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ABSTRACT

Currently, malware attacks pose a high risk to compromise the security of Android-IoT apps. These 
threats have the potential to steal critical information, causing economic, social, and financial harm. 
Because of their constant availability on the network, Android apps are easily attacked by URL-
based traffic. In this paper, an Android malware classification and detection approach using deep 
and broad URL feature mining is proposed. This study entails the development of a novel traffic data 
preprocessing and transformation method that can detect malicious apps using network traffic analysis. 
The encrypted URL-based traffic is mined to decrypt the transmitted data. To extract the sequenced 
features, the N-gram analysis method is used, and afterward, the singular value decomposition (SVD) 
method is utilized to reduce the features while preserving the actual semantics. The latent features are 
extracted using the latent semantic analysis tool. Finally, CNN-LSTM, a multi-view deep learning 
approach, is designed for effective malware classification and detection.

Keywords
Android, Deep Learning, HTTP flow analysis, Internet of Things, LSA, Malware detection, N-gram, Text 
Semantics

1. INTRODUCTION

A malware infection can easily attack Android apps for malicious purposes and compromise 
security (Lu & Da Xu, 2018). Mobile network expansion has increased the number of portable 
devices. Because of this, financial malware apps threaten mobile users. Despite massive prevention 
and mitigation efforts, malware remains a major cyber security threat. Thus, in 2016, Symantec 
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discovered 357,019,453, in 2017, 669,974,865, and in 2018, 246,002,762 new malware variants. 
Yet more malware variants are attempting to bypass anti-virus tools and avoid detection by several 
malware detection systems.

The rapid expansion of mobile interaction places a significant burden on smartphone security 
management. According to a recent study1, the number of apps in the Google Play Store has increased 
from 16K in Dec. 2009 to over 2 million in Feb. 2016. As a result, mobile traffic has topped 3.7 
exabytes. The growth of the mobile ecosystem is seriously compromised by malicious apps. There has 
been a massive increase in mobile malware, especially targeting Android devices. Devastating digital 
payment thefts and other attacks threaten mobile security. Despite the Android platforms and mobile 
antivirus security measures, sophisticated mobile malware continues to infiltrate mobile systems. 
The widespread use of mobile devices also exposes users to multiple risks. So we urgently need 
Android-based mobile malware detection systems (McLaughlin et al., 2017). A malware family is a 
group of malicious apps sharing code. Various malware samples use the malware families’ codebase. 
All samples with the same interpretation are combined.

Faruki et al. (Faruki et al., 2014) explore the characteristics of a huge assortment of malware 
and categorizes existing mobile malware detection methods into static, dynamic, and traffic-based 
categories. Static analysis has been used in several previous studies to discover data leakage, malware, 
and security breaches in Android apps (Zhu et al., 2018). Nevertheless, static analysis of malware 
is challenging due to code polymorphism and obfuscation. These methods are used to produce 
malware variants to avoid detection. Numerous different dynamic analysis techniques strive to alter 
the device’s operating system to monitor and access confidential information at runtime (Bader, 
Lichy, Hajaj, Dubin, & Dvir, 2022; Ucci, Aniello, & Baldoni, 2019). Such methods are helpful, but 
they necessitate a massive number of executions to encompass all app behavioral patterns (Ahmed, 
Lin, & Srivastava, 2021).

1.1 Motivation
Many virus detection techniques concentrate on the network traffic generated by mobile apps. 
Malware is identified by abnormal network behavior patterns. This type of malware detection system 
has the potential to be effective because the majority of Android malware performs its malicious 
functions via network traffic (Zhou & Jiang, 2012). The malware must communicate with a remote 
server over the Internet to carry out malicious tasks. These traces can be used to identify and track 
down specific malware. Furthermore, malware detection strategies based on network characteristics 
are more straightforward to design and implement than static or dynamic analytic approaches. For 
example, methods based on traffic detection can be installed at an access point or gateway. These 
methods rely solely on user-generated network traffic data, ensuring that users do not lose access to 
their mobile resources. Furthermore, these solutions do not necessitate any user actions aside from 
granting licenses to the detection service (W. Li, Bao, Zhang, & Li, 2022; S. Wang et al., 2020). 
The goal of network traffic-based approaches is to find distinguishing features that can be used to 
classify malware more effectively. Selecting efficient features, on the other hand, is a difficult task. 
We concentrate our investigation on malware samples that use the HTTP/HTTPS protocol to send 
data. Because HTTP accounts for 70% of the network traffic generated by Android apps, we chose it 
for our research. (Dai, Tongaonkar, Wang, Nucci, & Song, 2013). However, because HTTP traffic is 
generated in encrypted form, extracting useful information from it is extremely difficult.

1.2 Contributions
Previously, researchers used statistical features and network traffic content to deduce malware 
behavior, which can be tedious and inefficient. Therefore, we develop a method for detecting malware 
using malicious URLs (HTTP/HTTPS). It does not require a lengthy and complex feature selection 
procedure. To accomplish the automatic feature selection, we employ a novel features extraction 
process (Mikolov, Chen, Corrado, & Dean, 2013; S. Wang et al., 2017a). This method can automatically 
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mine URL feature representations at numerous levels to tackle the problem of selecting features 
while preserving the high-level semantics. The main contributions of the paper are given as follows:

1. 	 On the URLs in network traffic, we conduct feature extraction and selection using a text-based 
approach. Our research involves the development of a novel traffic data preprocessing and 
transformation method that is effective in the detection of malware using network flows.

