmented terms can detect
malware, we remove meaningless words from the traffic flow. This reduces computational costs. We
develop filtering rules to remove noisy data. First, the noisy and low-frequency terms (“.jpg”, “.png”,
“.gif”, “.js”, “.css”, etc.) are removed. Second, common terms like “content-length”, “expires”, and
“en-us” is removed from almost every HTTP request. Third, stop words (“is”, “are”, “the”, etc.) are
removed as they can cause false positives in malware detection (S. Wang et al., 2017a). These terms
may not be helpful in the malware detection system.

Figure 2. Android Malware Families

Journal of Database Management
Volume 34 • Issue 2

6

3.2.2 N-gram Analysis
In NLP, an N-gram is a random string of words. An N-gram can be used as a sub-sequence for elements
in a specific order with at least n elements. Flow segmentation provides an N-gram ordering for each
term set. For example, the term set of HTTP flow in uni-gram form is “apikey airpush appid 60563
longitude 0” The flow of bigram can be “apikey-airpush, airpush-appid, appid-60563, 60563-longitude,
and so on”. The flow of trigram can be “apikey-airpush-appid, airpush-appid-60563, etc.” The
N-gram can be used to find important term connections in a network flow. “apikey” and “airpush”
are 1-gram segments that not only define a term but also show that they are unrelated. The bi-gram
sequence “apikey-airpush” is influenced by the term “apikey”. The N value chosen must appropriately
reflect the principle of term presence in the HTTP flow header. TFIDF (Karbab & Debbabi, 2019) is
another method for determining the relative importance of different N-gram features. The local and
global weights show the significance of each N-gram feature in a single or multiple network flow,
respectively. Mathematically, TFIDF is given as in equation 1.

tfidf t d D tf t d idf t D, , , . ,() = () () 	 (1)

Where t , f , d , and D denote term, frequency, single network flow, and multiple networks flow,
respectively. These parameters can extract the local and global weights collectively. Equation 2 shows
how many times each N-gram feature is referenced.

tf t d
f

f
t f

t d t d

, ,

,

() =
′ ′∈∑

	 (2)

equation 3 illustrates logTF function.

LogTF log tf= +()1 	 (3)

The inverse document frequency of each feature’s local weight is derived from equation 4 using
the normalized term frequency form.

idf t D log
N

d D t d
,

:
() =

∈{ ∈ }
	 (4)

Where t , d , D , and N show terms, single network flow, multiple networks flow in a group, and
all networks flow, respectively. The TFIDF works in two main steps, such as selecting the source
code document and then indexing it to a specific address for extracting the TF*IDF value. The indexing
process takes time O(n), several times the source code document chosen is O(|D|). Therefore, the
total computational time of the TFIDF method is O(|D| n).

3.3 Features Reduction and Selection
3.3.1 Features Reduction
We need enough records to effectively train a deep learning model. Less spatially relevant data requires
semantic connections based on LSA. It uses a discrete representation space to retrieve semantic
content from text documents. In Latent Semantic Indexing (LSI), latent constructs are used to find

Journal of Database Management
Volume 34 • Issue 2

7

semantic-based concepts. It divides N-gram features into matrices that can classify malicious traffic
(Hofmann, 2013; Landauer, McNamara, Dennis, & Kintsch, 2013). A dense N-gram feature is reduced
using the SVD algorithm. To find patterns across networks, we need to use semantic factors that
accurately explain network traffic. The LSA method can derive latent variables from network flows.
The SVD algorithm converts N-gram features into three matrices (Landauer et al., 2013), i.e. M ,
U , Σ , VT as shown in equation 5.

M U VT= Σ 	 (5)

Where M is m*n matrix, U is an m*n singular matrix, Σ is n*n diagonal matrix, VT is the
transpose of the V matrix. N-gram features are fed into the SVD algorithm employing the Bag of
Words (BoW) model as depicted in Figure 3. In the SVD algorithm, features are reduced from a large
number to a small number of meaningful ones. Each N-gram feature is categorized as either malware,
benign, or a member of a specific family of malware. By using the LSA method, the latent features
can then be extracted from their original location in three-dimensional space.

The time complexity of LSA is given as follows. The LSA mainly works on three main matrices,
such as M , U , Σ , VT . These matrices are already discussed above with detailed information. The
computational time is the multiplication of these matrices, which is O(M U Σ VT).

3.3.2 Deep Features Selection
Though, the LSA-based features are highly effective but we still need deep features which can decrease
the training cost of the proposed deep learning model. The CNN network is used to examine the
reduced features and further mine the deep features. There are several studies available (Lee, Saxe,
& Harang, 2019; Vasan, Alazab, Wassan, Safaei, & Zheng, 2020), that used the CNN model to
classify malware features. The CNN model works better with a variety of data, like text, images, and
videos. As presented in Figure 4, the approach can be adopted of a one-dimensional CNN network
with convolutional layers, pooling layers, dropout layers, and a fully connected layer. The LSA-based
features are input sequences to the CNN network. Tensor flow library 1.9 is used to build the CNN
network. By iteratively spinning through the semantic features, convolution filters out the best deep
features. Each filter creates a new feature map. The number of filters is determined by hyperparameter
optimization. We used two CNN layers with 64 and 128 filters each. The max-pooling layer reduces the
feature space’s size, range, and computation cost. This layer also generates a feature map of the most

Figure 3. Semantic-based deep features extraction

Journal of Database Management
Volume 34 • Issue 2

8

essential features from the previous feature set. The proposed CNN network uses softmax and dropout
layers to combat overfitting. Equation 6 shows the outcome of the one-dimensional CNN network.

o f c Con D X t
k k

i

N

ik
l

i
l

l

1 1

1

1 1
1

1= + ()
=

− −
−

∑(,) 	 (6)

Where c
k
1 is the parameter bias of the kth neuron in the first layer, t

i
l−1 is the result of the ith neuron

in layer l-1, X
ik
l−1 is the kernel strength from the ith neuron in layer l-1 to the kth neurons in layer l,

and ‘‘f()” is the activation function. The CNN network is capable of extracting deep features, which
aids in the development of an efficient classification model.

