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Skin cancer remains one of the deadliest kinds of cancer, with a survival rate of about 18–20%. Early diagnosis and segmentation of
the most lethal kind of cancer, melanoma, is a challenging and critical task. To diagnose medicinal conditions of melanoma
lesions, diferent researchers proposed automatic and traditional approaches to accurately segment the lesions. However, visual
similarity among lesions and intraclass diferences are very high, which leads to low-performance accuracy. Furthermore,
traditional segmentation algorithms often require human inputs and cannot be utilized in automated systems. To address all of
these issues, we provide an improved segmentation model based on depthwise separable convolutions that act on each spatial
dimension of the image to segment the lesions. Te fundamental idea behind these convolutions is to divide the feature learning
steps into two simpler parts that are spatial learning of features and a step for channel combination. Besides this, we employ
parallel multidilated flters to encode multiple parallel features and broaden the view of flters with dilations. Moreover, for
performance evaluation, the proposed approach is evaluated on three diferent datasets including DermIS, DermQuest, and
ISIC2016. Te fnding indicates that the suggested segmentation model has achieved the Dice score of 97% for DermIS and
DermQuest and 94.7% for the ISBI2016 dataset, respectively.

1. Introduction

Melanoma is a severe kind of skin cancer with a very high
mortality rate. Although there are only 2% of all the skin
cancer types, melanoma is responsible for 75% of deaths
occurred due to skin cancer [1]. In USA only, about 87,110
new cases are reported every year out of which 9,730 patients
lose their lives due to this lethal skin cancer [2]. Similarly, in
2016 a total of 6,800 fatalities due to melanoma were re-
ported in Canada [3]. Usually, the exposed regions of skin to

sunlight are highly afected by melanoma e.g., face, legs, and
arms.Te borders and colors of melanomamoles are uneven
and evolving which represent the severity level of the disease
[4]. Many advanced techniques for the treatment of skin
cancer are available including radiation therapy and im-
munotherapy. In clinical practice [5], these techniques are
combined with surgery but still the survival rate of advanced
stages of melanoma is quite low and is around 15%. On the
other hand, the survival rate for the early stages of melanoma
is around 95% [6]. In order to diagnose the medical
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problems of melanoma lesions, dermatologists directly ex-
amine the damaged skin’s uniformity, inconsistencies in the
borders, and color changes [4]. Moreover, dermoscopy,
a nontrauma skin imaging technique, is also very popular to
assist dermatologists to examine the afected skin. Te ac-
curacy for identifcation of melanoma lesions through
dermoscopy is higher than the traditional method of ABCD
rule criteria [7].Tis ABCD rule is designed by the American
Society for skin lesions [8]. Nevertheless, the biopsy test is
the only thing on which the performance is solely de-
pendent. In the initial stages, the identifcation of melanoma
greatly matters since in the initial stages the possibility of
recovery is much higher than in the later stages. However,
the manual identifcation of melanoma needs an expert
dermatologist followed by a stage in which the decision is
made to assess a subjective variation.

Numerous researchers have proposed to automate the
analysis process and extend the knowledge that can identify
lesions accurately and helps diferent healthcare systems
which are based on the Internet of Tings (IoT) [9–11].
Tere exist traditional techniques, e.g., Otsu and Stochastic,
that can perform melanoma segmentation, but these
thresholding techniques are not the end-to-end solution,
and owing to artifacts, this might lead to under or over
segmentation problems. Terefore, there is a need for au-
tomated systems to automatically diagnose skin lesions for
the treatment of skin cancer patients.Te lighting conditions
and diferent orientations also make it a challenging task for
automated systems to analyze them [12]. Some researchers
highlighted these issues recently and observed that there is
very low diagnostic accuracy due to the presence of these
issues in clinical images [13].

Recently, deep-learning approaches are also utilized for
the task of automated skin lesion segmentation to over-
come the challenges with traditional methods. Te per-
formance of these deep-learning-based methods is
exceptional in segmenting skin lesions as compared to the
traditional dermatologists [1]. A lot of deep-learning-based
segmentations are proposed in the existing research studies
for skin lesions, but there is still space to enhance the
algorithms in terms of both parameters and performance
[14–17].