2. 	 The N-gram features analysis approach is used to mine the features’ sequencing and then the 
Singular Value Decomposition (SVD) method is applied for features reduction preserving 
the actual semantics. The Latent Semantic Analysis (LSA) tool is employed to extract the 
latent features.

3. 	 To extract deep and broad feature learning, we design a multi-view deep learning approach called 
Convolution Neural Network-Long Short Term Memory (CNN-LSTM). The novel approach 
is capable of producing discriminant features and thus mitigates the difficulty associated with 
feature selection in network traffic-based malware detection methods.

The remaining sections of the paper are as follows: Section 2 describes recent and related 
literature, Section 3 describes the proposed approach, Section 4 describes the results and discussions, 
and Section 5 concludes.

2. BACKGROUND

Several studies (Chiramdasu, Srivastava, Bhattacharya, Reddy, & Gadekallu, 2021; Varma, Raj, 
& Raju, 2017) show that the Android platform employs a variety of security measures, including 
authorization mechanisms to protect infecting target devices. But users must be sufficiently aware 
of security issues to benefit from authorization-based protection. These constraints of over-reliance 
on the consumer make Android malware invade and spread through mobile devices. Most of these 
scanners look at things like authorizations and harmful programs to see if an app is malicious or 
not. These anti-virus scanners protect against harmful software. But malicious programs are always 
evolving and diversifying. So malware detection must be improved. There are now several malware 
detection tools that can dissect APK files without executing them. Sanz et al. (Sanz et al., 2013) 
proposed a static-based analysis that captures the app’s uses-permission and uses-feature details for 
malware classification, with an accuracy of 86.41%.

Shanshan et al. (S. Wang et al., 2017a) suggested using network traffic as semantic content to 
detect malware. A mobile app’s HTTP flow is a text file. Natural Language Processing (NLP) can 
extract semantics from HTTP traffic data stored in text files. The next step is to detect malware using 
network traffic textual properties. The suggested approach obtains the classification performance with 
an accuracy rate of 99%. Aresu et al. (Aresu, Ariu, Ahmadi, Maiorca, & Giacinto, 2015), look at HTTP 
traffic when Android malware communicates with distant malicious servers. It also uses clustering 
to build malware family signatures. This signature is used to detect malicious attacks. Wang et al. 
(S. Wang et al., 2017b), proposed the TextDroid approach that divides the HTTP packet’s content 
by special characters, and after that, generates n-gram sequence information to study the ordering in 
the collected features. Further, it collected sequence-based information fed into a machine-learning 
model for malware detection. However, the detection performance for this semantic-based approach 
is only 76.99%. Shyong et al. (Shyong, Jeng, & Chen, 2020), identified Android apps using both 
static and dynamic network monitoring. Dynamic analysis identifies malware families by analyzing 
network data. The static technique classified valid and harmful content at 98.86%. Also, the dynamic 
app family classification is 96% accurate.

Several deep learning-based malware classification studies have attained outstanding results (S. 
Wang et al., 2018; Xu, Eckert, & Zarras, 2021). Chen et al. (Chen, Yu, Zhang, Zhang, & Xu, 2016), 
proposed a convolutional neural network (CNN) method that uses HTTP headers to identify different 



Journal of Database Management
Volume 34 • Issue 2

4

types of apps based on their generated traces. The use of CNN speeds up the process of selecting 
features and produces precise results in traffic identification. The given method achieved an average 
classification accuracy of 98%. David et al. (David & Netanyahu, 2015) presented a deep belief 
networks approach known as DeepSign. It can produce immutable compact interpretations of malware 
actions, possibly allowing it to distinguish nearly all current malware variants efficiently with an 
accuracy rate of 98.6%. Shanshan et al. (S. Wang et al., 2020), presented a malware detection system 
based on app HTTP visits. Then a multi-view neural network detects malicious acts with depth. This 
method can focus smooth attention on specific input variable traits. This method’s accuracy rates are 
98.81% and 89.3%, respectively. Brandon et al. (Laughlin, Sankaranarayanan, & El-Khatib, 2020) 
describe a service plate form for delivering contextual data obtained from network flow. It creates 
a set of contexts for network-based features such as host addresses, apps in use, and the time of the 
event. The system finds the nearest neighbors in each context, evaluates the feature proportions, and 
employs an ensemble of the unsupervised outlier detection algorithm. The proposed method has an 
accuracy of 85.56%.

We use deep features analysis to process HTTP network analysis because it is the most widely 
used protocol for mobile apps. HTTP-based encrypted data packets are collected and filtered using 
a features extraction process, and then the SVD mathematical model is used to extract the most 
significant features in a reduced dimensional space. CNN-LSTM, a multi-view deep learning strategy, 
is developed to obtain extensive feature learning.

3. ANDROID MALWARE CLASSIFICATION AND DETECTION APPROACH

Figure 1 depicts the proposed method. The Android HTTP traffic is collected and fed into the malware 
detection system. Because the data is encrypted, a packet parser is required to decrypt it. Then, n-gram 
analysis is used to extract features with ordering details, and TFIDF is used to mine each feature’s 
importance. The approach also aims to extract meaningful features in a reduced dimensional space. 