3.4 Multi-View Deep Learning
Usually, in the CNN model, the features extracted from pooling layers are forwarded to the fully
connected layer. In the proposed approach, the deep features are forwarded to an LSTM layer, rather
than a fully connected layer. The deep features are extracted from CNN, and further long-short-term
correlations are detected by LSTM. To classify network traffic, the method employs a multi-view
approach of the CNN-LSTM model, using the strengths of both models (Lyu & Liu, 2021; Wang, Yu,
Lai, & Zhang, 2016). Figure 4 describes the combined approach of the CNN-LSTM model mainly in
two steps. Step 1 involves the use of convolution and max-pooling layers; while step 2 involves the
use of the LSTM layer. The CNN layers encode the LSA-based latent features, and the LSTM layers
decode the information in the feature set.

LSTM relies on the concept of cell state and the numerous gates it incorporates. Knowledge
about a cell’s state is transmitted beneath the sequence alignment network via the cell state. There is
a main memory component in the LSTM model, as well as input, forget, and output communication
gates. The memory module is vital to the designed model. The memory cell stores the previous state
in its memory. The sigmoid function processes both the recent hidden state and current input. The
values are 0 to 1. If the value is close to 0, it means forget gate. The input gate specifies how much
network data is stored in the unit state for each time “t”. The forget gate then decides whether or not
the associated records can pass to the input gate. Remember that the hidden state contains previous
input data. Begin by adding the previous cell state and the received signal. The tanh function multiplies
the nonlinear activation output to determine the hidden state’s relevant information. To make accurate
predictions, use the hidden state’s result. 6 describes the model’s behavior.

i V Wh b
t ixt i t i
= + +()−Ã

1
	

f V Wh b
t fxt f t f
= + +()−Ã

1
	

c tanh V X W h b
t c t c t c
~ = + +()−1 	 (7)

c f AC W h i Ac
t t t c t t t
= + +()−1

~ 	

o V x W h b
t o t o t o
= + +()−Ã

1
	

h o Atanh c
t t t
= () 	

Journal of Database Management
Volume 34 • Issue 2

9

The input at time “t” is expressed by the symbol x
t
, the influence matrices are expressed by the

symbols x
*

 and w
*
, and the bias and hidden conditions are expressed by the symbols b and h. The

activation functions are illustrated by the symbols σ and tanh. It is followed by the letters i
t

, f
t
, o
t
,

and c
t
, which stand for input gate, forget gate, output gate, and memory cell, respectively. Collectively,

these gates perform the processing of the designed model.

4. RESULTS AND DISCUSSIONS

4.1 Dataset Preparation
The proposed method is thoroughly examined using two datasets obtained from the Canadian
Institute for Cybersecurity2. The first dataset, the Canadian Institute of Cybersecurity Android
Adware and General Malware (CICAAGM2017) (Lashkari, Kadir, Gonzalez, Mbah, & Ghorbani,
2017), is collected semi-automatically through the installation of Android apps on legitimate
mobile phones. A total of 1900 apps are used to create the dataset, which is divided into three
categories: adware, general malware, and benign. A detailed description of each app is given
in Table 1 and Table 2.

4.2 Evaluation Measures
We set widely standard training and testing ratios, such as 80%, and 20%, respectively. We used five
kinds of evaluation measures such as precision, recall, f-measure, accuracy, and confusion matrix.
When the model correctly predicts the benign class, this is referred to as a true positive outcome.
While a true negative is an outcome in which the model correctly predicts the malware class. One
type of false positive is when a researcher incorrectly concludes that a hypothesis or finding is correct
when it is not (also called a type I error). If something is falsely ruled out, this is known as a false
negative (also called a type II error). The general classification performance is assessed utilizing an
accuracy matrix. This is equal to the sum of correctly classified instances divided by the total number
of instances. The evaluation matrices are given in equations 8 and 9.

Figure 4. A multi-view deep learning approach using CNN and LSTM

Journal of Database Management
Volume 34 • Issue 2

10

TPR
TP

TP FN
FPR Recall

FP

FP TN
Precision

TP

TP FP
=

+
= =

+
=

+
; , 	 (8)

Accuracy
TP TN

TP TN FP FN
F measure

TP

TP FP FN
=

+
+ + +

−
+ +

,
2

2

* 	 (9)

4.3 Performance Analysis
Figure 5 depicts the network-based malware classification epoch curves from the CIC-AAGM2017
dataset. To test the method, we used uni-gram, and bi-gram N-gram features to compare CNN-LSTM,
CNN-RNN, and CNN-GRU models. The accuracy and loss epoch curves are used to examine overall
performance. Parts (a-d) show the accuracy and loss epoch curves for the CNN-LSTM model. The
CNN-RNN accuracy and loss epoch curves for uni-gram and bi-gram are shown in parts (e-h).
Similarly, parts (i-l) present the accuracy and loss epoch curves for the CNN-GRU model. In part
a, the training and testing curves start at 50% and gradually increase to 90%. After that, there is a
sharp drop from 90% to 96.50%, followed by a more or less constant drop. Part e shows different
behavior for CNN-RNN. For instance, the training and testing curves start at 40% and 91%. On the
32nd epoch, the training curve behaves at 80% while the testing curve behaves at 90%. Then it’s pretty

Table 1. Android Adware and General Malware Dataset (CIC-AAGM2017)