From this line of research, we proposed an efcient deep-
learning model for end-to-end segmentation of melanoma
lesions to overcome all the challenges which include
intraclass variations and lighting conditions as well as other
related issues. Te proposed framework uses the UNet ar-
chitecture as the base architecture for end-to-end segmen-
tation of melanoma lesions, as it has a very strong capability
in biomedical image segmentation [18]. More explicitly, it
consists of a downsampling path, a bottleneck layer, and an
upsampling path. Te downsampling path consists of
multidilated convolution blocks (MDC) and depthwise
separable convolutions blocks (DSC) that empower the
process of feature learning across the channels on the image.
Te parameters of convolution are dramatically reduced
with these depthwise separable convolutions without
compromising the performance. Te generalization ability
of the model is improved by these convolutions while

avoiding overftting. Spatial and cross-channel correlations
are also separated with the help of these convolutions.
Moreover, there is the use of swish activations in the MDC
block. Te nonmonoatomic property of swish is very ad-
vantageous in deep-learning algorithms. All these charac-
teristics make the proposed framework more reliable in
segmentingmelanoma lesions.Te following points describe
our contribution:

(i) Te proposed approach is capable of localizing
melanoma lesions and multiple types of cancer in
a single image by designing DSC blocks with
multidilated features

(ii) Te proposed segmentation model accurately seg-
ments the lesions by overcoming the challenges
presented in the ISBI2016 dataset

(iii) We used skin refnement as a preprocessing step to
eliminate artifacts from dermoscopic images.

Te rest of the paper is organized in the following way:
Section 2 thoroughly explains the review of current ap-
proaches. Section 3 explains our proposed methodology in
detail. Section 4 explains the experimental details, results,
and discussion. Lastly, Section 5 provides the conclusion of
the paper.

2. Literature Review

Te segmentation of melanoma lesions is a fundamental
technique in designing the automated detection model of
skin cancers. Since the segmentation of lesions plays an
important role in the classifcation task of skin cancer
[19–21]. Automated segmentation techniques are further
split into traditional and deep-learning techniques, along
with some advanced hybrid deep learning models. Te
following is a critical literature assessment of each kind of
method in the segmentation of melanoma lesions.

Te conventional techniques of melanoma lesions seg-
mentation mostly involve iterative selection [22, 23], adaptive
threshold [24], iteration merging of regions [25], and Otsu
threshold [26]. Nevertheless, as a result of the existence of
artifacts in dermoscopic images the efectiveness of
thresholding-based techniques will be diminished [22, 26]. In
[26], the accuracy of the proposed algorithm is acceptable but
the images that were segmented have uneven borders as well
as reduces the resolution of the images. In [27], the authors
suggested a method to address the challenges that arise in
[26]. Another collection of studies [25, 28] suggested a region
merging technique to perform segmentation. In this method,
the identical regions of the images are clustered together. To
overcome the challenges of color, low contrast, and illus-
tration, the region merging technique performs well. In [25],
lesion segmentation is carried out by these identical regions
having identical attributes. Overall, these approaches need
a lot of manual parameter tuning, such as threshold values in
thresholding-based segmentation, making them unsuitable
for automated CAD systems.

Another research group [29–32] suggested deep-
learning techniques for segmentation and achieved con-
siderable outcomes as compared to the standard methods.
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In [31], an FCRN, i.e., fully convolutional-residual-
network was suggested to address the challenges of model
overftting in the task of melanoma segmentation. In [32],
localization of lesions is accomplished by utilizing the
region-based CNN followed by the machine learning
fuzzy-clustering technique. In [29], a 19-layer CNN is
designed to improve and enhance the results of melanoma
segmentation. More specifcally, in this study, Jaccard
distance is utilized as a loss function. With the assistance of
this loss function, the segmentation performance improves
and also the problem of overftting arises between normal
and melanoma images. In [30], FRCN, i.e., full CNN was
designed for segmentation of melanoma lesions. In order
to segment, the lesion areas of diferent scales a segmen-
tation model based on multiscale convolution is proposed
in [33] which efciently extracts the areas of lesions. A
multistage segmentation model was proposed in [34] to
perform the end-to-end segmentation of skin lesions. Tey
also combined and integrates the context information with
their model. Te boundary of lesion segmentation is
further improved in [35]. Tey combined the mixed fea-
ture inputs and proposed a multibranch fusion network
and performed an immense set of experiments to evaluate
their model. In [36], a new method for automatic seg-
mentation of skin lesions is designed which was capable of
learning more powerful and distinguishable features. Tis
model used cross-net-based aggregation. In [37], to seg-
ment lesions and lessen the impact of artifacts, a hybrid
technique was suggested by integrating the convolutional
and recurrent neural networks. Nevertheless, a two-stage
object detection model such as RCNN produces about 2
thousand patches per image for lesion identifcation. Due
to this reason, melanoma localization becomes compu-
tationally expensive in these approaches. Furthermore,
while all of these deep-learning algorithms for lesion
segmentation produce outstanding results, there is still
a gap for improvement in terms of model performance.