Figure 1. Proposed Framework for Android Malware Classification and Detection using URLs
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The reduced features are used in a CNN-LSTM model for malware classification and detection. 
Examples of malware families are shown in Figure 2. Each sample has its way of executing malicious 
Android apps. For instance, Adware is a type of computer program that displays ads on screen while 
using a web browser. Similarly, a botnet can be used to launch Distributed Denial of Service (DDoS) 
attacks, steal information, spear phishing, and allow hackers to obtain access to the device (Rieck, 
Holz, Willems, Düssel, & Laskov, 2008).

3.1 URL Collection
An app can be infected with malware after visiting a malicious URL. Malware frequently uses 
URL information to receive inputs and conduct suspicious attacks. So, detecting malware via 
URLs is useful. Android devices collect HTTP-based network data while online. The data is 
encrypted and may contain malicious or benign activities. Wireshark, a packet parser, decrypts 
network packets so that Android apps can explore network flows. It contains a lot of noisy data 
after decryption, which could affect malware classification accuracy. We use Wireshark’s packet 
filtering command to mine the URLs because we need to focus on HTTP-based network traces. 
In addition, in the next step, we mined HTTP and HTTPS network traffic for features analysis 
(Narudin, Feizollah, Anuar, & Gani, 2016).

3.2 URL Preprocessing and Features Extraction
The network flow is a fundamental unit in malicious traffic detection. However, many app-generated 
HTTP flows are mixed. So, we must extract each comprehensive flow from the complex traffic file 
and segment them.

3.2.1 Traffic Flow Segmentation
Processing the URL into useful segments is difficult because standard tokens (like spacing or 
punctuation) are not available. Each URL contains a long string of characters, none of which can convey 
complex information. For instance, the extraction of a single character from the URL “www.yahoo.
com” can be illogical. This can only exhibit a full domain name is considered as an entity. Another 
example of a video URL, i.e. “https://www.youtube.com/watch?v=-JAYqHNx5rU” is composed 
of some common and special characters. These prefixes are called HTTP flow headers. They show 
the method, encoding type, URL, and browser information in a coherent way. Each URL has basic 
segments that convey a specific piece of information. Because not all segmented terms can detect 
malware, we remove meaningless words from the traffic flow. This reduces computational costs. We 
develop filtering rules to remove noisy data. First, the noisy and low-frequency terms (“.jpg”, “.png”, 
“.gif”, “.js”, “.css”, etc.) are removed. Second, common terms like “content-length”, “expires”, and 
“en-us” is removed from almost every HTTP request. Third, stop words (“is”, “are”, “the”, etc.) are 
removed as they can cause false positives in malware detection (S. Wang et al., 2017a). These terms 
may not be helpful in the malware detection system.

Figure 2. Android Malware Families
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3.2.2 N-gram Analysis
In NLP, an N-gram is a random string of words. An N-gram can be used as a sub-sequence for elements 
in a specific order with at least n elements. Flow segmentation provides an N-gram ordering for each 
term set. For example, the term set of HTTP flow in uni-gram form is “apikey airpush appid 60563 
longitude 0” The flow of bigram can be “apikey-airpush, airpush-appid, appid-60563, 60563-longitude, 
and so on”. The flow of trigram can be “apikey-airpush-appid, airpush-appid-60563, etc.” The 
N-gram can be used to find important term connections in a network flow. “apikey” and “airpush” 
are 1-gram segments that not only define a term but also show that they are unrelated. The bi-gram 
sequence “apikey-airpush” is influenced by the term “apikey”. The N value chosen must appropriately 
reflect the principle of term presence in the HTTP flow header. TFIDF (Karbab & Debbabi, 2019) is 
another method for determining the relative importance of different N-gram features. The local and 
global weights show the significance of each N-gram feature in a single or multiple network flow, 
respectively. Mathematically, TFIDF is given as in equation 1.

tfidf t d D tf t d idf t D, , , . ,( ) = ( ) ( ) 	 (1)

Where t , f , d , and D  denote term, frequency, single network flow, and multiple networks flow, 
respectively. These parameters can extract the local and global weights collectively. Equation 2 shows 
how many times each N-gram feature is referenced.

tf t d
f

f
t f

t d t d

, ,

,

( ) =
′ ′∈∑

	 (2)

equation 3 illustrates logTF  function.

LogTF log tf= +( )1 	 (3)

The inverse document frequency of each feature’s local weight is derived from equation 4 using 
the normalized term frequency form.

idf t D log
N

d D t d
,

:
( ) =

∈{ ∈ }
	 (4)

Where t , d , D , and N  show terms, single network flow, multiple networks flow in a group, and 
all networks flow, respectively. The TFIDF works in two main steps, such as selecting the source 
code document and then indexing it to a specific address for extracting the TF*IDF value. The indexing 
process takes time O(n), several times the source code document chosen is O(|D|). Therefore, the 
total computational time of the TFIDF method is O(|D| n).