Apps No. of Apps Families Description

Adware 250

Airpush It sends intrusive ads to users’ systems to steal data

Dowgin Works as an ad library that can also collect user data

Kemoge It is used to take control of the user’s Android device

Mobidash Created to show advertisements and steal personal data

Shuanet It can also take control of a user’s device

General Malware 150

AVpass Distributed as a Clock app disguised as a utility

FakeAV Scam to trick users into buying full-version software

FakeFlash Built as a spoof Flash app to redirect users to a website

GGtracker Designed to steal information via SMS fraud

Penetho Fake service designed (hack tool to crack WiFi password)

Benign 1500 Benign Clean apps (Not malicious)

Table 2. CICMalDroid 2020 dataset

Apps Families No. of Apps Description

Malware

Adware 1,253 There are ads disguised inside malware-infected apps

Banking 2,100 It is used to get access to the user’s online banking accounts

Riskware 2,546 It can be any legitimate app that can cause harm if misused

SMS 3,904 It uses the SMS service to conduct attacks

Benign Benign 1,795 Clean apps (Not malicious)

Journal of Database Management
Volume 34 • Issue 2

11

much constant with a 94% accuracy. A similar range of behavior is seen in Part I for CNN-GRU.
The movement of these curves differs slightly when using deep features with bi-gram. For instance,
CNN-LSTM, CNN-RNN, and CNN-GRU exhibit behavior ranging from 50% to 95%. More bi-gram
features mean more data for training and testing. It may be overburdening the training time with noisy
data. Nonetheless, the proposed approach can handle massive amounts of sequenced data by reducing
and selecting features. The loss curves for uni-gram and bi-gram for CNN-LSTM, CNN-RNN, and

Figure 5. Epoch curves for malware classification using CIC-AAGM2017 dataset

Journal of Database Management
Volume 34 • Issue 2

12

CNN-GRU, respectively, fall between (80%, 10%), (90%, 10%), and (40%, 15%), and (78%15%). The
confusion matrices for the CIC-AAGM2017 dataset used to examine uni-gram and bi-gram for malware
detection, are shown in Figure 6. The diagonal cells represent the correct classification values while
the non-diagonal cells represent the incorrect classification values. As an example, in parts (a, b),
CNN-LSTM has classification and miss-classification values of (91%, and 9%), respectively. Similarly,
the benign has (99, 1%) and (97, 3%). Using CNN-RNN, the classification and miss-classification
values for malware are (90%, 10%) and benign (98%, 2%) and (96%, 4%) respectively. Furthermore,
using CNN-GRU, the classification and miss-classification values for malware is (90%, 10%), (91%,
9%) and benign are (97%, 3%) and (95%, 5%) respectively.

Figure 6. Confusion matrices for Android malware detection using CIC-AAGM2017 dataset

Journal of Database Management
Volume 34 • Issue 2

13

Figure 7 depicts the accuracy and loss curves for malware detection in the CIC-AAGM2017
dataset. The proposed approach detects malware more effectively than malware classification. The
accuracy curves for CNN-LSTM, CNN-RNN, and CNN-GRU using uni-gram features are between
(50%, 98%), (90%, 97%), and (40%, 96%), respectively. The testing curve for CNN-LSTM drops to
58% on the 10th epoch, while the training curve drops to 78%, indicating possible data loss (part c).
As shown in part g, when CNN-RNN is used on the 5th and 25th epochs, the training, and test curves
drop, indicating data loss. The accuracy curves for bi-gram features, CNN-LSTM, CNN-RNN, and
CNN-GRU, are between (50%, 100%), (86%, and 98%). (50%, 99%), respectively. The testing and
training curves in CNN-RNN parts (f, h) behave very differently, indicating data loss. These unusual

Figure 7. Epoch curves for Android malware detection using CIC-AAGM2017 dataset

Journal of Database Management
Volume 34 • Issue 2

14

behaviors can affect malware detection accuracy. On the CIC-AAGM2017 dataset, with uni-gram and
bi-gram deep features analysis, confusion matrices for malware classifcation are shown in Figure 8.
When CNN-LSTM is used in parts (a, b), the adware has classification and miss-classification values
of (99%, 1%) and (100%, 0%) respectively. Similarly, general malware has (98%, 2%) and (98%, 2%)
respectively. The classification and miss-classification values for adware are (98%, 2%) and general
malware is (98%, 2%) using CNN-RNN in parts (c, d). The classification and miss-classification
values for adware are (98%) (2%), (99%,1%), general malware (98%, 2%), (97%, 3%). The CNN-
LSTM approach with bi-gram features has better malware detection accuracy.

Figure 8. Confusion matrices for Android malware classification using CIC-AAGM2017 dataset

Journal of Database Management
Volume 34 • Issue 2

15

The confusion matrices for malware detection using the CICMalDroid 2020 dataset are shown
in Figure 9. The malware has classification and miss-classification values of (99, 1%), (96%, 4%),
respectively, when CNN-LSTM is used in parts (a, b). Similarly, the benign has (99.9%, 1%), (99.9%,
1%), and (99.9%, 1%), respectively. Following that, using CNN-RNN in parts (c, d), the classification
and miss-classification values for malware are (96%, 4%), (97%, 3%), and benign are (100%, 0%),
(86%, 4%), respectively. Furthermore, using CNN-GRU in parts (e, f), the classification and miss-
classification values for malware are (98%, 2%), (94%, 6%), and benign are (90%, 10%), (96%, 4%),
respectively. The confusion matrices for malware classification using the CICMalDroid 2020 dataset
with uni-gram and bi-gram deep features analysis are shown in Figure 10. Using this dataset, malware

Figure 9. Confusion matrices for Android malware detection using CICMalDroid 2020 dataset

Journal of Database Management
Volume 34 • Issue 2

16

detection outperforms classification. For example, using CNN-LSTM in parts (a, b), the adware
family has classification and miss-classification values of (100%, 0%), (100%, 0%), respectively. The
banking family has (97%, 3%), (100%, 0%, and (100%, 0%), respectively. The riskware family has
(97%, 3%), (95%, 5%), and (95%, 5%), respectively. The SMS family has (88%, 12%), (93%, 1%), and
(93%, 1%), respectively. Using CNN-RNN in parts (a, b), the adware family has classification and
miss-classification values of (100%, 0%), (100%, 0%), respectively. The banking family has (95%,
5%), (96%, 4%), and (96%, 4%), respectively. As can be seen, the proposed approach outperforms
CIC-AAGM2017 in terms of classification results for CICMalDroid 2020.