In addition, to acquire more information features
from dermoscopy images, some hybrid models are also
designed such as in [38] for bilinear merging, they used
ResNet and VGG to extract high-level features and trained
their algorithm using SVM classifers. Tey achieved the
best accuracy results on several test sets. In order to cope
with the intraclass inconsistency of lesions, a multi-
convolution neural network is proposed in [39]. Tis
model was combined with an adaptive sample strategy of
learning. Tis technique also deals with related noise
interference. In [40], encoded output features are con-
verted into Fisher Vectors by using the weights of the
pretrained model which is a deep residual network. Tey
also used trained SVM to achieve the recognition task and
have achieved a signifcant performance on a test set of
classifcation challenges of ISBI2016. However, their ap-
proach was not an end-to-end solution and the overall
architecture of the model was very complex. Te ad-
vantages of hybrid approaches include improved per-
formance and broader feature acquisition; nevertheless,
the computational complexity of hybrid deep-learning
models is high, making them slow.

3. Methodology

Te detail of our proposed framework is presented in Fig-
ure 1. In this research, we have utilized three diferent
datasets. Te instances in the dataset undergo some pre-
processing stages for improved quality images to remove
artifacts like hair, bubbles, and other patches. Tis is fol-
lowed by steps to localize the melanoma lesions.

3.1. Preprocessing. Before giving the input images to the
deep-learning model, all the images are preprocessed to
remove noises from them. Tis step is necessary for very
precise segmentation. Most commonly used image pre-
processing techniques involve image smoothing, resizing,
identifcation of ROIs, and denoising of images. For the
elimination of artifacts from dermoscopic images, Gaussian
smoothing is the most efective technique. In the suggested
method, we have performed the dilation followed by erosion
also referred to as morphological closing. Later on, in the
next stage, we performed the sharpening operations over the
images to further enhance the quality of the images. Some
sample images before and after preprocessing are depicted in
Figure 2.

3.2. Data Augmentation. Usually, the publicly accessible
training images for all categories are not dispersed evenly,
resulting in the class imbalance issue [41]. In the suggested
method, we increase the total number of samples in the train
set by employing diferent types of augmentation such as
fipping, cropping, and rotating. Table 1 lists the diferent
types of augmentation and their values used to augment the
samples. More specifcally, 15 additional images are sampled
from a particular dermoscopic image by using the aug-
mentation types given in Table 1. Te main rationale to use
this phase in our strategy is to reduce overftting problems
and improve the model’s predictive performance.

3.3. Proposed Architecture. Our proposed framework con-
sists of three major parts which include the downsampling
path to down sample an image by extracting the features
which represent what is present in an image followed by the
bottleneck and upsampling path to upsample an image to get
the localization of the required lesion in an image as shown
in Figure 3(a). Te complete architecture of each part is
described below:

3.3.1. Downsampling Path. Te downsampling path of the
model consists of a multidilated convolution (MDC) block
and depthwise separable [30] convolution block (DSC) to
encode features of melanoma lesions followed by max-pool
operations of size 2 × 2 to reduce the spatial dimensions of
the images as shown in Figure 3(a). Te architecture of the
MDC and DSC block are given in Figure 3(b). Te feature
extraction part starts from the regular convolution of size
1 × 1 and 3 × 3 max-pool on an input image of size 256 ×

256 × 3 followed by ReLu [33] activation functions. Besides
this, input is also given to the DSC block as shown in
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Figure 3(b). In the DSC block, the depthwise separable
convolution of sizes 1 × 1 and 3 × 3 is performed on every
channel of an input image independently. Afterwards,
a 1 × 1 window is utilized as pointwise convolution to
project to a new channel space after a channel is computed

by depthwise convolution as shown in Figure 4. Te
depthwise separable convolutions are not like spatial sep-
arable convolutions which are also referred as “separable
convolutions” in the community of image processing [42].
Te mathematical formulation is given below:

Original Image

Augmentation

Output

Segmented ImagesDecoderEncoder

Bottleneck

Segmentation model

Ground Truth

Images
Preprocessing

Figure 1: A schematic overview of the proposed methodology.

Figure 2: Image enhancement on ISBI2016 dataset; row 1 depicts the original dataset images, row 2 depicts the images after closing
morphological operation, and row 3 depicts results after sharpening.

Table 1: Data augmentation types and their parameters.