3.3 Features Reduction and Selection
3.3.1 Features Reduction
We need enough records to effectively train a deep learning model. Less spatially relevant data requires 
semantic connections based on LSA. It uses a discrete representation space to retrieve semantic 
content from text documents. In Latent Semantic Indexing (LSI), latent constructs are used to find 
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semantic-based concepts. It divides N-gram features into matrices that can classify malicious traffic 
(Hofmann, 2013; Landauer, McNamara, Dennis, & Kintsch, 2013). A dense N-gram feature is reduced 
using the SVD algorithm. To find patterns across networks, we need to use semantic factors that 
accurately explain network traffic. The LSA method can derive latent variables from network flows. 
The SVD algorithm converts N-gram features into three matrices (Landauer et al., 2013), i.e. M , 
U , Σ , VT  as shown in equation 5.

M U VT= Σ 	 (5)

Where M  is m*n  matrix, U is an m*n  singular matrix, Σ  is n*n  diagonal matrix, VT  is the 
transpose of the V  matrix. N-gram features are fed into the SVD algorithm employing the Bag of 
Words (BoW) model as depicted in Figure 3. In the SVD algorithm, features are reduced from a large 
number to a small number of meaningful ones. Each N-gram feature is categorized as either malware, 
benign, or a member of a specific family of malware. By using the LSA method, the latent features 
can then be extracted from their original location in three-dimensional space.

The time complexity of LSA is given as follows. The LSA mainly works on three main matrices, 
such as M , U , Σ , VT . These matrices are already discussed above with detailed information. The 
computational time is the multiplication of these matrices, which is O(M U Σ VT).

3.3.2 Deep Features Selection
Though, the LSA-based features are highly effective but we still need deep features which can decrease 
the training cost of the proposed deep learning model. The CNN network is used to examine the 
reduced features and further mine the deep features. There are several studies available (Lee, Saxe, 
& Harang, 2019; Vasan, Alazab, Wassan, Safaei, & Zheng, 2020), that used the CNN model to 
classify malware features. The CNN model works better with a variety of data, like text, images, and 
videos. As presented in Figure 4, the approach can be adopted of a one-dimensional CNN network 
with convolutional layers, pooling layers, dropout layers, and a fully connected layer. The LSA-based 
features are input sequences to the CNN network. Tensor flow library 1.9 is used to build the CNN 
network. By iteratively spinning through the semantic features, convolution filters out the best deep 
features. Each filter creates a new feature map. The number of filters is determined by hyperparameter 
optimization. We used two CNN layers with 64 and 128 filters each. The max-pooling layer reduces the 
feature space’s size, range, and computation cost. This layer also generates a feature map of the most 

Figure 3. Semantic-based deep features extraction
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essential features from the previous feature set. The proposed CNN network uses softmax and dropout 
layers to combat overfitting. Equation 6 shows the outcome of the one-dimensional CNN network.

o f c Con D X t
k k

i

N

ik
l

i
l

l

1 1

1

1 1
1

1= + ( )
=

− −
−

∑( , ) 	 (6)

Where c
k
1  is the parameter bias of the kth neuron in the first layer, t

i
l−1  is the result of the ith neuron 

in layer l-1, X
ik
l−1  is the kernel strength from the ith neuron in layer l-1 to the kth neurons in layer l, 

and ‘‘f()” is the activation function. The CNN network is capable of extracting deep features, which 
aids in the development of an efficient classification model.

3.4 Multi-View Deep Learning
Usually, in the CNN model, the features extracted from pooling layers are forwarded to the fully 
connected layer. In the proposed approach, the deep features are forwarded to an LSTM layer, rather 
than a fully connected layer. The deep features are extracted from CNN, and further long-short-term 
correlations are detected by LSTM. To classify network traffic, the method employs a multi-view 
approach of the CNN-LSTM model, using the strengths of both models (Lyu & Liu, 2021; Wang, Yu, 
Lai, & Zhang, 2016). Figure 4 describes the combined approach of the CNN-LSTM model mainly in 
two steps. Step 1 involves the use of convolution and max-pooling layers; while step 2 involves the 
use of the LSTM layer. The CNN layers encode the LSA-based latent features, and the LSTM layers 
decode the information in the feature set.

LSTM relies on the concept of cell state and the numerous gates it incorporates. Knowledge 
about a cell’s state is transmitted beneath the sequence alignment network via the cell state. There is 
a main memory component in the LSTM model, as well as input, forget, and output communication 
gates. The memory module is vital to the designed model. The memory cell stores the previous state 
in its memory. The sigmoid function processes both the recent hidden state and current input. The 
values are 0 to 1. If the value is close to 0, it means forget gate. The input gate specifies how much 
network data is stored in the unit state for each time “t”. The forget gate then decides whether or not 
the associated records can pass to the input gate. Remember that the hidden state contains previous 
input data. Begin by adding the previous cell state and the received signal. The tanh function multiplies 
the nonlinear activation output to determine the hidden state’s relevant information. To make accurate 
predictions, use the hidden state’s result. 6 describes the model’s behavior.
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The input at time “t” is expressed by the symbol x
t
, the influence matrices are expressed by the 

symbols x
*

 and w
*
, and the bias and hidden conditions are expressed by the symbols b and h. The 

activation functions are illustrated by the symbols σ  and tanh. It is followed by the letters i
t

, f
t
, o
t
, 

and c
t
, which stand for input gate, forget gate, output gate, and memory cell, respectively. Collectively, 

these gates perform the processing of the designed model.