Figure 10. Confusion matrices for Android malware classification using CICMalDroid 2020 dataset

Journal of Database Management
Volume 34 • Issue 2

17

Table 3 compares state-of-the-art malware classification methods using the CIC-AAGM2017
dataset. To analyze both uni-gram and bi-gram features, evaluation matrices such as precision, recall,
f1-score, and classification accuracy are used. It can be seen that uni-gram features provide better
classification accuracy for CNN-LSTM, i.e. 94.75%, than bi-gram features, i.e. 94%. Similarly,
the CNN-RNN and CNN-GRU perform well with uni-gram, 94.12%, and 93.58%, respectively, as
compared to bi-gram, 93.05%, and 93.27%. When compared to uni-gram analysis, bi-gram analysis
generates roughly twice as many features. However, the classification accuracies of the uni-gram and
bi-gram remain slightly different. It shows that our method can classify a large number of malware
features with better classification results. On the other hand, malware detection results with bi-gram
features outperform those with uni-gram features. For example, Table 4 compares state-of-the-art

Table 3. Comparisons for malware classification using CIC-AAGM2017 dataset

Features Classes Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Malware 99 91 95
94.75 CNN-

LSTMBenign 91 99 95

Malware 98 90 94
94.12 CNN-RNN

Benign 91 98 94

Malware 97 90 93
93.58 CNN-GRU

Benign 91 97 93

Bi-gram

Malware 97 91 94
94 CNN-

LSTMBenign 92 97 94

Malware 96 90 93
93.05 CNN-RNN

Benign 90 96 93

Malware 95 91 93
93.27 CNN-GRU

Benign 92 95 93

Table 4. Comparisons for malware detection using CIC-AAGM2017 dataset

Features Malware Families Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Adware 98 99 99
98.53 CNN-LSTM

General Malware 99 98 99

Adware 98 97 98
97.82 CNN-RNN

General Malware 98 98 97

Adware 98 98 98
98.15 CNN-GRU

General Malware 98 98 98

Bi-gram

Adware 98 100 99
99.46 CNN-LSTM

General Malware 100 98 99

Adware 98 99 99
98.63 CNN-RNN

General Malware 99 98 99

Adware 98 99 98
98.27 CNN-GRU

General Malware 99 97 98

Journal of Database Management
Volume 34 • Issue 2

18

malware detection methods using the CIC-AAGM2017 dataset. The proposed approach is analyzed
using evaluation matrices such as precision, recall, f1-score, and classification accuracy.

The proposed method is tested on the CICMalDroid 2020 dataset using various evaluation
matrices such as precision, recall, f1-score, and classification accuracy. Table 5 compares malware
classification performance with state-of-the-art methods using uni-gram and bi-gram features. CNN-
LSTM, CNN-RNN, and CNN-GRU classification accuracies with uni-gram are 98.8%, 97.93%, and
93.57%, respectively. Table 6 compares malware detection performance with the CICMalDroid 2020
dataset to other state-of-the-art methods. We have four types of malware: adware, banking malware,
riskware malware, and SMS malware. The CNN-LSTM, CNN-RNN, and CNN-GRU have malware
detection accuracies of 95.35%, 93.69%, and 92.73%, respectively, thanks to uni-gram deep features.
The CNN-LSTM, CNN-RNN, and CNN-GRU have malware detection accuracies of 97.09%, 96.62%,
and 95.1%, respectively, with bi-gram deep features. Bi-gram deep features are effective for malware
detection, while uni-gram deep features are effective for malware classification.

Table 7 shows the comparisons of the proposed approach with previously published works.
These works mainly used HTTP network flows to classify the Android apps as malware or benign.
Multi-view neural networks are used to develop a malware analysis approach that provides depth and
breadth of the features. The HTTP-based malware classification accuracy is 98.81%. Our proposed
approach outperforms with a malware detection accuracy of 99.46%.

4.4 T-SNE Features Visualization for Performance Validation
The t-SNE visualization method is intended to determine whether the features contain substantial or
sparse information. Moreover, the t-SNE algorithm is designed to validate the effectiveness of the
proposed approach. Maaten et al. (Van der Maaten & Hinton, 2008) developed a t-SNE algorithm
for visualizing high-dimensional data.

Figure 11 shows the balance of local and global semantic feature weights for various
perplexity values. Two t-SNE visualization tests were created in R. We try to find the minimum
level of perplexity required to distinguish malware from benign clusters. In the second test,
the best malware and benign clusters are separated by perplexity. For instance, parts (a, c, e,
g) show the lowest perplexity values and parts (b, d, f, e) show the optimal perplexity values.
t-SNE uses iterations to distinguish between samples. To show the different malware and benign

Table 5. Comparisons for malware classification using CICMalDroid 2020 dataset

Features Classes Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Malware 99 99 99
98.8 CNN-LSTM

Benign 99 99 99

Malware 100 96 98
97.93 CNN-RNN

Benign 96 100 98

Malware 90 98 94
93.57 CNN-GRU

Benign 97 90 93

Bi-gram

Malware 96 98 97
97.19 CNN-LSTM

Benign 98 96 97

Malware 87 97 92
91.35 CNN-RNN

Benign 97 86 91

Malware 96 94 95
94.88 CNN-GRU

Benign 94 96 95

Journal of Database Management
Volume 34 • Issue 2

19

Table 6. Comparisons for malware detection using CICMalDroid 2020 dataset

Features Malware Families Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Adware 100 100 100