Sl. no. Augmentation types Parameters
1 Rotate 90°, 180°, 270°
2 Crop from right 45°, 60°, 90°
3 Crop from left 45°, 60°, 90°
4 Crop from top 45°, 60°, 90°
5 Crop from bottom 45°, 60°, 90°
6 Flipping Left right
7 Shifting Shifted by (25, 25) pixels
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Figure 3: Architecture of proposed segmentation model.
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Figure 4: Depthwise separable convolutions.
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In the above equations, ⊙ shows the elementwise
product. Te beneft of depthwise separable convolutions
over traditional convolutions is the total number of pa-
rameters [43]. For this, consider a standard convolution with
a feature map F and suppose that value of stride and padding
is one. Tis can be computed as the following equation:

Fk,l,m � 􏽘
i,j,m

Ki,j,m,n ∙ Ik+i−1,l+j−1,m. (2)

For these standard convolutions, the total number of
parameters and computational cost can be calculated as
follows:

k × k × M × N and k × k × M × N × H × W, (3)

where the input image or input feature maps are represented
by I, while k denotes the kernel of convolution with size
k × k. Te M and N denote the number of input and output
channels while the height and width of input feature maps or
input images are denoted by H and W, respectively. Fur-
thermore, for depthwise separable convolutions which is
a combination of depthwise and pointwise convolutions, the
output feature maps are calculated as follows:

F,
k,l,n � 􏽘

i,j
K,

i,j,m ∙ Ik+i−1,l+j−1,m. (4)

Similarly, for these depthwise separable convolutions,
the total number of parameters and computational cost is
calculated as follows:

k × k × M + M × N and k × k × M × H × W + M × N × H × W.

(5)

Now, in order to compare the parameters of both types
of convolutions, we obtained the following equation:

k × k × M + M × N
k × k × M × N

�
1
N

+
1
k2

. (6)

It can be shown and seen that the number of parameters
is about 8 to 9 times less in depthwise separable convolutions
than in standard convolutions. Hence, it is observed that we
improved the network without an extensive increase in the
number of parameters of the network and also empowered
the network to learn deep dilated features which in turn gives
more contextual information. Moreover, the output of
regular convolutions and max-pool are concatenated and
given as input to the frst dilated convolution in the MDC
block as shown in Figure 3(b). Similarly, the input of second
and third dilated convolutions in the MDC block is the
output of regular convolutions, max-pool, and the result of

previously dilated convolution. Furthermore, in the MDC
block, three convolution operations utilizing the dilated
flters of size 1 × 1, 2 × 2, and 3 × 3, respectively, are used.
Te convolutions which use the dilated flters are also called
dilated or atrous convolutions. For these, a dilated flter w
also called kernel is convolved over the input signal, and for
each location, i is the output, and y is computed by equation
(7), ([44])

y[i] � 􏽘
k
x[i + r ∙ k]w[k]. (7)

In equation (7) the r is representing the value of the
stride by which the input signal is sampled which is a similar
operation to convolve over any input signal x with the help
of flters w that are upsampled by inserting r − 1 zero along
each spatial dimension that are consecutive. Tese are very
helpful as a large receptive feld of view is enhanced by
dilated convolutions of the given input image. After each
dilated convolution in the MDC block, there is the use of
batch normalization [31] and swish activations [32] as
shown in Figure 3(b). Te use of batch normalization [31]
fastens the training process and prevents the model from
overftting. A dropout layer of rate 0.05 is also added after
every max-pool operation. Furthermore, the swish activa-
tions are defned as [45]

f(x) � x ∙ σ(x). (8)

In equation (8), the σ(x) � (1 + exp (−x))− 1 represents
the sigmoid function. Tis activation function is bounded
below and unbounded above. Te properties of swish ac-
tivation include that it is smooth and the property of non-
monotonicity which distinguishes it from other activation
functions. Te derivative of the swish is given below in
equation (9) [45]

f(x)
,
� σ(x) + x ∙ σ(x)(1 − σ(x)

� σ(x) + x ∙ σ(x) − x ∙ σ(x)
2

� x ∙ σ(x) + σ(x)(1 − x ∙ σ(x))

� f(x) + σ(x)(1 − f(x).

(9)

Moreover, the output of MDC blocks is concatenated to
depthwise convolution blocks, and the result of regular
convolutions and max-pool is shown in Figure 3(b). Te
number of flters set for each of our convolution blocks is 16,
32, 64, and 128, respectively. Moreover, the starting weights
for regular convolution and convolutions inMDC blocks are
initialized with “He normal” weight initialization which is
defned as [46, 47]

W ∼ G 0,

��
2
n

􏽲

􏼠

Or W[i] � RandomUniform(low � −limit, high � limit, size � Fin, Fout( 􏼁.

(10)
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In the above equation (10), G is just a random number
with Gaussian probability distribution while the total
number of inputs coming towards a particular neuron is
represented by n. Furthermore,

���
2/n

√
is used to calculate the

standard deviation while the 0 represents the mean. In
addition, Fin and Fout are the number of inputs and outputs
to the layer, respectively. Similarly, the weights of depthwise
separable convolutions are initialized with the Glorot weight
initialization method which is also called Xavier initializa-
tion. Te main objective of the downsampling path is to
extract features that describe the semantics of the image with
loss of spatial and localization information.