4. RESULTS AND DISCUSSIONS

4.1 Dataset Preparation
The proposed method is thoroughly examined using two datasets obtained from the Canadian 
Institute for Cybersecurity2. The first dataset, the Canadian Institute of Cybersecurity Android 
Adware and General Malware (CICAAGM2017) (Lashkari, Kadir, Gonzalez, Mbah, & Ghorbani, 
2017), is collected semi-automatically through the installation of Android apps on legitimate 
mobile phones. A total of 1900 apps are used to create the dataset, which is divided into three 
categories: adware, general malware, and benign. A detailed description of each app is given 
in Table 1 and Table 2.

4.2 Evaluation Measures
We set widely standard training and testing ratios, such as 80%, and 20%, respectively. We used five 
kinds of evaluation measures such as precision, recall, f-measure, accuracy, and confusion matrix. 
When the model correctly predicts the benign class, this is referred to as a true positive outcome. 
While a true negative is an outcome in which the model correctly predicts the malware class. One 
type of false positive is when a researcher incorrectly concludes that a hypothesis or finding is correct 
when it is not (also called a type I error). If something is falsely ruled out, this is known as a false 
negative (also called a type II error). The general classification performance is assessed utilizing an 
accuracy matrix. This is equal to the sum of correctly classified instances divided by the total number 
of instances. The evaluation matrices are given in equations 8 and 9.

Figure 4. A multi-view deep learning approach using CNN and LSTM



Journal of Database Management
Volume 34 • Issue 2

10

TPR
TP

TP FN
FPR Recall

FP

FP TN
Precision

TP

TP FP
=

+
= =

+
=

+
; , 	 (8)

Accuracy
TP TN

TP TN FP FN
F measure

TP

TP FP FN
=

+
+ + +

−
+ +

,
2

2

* 	 (9)

4.3 Performance Analysis
Figure 5 depicts the network-based malware classification epoch curves from the CIC-AAGM2017 
dataset. To test the method, we used uni-gram, and bi-gram N-gram features to compare CNN-LSTM, 
CNN-RNN, and CNN-GRU models. The accuracy and loss epoch curves are used to examine overall 
performance. Parts (a-d) show the accuracy and loss epoch curves for the CNN-LSTM model. The 
CNN-RNN accuracy and loss epoch curves for uni-gram and bi-gram are shown in parts (e-h). 
Similarly, parts (i-l) present the accuracy and loss epoch curves for the CNN-GRU model. In part 
a, the training and testing curves start at 50% and gradually increase to 90%. After that, there is a 
sharp drop from 90% to 96.50%, followed by a more or less constant drop. Part e shows different 
behavior for CNN-RNN. For instance, the training and testing curves start at 40% and 91%. On the 
32nd epoch, the training curve behaves at 80% while the testing curve behaves at 90%. Then it’s pretty 

Table 1. Android Adware and General Malware Dataset (CIC-AAGM2017)

Apps No. of Apps Families Description

Adware 250

Airpush It sends intrusive ads to users’ systems to steal data

Dowgin Works as an ad library that can also collect user data

Kemoge It is used to take control of the user’s Android device

Mobidash Created to show advertisements and steal personal data

Shuanet It can also take control of a user’s device

General Malware 150

AVpass Distributed as a Clock app disguised as a utility

FakeAV Scam to trick users into buying full-version software

FakeFlash Built as a spoof Flash app to redirect users to a website

GGtracker Designed to steal information via SMS fraud

Penetho Fake service designed (hack tool to crack WiFi password)

Benign 1500 Benign Clean apps (Not malicious)

Table 2. CICMalDroid 2020 dataset

Apps Families No. of Apps Description

Malware

Adware 1,253 There are ads disguised inside malware-infected apps

Banking 2,100 It is used to get access to the user’s online banking accounts

Riskware 2,546 It can be any legitimate app that can cause harm if misused

SMS 3,904 It uses the SMS service to conduct attacks

Benign Benign 1,795 Clean apps (Not malicious)
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much constant with a 94% accuracy. A similar range of behavior is seen in Part I for CNN-GRU. 
The movement of these curves differs slightly when using deep features with bi-gram. For instance, 
CNN-LSTM, CNN-RNN, and CNN-GRU exhibit behavior ranging from 50% to 95%. More bi-gram 
features mean more data for training and testing. It may be overburdening the training time with noisy 
data. Nonetheless, the proposed approach can handle massive amounts of sequenced data by reducing 
and selecting features. The loss curves for uni-gram and bi-gram for CNN-LSTM, CNN-RNN, and 

Figure 5. Epoch curves for malware classification using CIC-AAGM2017 dataset
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CNN-GRU, respectively, fall between (80%, 10%), (90%, 10%), and (40%, 15%), and (78%15%). The 
confusion matrices for the CIC-AAGM2017 dataset used to examine uni-gram and bi-gram for malware 
detection, are shown in Figure 6. The diagonal cells represent the correct classification values while 
the non-diagonal cells represent the incorrect classification values. As an example, in parts (a, b), 
CNN-LSTM has classification and miss-classification values of (91%, and 9%), respectively. Similarly, 
the benign has (99, 1%) and (97, 3%). Using CNN-RNN, the classification and miss-classification 
values for malware are (90%, 10%) and benign (98%, 2%) and (96%, 4%) respectively. Furthermore, 
using CNN-GRU, the classification and miss-classification values for malware is (90%, 10%), (91%, 
9%) and benign are (97%, 3%) and (95%, 5%) respectively.