95.35 CNN-LSTM
Banking 86 97 91

Riskware 100 97 98

SMS 96 88 92

Adware 100 100 100

93.69 CNN-RNN
Banking 82 95 88

Riskware 100 94 97

SMS 95 86 90

Adware 100 100 100

92.73 CNN-GRU
Banking 80 95 87

Riskware 100 91 95

SMS 95 85 90

Bi-gram

Adware 100 100 100

97.09 CNN-LSTM
Banking 90 100 95

Riskware 100 95 98

SMS 100 93 96

Adware 100 100 100

96.62 CNN-RNN
Banking 91 96 93

Riskware 100 98 99

SMS 96 92 94

Adware 100 100 100

95.1 CNN-GRU
Banking 88 96 92

Riskware 98 100 99

SMS 96 84 90

Table 7. Comparisons with previously published works based on HTTP flows

Work Year Methods Accuracy (%)

Aresu et al. (Aresu et al., 2015) 2015 Signature-based clustering 96.66

Li et al. (Z. Li, Sun, Yan, Srisa-an, & Chen, 2016) 2016 Droid Classiðer 94.66

Shanshan et al. (S. Wang et al., 2018) 2018 Skip-gram with Neural Network 95.74

Shyong et al. (Shyong et al., 2020) 2020 Random Forest 98.86

Shanshan et al. (S. Wang et al., 2020) 2020 Multi-view Neural Network 98.81

Our approach … N-gram with CNN-LSTM 99.46

Journal of Database Management
Volume 34 • Issue 2

20

Figure 11. t-SNE visualization for fused features using minimum (100, 110, 120, and 130) and optimal (150, 155, 160, and 165)
perplexity values

Journal of Database Management
Volume 34 • Issue 2

21

clusters, we used 300 iterations for each perplexity. Semantic feature plots on 100,110,120,130
perplexity values are shown in the first column. An orange cluster indicates benign samples,
while a light blue cluster indicates malware. Part a has no discernible cluster with overlapped
data when perplexity is 100. On 110, 120, and 130 perplexity levels, the first t-SNE experiment
shows the separation of malware and benign samples into visual clusters. As a result, the second
experiment is run to distinguish malware from benign clusters. For the second t-SNE test, we
chose four ideal perplexity values: 150, 155, 160, and 160. The second column shows how a
low-dimensional semantic property can be used to group data into groups.

The density of the dataset influences overall classification performance. Higher density predicts
better because more descriptive information is available for training. Optimal perplexity values
help isolate t-SNE visual clusters for better classification. Using acceptable perplexity values, a
dataset can be separated and then classified using hyperparameters. This method is used to test the
proposed approach’s effectiveness because semantic features can easily be separated and classified
as malicious or benign.

4.5 Threat to Validity
4.5.1 Network Flow
Malware that uses protocols other than HTTP cannot be detected using the proposed method because
it only looks at HTTP in the network traces. We chose HTTP for our study because it accounts for
70% of the network traffic generated by Android apps. We can simply determine the general network
behavior and whether the specified activity is malicious or not by analyzing HTTP-based traffic.
According to the findings of the experiments, our technique detects the vast majority of legitimate
malware attacks. The proposed method can also expose suspicious network behavior of apps, which
is not achievable with other methods.

4.5.2 Encrypted Traffic
Malware is increasingly choosing to communicate with networks via encrypted traffic to avoid
detection. Nevertheless, the issue of encrypted malicious traffic has been examined by several studies.
To deal with encrypted traffic, we devised a method based on Wireshark commands that can decrypt
the encrypted network traffic into readable form. As a result, the proposed method is also capable of
detecting malware samples in HTTPS traffic.

4.5.3 Sample Size
Our sample size may not be sufficient to represent the entire ecology of malware variants. However,
we examined two large datasets, CIC-AAGM2017 and CICMalDroid 2020, which contain a total
of 10.2k malware and 3.2K benign samples, which is significantly larger than several other related
aspects. Because we are using two large standard datasets without any alteration, we can confidently
state that the proposed approach can operate on other systems as well.

4.5.4 Evaluation Measures
It’s even arguable that the evaluation metrics we chose aren’t appropriate. To mitigate these issues,
we developed prominent research metrics, such as precision, recall, f-measure, and classification
accuracy. To prove the efficacy of the proposed method, we prepared a detailed evaluation that
compared CNN-LSTM to CNN-RNN and CNN-GRU. Additionally, the N-gram-based LSA features
and CNN-based deep features are very effective for accurate malware classification.

4.6. Theoretical and Practical Contributions
The objective of network-based strategies is to find unique features that can be used to accurately
classify malicious traffic. Multiple malicious scripts may be employed by network malware to harm

Journal of Database Management
Volume 34 • Issue 2

22

mobile apps. Riskware is capable of incorporating malicious bytes required for remote session
hijacking. For example, network traffic may contain “application/x-javascript” coding, which the
remote device will execute to prevent regular access. Similarly, adware is a type of malware that
hides on the target machine and displays ads in the form of malicious scripts. Some adware monitors
online activity to deliver related ads. Moreover, unresolved IP addresses may be directly connected
to some malicious software. This is a common indicator of malicious intent. It is possible to identify
potentially harmful scripts in terms of behavioral segmentation through the use of network traffic. It
can be time-consuming and ineffective for experts to infer malware behavior from statistical features
of network traffic. We use a novel feature extraction process to achieve automatic feature selection.
This approach addresses the issue of feature selection while preserving high-level semantics by
automatically mining URL feature representations. We used deep features analysis of the HTTP
protocol because it is the most common protocol. HTTP-based encrypted data packets are collected
and filtered, and afterward, the SVD method is used to extract the most notable features. The CNN-
LSTM model is designed to classify network-based malware.