3.3.2. Bottleneck Path. Te bottleneck path of the proposed
framework consists of 1 × 1 and 3 × 3 convolution followed
by depthwise separable convolution block (DSC) and MDA
blocks as shown in Figure 3(a).Te resulting feature maps of
the last max-pool operation on an input image in the
downsampling path are given as inputs to the bottleneck
path which yields output feature maps of dimension 16 ×

16 × 2323. Tese resulting feature maps are then given as
input to the very the frst layer of the upsampling path to
localize the melanoma lesion.

3.3.3. Upsampling Path. Te upsampling path of the model
consists of transposed convolution with kernel sizes of 3 × 3
with a stride of 2 × 2 followed by the operation of concate-
nation to corresponding convolution blocks of downsampling
path as shown in Figure 3(a) to combine the context and
localization information to segment out the melanoma le-
sions. Transposed convolutions are the reverse processes of
convolution, and it is more robust than simple upsampling as
it flls up the details with proper learning.Tese are also called
fractionally stride convolutions. Moreover, the concatenation
operations between upsampling and downsampling path at
the appropriate position help to restore the localization in-
formation that is lost during downsampling an image. So
more specifcally, the input from the bottleneck layer is frst
given as an input to the frst transposed convolution layer.
Ten, by means of skip connections, the output generated
from this layer is concatenated to the last MDC and DSC
blocks downsampling path.Moreover, this process is repeated
three more times. In the end, the output of the last MDC and
DSC blocks in upsampling path is passed through 1 × 1
convolution followed by sigmoid activation to get the re-
quired segmented image of the lesion.

4. Experiments, Results, and Discussion

In this section, we discuss the datasets used for experi-
mentation purposes and evaluation metrics used to evaluate
the model as well as results of the model. In addition, the
proposed model is designed in the Keras framework
available in Python, and simulations are run on Google
Colab with 12GB RAM and NVIDIA Tesla K80 GPU. Te
hyperparameters of the model include the weight initiali-
zation, weight optimizer, learning rate, and epochs which are
set to Xavier, Adam, 0.001, and 150, respectively.

4.1. Datasets. To assess the universality of our proposed
model, we evaluated it on three distinct datasets, i.e., Der-
mIS, DermQuest, and ISBI2016. All the datasets contain skin
lesion images in RGB format. More explicitly, the Derm-
Quest contains 152 melanoma images while 122 images
belong to the nevus class. Similarly, in DermIS, the total
number of melanoma class images is 43 while the nevus class
has a total of 26 images. Te DermQuest and DermIS
datasets contain a limited number of images, so augmen-
tation is applied to the training set. Moreover, the dataset
ISBI2016 comprised 900 melanoma images in the train set
and 379 images in the test set. Te train and test division of
images are already provided by the dataset publisher. For
a fair comparison, we utilize the same train and test sets.

4.2. Performance Evaluation Metrics. To examine the per-
formance of the model, we utilized diferent evaluation
metrics [48–51] including dice score, specifcity, sensitivity,
and Jaccard score. Te following equations (11)–(15) are
used to compute these metrics

Accuracy �
TP + TN

TP + TN + FP + FN
, (11)

Dice  score �
2 × TP

2 × TP + FP + FN
, (12)

Specif icity �
TP

TP + FP
, (13)

Sensitivity �
TP

TP + FN
, (14)

Jaccard  score �
TP

TP + FP + FN
, (15)

where TP denotes the true positives, FP denotes the false
positives, TN denotes the true negatives, and FN denotes the
false negatives.

4.3. Results of DermIS Dataset. In the frst step, we evaluate
the proposed model on the DermIS datasets containing
melanoma and nevus class images along with their mask
images. As previously stated, artifacts like hair, air bubbles,
and other noises can be seen in the images of the DermIS
dataset.Te existence of these types of artifacts will infuence
performance accuracy. To address this problem, we have
performed the preprocessing on images that are discussed in
Section 3.1. In addition, we have also performed the data
augmentation described in Section 3.2 to increase the
number of training samples since DermIS has a very limited
number of images. Tis is done to expand the number of
instances since a minimal amount of training data leads to
overftting issues. In Figure 5, the results of augmentation
are depicted. Te proposed model takes the dermoscopic
images along with their ground truth images as input and
outputs the segmented images. Te results of melanoma
segmentation are depicted in Figure 6 along with their actual
ground truth images and contour images.
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Column (A) in Figure 6 shows the original images that
were preprocessed. Column (B) shows the actual ground
truth images. Following on, column (C) shows the contour
images of actual ground truth images. Te contour is shown
by the red borders in column (C). Column (D) depicts the
output of the segmentation model in form of segmented
images while column (E) shows the output images with
contours. Te efectiveness of the proposed method on this
database was assessed utilizing previously defned metrics.
As shown in Table 2, the Dice score achieved for this dataset
is 97% which shows the robustness of our model perfor-
mance in localizing skin lesions. Te accuracy and Jaccard
indexes are 97% and 94% while sensitivity and specifcity are
93%.