Figure 6. Confusion matrices for Android malware detection using CIC-AAGM2017 dataset
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Figure 7 depicts the accuracy and loss curves for malware detection in the CIC-AAGM2017 
dataset. The proposed approach detects malware more effectively than malware classification. The 
accuracy curves for CNN-LSTM, CNN-RNN, and CNN-GRU using uni-gram features are between 
(50%, 98%), (90%, 97%), and (40%, 96%), respectively. The testing curve for CNN-LSTM drops to 
58% on the 10th epoch, while the training curve drops to 78%, indicating possible data loss (part c). 
As shown in part g, when CNN-RNN is used on the 5th and 25th epochs, the training, and test curves 
drop, indicating data loss. The accuracy curves for bi-gram features, CNN-LSTM, CNN-RNN, and 
CNN-GRU, are between (50%, 100%), (86%, and 98%). (50%, 99%), respectively. The testing and 
training curves in CNN-RNN parts (f, h) behave very differently, indicating data loss. These unusual 

Figure 7. Epoch curves for Android malware detection using CIC-AAGM2017 dataset
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behaviors can affect malware detection accuracy. On the CIC-AAGM2017 dataset, with uni-gram and 
bi-gram deep features analysis, confusion matrices for malware classifcation are shown in Figure 8. 
When CNN-LSTM is used in parts (a, b), the adware has classification and miss-classification values 
of (99%, 1%) and (100%, 0%) respectively. Similarly, general malware has (98%, 2%) and (98%, 2%) 
respectively. The classification and miss-classification values for adware are (98%, 2%) and general 
malware is (98%, 2%) using CNN-RNN in parts (c, d). The classification and miss-classification 
values for adware are (98%) (2%), (99%,1%), general malware (98%, 2%), (97%, 3%). The CNN-
LSTM approach with bi-gram features has better malware detection accuracy.

Figure 8. Confusion matrices for Android malware classification using CIC-AAGM2017 dataset
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The confusion matrices for malware detection using the CICMalDroid 2020 dataset are shown 
in Figure 9. The malware has classification and miss-classification values of (99, 1%), (96%, 4%), 
respectively, when CNN-LSTM is used in parts (a, b). Similarly, the benign has (99.9%, 1%), (99.9%, 
1%), and (99.9%, 1%), respectively. Following that, using CNN-RNN in parts (c, d), the classification 
and miss-classification values for malware are (96%, 4%), (97%, 3%), and benign are (100%, 0%), 
(86%, 4%), respectively. Furthermore, using CNN-GRU in parts (e, f), the classification and miss-
classification values for malware are (98%, 2%), (94%, 6%), and benign are (90%, 10%), (96%, 4%), 
respectively. The confusion matrices for malware classification using the CICMalDroid 2020 dataset 
with uni-gram and bi-gram deep features analysis are shown in Figure 10. Using this dataset, malware 

Figure 9. Confusion matrices for Android malware detection using CICMalDroid 2020 dataset
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detection outperforms classification. For example, using CNN-LSTM in parts (a, b), the adware 
family has classification and miss-classification values of (100%, 0%), (100%, 0%), respectively. The 
banking family has (97%, 3%), (100%, 0%, and (100%, 0%), respectively. The riskware family has 
(97%, 3%), (95%, 5%), and (95%, 5%), respectively. The SMS family has (88%, 12%), (93%, 1%), and 
(93%, 1%), respectively. Using CNN-RNN in parts (a, b), the adware family has classification and 
miss-classification values of (100%, 0%), (100%, 0%), respectively. The banking family has (95%, 
5%), (96%, 4%), and (96%, 4%), respectively. As can be seen, the proposed approach outperforms 
CIC-AAGM2017 in terms of classification results for CICMalDroid 2020.

Figure 10. Confusion matrices for Android malware classification using CICMalDroid 2020 dataset
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Table 3 compares state-of-the-art malware classification methods using the CIC-AAGM2017 
dataset. To analyze both uni-gram and bi-gram features, evaluation matrices such as precision, recall, 
f1-score, and classification accuracy are used. It can be seen that uni-gram features provide better 
classification accuracy for CNN-LSTM, i.e. 94.75%, than bi-gram features, i.e. 94%. Similarly, 
the CNN-RNN and CNN-GRU perform well with uni-gram, 94.12%, and 93.58%, respectively, as 
compared to bi-gram, 93.05%, and 93.27%. When compared to uni-gram analysis, bi-gram analysis 
generates roughly twice as many features. However, the classification accuracies of the uni-gram and 
bi-gram remain slightly different. It shows that our method can classify a large number of malware 
features with better classification results. On the other hand, malware detection results with bi-gram 
features outperform those with uni-gram features. For example, Table 4 compares state-of-the-art 

Table 3. Comparisons for malware classification using CIC-AAGM2017 dataset

Features Classes Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Malware 99 91 95
94.75 CNN-

LSTMBenign 91 99 95

Malware 98 90 94
94.12 CNN-RNN

Benign 91 98 94

Malware 97 90 93
93.58 CNN-GRU

Benign 91 97 93

Bi-gram

Malware 97 91 94
94 CNN-

LSTMBenign 92 97 94

Malware 96 90 93
93.05 CNN-RNN

Benign 90 96 93

Malware 95 91 93
93.27 CNN-GRU

Benign 92 95 93

Table 4. Comparisons for malware detection using CIC-AAGM2017 dataset

Features Malware Families Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Adware 98 99 99
98.53 CNN-LSTM

General Malware 99 98 99

Adware 98 97 98
97.82 CNN-RNN

General Malware 98 98 97

Adware 98 98 98
98.15 CNN-GRU

General Malware 98 98 98

Bi-gram

Adware 98 100 99
99.46 CNN-LSTM

General Malware 100 98 99

Adware 98 99 99
98.63 CNN-RNN

General Malware 99 98 99

Adware 98 99 98
98.27 CNN-GRU

General Malware 99 97 98
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malware detection methods using the CIC-AAGM2017 dataset. The proposed approach is analyzed 
using evaluation matrices such as precision, recall, f1-score, and classification accuracy.