5. CONCLUSION

Because a large portion of Android malware uses network traffic to carry out its malicious functions,
this type of malware detection strategy has the potential to be effective. A deep features analysis
approach for malware classification and detection is developed in this study. The encrypted URL-
based network traffic is collected and mined first before being decrypted for further analysis. Second,
using segmentation and N-gram approaches, features with ordering details are extracted. The N-gram
analysis greatly expands the number of features that can result in noisy data. Third, the SVD method
is used to transform the features in reduced dimensional space. The LSA tool is then used to capture
the semantics. These are latent features for reduced N-gram features with semantics The CNN network
is used to extract deep features from latent variables to reduce computational and training costs.

The HTTP protocol analysis may not be sufficient to deal with all forms of malicious behavior.
To extract data features from various types of packets, we must investigate all commonly used
communication protocols. We believe that in the future, we will investigate malware network behavior
using other protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP),
and Domain Name Server (DNS). Furthermore, we will employ transfer learning by utilizing a pre-
trained model.

CONFLICT OF INTEREST

The authors of this publication declare there is no conflict of interest.

FUNDING AGENCY

This research received no specific grant from any funding agency in the public, commercial, or not-
for-profit sectors.

Journal of Database Management
Volume 34 • Issue 2

23

REFERENCES

Ahmed, U., Lin, J. C.-W., & Srivastava, G. (2021). Generative Ensemble Learning for Mitigating Adversarial
Malware Detection in IoT. Paper presented at the 2021 IEEE 29th International Conference on Network Protocols
(ICNP). IEEE. doi:10.1109/ICNP52444.2021.9651917

Aresu, M., Ariu, D., Ahmadi, M., Maiorca, D., & Giacinto, G. (2015). Clustering android malware families by
http traffic. Paper presented at the 2015 10th International Conference on Malicious and Unwanted Software
(MALWARE). IEEE. doi:10.1109/MALWARE.2015.7413693

Bader, O., Lichy, A., Hajaj, C., Dubin, R., & Dvir, A. (2022). MalDIST: From Encrypted Traffic
Classification to Malware Traffic Detection and Classification. Paper presented at the 2022 IEEE
19th Annual Consumer Communications & Networking Conference (CCNC). IEEE. doi:10.1109/
CCNC49033.2022.9700625

Chen, Z., Yu, B., Zhang, Y., Zhang, J., & Xu, J. (2016). Automatic mobile application traffic identification by
convolutional neural networks. Paper presented at the 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE. doi:10.1109/
TrustCom.2016.0077

Chiramdasu, R., Srivastava, G., Bhattacharya, S., Reddy, P. K., & Gadekallu, T. R. (2021). Malicious url detection
using logistic regression. Paper presented at the 2021 IEEE International Conference on Omni-Layer Intelligent
Systems (COINS). IEEE.

Dai, S., Tongaonkar, A., Wang, X., Nucci, A., & Song, D. (2013). Networkprofiler: Towards automatic
fingerprinting of android apps. Paper presented at the 2013 Proceedings IEEE INFOCOM. IEEE. doi:10.1109/
INFCOM.2013.6566868

David, O. E., & Netanyahu, N. S. (2015). Deepsign: Deep learning for automatic malware signature generation
and classification. Paper presented at the 2015 International Joint Conference on Neural Networks (IJCNN).
IEEE. doi:10.1109/IJCNN.2015.7280815

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan, M. (2014). Android
security: A survey of issues, malware penetration, and defenses. IEEE Communications Surveys and Tutorials,
17(2), 998–1022. doi:10.1109/COMST.2014.2386139

HofmannT. (2013). Probabilistic latent semantic analysis. arXiv:1301.6705.

Karbab, E. B., & Debbabi, M. (2019). MalDy: Portable, data-driven malware detection using natural language
processing and machine learning techniques on behavioral analysis reports. Digital Investigation, 28, S77–S87.
doi:10.1016/j.diin.2019.01.017

Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2013). Handbook of latent semantic analysis.
Psychology Press.

Lashkari, A. H., Kadir, A. F. A., Gonzalez, H., Mbah, K. F., & Ghorbani, A. A. (2017). Towards a network-
based framework for android malware detection and characterization. Paper presented at the 2017 15th Annual
conference on privacy, security and trust (PST). IEEE. doi:10.1109/PST.2017.00035

Laughlin, B., Sankaranarayanan, K., & El-Khatib, K. (2020). A service architecture using machine learning
to contextualize anomaly detection. [JDM]. Journal of Database Management, 31(1), 64–84. doi:10.4018/
JDM.2020010104

Lee, W. Y., Saxe, J., & Harang, R. (2019). SeqDroid: Obfuscated Android malware detection using stacked
convolutional and recurrent neural networks Deep learning applications for cyber security. Springer.

Li, W., Bao, H., Zhang, X.-Y., & Li, L. (2022). AMDetector: Detecting Large-Scale and Novel Android Malware
Traffic with Meta-learning. Paper presented at the International Conference on Computational Science. IEEE.
doi:10.1007/978-3-031-08760-8_33

Li, Z., Sun, L., Yan, Q., Srisa-an, W., & Chen, Z. (2016). Droidclassifier: Efficient adaptive mining of application-
layer header for classifying android malware. Paper presented at the International Conference on Security and
Privacy in Communication Systems. IEEE.