4.4. Result of DermQuest Dataset. In the second step, we
evaluated the performance of the proposed model on the
DermQuest dataset. All of the trials on this data, like the
DermIS dataset, make use of melanoma images and asso-
ciated ground truth images. More specifcally, we frst
perform the preprocessing step over the images to eliminate
the noises in the form of artifacts. Te number of images in
this dataset is also less in number; hence, we also perform the
data augmentation on this dataset. Te results of melanoma
segmentation for the DermQuest dataset are depicted in
Figure 7 along with their actual ground truth images and
contour images. Column (A) in Figure 6 shows the original
images, column (B) shows the actual ground truth image,
and column (C) shows the contour images of actual ground

Figure 5: Results of augmentation on DermQuest dataset.

(a) (b) (c) (d) (e)

Figure 6: Results of melanoma segmentation on DermIS dataset.
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truth images. Moreover, column (D) depicts the output of
the segmentation model in form of segmented images while
column (E) shows the output images with contours. For this
dataset, we have achieved the highest Dice score, accuracy,
and Jaccard score in comparison with the DermIS dataset.
Te proposed model achieved the Dice score of 97% and the
Jaccard score of 96% in localizing the melanoma lesions.
Moreover, the accuracy, sensitivity, and specifcity attained
for this dataset are 98%, 90%, and 95%, respectively.

4.5. Results of ISBI2016 Dataset. Te suggested framework’s
efcacy was also examined using benchmark datasets namely
ISBI 2016 by “International Symposium on biomedical
images (ISBI) in the challenge of skin lesion analysis towards
melanoma detection” [52]. For the challenge of segmenta-
tion, this database comprises a total of 1,279 images out of

which 900 images belong to the train set while the remaining
379 images belong to the test set. All dermoscopic images in
this dataset, like those in DermIS and DermQuest, go
through the preprocessing stage. Te total number of
training images in this dataset is sufcient for training
purposes; hence, there is no data augmentation is applied to
this dataset. Figure 8 shows the segmentation results of the
proposed algorithm on the ISBI2016 dataset. In Figure 8,
column (A) shows the original test images with their ground
masks shown in column (B). Te test images with contour
around the boundary are shown in column (C). Te pre-
dicted mask and output with contour are shown in columns
(D) and (E) of Figure 8, respectively. In the test set of this
dataset, there are more challenging images. As shown in row
1 of Figure 8, the lesion area of the frst image has very
similar to normal skin but still, it can be accurately seg-
mented by a model as shown in row 1 column (D) of

Table 2: Results of skin lesion segmentation in ISBI2016 challenge.

Technique Accuracy Dice score Jaccard score Sensitivity Specifcity
ExB 0.95 0.91 0.84 0.91 0.965
CUMED 0.94 0.897 0.829 0.911 0.957
Mahmudur 0.952 0.895 0.822 0.88 0.969
SFU-mial 0.944 0.885 0.811 0.915 0.955
TMU team 0.946 0.888 0.81 0.832 0.987
UiT seg 0.939 0.881 0.806 0.863 0.974
IHPC-CS 0.938 0.879 0.799 0.91 0.941
UNIST 0.94 0.867 0.797 0.876 0.954
JoseLuis 0.934 0.869 0.791 0.87 0.978
Marco Romelli 0.936 0.864 0.786 0.883 0.962

Proposed
0.95% 0.90% (None) 0.82% (None) 0.92% 0.90%
0.95% 0.947% (mi) 0.90% (mi) 0.92% 0.90%
0.95% 0.92% (ma) 0.86% (ma) 0.92% 0.90%

(a) (b) (c) (d) (e)

Figure 7: Results of melanoma segmentation DermQuest dataset.
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Figure 8. Te boundaries of lesions are still more distilled
and smooth.Te evaluation scores achieved by our proposed
model on this dataset include a Dice score which is 94.7%,
a Jaccard score of 90%, and an accuracy of 95%, respectively.
Moreover, the sensitivity and specifcity achieved for this
dataset are 92% and 90%, respectively.

We also compared our results with challenge winners of
ISBI2016. In this challenge, almost 28 groups provide their
results, as listed in Table 2. Tis ISBI ranked the competition
participants based on their best average Jaccard score. Due to
the precise segmentation of deep-learning models, it is
observed from Table 2 that most of the participants in the
competition employ deep-learning techniques. For instance,
AlexNet, VGG16, and ResNet-based pretrained models are
utilized to approximate the edges and boundaries of lesions.