The proposed method is tested on the CICMalDroid 2020 dataset using various evaluation 
matrices such as precision, recall, f1-score, and classification accuracy. Table 5 compares malware 
classification performance with state-of-the-art methods using uni-gram and bi-gram features. CNN-
LSTM, CNN-RNN, and CNN-GRU classification accuracies with uni-gram are 98.8%, 97.93%, and 
93.57%, respectively. Table 6 compares malware detection performance with the CICMalDroid 2020 
dataset to other state-of-the-art methods. We have four types of malware: adware, banking malware, 
riskware malware, and SMS malware. The CNN-LSTM, CNN-RNN, and CNN-GRU have malware 
detection accuracies of 95.35%, 93.69%, and 92.73%, respectively, thanks to uni-gram deep features. 
The CNN-LSTM, CNN-RNN, and CNN-GRU have malware detection accuracies of 97.09%, 96.62%, 
and 95.1%, respectively, with bi-gram deep features. Bi-gram deep features are effective for malware 
detection, while uni-gram deep features are effective for malware classification.

Table 7 shows the comparisons of the proposed approach with previously published works. 
These works mainly used HTTP network flows to classify the Android apps as malware or benign. 
Multi-view neural networks are used to develop a malware analysis approach that provides depth and 
breadth of the features. The HTTP-based malware classification accuracy is 98.81%. Our proposed 
approach outperforms with a malware detection accuracy of 99.46%.

4.4 T-SNE Features Visualization for Performance Validation
The t-SNE visualization method is intended to determine whether the features contain substantial or 
sparse information. Moreover, the t-SNE algorithm is designed to validate the effectiveness of the 
proposed approach. Maaten et al. (Van der Maaten & Hinton, 2008) developed a t-SNE algorithm 
for visualizing high-dimensional data.

Figure 11 shows the balance of local and global semantic feature weights for various 
perplexity values. Two t-SNE visualization tests were created in R. We try to find the minimum 
level of perplexity required to distinguish malware from benign clusters. In the second test, 
the best malware and benign clusters are separated by perplexity. For instance, parts (a, c, e, 
g) show the lowest perplexity values and parts (b, d, f, e) show the optimal perplexity values. 
t-SNE uses iterations to distinguish between samples. To show the different malware and benign 

Table 5. Comparisons for malware classification using CICMalDroid 2020 dataset

Features Classes Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Malware 99 99 99
98.8 CNN-LSTM

Benign 99 99 99

Malware 100 96 98
97.93 CNN-RNN

Benign 96 100 98

Malware 90 98 94
93.57 CNN-GRU

Benign 97 90 93

Bi-gram

Malware 96 98 97
97.19 CNN-LSTM

Benign 98 96 97

Malware 87 97 92
91.35 CNN-RNN

Benign 97 86 91

Malware 96 94 95
94.88 CNN-GRU

Benign 94 96 95
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Table 6. Comparisons for malware detection using CICMalDroid 2020 dataset

Features Malware Families Precision (%) Recall (%) F1-score (%) CA (%) Model

Uni-gram

Adware 100 100 100

95.35 CNN-LSTM
Banking 86 97 91

Riskware 100 97 98

SMS 96 88 92

Adware 100 100 100

93.69 CNN-RNN
Banking 82 95 88

Riskware 100 94 97

SMS 95 86 90

Adware 100 100 100

92.73 CNN-GRU
Banking 80 95 87

Riskware 100 91 95

SMS 95 85 90

Bi-gram

Adware 100 100 100

97.09 CNN-LSTM
Banking 90 100 95

Riskware 100 95 98

SMS 100 93 96

Adware 100 100 100

96.62 CNN-RNN
Banking 91 96 93

Riskware 100 98 99

SMS 96 92 94

Adware 100 100 100

95.1 CNN-GRU
Banking 88 96 92

Riskware 98 100 99

SMS 96 84 90

Table 7. Comparisons with previously published works based on HTTP flows

Work Year Methods Accuracy (%)

Aresu et al. (Aresu et al., 2015) 2015 Signature-based clustering 96.66

Li et al. (Z. Li, Sun, Yan, Srisa-an, & Chen, 2016) 2016 Droid Classiðer 94.66

Shanshan et al. (S. Wang et al., 2018) 2018 Skip-gram with Neural Network 95.74

Shyong et al. (Shyong et al., 2020) 2020 Random Forest 98.86

Shanshan et al. (S. Wang et al., 2020) 2020 Multi-view Neural Network 98.81

Our approach … N-gram with CNN-LSTM 99.46



Journal of Database Management
Volume 34 • Issue 2

20

Figure 11. t-SNE visualization for fused features using minimum (100, 110, 120, and 130) and optimal (150, 155, 160, and 165) 
perplexity values
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clusters, we used 300 iterations for each perplexity. Semantic feature plots on 100,110,120,130 
perplexity values are shown in the first column. An orange cluster indicates benign samples, 
while a light blue cluster indicates malware. Part a has no discernible cluster with overlapped 
data when perplexity is 100. On 110, 120, and 130 perplexity levels, the first t-SNE experiment 
shows the separation of malware and benign samples into visual clusters. As a result, the second 
experiment is run to distinguish malware from benign clusters. For the second t-SNE test, we 
chose four ideal perplexity values: 150, 155, 160, and 160. The second column shows how a 
low-dimensional semantic property can be used to group data into groups.