http://dx.doi.org/10.1109/ICNP52444.2021.9651917
http://dx.doi.org/10.1109/MALWARE.2015.7413693
http://dx.doi.org/10.1109/CCNC49033.2022.9700625
http://dx.doi.org/10.1109/CCNC49033.2022.9700625
http://dx.doi.org/10.1109/TrustCom.2016.0077
http://dx.doi.org/10.1109/TrustCom.2016.0077
http://dx.doi.org/10.1109/INFCOM.2013.6566868
http://dx.doi.org/10.1109/INFCOM.2013.6566868
http://dx.doi.org/10.1109/IJCNN.2015.7280815
http://dx.doi.org/10.1109/COMST.2014.2386139
http://dx.doi.org/10.1016/j.diin.2019.01.017
http://dx.doi.org/10.1109/PST.2017.00035
http://dx.doi.org/10.4018/JDM.2020010104
http://dx.doi.org/10.4018/JDM.2020010104
http://dx.doi.org/10.1007/978-3-031-08760-8_33

Journal of Database Management
Volume 34 • Issue 2

24

Lu, Y., & Da Xu, L. (2018). Internet of Things (IoT) cybersecurity research: A review of current research topics.
IEEE Internet of Things Journal, 6(2), 2103–2115. doi:10.1109/JIOT.2018.2869847

Lyu, S., & Liu, J. (2021). Convolutional recurrent neural networks for text classification. [JDM]. Journal of
Database Management, 32(4), 65–82. doi:10.4018/JDM.2021100105

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., & Doupé, A. (2017). Deep
android malware detection. Paper presented at the Proceedings of the seventh ACM on conference on data and
application security and privacy. ACM. doi:10.1145/3029806.3029823

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine learning classifiers for
mobile malware detection. Soft Computing, 20(1), 343–357. doi:10.1007/s00500-014-1511-6

Rieck, K., Holz, T., Willems, C., Düssel, P., & Laskov, P. (2008). Learning and classification of malware behavior.
Paper presented at the International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. IEEE.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G., & Álvarez, G. (2013). Puma: Permission
usage to detect malware in android. Paper presented at the International Joint Conference CISIS’12-ICEUTE
12-SOCO 12 Special Sessions. Springer. doi:10.1007/978-3-642-33018-6_30

Shyong, Y.-C., Jeng, T.-H., & Chen, Y.-M. (2020). Combining static permissions and dynamic packet analysis
to improve android malware detection. Paper presented at the 2020 2nd International Conference on Computer
Communication and the Internet (ICCCI). IEEE. doi:10.1109/ICCCI49374.2020.9145994

Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning techniques for malware analysis.
Computers & Security, 81, 123–147. doi:10.1016/j.cose.2018.11.001

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research,
9(11).

Varma, P. R. K., Raj, K. P., & Raju, K. S. (2017). Android mobile security by detecting and classification of
malware based on permissions using machine learning algorithms. Paper presented at the 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE. doi:10.1109/I-
SMAC.2017.8058358

Vasan, D., Alazab, M., Wassan, S., Safaei, B., & Zheng, Q. (2020). Image-Based malware classification
using ensemble of CNN architectures (IMCEC). Computers & Security, 92, 101748. doi:10.1016/j.
cose.2020.101748

Wang, J., Yu, L.-C., Lai, K. R., & Zhang, X. (2016). Dimensional sentiment analysis using a regional CNN-LSTM
model. Paper presented at the Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). IEEE. doi:10.18653/v1/P16-2037

Wang, S., Chen, Z., Yan, Q., Ji, K., Peng, L., Yang, B., & Conti, M. (2020). Deep and broad URL feature mining
for android malware detection. Information Sciences, 513, 600–613. doi:10.1016/j.ins.2019.11.008

Wang, S., Chen, Z., Yan, Q., Ji, K., Wang, L., Yang, B., & Conti, M. (2018). Deep and broad
learning based detection of android malware via network traffic. Paper presented at the 2018 IEEE/
ACM 26th International Symposium on Quality of Service (IWQoS). IEEE, ACM. doi:10.1109/
IWQoS.2018.8624143

Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., & Conti, M. (2017a). Detecting android malware leveraging
text semantics of network flows. IEEE Transactions on Information Forensics and Security, 13(5), 1096–1109.
doi:10.1109/TIFS.2017.2771228

Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., & Conti, M. (2017b). TextDroid: Semantics-based detection of
mobile malware using network flows. Paper presented at the 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE. doi:10.1109/INFCOMW.2017.8116346

http://dx.doi.org/10.1109/JIOT.2018.2869847
http://dx.doi.org/10.4018/JDM.2021100105
http://dx.doi.org/10.1145/3029806.3029823
http://dx.doi.org/10.1007/s00500-014-1511-6
http://dx.doi.org/10.1007/978-3-642-33018-6_30
http://dx.doi.org/10.1109/ICCCI49374.2020.9145994
http://dx.doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/10.1109/I-SMAC.2017.8058358
http://dx.doi.org/10.1109/I-SMAC.2017.8058358
http://dx.doi.org/10.1016/j.cose.2020.101748
http://dx.doi.org/10.1016/j.cose.2020.101748
http://dx.doi.org/10.18653/v1/P16-2037
http://dx.doi.org/10.1016/j.ins.2019.11.008
http://dx.doi.org/10.1109/IWQoS.2018.8624143
http://dx.doi.org/10.1109/IWQoS.2018.8624143
http://dx.doi.org/10.1109/TIFS.2017.2771228
http://dx.doi.org/10.1109/INFCOMW.2017.8116346

Journal of Database Management
Volume 34 • Issue 2

25

Xu, P., Eckert, C., & Zarras, A. (2021). Falcon: malware detection and categorization with network traffic
images. Paper presented at the International Conference on Artificial Neural Networks. IEEE. doi:10.1007/978-
3-030-86362-3_10

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Characterization and evolution. Paper presented at
the 2012 IEEE symposium on security and privacy. IEEE. doi:10.1109/SP.2012.16

Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., & Cheng, L. (2018). DroidDet: Effective and robust
detection of android malware using static analysis along with rotation forest model. Neurocomputing, 272,
638–646. doi:10.1016/j.neucom.2017.07.030