It is evident from Table 2 that the proposed algorithm
attained the highest results among challenge winners. Te
comparison with all challenge winners and the proposed
framework is given in Table 2 and is graphically presented in
Figure 9. In terms of the Jaccard score, the proposed model
has a very remarkable performance over the top two par-
ticipants. Te Dice score of the proposed model is also
improved among all challenge winners. Moreover, the scores
of each test set image in the ISBI2016 dataset are shown in
Figure 10. It is observed from Figure 9, that most of the test
samples achieved greater than 80% Dice, Jaccard, and ac-
curacy scores. Tere are only a few samples in which the
Jaccard score falls below 50%. Moreover, to consider the
efect of class unbalancing, we calculate the Dice and Jaccard
score in three diferent ways. First, we consider no averaging
method and calculate the scores; in the second way we
consider the average method of “micro” (mi) which globally
calculates the FP, FN, and TP without favoring any class.
Similarly, in the third way, we use the average method of
“macro” (ma) in which we calculate the scores separately for

both background and foreground classes. It is observed from
the results that our proposed framework signifcantly ad-
dresses the challenges of segmentation in skin lesions which
includes intraclass diferences and visual similarity of lesion
features with normal skin.

Furthermore, the training graphs of accuracy and loss of
the model for all three datasets are also shown in Figure 11.
In general, the accuracy of the model is used to determine
the total number of correct predictions. Te higher value of
accuracy shows the better capability and performance of the
model. Te graphical representation of accuracy is shown in
Figure 11, and it is observed that during training the model

(a) (b) (c) (d) (e)

Figure 8: Sample melanoma segmentation results of ISIC2016 dataset from the skin with the respective masks and contour images.
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achieves an accuracy greater than 90%. Similarly, model loss
values during training of all three datasets are also plotted.
Te predictions of the model are more accurate if the loss of
the model is near to zero. It is observed that the loss values of
the proposed model on all three datasets are near zero. Te
x-axis of Figure 11 shows the total number of epochs while
the y-axis shows the accuracy and loss values epoch by epoch
of the proposed model. Moreover, during the training of the
deep-learning model, when an input image passes through
successive layers of architecture; then, each layer gives
output in the form of feature maps of diferent dimensions.
Tese feature maps indicate how your model encodes and
learns the features of images layer by layer. Usually, in the
starting layers, the model extracts low-level features while
subsequently more high-level features are extracted. Te
activation maps of some intermediate layers of the proposed
algorithm are also shown in Figure 12.

Figure 12 illustrates that lesion areas aremore focused on
the proposed model. Tis indicates that the model learns
more efective and discriminative features of lesion areas in
the given image.

4.6. Comparative Analysis with State-of-the-Art Approaches.
We have compared the performance accuracy of our pro-
posed framework with other state-of-the-art approaches. It
is noticeable from Table 3 that recent approaches use many
deep-learning approaches to automatically segment mela-
noma lesions. Bozorgtabar et al. [53] proposed an un-
supervised method for skin lesion segmentation. In this
work, the information about the context of the image is
exploited at the superpixel level. Tey achieved Dice and
Jaccard scores of 0.86% and 0.66%, respectively. Similarly,
Yaun et al. [29] proposed a19-layer deep convolutional
network for automatic segmentation of skin lesions. In their
work, the proposed model is trained with a loss function of
Jaccard distance and achieved Dice and Jaccard scores of
91% and 84%, respectively, which is very much better.

Furthermore, Li et al. [43] proposed a dense convolutional
neural network based on residual learning for skin lesion
segmentation. Tey achieved a Dice score of 93% with an
87% Jaccard score. Rashid et al. [40] proposed a two-stage
method and utilized the approach of object detection al-
gorithms named single shot detector (SSD) for localization
of melanoma lesion followed by a second stage in which level
set algorithm is used to segment the melanoma lesion. Te
Jaccard and Dice scores achieved by their approach are 90%
and 82%, respectively. Moreover, Tang et al. [34] proposed
a new novel multistage UNet-based model combined with
context information fusion structure (CIFS) for melanoma
segmentation and achieved an appropriate improvement in
the Jaccard score. In comparison with all the previous ap-
proaches, our model outperforms especially in terms of
Jaccard analysis. Wei et al. [45] proposed an ensemble
lightweight neural network for melanoma segmentation and
achieved a signifcant and excellent performance in Dice and
Jaccard scores which are 96% and 92%, respectively. Te
main reason for having efcient performance results is the
end-to-end automatic segmentation of melanoma lesions by
employing the use of (DSC) blocks with multidilated flters
which enlarges the receptive feld and view of flters.
Moreover, the nonmonoatomic property of swish activation
makes the training smooth. Furthermore, in our approach,
we applied a preprocessing technique on images that
removes the artifacts in data that hinder the accurate seg-
mentation of melanoma.