The density of the dataset influences overall classification performance. Higher density predicts 
better because more descriptive information is available for training. Optimal perplexity values 
help isolate t-SNE visual clusters for better classification. Using acceptable perplexity values, a 
dataset can be separated and then classified using hyperparameters. This method is used to test the 
proposed approach’s effectiveness because semantic features can easily be separated and classified 
as malicious or benign.

4.5 Threat to Validity
4.5.1 Network Flow
Malware that uses protocols other than HTTP cannot be detected using the proposed method because 
it only looks at HTTP in the network traces. We chose HTTP for our study because it accounts for 
70% of the network traffic generated by Android apps. We can simply determine the general network 
behavior and whether the specified activity is malicious or not by analyzing HTTP-based traffic. 
According to the findings of the experiments, our technique detects the vast majority of legitimate 
malware attacks. The proposed method can also expose suspicious network behavior of apps, which 
is not achievable with other methods.

4.5.2 Encrypted Traffic
Malware is increasingly choosing to communicate with networks via encrypted traffic to avoid 
detection. Nevertheless, the issue of encrypted malicious traffic has been examined by several studies. 
To deal with encrypted traffic, we devised a method based on Wireshark commands that can decrypt 
the encrypted network traffic into readable form. As a result, the proposed method is also capable of 
detecting malware samples in HTTPS traffic.

4.5.3 Sample Size
Our sample size may not be sufficient to represent the entire ecology of malware variants. However, 
we examined two large datasets, CIC-AAGM2017 and CICMalDroid 2020, which contain a total 
of 10.2k malware and 3.2K benign samples, which is significantly larger than several other related 
aspects. Because we are using two large standard datasets without any alteration, we can confidently 
state that the proposed approach can operate on other systems as well.

4.5.4 Evaluation Measures
It’s even arguable that the evaluation metrics we chose aren’t appropriate. To mitigate these issues, 
we developed prominent research metrics, such as precision, recall, f-measure, and classification 
accuracy. To prove the efficacy of the proposed method, we prepared a detailed evaluation that 
compared CNN-LSTM to CNN-RNN and CNN-GRU. Additionally, the N-gram-based LSA features 
and CNN-based deep features are very effective for accurate malware classification.

4.6. Theoretical and Practical Contributions
The objective of network-based strategies is to find unique features that can be used to accurately 
classify malicious traffic. Multiple malicious scripts may be employed by network malware to harm 



Journal of Database Management
Volume 34 • Issue 2

22

mobile apps. Riskware is capable of incorporating malicious bytes required for remote session 
hijacking. For example, network traffic may contain “application/x-javascript” coding, which the 
remote device will execute to prevent regular access. Similarly, adware is a type of malware that 
hides on the target machine and displays ads in the form of malicious scripts. Some adware monitors 
online activity to deliver related ads. Moreover, unresolved IP addresses may be directly connected 
to some malicious software. This is a common indicator of malicious intent. It is possible to identify 
potentially harmful scripts in terms of behavioral segmentation through the use of network traffic. It 
can be time-consuming and ineffective for experts to infer malware behavior from statistical features 
of network traffic. We use a novel feature extraction process to achieve automatic feature selection. 
This approach addresses the issue of feature selection while preserving high-level semantics by 
automatically mining URL feature representations. We used deep features analysis of the HTTP 
protocol because it is the most common protocol. HTTP-based encrypted data packets are collected 
and filtered, and afterward, the SVD method is used to extract the most notable features. The CNN-
LSTM model is designed to classify network-based malware.

5. CONCLUSION

Because a large portion of Android malware uses network traffic to carry out its malicious functions, 
this type of malware detection strategy has the potential to be effective. A deep features analysis 
approach for malware classification and detection is developed in this study. The encrypted URL-
based network traffic is collected and mined first before being decrypted for further analysis. Second, 
using segmentation and N-gram approaches, features with ordering details are extracted. The N-gram 
analysis greatly expands the number of features that can result in noisy data. Third, the SVD method 
is used to transform the features in reduced dimensional space. The LSA tool is then used to capture 
the semantics. These are latent features for reduced N-gram features with semantics The CNN network 
is used to extract deep features from latent variables to reduce computational and training costs.

The HTTP protocol analysis may not be sufficient to deal with all forms of malicious behavior. 
To extract data features from various types of packets, we must investigate all commonly used 
communication protocols. We believe that in the future, we will investigate malware network behavior 
using other protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), 
and Domain Name Server (DNS). Furthermore, we will employ transfer learning by utilizing a pre-
trained model.
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