ENDNOTES

1 	 Google Play: Number of Apps 2009–2016. Accessed: May 2017.
	 Available: https://www.statista.com/statistics/266210/
2 	 https://www.unb.ca/cic/datasets/index.html

http://dx.doi.org/10.1007/978-3-030-86362-3_10
http://dx.doi.org/10.1007/978-3-030-86362-3_10
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1016/j.neucom.2017.07.030

Journal of Database Management
Volume 34 • Issue 2

26

Farhan Ullah is an Associate Professor at the School of Software, Northwestern Polytechnical University, Xi’an
Shaanxi, P.R. China. He received Ph.D. Computer Science degree in 2020 from College of Computer Science,
Sichuan University Chengdu, P.R. China. He was awarded a full-time Chinese Government Scholarship (CGS)
for his Ph.D. During his Ph.D. studies, he participated in different research projects which include, the National
Key Research and Development Program, the National Natural Science Foundation of China, and the Technology
Research and Development Program of Sichuan, China. He performed as a research member of the science and
technology project of Taicang (2020), Jiangsu, China. He is the Special Issue Lead Guest Editor for Security and
Communication Networks Journal in the CCF C category. He also served as a Guest Editor (GE) for a special issue
of Future Internet Journal, MDPI. He performed as a Program Chair (PC) and Technical Committee member at
an international conference on Future Networks and Distributed Systems (ICFNDS-2019), the University of Paris,
France. He received Research Productivity Award (RPA) from COMSATS Institute of Information Technology
(CIIT), Sahiwal, Pakistan in 2016. His research work is published in various renowned journals of IEEE, Springer,
Elsevier, Wiley, MDPI, and Hindawi.

Xiaochun Cheng won a full scholarship for his university education. He received the BEng degree in Computer
Engineering in 1992, Ph.D. in Computer Science in 1996. He visited the Queen’s University of Belfast between
1997 and 1998. He was a Postdoc Research Associate at Sheffield University between 1998 and 2000. He was a
Lecturer at Reading University between 2000 and 2005. He has been a Senior Lecturer since 2006 and since 2012
the Computer Science Project Coordinator in Middlesex University. One project was funded with a 16 Million Euro
budget. He is a member of IEEE SMC Technical Committee on Intelligent Internet Systems, IEEE Communications
Society Communications and Information Security Technical Committee, IEEE Technical Committee on Cloud
Computing. He won the National Science and Technology Advance Award.

Leonard Mostarda is an Associate Professor and former HoD at the Computer Science department at Camerino
University, Italy. He got his Ph.D. in 2006 at the Computer Science Department of the University of L’Aquila.
Afterward, he cooperated with the European Space Agency (ESA) on the CUSPIS FP6 project to design and
implement novel security protocols and secure geotags for works of art authentication. To this end, he was
combining traditional security mechanisms and satellite data. In 2007 he was Research Associate at the Computing
Department, Distributed System and Policy Group, Imperial College London. There he was working on the UBIVAL
EPRC project in cooperation with Cambridge, Oxford, Birmingham, and UCL for building a novel middleware to
support the programming of body sensor networks. In 2010 he was Senior Lecturer at Middlesex University in the
Distributed Systems and Networking Department. He funded the SSI LAB that performs basic research in various
aspects of the design, implementation, analysis, and evaluation of distributed systems. The lab conducts research
with systems at all scales, from sensors devices to cloud computing data centers, and takes an experimental
system approach in building real systems to investigate new research ideas. I am also CEO of the bilancioCO2zero
spinoff. An innovative company for building energy-efficient solutions and reducing CO2 emissions. Particular
areas of interest include wireless sensor networks, networking, middleware, and smart environment programming.

Sohail Jabbar is an Associate Professor at the Department of computational sciences, The University of Faisalabad,
Faisalabad, Pakistan. He was an Assistant Professor with the Department of Computer Science and the Director
of Graduate Programs at the Faculty of Sciences, National Textile University, Faisalabad, Pakistan. He was
also a Postdoctoral Researcher with Kyungpook National University, Daegu, South Korea. Moreover, he was a
Postdoctoral Researcher with the Department of Computing and Mathematics, Manchester Metropolitan University,
Manchester, U.K. He is also the Head of the Network Communication and Media Analytics Research Group,
National Textile University. He also served as an Assistant Professor with the Department of Computer Science,
COMSATS Institute of Information Technology (CIIT), Sahiwal, and also headed the Networks and Communication
Research Group at CIIT. He has authored one book, two book chapters, and more than 70 research papers. His
research work is published in various renowned journals and magazines of the IEEE, Springer, Elsevier, MDPI,
Old City Publication, Hindawi, and the IEEE conference proceedings ACM, and IAENG. He is on collaborative
research with renowned research centers and institutes worldwide on various issues in the domains of the Internet
of Things, wireless sensor networks, and big data. He has been a reviewer for leading journals, including the ACM
TOSN, JoS, MTAP, AHSWN, and ATECS, and conferences, including the C-CODE 2017, ACM SAC 2016, and
ICACT 2016. He is also a TPC member/chair for many conferences. He received many awards and honors from
the Higher Education Commission of Pakistan, Bahria University, CIIT, and the Korean Government. Among those
awards, the Best Student Research Awards of the Year, the Research Productivity Award, and the BK-21 Plus Post
Doctoral Fellowship are few. He received the Research Productivity Award from CIIT, in 2014 and 2015, respectively.
He has been engaged in many National and International Level Projects. He is also the Guest Editor of the Sis
in Concurrency and Computation Practice and Experience (Wiley), the Future Generation Computer Systems
(Elsevier), the Peer-to-Peer Networking and Applications (Springer), the Journal of Information and Processing
System (KIPS), the Cyber-Physical System (Taylor & Francis), and the IEEE WIRELESS COMMUNICATIONS
(IEEE Communication Society).