Table 3 represents the comparison between the existing
techniques and the proposed framework. From Table 3, it is
observed that there is signifcant improvement found in
terms of Jaccard and Dice scores, especially in ISBI2016,
which contains 379 challenging test images.

4.7.Discussion. Melanoma lesion segmentation remains one
of the most difcult tasks in dermoscopy image analysis.
Traditional segmentation methods such as Ostu and
thresholding perform well but fails when artifacts and noises
are observed in the images. In addition, they also require
manual tuning of parameters such as threshold values.Tese
manual settings limit their use in automated CAD systems.
More explicitly, in CAD systems end-to-end solutions are
preferable. Hence, in this research study, we proposed
a deep-learning-based segmentation model to automatically
segment the lesion from given dermoscopic images. Te
proposed model frst encodes the dermoscopic images to
extract the features of melanoma lesions using a DSC block
in which depthwise separable convolutions are applied
channelwise and has a smaller number of weights in
comparison with the conventional convolutions. Following
the activation function, swish is applied to achieve the
nonlinearity on the resulting feature maps. In subsequent
steps, the bottleneck layers are inserted followed by an
upsampling path called a decoder to generate the segmented
image containing the lesions. Te proposed model performs
well since it avoids the problems of overftting by using
convolution layers with fewer parameters using DSC blocks
as well as by disentangling spatial and cross-channel
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correlations. Te results presented in Table 2 provide ac-
curacy, Dice score, Jaccard score, sensitivity, and specifcity
of the proposed model in comparison with challenge win-
ners of the ISBI2016 dataset. Similarly, Table 3 provides
a comparison with diferent research studies. Te proposed
method’s strength is that it accurately segments out lesions
from dermoscopic images of not only melanomic type
cancer but also nevus type cancer whose images are available
in DermQuest and DermIS datasets. Tis indicates the
generalizability of the proposed method in terms of seg-
menting diferent types of lesions. In addition, the proposed

method is less complex in comparison with the hybrid
models that are large in terms of parameters. Tis is due to
the adoption of DCS blocks in which depthwise separable
convolutions are used to extract features with fewer number
weights. However, one potential limitation of the method is
that the model training is done from scratch, which takes
long time for optimal convergence; thus, what if the encoder
is set to pretrained weights? Tis would be an excellent
future direction for this work. Furthermore, more chal-
lenging ISBI datasets on skin cancer should be utilized to
investigate the performance.

Figure 12: Results of channel activation of intermediate layers of the model.

Table 3: Comparison with state-of-the-art approaches.

Techniques Accuracy Dice score Jaccard score Specifcity Sensitivity
Rashid et al. [40] 0.90 0.901 0.82 0.98 0.83
Yaun et al. [29] 0.955 0.912 0.847 0.966 0.918
Li et al. [43] 0.959 0.931 0.870 0.96 0.95
Wei et al. [44] 0.962 0.923 0.867 0.974 0.934
Tang et al. [34] 0.95 0.91 0.85 0.96 0.92
Bozorgtabar et al. [53] — 0.86 0.67 — —
DermQuest 0.98 0.97 0.96 0.95 0.90
DermIS 0.972 0.97 0.94 0.93 0.93
ISBI2016 0.95 0.947 0.90 0.90 0.92
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Figure 11: Loss and accuracy graphs of each dataset during training.
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5. Conclusion

Melanoma lesion segmentation is a very challenging task in
the medical imaging domain since the normal and afected
regions have the same appearance, and usually, the presence
of artifacts and other noises in data decreases the seg-
mentation performance. To address this challenge, diferent
traditional segmentation methods are suggested by various
researchers; however, these methods are not suitable for
automated CAD systems due to many manual parametric
steps. Terefore, we proposed a deep-learning-based seg-
mentation model for automated segmentation of melanoma
lesions from dermoscopic images. Te suggested model
employs the depthwise separable convolution blocks (DSC)
which can learn the features from each space of an image.
Moreover, multidilated flters broaden the view of kernels or
flters and capture the information with large receptive
felds.Te use of swish activation proved to be very benefcial
due to its nonmonoatomic behavior. Te experimentation
has been done on three diferent datasets including DermIS,
DermQuest, and ISBI2016 datasets. Te Dice and Jaccard
scores for DermIS are 97% and 94%, for DermQuest are 97%
and 96%, and for ISIC2016 are 94.7% and 90%, respectively.
Future work will entail in improving the segmenting model
by adding the attention modules such as CBAM and
expanding the number of samples in training data in terms
of challenging images.
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